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Autocorrelation Scaling and Fourier Transform
of Non-Autonomous Systems

César R. de Oliveira

Abstract. Upper bounds for the (strong) Fourier transform, of a rather general se-
quence of unitary operators, are related to the uniform α-Hölder continuity of its
autocorrelation measure. It is a natural generalization of the “Dynamical Bombieri-
Taylor Conjecture.” Immediate applications include driven quantum systems, clas-
sical and quantum harmonic oscillators, and non-autonomous twisted generalized
random walks in Hilbert spaces.

1 Introduction and Main Result

We are interested in asymptotic properties of the time evolution of a class of quan-
tum systems, particularly in the non-autonomous case, in which the Hamiltonian
H depends on time; we shall present upper bounds for the growth of the strong
Fourier transform of sequences of unitary operators in terms of the α-Hölder con-
tinuity of the corresponding autocorrelation measures. We use the autonomous
case to motivate our main result, mentioning that some works on the asymptotic
properties of systems with non-trivial time dependence include [1–18].

Let U(t, 0), t ∈ IR, be a strongly continuous one-parameter group of unitary
operators on the (separable) Hilbert space H. Denote its infinitesimal generator
by H, i.e., H : dom H → H is a self-adjoint operator such that U(t, 0) = e−iHt,∀t.
With respect to the time evolution in quantum mechanics H represents the Hamil-
tonian operator and U(t, 0) is called propagator. The Mean Ergodic Theorem [19]
states that for each ξ ∈ H, ω ∈ IR,

lim
T→∞

1
T 2

∥∥∥∥∥
∫ T

0
eiωtU(t, 0)ξdt

∥∥∥∥∥
2

= ‖EH(ω)ξ‖2 = µξ({ω}), (1)

where EH(ω) is the orthogonal projector onto Ker(H − ωI) and µξ the spectral
measure associated to the vector ξ. Thus, the left hand side of (1) can be used
to recover the point spectrum of the Hamiltonian operator H. The mathematical
formulation and adaptation of this result for a class of non-autonomous systems
was discussed in [15]; now we briefly recall its principal result.

Let {Un}∞n=1 be a sequence of unitary operators on H and

Λ(n) = Un · · ·U2U1.
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We set Λ(0) = I. This quantity can be seen as the time evolution operator of
non-autonomous quantum systems for which the time-dependent law changes at
every integer time. E.g., the time evolution associated to a family of kicked systems
given by the Hamiltonian

H(t) = H0 +
∞∑
j=1

Vjδ(t− j),

with {Vj} being a sequence of potentials; in this case Un = e−iVne−iH0 . An-
other possibility is a time-dependent quantum system built upon a sequence of
autonomous potentials Vj, with Vj acting on the time interval (j − 1, j]. A quan-
tity that resembles the left hand side of the Mean Ergodic Theorem (1) for Λ
was first suggested about ten years ago in [2], motivated by a similar relation in
the context of diffraction by aperiodic structures studied by Bombieri and Tay-
lor [20, 21]; by borrowing a conjecture from Bombieri-Taylor, in [2] it was proposed
that something like a point spectrum for Λ would be present if the limit

lim
N→∞

1
N2ϕN (ω, ξ) 	= 0 (2)

for some ω ∈ [0, 2π] , ξ ∈ H, where

ϕN (ω, ξ) =

∥∥∥∥∥∥
N−1∑
j=0

eiωjΛ(j)ξ

∥∥∥∥∥∥
2

. (3)

This idea was also employed in [3, 9]. The precise statement appeared in [15], also
clarifying the meaning of the point spectrum for Λ, i.e., it was proven that

lim sup
N→∞

1
N2ϕN (ω, ξ) ≤ 2σξ({ω}), (4)

where σξ denotes the autocorrelation measure of {Λ(n)ξ}. Notice that the limit (2)
is a kind of Fourier Transform of {Λ(n)ξ}. Recall that the autocorrelation measure
σξ is a (finite) Borel positive measure on [0, 2π] (the unit circle), which is defined
by Bochner-Herglotz theorem—the second equality below—via the autocorrelation
functions

Cξ(k) = lim
N→∞

1
N

N−1∑
j=0

〈Λ(j + k)ξ|Λ(j)ξ〉 =
∫
eiksdσξ(s).

