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Strong Magnetic Field Asymptotics of the
Integrated Density of States for a
Random 3D Schrödinger Operator

W. Kirsch, G.D. Raikov

Abstract. We consider the three-dimensional Schrödinger operator with constant
magnetic field and bounded random electric potential. We investigate the asymp-
totic behaviour of the integrated density of states for this operator as the norm of
the magnetic field tends to infinity.
Résumé On considère l’opérateur de Schrödinger tridimensionnel avec un champ
magnétique constant et un potentiel électrique aléatoire borné. On étudie le com-
portement asymptotique de la densité d’états pour cet opérateur-ci lorsque la norme
du champ magnétique tend vers l’infini.

1 Introduction

Let b := (0, 0, b), b > 0, x = (x, y, z) ∈ R3. Introduce the unperturbed selfadjoint
Schrödinger operator

H0(b) :=
(
i∇ +

b ∧ x
2

)2

≡
(
i
∂

∂x
− by

2

)2

+
(
i
∂

∂y
+
bx

2

)2

− ∂2

∂z2 , (1.1)

defined originally on C∞
0 (R3), and then closed in L2(R3). It is well-known that for

each b > 0 we have
σ(H0(b)) = [b,+∞) (1.2)

where σ(H0(b)) denotes the spectrum of the operator H0(b) (see e.g. [A.H.S]).
Let (Ω,F ,P) be a probability space. Let Vω(x), ω ∈ Ω, x ∈ R

3, be a real random
field. We assume that Vω is G

3-ergodic with G = Z or G = R (see [K, Section 3.1]
or [P.Fi, Section 1C]). In other words, there exists an ergodic group of measure
preserving automorphisms Tk : Ω → Ω, k ∈ G3, such that

Vω(x + k) = VTkω(x), x ∈ R
3, ω ∈ Ω, k ∈ G

3. (1.3)

We recall that ergodicity of a group G of automorphisms of Ω means that the
invariance of a given set A ∈ F under the action of G (i.e. gA = A for each g ∈ G)
implies either P(A) = 1 or P(A) = 0.
Let x ∈ R3. We shall write occasionally x = (X, z) with X ∈ R2 and z ∈
R. We suppose that Vω is G-ergodic with G = Z or G = R in the direction
of the magnetic field (or, in brief, in the z-direction), i.e. that the subgroup
{Tk|k = (0, 0, k), k ∈ G} is ergodic.
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Further, we assume that the realizations of Vω are almost surely uniformly
bounded, i.e. we have

c0 := ess − sup
ω∈Ω

sup
x∈R3

|Vω(x)| < ∞. (1.4)

Finally, for simplicity we suppose that the realizations of Vω are almost surely
continuous.

Examples : (i) Let αj : Ω → R, j ∈ Z
3, be independent identically distributed

almost surely uniformly bounded random variables. Assume that v : R
3 → R is a

continuous function satisfying

|v(x)| ≤ c(1 + |x|)−β, c > 0, β > 3.

Set
Vω(x) :=

∑
j∈Z3

αj(ω) v(x− j), ω ∈ Ω, x ∈ R
3.

Then the random field Vω is Z
3-ergodic (see [K, Model I, Section 3.3] or [P.Fi,

Example 1.15a, p.23]), Z-ergodic in the direction of the magnetic field (as a matter
of fact, in all directions; see [E.K.Sch.S, Example 2, p.615]). Moreover, it is obvious
that almost surely the realizations of Vω are uniformly bounded and continuous.
(ii) Let ξω(x), ω ∈ Ω, x ∈ R3, be a real-valued homogeneous Gaussian field whose
correlation function is continuous at the origin and decays at infinity (see [P.Fi,
Example 1.15c, p.26] and [E.K.Sch.S, Example 3, p.615]). Assume that F : R → R

is a bounded continuous function. Set Vω(x) := F (ξω(x)), ω ∈ Ω, x ∈ R
3. Then

the random field Vω is R
3-ergodic, R-ergodic in the direction of the magnetic field

(and all other directions) whose realizations are almost surely uniformly bounded
and continuous.

On D(H0(b)) define the perturbed Schrödinger operator

H(b, ω) := H0(b) + Vω, b > 0, ω ∈ Ω.

It follows from (1.2) and (1.4) that almost surely we have

σ(H(b, ω)) ⊆ [b− c0,+∞). (1.5)

The aim of this paper is to study the asymptotic behaviour as b → ∞ of the
integrated density of states (IDOS) for the operator H(b, ω). In order to recall the
definition of the IDOS, we need several auxiliary concepts.
Let ϕr, r ∈ R+, and ϕ be non-decreasing functions defined on a common domain
I ⊆ R. We shall write

v − lim
r→∞

ϕr = ϕ

if we have limr→∞ ϕr(t) = ϕ(t) at all continuity points t of the function ϕ. In this
case the function ϕ is called the vague limit as r → ∞ of the family ϕr (cf. [K,
p.313]).
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Further, let T = T ∗ be a selfadjoint operator in a Hilbert space. Denote by
PI(T ) its spectral projection corresponding to the interval I ⊂ R. Set

N(λ;T ) := rankP(−∞,λ)(T ), λ ∈ R,

n±(s;T ) := rankP(s,+∞)(±T ), s > 0. (1.6)

On the Sobolev space H2
((

−R
2 ,

R
2

)3)
, R > 0, with Dirichlet boundary conditions

define the operator H0,R(b) :=
(
i∇ + b∧x

2

)2
. Put

Db(.) := v − lim
R→∞

R−3 N( . ;H0,R(b) + Vω). (1.7)

Any non-decreasing function Db(µ), µ ∈ R, satisfying (1.7), is called IDOS for
the operator H(b, ω). It is well-known that almost surely the vague limit (1.7)
exists and the quantity Db(µ) is non-random (see e.g. [Bro.H.L], [Ma], [U], and
the references cited there). Since Db is non-decreasing, the set of its eventual
discontinuity points is not more than countable.
Note that (1.5) implies that almost surely inf σ(H0,R(b) + Vω) ≥ b − c0 for all
R > 0. Therefore,

Db(µ) = 0, µ < b− c0. (1.8)

For µ ∈ R set

Db(µ) :=
b

2π2

∞∑
q=1

(µ− (2q − 1)b)1/2+ .

By [CdV, Theorem 3.1] the estimates

(R−R0)3Db(µ− CR−2
0 − c0) ≤ N(µ;H0,R(b) + Vω) ≤

R3Db(µ + c0), µ ∈ R, R > 0, R0 ∈ (0, R),

hold with C independent of µ, R, and R0. Then it follows easily from (1.7) that

Db(µ− c0) ≤ Db(µ) ≤ Db(µ+ c0), µ ∈ R. (1.9)

In this paper we study the asymptotic behaviour as b → ∞ of Db(λ + b), the
parameter λ ∈ R being fixed.

2 Statement of the main result

On H2
((
−R

2 ,
R
2

))
with Dirichlet boundary conditions define the operator h0,R :=

− d2

dz2 .
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Proposition 2.1. Let G = Z or G = R. Let fω(z), ω ∈ Ω, z ∈ R, be a real G-
ergodic random field whose realizations are almost surely uniformly bounded and
continuous. Then for each λ ∈ R the limit

,(λ; f) := lim
R→∞

R−1 N(λ;h0,R + fω) (2.1)

exists almost surely. Moreover, the function ,(λ; f) is non-random, and continuous
with respect to λ ∈ R.

The proof of the existence and the non-randomness of ,(λ; f) for much more
general ergodic fields fω can be found in [K, Chapter 7]. The continuity of ,(λ; f)
which is guaranteed by the fact that h0,R +fω is an ordinary differential operator,
is discussed in [P.Fi, Chapter III].

Lemma 2.1. Assume that the hypotheses of Proposition 2.1 hold. Let T : Ω → Ω
be a measure preserving automorphism. Then we have

lim
R→∞

R−1 N(λ;h0,R + fT ω) = lim
R→∞

R−1 N(λ;h0,R + fω). (2.2)

Proof. By [K, Theorem 6, Chapter 7] we have

lim
R→∞

R−1 N(λ;h0,R + fω) = sup
R>0

R−1
E (N(λ;h0,R + fω)) ≡

sup
R>0

R−1
∫

Ω
N(λ;h0,R + fω) dP(ω)

where E is used as the symbol of the mathematical expectation. Analogously,

lim
R→∞

R−1 N(λ;h0,R + fT ω) = sup
R>0

R−1
∫

Ω
N(λ;h0,R + fT ω) dP(ω).