Recall also that the notion of autocorrelation measure is the natural generalization,
for time-dependent systems, of spectral measures of propagators for autonomous
quantum models. In this work the autocorrelation functions Cξ(k) are supposed
to be well defined.
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Relation (4) has been called the Dynamical Bombieri-Taylor conjecture, and
it is a rigorous version of the Mean Ergodic Theorem (1) that holds for some sys-
tems with general time dependence. Notice, however, that there are examples [15]
for which the left hand side of (4) vanishes while σξ is pure point; this happens
because ϕN is too sensible to phases variations, at least when compared to auto-
correlations functions. In summary, ϕN can be used, even numerically, to derive
properties about the point components of the autocorrelation measures.

Here it will be shown that ϕN can also be used to extract information on the
continuous part of the autocorrelation measures; the point is to tune the growth
rate of ϕN and consider ϕN/N

2−α, with α ≥ 0. Our main result asks also for
an average on ω, so we introduce the following notation for positive integrable
functions f : J → IR on a closed interval J ⊂ IR:

〈f(ω)〉J =
1
|J |

∫
J

f(ω)dω

(| · | denotes Lebesgue measure). If |J | = 0 then 〈f(ω)〉J ≡ 0.

Definition 1. [22, 23] A σ-finite positive Borel measure µ, on subsets of IR, is
uniformly α-Hölder continuous (UαH) on the interval J ⊂ IR if there is a positive
constant C such that µ(J ′) ≤ C|J ′|α, for any subinterval J ′ ⊂ J with |J ′| < 1.

Remark 1.1. UαH measures have been thought of as a kind of fractal measures
among physicists. The most relevant property for quantum mechanics [22, 23] is
that for each UαH measure µ in IR there exists a constant D < ∞ such that
1
T

∫ T

0 |µ̂(t)|2dt ≤ DT−α, for all T > 1 (µ̂ denotes the Fourier Transform of µ).

Theorem 1. Suppose the autocorrelation functions exist for the sequence {Λ(n)ξ}
in the Hilbert space H, with UαH autocorrelation measure σξ, 0 ≤ α ≤ 1, in the
closed interval J ⊂ [0, 2π]. Then there exists a constant 0 ≤ K <∞ such that

lim sup
N→∞

1
N2−α

〈ϕN (ω, ξ)〉J ≤ K. (5)

Remark 1.2. A clear corollary of this theorem is that if there is a subsequence of
integers {Nr} such that

lim
r→∞

1
N2−α

r

〈ϕNr (ω, ξ)〉J =∞,

then σξ is not UβH, for α ≤ β, in the closed interval J.

Remark 1.3. By combining this theorem with Fatou’s lemma, it follows that

lim inf
N→∞

ϕN (ω, ξ)
N2−α

<∞, (6)

for ω in a set of full Lebesgue measure in J.
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Remark 1.4. Although inserted in the context of quantum mechanics, the above
theorem holds for rather general sequences of unitary operators on Hilbert spaces;
it has potential applications in the studies of general (classical and quantum) driven
dynamical systems. Relations (5) and (6) can, in principle, be a theoretical and
numerical source of information on the Hölder properties of autocorrelation mea-
sures, which are in general very hard to be explicitly computed.

Remark 1.5. For the case α = 0 there are more specific results, as discussed above,
with a proper estimate for K—see (4). A measure may have a Hölder exponent α
that depends on the point in its support; in this case it is the smallest value of α
in J that is relevant for thm. 1.

Remark 1.6. If there is a unitary operator W such that Un = W,∀n—the au-
tonomous case—then the autocorrelation measures are replaced by spectral mea-
sures ofW , and Hof [24] has got an equivalence in the analogous of thm. 1 (see [24]
for details). I was not able to prove that relation (5) implies that σξ is UαH; based
on the examples presented in [15] with strictly inequality in (4), we suspect that
thm. 1 does not have a simple converse (see also the next two remarks).