Since T is a measure preserving automorphism, we get

sup
R>0

R−1
∫

Ω
N(λ;h0,R + fT ω) dP(ω) = sup

R>0
R−1

∫
Ω
N(λ;h0,R + fω) dP(ω)

which yields (2.2). �

Our assumptions concerning Vω guarantee that the random field fω = Vω(X, .)
depending on the parameter X ∈ R

2, satisfies the hypotheses of Proposition 2.1.
Moreover, if G = Z, then the function ,(λ;V (X, .)) is Z

2-periodic with respect to
X ∈ R2. In order to see this, one may apply Lemma 2.1 for T = Tk0 (see (1.3))
with k0 = (K, 0), K ∈ Z2, and conclude that

,(λ;V (X +K, .)) = ,(λ;V (X, .)), λ ∈ R, X ∈ R
2, K ∈ Z

2.
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Note that the continuity of Vω(x) with respect to x ∈ R
3, and the continuity of

,(λ; f) with respect to λ ∈ R, imply the continuity of ,(λ;V (X, .)) with respect
to X ∈ R

2. Taking into account also its periodicity, we find that ,(λ;V (X, .)),
X ∈ R

2, is uniquely determined by its values for X ∈
(
−1

2 ,
1
2

)2.
Similarly, if G = R, the quantity ,(λ;V (X, .)) is independent of X ∈ R

2. In order
to see this, one may apply Lemma 2.1 for T = Tx0 (see (1.3)) with x0 = (X, 0),
X ∈ R

2, and conclude that

,(λ;V (X, .)) = ,(λ;V (0, .)), λ ∈ R, X ∈ R
2.

Finally, using the elementary estimate

N(λ;h0,R + Vω(X, .)) ≤ R

π
(λ+ c0)

1/2
+ , X ∈

(
−1

2
,
1
2

)2

, R > 0,

we get

,(λ; v(X, .)) ≤ 1
π

(λ+ c0)
1/2
+ , X ∈

(
−1

2
,
1
2

)2

.

For λ ∈ R set

k(λ) :=

{ ∫
(− 1

2 ,
1
2 )2 ,(λ, V (X, .)) dX if G = Z,

,(λ, V (0, .)) if G = R.

Obviously, k(λ) is continuous with respect to λ.

Theorem 2.1. Let G = Z or G = R. Let Vω be a real G
3-ergodic random field

whose realizations are almost surely uniformly bounded and continuous. Assume
in addition that Vω is G-ergodic in the direction of the magnetic field. Then we
have

lim
b→∞

b−1Db(λ+ b) =
1

2π
k(λ), λ ∈ R. (2.3)

Remark: For definiteness, we shall prove Theorem 2.1 in the case G = Z. The
proof in the case G = R is quite similar and only simpler.

The asymptotics as b → ∞ of the IDOS for the two-dimensional Schrödinger
operator with constant magnetic field has been extensively investigated during the
last two decades (see e.g. [Br.G.I], [Bro.H.L], [M.Pu], [Pu.Sc], [W]). As far as the
authors are informed, no results concerning the strong magnetic field asymptotics
of the IDOS for the three-dimensional Schrödinger operator considered in this
paper, are known.
Besides the quantity Db(λ + b) whose main asymptotic term is obtained in (2.3),
we could consider more general quantities Db(λ2 + εb) −Db(λ1 + εb) with λj ∈ R,
j = 1, 2, λ1 < λ2, and ε ∈ R. Recall that the numbers {(2q − 1)b)}q≥1 are called
Landau levels. For this reason we shall refer to the asymptotics as b → ∞ of
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Db(λ2 + (2q − 1)b) − Db(λ1 + (2q − 1)b), q ∈ Z, q ≥ 1, as the asymptotics of
the IDOS near the kth Landau level. Analogously, if ε > 1 is not an odd integer,
we shall refer to the asymptotics as b → ∞ of Db(λ2 + εb) − Db(λ1 + εb) as the
asymptotics of the IDOS far from the Landau levels. Note that the case ε < 1 is
trivial since (1.8) implies Db(λ + εb) = 0, λ ∈ R, ε < 1, provided that b is large
enough.
Since (2.3) entails

lim
b→∞

b−1 (Db(λ2 + b) −Db(λ1 + b)) =
1
2π

(k(λ2) − k(λ1)) ,

we can say that Theorem 2.1 concerns the asymptotics of the IDOS near the first
Landau level. The problems of obtaining the first asymptotic term of the IDOS
near the higher Landau levels and far from the Landau levels remain open as far
as the methods used in this paper are not directly applicable to them. We hope to
solve these problems in a future work. Here we would like to note that

lim
b→∞

b−1 (Db(λ2 + εb) −Db(λ1 + εb)) =
1

2π2

(
(λ2)

1/2
+ − (λ1)

1/2
+

)
, (2.4)

if ε > 1 is an odd integer, and

lim
b→∞

b−1/2 (Db(λ2 + εb) −Db(λ1 + εb)) =
1

4π2 (λ2 − λ1)
∑

1≤q<(ε+1)/2

(ε−(2q−1))−1/2,

(2.5)

if ε > 1 is not an odd integer. Combining (2.4) (respectively, (2.5)) with (1.9)
we obtain generically the correct asymptotic order of the IDOS near the higher
Landau levels (respectively, far from the Landau levels).

Finally, note that (1.9) implies immediately

lim
b→∞

b−3/2Db(λ+ εb) = D1(ε), λ ∈ R, ε > 1,

which however yields only the rough estimate

Db(λ2 + εb) −Db(λ1 + εb) = o(b3/2), b → ∞.

The methods we apply are relatively simple. First of all, we give an equivalent
representation of Db(λ+ b) which is more convenient for our purposes. Namely, on
D(H0(b)) we define the operator

H̃(b, ω, λ,R) := H0(b) − b+ (Vω − λ− 1)1(−R
2 ,R2 )3 , b > 0, λ ∈ R, ω ∈ Ω, (2.6)

(see (1.1) for the definition of H0(b)), which has purely discrete negative spectrum,
and show that almost surely we have

Db(λ+ b) = lim
R→∞

R−3N(−1; H̃(b, ω, λ,R)), (2.7)

provided that λ+ b is a continuity point of Db (see Proposition 4.1 below).
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Moreover, we apply the Birman-Schwinger principle (see [B]), and similarly to [R
1 – 3] we employ the Kac-Murdock-Szegö theorem in order to reduce the study
of the asymptotics as b → ∞ of Db(λ + b) to the asymptotic analysis as R → ∞
and b → ∞ of the traces of the powers of certain trace-class operators tb,R (see
(3.4) below). The Birkhoff-Khintchine ergodic theorem plays a crucial rôle in this
analysis.
The paper is organized as follows. In Section 3 we investigate the asymptotics
of R → ∞ and b → ∞ of Tr tlb,R, l ≥ 1, and some related traces. Section 4
contains auxiliary results. In particular, we prove (2.7) as well as an analogous
formula concerning ,(λ, V (X, .)) (see (2.1)). Finally, the proof of Theorem 2.1 can
be found in Section 5.

3 Trace asymptotics

Let H0(b) :=
(
i ∂
∂x − by

2

)2
+
(
i ∂
∂y + bx

2

)2
be the selfadjoint operator defined origi-

nally on C∞
0 (R2) and then closed in L2(R2). The spectrum of H0(b) coincides with

the set of the Landau levels, i.e. σ(H0(b)) =
⋃∞

q=1{(2q− 1)b}, and the multiplicity
of each eigenvalue (2q − 1)b, q ≥ 1, is infinite. Denote by pb : L2(R2) → L2(R2)
the orthogonal projection onto the eigenspace of H0(b) associated with the first
Landau level b. In other words, pbw = w implies w ∈ D(H0(b)) and H0(b)w = bw.
It is well-known that

(pbw)(x, y) =
∫

R2
Pb(x, y;x′, y′)w(x′, y′) dx′dy′, w ∈ L2(R2),

with

Pb(x, y;x′, y′) :=
b

2π
exp

{
− b

4
[
(x− x′)2 + (y − y′)2 + 2i(xy′ − yx′)

]}
. (3.1)

Set

Pb :=
∫ ⊕

R

pb dz.