Remark 1.7. The wide generality of thm. 1 with respect to the time dependence
of Λ justifies, at least on intuitive grounds, the average over J in (5); it is a way
to smear eventual wild oscillations of ϕN as function of ω. I do not know any
non-trivial sufficient condition assuring that such average can be dropped out.

Remark 1.8. The Mean Ergodic Theorem (1) is a kind of rigorous formulation of
the physical concept of “energy representation” in quantum mechanics (for pure
point Hamiltonians). In case of non-autonomous systems such representation is
actually expected to fail in general; this is a physical reason for the inequality and
average over frequencies in (5).

Remark 1.9. The value α = 1 is related to measures absolutely continuous with
respect to Lebesgue measure (with continuous density, at least), while α = 0 to
point measures; but it is known that a UαH measure with 0 < α < 1 does not
necessarily have a singular continuous component [23, 24].

The remaining of this paper is organized as follows. In Section 2 the proof of
the above theorem is presented, and the critical growth exponent for a sequence
of real numbers is defined. In Section 3 thm. 1 is used to give upper bounds on
the energy growth of a class of classical and quantum harmonic oscillators with
general time dependence; that section finishes with a remark on non-autonomous
twisted generalized random walks.

2 Proof of Theorem 1

In this Section we present the proof of thm. 1 and define the critical growth
exponent for a sequence of positive real numbers.
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The case α = 0 was discussed in [15] and, since those results imply thm. 1
for this case, we suppose that α > 0 and that σξ is a continuous measure over J .

Each function ϕN (·, ξ) is continuous and bounded by N2‖ξ‖2, so it defines a
measure dµN (ω) = ϕN (ω, ξ)/Ndω absolutely continuous with respect to Lebesgue
measure. Thm. 1 will follow, after additional manipulations, from the claim that,
for each ξ ∈ H, the sequence {µN} converges, in the weak∗ topology, to the
autocorrelation measure σξ. In fact, by expanding ϕN we get

dµN (ω) =

=
1
N


N−1∑
n,j=0

exp(i(n− j)ω)〈Λ(n)ξ|Λ(j)ξ〉


 dω

=
1
N


N−1∑

j=0

N−1−j∑
k=−j

eikω〈Λ(j + k)ξ|Λ(j)ξ〉


 dω.

Its Fourier transform at r ∈ ZZ is given by (for N > |r|)

µ̂N (r) =

=
1
N

N−1∑
j=0

N−1−j∑
k=−j

δk,r〈Λ(j + k)ξ|Λ(j)ξ〉

=
1
N

N−1∑
j=0

〈Λ(j + r)ξ|Λ(j)ξ〉.

Therefore, for N →∞ one gets that µ̂N (r) → Cξ(r) = σ̂ξ(r), for any r ∈ ZZ, and
so µN converges in the weak∗ topology to σξ.

Since σξ is UαH on the bounded interval J , there exists 0 < C <∞ such that
σξ(J ′) ≤ C|J ′|α for any interval J ′ ⊂ J , and being σξ a regular and continuous
measure we have limN→∞ µN (J ′) = σξ(J ′) (the border of any interval J ′ has zero
σξ measure) [25].

If |J | = 0 there is nothing to prove since thm. 1 becomes trivial, so we assume
that |J | > 0. Pick 0 < ε < C|J |α; by the above claim there exists M > 0 such
that if N ≥M then ∫

J

ϕN (ω, ξ)/Ndω − ε ≤ σξ(J) ≤ C|J |α,

and
1
N
〈ϕN (ω, ξ)〉J =

1
|J |

∫
J

ϕN (ω, ξ)/Ndω ≤ 2C|J |α−1.

Taking also M large enough so that |J | ≥ 1/M , it follows that, for N ≥ M ,
|J |α−1 ≤ N1−α. Thus

1
N
〈ϕN (ω, ξ)〉J ≤ 2CN1−α.
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From this relation it follows that

lim sup
N→∞

1
N2−α

〈ϕN (ω, ξ)〉J ≤ K,

with K = 2C and thm. 1 is proven. �

Definition 2. Given a sequence u = {un}∞n=1 of positive real numbers, its critical
growth exponent β(u) is the unique real number such that

lim sup
n→∞

un
nγ

=
{
∞ if γ < β(u)
0 if γ > β(u).