Evidently, Pb : L2(R3) → L2(R3) is an orthogonal projection,

(Pbu)(x, y, z) =
∫

R2
Pb(x, y;x′, y′)u(x′, y′, z) dx′dy′, u ∈ L2(R3),

and Pb commutes with H0(b) and ∂
∂z . Moreover, we have

H0(b)Pbu =
(
− ∂2

∂z2 + b

)
Pbu, u ∈ D(H0(b)), (3.2)
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(see (1.1)). Define the operator r :=
(
− ∂2

∂z2 + 1
)−1/2

, bounded and selfadjoint in

L2(R3). Evidently,

(r2u)(x, y, z) =
1
2

∫
R

e−|z−z′|u(x, y, z′) dz′, u ∈ L2(R3).

Moreover, the operators Pb and r commute.
Fix λ ∈ R and for brevity set

Qω(x) ≡ Qω(x;λ) := Vω(x) − λ− 1, x ∈ R
3, ω ∈ Ω.

Almost surely we have
|Qω(x)| ≤ c1, x ∈ R

3, (3.3)

with c1 := c0 + |λ+ 1| (see (1.4)). Put

Q̃ω,R(x) := Qω(x)1(−R
2 ,R2 )3(x), x ∈ R

3.

Define the operator
tb,R(Qω) := PbrQ̃ω,RrPb, (3.4)

compact and selfadjoint in L2(R3). It is easy to check that we have

‖Pbr|Q̃ω,R|1/2‖2
2 =

b

4π

∫
(−R

2 ,R2 )3
|Qω(x)| dx ≤ bR3

4π
c1 , (3.5)

where ‖.‖2 denotes the Hilbert-Schmidt norm. Therefore, tb,R(Qω) is a trace-class
operator. Set

M1(b) :=
b

4π
E

(∫
(− 1

2 ,
1
2 )3

Qω(X, z) dXdz

)
. (3.6)

Let l ≥ 2. Put
Ml(b) :=

b

2π
E

(∫
(− 1

2 ,
1
2 )3

Qω(X1, z1)
∫

R3(l−1)
Πl

s=2Qω(X1 + b−1/2Xs, z1 + zs)

ψl(z2, . . . , zl)Ψl(X2, . . . ,Xl)dX2 . . . dXl dz2 . . . dzl dX1dz1) , (3.7)

where

ψl(z2, . . . , zl) :=
1
2l

exp

{
−|z2| − |zl| −

l−1∑
s=2

|zs+1 − zs|
}
,

Ψl(X2, . . . ,Xl) ≡ Ψl(x2, y2, . . . , xl, yl) :=
1

(2π)l−1 exp {−Φl(x2, y2, . . . , xl, yl)},

and
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Φl(x2, y2, . . . , xl, yl) :=
1
4
{
x2

2 + y2
2 + xl

2 + yl
2+

l−1∑
s=2

(
(xs+1 − xs)2 + (ys+1 − ys)2 + 2i(xs+1ys − ys+1xs)

)}
;

if l = 2, then the sums with respect to s in the formulae defining ψl and Φl, should
be omitted.
Note that ψl ∈ L1(Rl−1), Ψl ∈ L1(R2(l−1)). Hence, (3.3) implies that the integral
defining Ml(b) is absolutely convergent.

Proposition 3.1. Almost surely we have

lim
R→∞

R−3Tr tb,R(Qω)l = Ml(b), l ≥ 1, (3.8)

the operator tb,R(Qω) being defined in (3.4).

Proof. We shall prove (3.8) in the generic case l ≥ 2.

It is easy to verify that Tr tb,R(Qω)l = Tr
(
Pbr

2Q̃ω,R

)l
, and that Tr

(
Pbr

2Q̃ω,R

)l
can be written in a standard way as an integral over R

3l of the diagonal value of

the integral kernel of the operator
(
Pbr

2Q̃ω,R

)l
. Hence, we have

Tr tb,R(Qω)l =∫
R3l

Πl
s=1

′
(

1
2
Pb(Xs+1,Xs)e−|zs+1−zs|

)
Πl

s=1Q̃ω,R(Xs, zs)dX1 . . . dXl dz1 . . . dzl

where the notation Πl
s=1

′ means that in the product of l factors the variables Xl+1
and zl+1, should be set equal respectively to X1 and z1. Changing the variables

X1 = X ′
1, Xs = X ′

1 + b−1/2X ′
s, s = 2, . . . , l,

z1 = z′1, zs = z′1 + z′s, s = 2, . . . , l,

we get
Tr tb,R(Qω)l =

b

2π

∫
(−R

2 ,R2 )3
Qω(X ′

1, z
′
1)
∫

R3(l−1)
Πl

s=2Q̃ω,R(X ′
1 + b−1/2X ′

s, z
′
1 + z′s)

ψl(z′2, . . . , z
′
l)Ψl(X ′

2, . . . ,X
′
l)dX

′
2 . . . dX

′
l dz

′
2 . . . dz

′
l dX

′
1dz

′
1. (3.9)

Our next step is to show that if we replace in (3.9) all the functions Q̃ω,R by Qω,
the error will be of order o(R3) as R → ∞. More precisely, we set

M̃l,R(b) :=
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b

2π

∫
(−R

2 ,R2 )3
Qω(X1, z1)

∫
R3(l−1)

Πl
s=2Qω(X1 + b−1/2Xs, z1 + zs)

ψl(z2, . . . , zl)Ψl(X2, . . . ,Xl)dX2 . . . dXl dz2 . . . dzl dX1dz1, l ≥ 2,

write
Tr (tb,R(Qω))l = M̃l,R(b) + El(R, b, ω), l ≥ 2, (3.10)

and shall demonstrate that almost surely we have

lim
R→∞

R−3El(R, b, ω) = 0. (3.11)

Evidently, El(R, b, ω) admits the estimate

|El(R, b, ω)| ≤

b

2π
cl1R

3
∫
(− 1

2 ,
1
2 )3

∫
R3(l−1)

Πl
s=2ER,b(X1, . . . ,Xl, z1, . . . , zl)

ψl(z2, . . . , zl)|Ψl(X2, . . . ,Xl)|dX2 . . . dXl dz2 . . . dzl dX1dz1

where
ER,b(X1, . . . ,Xl, z1, . . . , zl) :=(

1 − Πl
s=21(−R

2 ,R2 )3(RX1 + b−1/2Xs, Rz1 + zs)
)
.

Since ψlΨl ∈ L1(R3(l−1)), ‖ER,b‖L∞
(
(− 1

2 ,
1
2 )3×R3(l−1)

) = 1 for every b > 0 and

R > 0, and
lim

R→∞
ER,b(X1, . . . ,Xl, z1, . . . , zl) = 0

for almost every (X1, . . . ,Xl, z1, . . . , zl) ∈
(
−1

2 ,
1
2

)3 ×R
3(l−1), the dominated con-

vergence theorem yields (3.11).
Set L = L(R) = ent

(
R
2

)
where ent(x) denotes the integer part of x ∈ R. Obviously,

R−3M̃l,R(b) = (2L+ 1)−3M̃l,2L+1(b) + o(1), R → ∞. (3.12)

Let j = (J, j) ∈ Z
3, J ∈ Z

2, j ∈ Z. Introduce the random variables

γl,j(ω, b) :=
b

2π

∫
(− 1

2 ,
1
2 )3
Qω(X1+J, z1+j)

∫
R3(l−1)

Πl
s=2Qω(X1+J+b−1/2Xs, z1+j+zs)

ψl(z2, . . . , zl)Ψl(X2, . . . ,Xl)dX2 . . . dXl dz2 . . . dzl dX1dz1, l ≥ 2.

Set
ΓL =

{
j = (j1, j2, j3) ∈ Z

3||js| ≤ L, s = 1, 2, 3
}
, L ∈ N, L ≥ 1.

It is easy to verify that
M̃l,2L+1 =

∑
j∈ΓL

γl,j(ω, b). (3.13)
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On the other hand, it is obvious that for each k ∈ Z
3 we have

γl,j+k(ω, b) = γl,j(Tkω, b), j ∈ Z
3, ω ∈ Ω,

(see (1.3)). Hence, the sequence {γl,j}j∈Z3 is a Z
3-ergodic random field. Therefore,

we can apply the Birkhoff-Khintchine ergodic theorem (see e.g. [K, Theorem 2,
Section 3.2] or [P.Fi, Proposition 1.7, p.18]). As a result we get almost surely

lim
L→∞

(2L+ 1)−3
∑
j∈ΓL

γl,j(ω, b) = E(γl,0) ≡ Ml(b), l ≥ 2. (3.14)

Now the combination of (3.10)-(3.14) yields (3.8) with l ≥ 2.
The proof in the case l = 1 is similar but much simpler. �

Fix X ∈
(
−1

2 ,
1
2

)2. Introduce the operator

τR(Qω(X)) :=
(
− d2

dz2 + 1
)−1/2

Qω(X, z)1(−R
2 ,R2 )(z)

(
− d2

dz2 + 1
)−1/2

(3.15)

which is compact and selfadjoint in L2(Rz), and depends on the parameters X ∈(
−1

2 ,
1
2

)2 and ω ∈ Ω (see (3.4) in order to compare τR(Qω(X)) with the operator
tb,R(Qω)). It is easy to check that τR(Qω(X)) is a trace-class operator.
For X ∈

(
−1

2 ,
1
2

)2 set

µ1(X) :=
1
2

E

(∫
(− 1

2 ,
1
2 )
Qω(X, z) dz

)
,

µl(X) :=

E

(∫
(− 1

2 ,
1
2 )
Qω(X, z1)

∫
Rl−1

Πl
s=2Qω(X, z1 + zs)ψl(z2, . . . , zl)dz2 . . . zl dz1

)
, l ≥ 2,

(see (3.6)–(3.7) in order to compare µl(X) with the quantities Ml(b), l ≥ 1). By
analogy with Proposition 3.1 we can demonstrate the following

Proposition 3.2. Almost surely we have

lim
R→∞

R−1Tr τR(Qω(X))l = µl(X), l ≥ 1, X ∈
(
−1

2
,
1
2

)2

.

Set ml :=
∫
(− 1

2 ,
1
2 )2 µl(X)dX, l ≥ 1.

Proposition 3.3. We have

lim
b→∞

b−1Ml(b) =
1
2π

ml, l ≥ 1. (3.16)
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Proof. Obviously M1(b) = b
2πm1 which yields immediately (3.16) with l = 1.

Let l ≥ 2. Using the fact that p1 is an orthogonal projection, and taking into
account the explicit form of its kernel P1 (see (3.1)), we get

∫
R2(l−1)

Ψl(X2, . . . ,Xl)dX2 . . . dXl =

2π
∫

R2(l−1)
P1(0;X2)P1(X2;X3) . . .P1(Xl−1;Xl)P1(Xl; 0)dX2 . . . dXl =

2πP1(0; 0) = 1.

(cf. [R 2, pp.16-17]). Hence, we have

ml = E

(∫
(− 1

2 ,
1
2 )3

Qω(X1, z1)
∫

R3(l−1)
ψl(z2, . . . , zl)Ψl(X2, . . . ,Xl)

Πl
s=2Qω(X1, z1 + zs)dX2 . . . dXl dz2 . . . dzl dX1dz1

)
.

Then, obviously,

b−1Ml(b)−
1
2π

ml =
1
2π

E

(∫
(− 1

2 ,
1
2 )3

Qω(X1, z1)
∫

R3(l−1)
ψl(z2, . . . , zl)Ψl(X2, . . . ,Xl)

(
Πl

s=2Qω(X1 + b−1/2Xs, z1 + zs) − Πl
s=2Qω(X1, z1 + zs)

)
dX2 . . . dXl dz2 . . . dzl dX1dz1) . (3.17)

Since Qω is almost surely uniformly bounded and continuous, while ψl ∈ L1(Rl−1)
and Ψl ∈ L1(R2(l−1)), we find that it follows from the dominated convergence
theorem that (3.17) implies (3.16). �

Combining Propositions 3.1, 3.2, and 3.3, we get the following

Corollary 3.1. For each l ≥ 1 almost surely the limits

lim
b→∞

lim
R→∞

b−1R−3Tr tb,R(Qω)l

and
1

2π
lim

R→∞
R−1

∫
(− 1

2 ,
1
2)2

Tr τR(Qω(X))ldX

exist, coincide, and are non-random.
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4 Auxiliary results

Proposition 4.1. Let H̃(b, ω, λ,R) be the operator defined in (2.6). Let λ + b with
λ ∈ R and b > 0, be a continuity point of Db. Then (2.7) is valid.

Proof. First, note that we have

N(λ + b;H0,R(b) + Vω) = N(−1;H0,R(b) − b + Vω − λ− 1).

The minimax principle implies

N(−1;H0,R(b) − b + Vω − λ− 1) ≤ N(−1; H̃(b, ω, λ,R)).