Thm. 1 can be expressed in terms of the critical exponent β: If the au-
tocorrelation measure σξ is UαH, 0 ≤ α ≤ 1, in the closed interval J , then
β(〈ϕN (ω, ξ)〉J ) ≤ (2− α).

3 Driven Harmonic Oscillators

Consider the Hamiltonian of a unidimensional harmonic oscillator, with natural
frequency ωo, under a time-dependent force

H(t) = H(ωo) + qF (t) (7)

with H(ωo) = (p2 + ω2
oq

2)/2, and F (t) being a piecewise continuous function. For
example, given a sequence of continuous real functions Fn defined on (0, 1] set

F (t) = Fn(t− n), t ∈ (n, n+ 1]. (8)

Another interesting possibility is given by kicked oscillators with

F (t) = ε
∞∑
j=1

ν(n)δ(t− n), (9)

where {ν(n)} is a sequence (periodic, almost periodic or random) taking the values
±1, and ε is the kick intensity. Both, the classical and quantum dynamics of (7)
with forces (8) and (9) are well defined [6, 8]. We can apply thm. 1 to get

Corollary 1. Let U(t, s) be the quantum propagator of (7) with forces (8) or (9) [8].
Set

Un = s− lim
t↑n,s↓(n−1)

U(t, s), Λ(n) = Un · · ·U0,

and suppose the autocorrelation functions for {Λ(n)ξ} exist. If the corresponding
autocorrelation measure σξ is UαH, 0 ≤ α ≤ 1, in the closed interval J ⊂ [0, 2π],
then (5) holds in this case.
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An interesting point about the harmonic oscillator (7,9) is that a variation
of ϕN is directly related to the unperturbed (classical and quantum) energy growth.
Let

z(N,ωo) ≡
N∑

n=1

einωoν(n).

For simplicity let’s suppose that initially the classical oscillator is at rest at the
origin, i.e., p(0) = q(0) = 0; in this case the value of the unperturbed energyH(ωo)
is given by [6, 8]

EC(N,ωo) =
ε2

2
|z(N,ωo)|2 . (10)

The time dependence of the energy for general initial conditions, as well as the ex-
pectation of the quantum unperturbed energy for ξ ∈ domH(ωo), differ from (10)
by linear terms in z(N,ωo). So, the long time behaviours of the classical and quan-
tum unperturbed energies are essentially equivalent—see [6, 8, 26] for details, in-
cluding applications to harmonic oscillators under perturbations modulated along
random and substitution sequences.

Corollary 2. Suppose the autocorrelation functions

Cν(r) = lim
N→∞

1
N

N∑
n=1

ν(n+ r)ν(n)

exist, and denote the corresponding autocorrelation measure by ην . If ην is UαH,
0 ≤ α ≤ 1, in the closed interval J , then there exists a constant 0 ≤ K <∞ such
that

〈EC(N,ωo)〉J ≤ Kε2N2−α (11)

for any N ≥ 1, and the critical exponent β (〈EC(N,ωo)〉J) ≤ (2 − α) (here the
average 〈·〉J is with respect to ωo).

Proof. Since ν(n) takes values on ±1 it is a sequence of unitary operators on the
Hilbert space IR. Set Λ̃(n) = ν(n), Λ̃(0) = I, and

ϕ̃N (ωo, 1) =

∥∥∥∥∥∥
N−1∑
j=0

eijωoΛ̃(j)

∥∥∥∥∥∥
2

.

By noting that ϕ̃N (ωo, 1) = |z(N,ωo)|2, corol. 2 is a simple consequence of thm. 1
and (10). �

Remark 3.1. General initial conditions are reflected only on the value of the con-
stant K in (11); therefore only properties of the numerical sequence ν(n) are rel-
evant for the exponent ruling the energy growth in this case. In [8] there are more
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specific results on random, Thue-Morse and Rudin-Shapiro sequences; here we
need the average since thm. 1 holds for very general sequences {ν(n)}, and so it
is expected to give weaker information than any specific analysis; e.g., the auto-
correlation measures ην for Rudin-Shapiro sequence is Lebesgue measure, so (11)
implies 〈EC(N,ωo)〉J ≤ Kε2N , a result that follows directly from Saffari inequal-
ity [8, 27].

Remark 3.2. The upper bound on the average energy growth 〈EC〉 depends only on
the behaviour of the autocorrelation measure ην of the perturbing sequence {ν(n)}
near the natural frequency ωo; it is a kind of resonance. In particular, if ην is a
positive continuous function times Lebesgue measure in a neighbourhood V of ωo,
and pure point outside V (indicating a highly correlated sequence), we still get a
linear upper bound for the average energy growth around ωo.

Remark 3.3. In the case of substitution sequences ν(n) with pure point autocorrela-
tion measures, we can only infer from thm. 1 that, for any interval J,
〈EC(N,ωo)〉J ≤ Kε2N2. That is the case, for instance, of Fibonacci, paper-folding
and period doubling sequences [28, 29].

As a final remark we comment upon twisted non-autonomous random walks
in Hilbert spaces. They are built upon a sequence of unitary operators Un : H←↩
Λ(n) = Un · · ·U1, ω ∈ [0, 2π], and a vector ξ ∈ H; each walk is defined by

SN (ω, ξ) =
N∑
j=1

eijωΛ(j)ξ.

For theoretical and numerical investigations of similar random walks see [30, 24]
and references there in. A fundamental question is about the asymptotic behaviour
of the mean square displacement

ϕN (ω, ξ) = ‖SN (ω, ξ)‖2.

By thm. 1 it follows that if the autocorrelation measure σξ for {Λ(n)ξ} exists and
is UαH in the closed interval J , then we have the following upper bound for the
critical exponent of the average mean square displacement

β(〈‖SN (ω, ξ)‖2〉J ) ≤ (2− α).

Notice that average superdiffusive behaviour is not possible if σξ is absolutely
continuous with respect to Lebesgue measure in J and with continuous density.
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[9] C. R. de Oliveira, J. Phys. A: Math. Gen., Vol. 27, 1994, p. L847.

[10] C. R. de Oliveira, J. Stat. Phys., Vol. 78, 1995, p. 1055.

[11] C. R. de Oliveira, Europhys. Lett., Vol. 31, 1995, p. 63.

[12] A. Joye, J. Stat. Phys., Vol. 75, 1996, p. 575.

[13] W. F. Wreszinski, Helv. Phys. Acta, Vol. 70, 1997, p. 109.

[14] J. M. Barbaroux and A. Joye, J. Stat. Phys., Vol. 90, 1998, p. 1225.

[15] C. R. de Oliveira, J. Math. Phys., Vol. 39, 1998, p. 4335.

[16] S. Tcheremchantsev, Commun. Math. Phys., Vol. 196, 1998, p. 105.

[17] A. V. Zhukov, Phys. Lett. A, Vol. 256, 1999, p. 325.

[18] J. C. A. Barata, Rev. Math. Phys., Vol. 12, 2000, p. 25.

[19] W. O. Amrein, Non-Relativistic Quantum Dynamics, Reidel, 1981, ch. 4.

[20] E. Bombieri and J. E. Taylor, J. Phys. Colloque C3, Vol. 47, 1986, p. 19.

[21] E. Bombieri and J. E. Taylor, in The Legacy of S. Kovalevskaya, Contempo-
rary Mathematics Vol. 64, American Mathematical Society, 1987.

[22] R. S. Strichartz, J. Funct. Anal., Vol. 89, 1990, p. 154.

[23] Y. Last, J. Funct. Anal., Vol. 142, 1996, p. 406.

[24] A. Hof, Commun. Math. Phys., Vol. 184, p. 567.



894 C.R. de Oliveira Ann. Henri Poincaré
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