Therefore,

lim inf
R→∞

R−3N(−1; H̃(b, ω, λ,R)) ≥ lim inf
R→∞

R−3N(λ+ b;H0,R(b) + Vω) =

lim
R→∞

R−3N(λ + b;H0,R(b) + Vω) = Db(λ+ b). (4.1)

Further, fix R > 0, R0 ∈ (0, R), put

O1 = O1,R =
(
−R

2
,
R

2

)3

, O2 = O2,R,R0 = R
3 \
[
−R−R0

2
,
R−R0

2

]3
,

and pick two functions ϕ1 and ϕ2 satisfying the following properties :

i) ϕj ∈ C∞(R3), j = 1, 2;
ii) supp ϕj ⊆ Oj , j = 1, 2;
iii) ϕ2

1(x) + ϕ2
2(x) = 1 for every x ∈ R

3;
iv) |∇ϕj(x)| ≤ c2R

−1
0 for every x ∈ R

3 with c2 > 0 which is independent of x, R,
and R0.

Introduce the selfadjoint operator

H̃D(b, ω, λ,R,R0) :=
(
i∇ +

b ∧ x
2

)2

− b+ (Vω − λ− 1)1(−R
2 ,R2 )3

whose quadratic form is defined originally on C∞
0 (O2), and then is closed in L2(O2)

(cf. (1.1) and (2.6)). Then the “magnetic” version of the so-called ISM localization
formula (see [C.F.K.S, Section 3.1]) yields

N(−1; H̃(b, ω, λ,R)) ≤ N(−1;H0,R(b) − b + Vω − λ− 1 −
∑
j=1,2

|∇ϕj |2)+

N(−1; H̃D(b, ω, λ,R,R0) −
∑
j=1,2

|∇ϕj |2). (4.2)
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Obviously,

N(−1;H0,R(b)− b+Vω −λ−1−
∑
j=1,2

|∇ϕj |2) ≤ N(λ+ b+2c22R
−2
0 ;H0,R(b)+Vω).

(4.3)
Choose a sequence {εr}r≥1 such that εr > 0, r ≥ 1, limr→∞ εr = 0, and λ+ b+εr,
r ≥ 1, are continuity points of Db. Fix r ≥ 1 and set R0 =

√
2c2/

√
εr. Then we

have

lim sup
R→∞

R−3N(λ+ b + 2c22R
−2
0 ;H0,R(b) + Vω) =

lim
R→∞

R−3N(λ+ b+ εr;H0,R(b) + Vω) = Db(λ+ b + εr), r ≥ 1. (4.4)

The combination of (4.3) and (4.4) yields

lim sup
R→∞

R−3N(−1;H0,R(b)− b+Vω −λ−1−
∑
j=1,2

|∇ϕj |2) ≤ Db(λ+ b+ εr), r ≥ 1.

(4.5)
On the other hand, by the minimax principle we have

N(−1; H̃D(b, ω, λ,R,R0) −
∑
j=1,2

|∇ϕj |2) ≤ N(−1;H0(b) − b+W ) (4.6)

where

W = Wω,λ,R,R0 =


(Vω − λ− 1)1(−R

2 ,R2 )3 −
∑
j=1,2

|∇ϕj |2

1O2 .

Arguing as in [R 1, Section 5], we deduce the estimate

N(−1;H0(b) − b+W ) ≤ c3

∫
R3

|W |3/2dx ≤ c4
(
R3 − (R−R0)3

)
(4.7)

where the quantities c3 and c4 may depend on b, λ, and R0, but are independent
of R. The combination of (4.6) and (4.7) yields

lim
R→∞

R−3N(−1; H̃D(b, ω, λ,R,R0) −
∑
j=1,2

|∇ϕj |2) = 0. (4.8)

Putting together (4.2), (4.5), and (4.8), we obtain

lim sup
R→∞

R−3N(−1; H̃(b, ω, λ,R)) ≤ Db(λ+ b+ εr), r ≥ 1.
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Letting r → ∞ (hence, εr → 0), and bearing in mind that λ + b is a continuity
point of Db, we get

lim sup
R→∞

R−3N(−1; H̃(b, ω, λ,R)) ≤ Db(λ+ b). (4.9)

Now, the combination of (4.1) and (4.9) yields (2.7). �
For b > 0, ω ∈ Ω, λ ∈ R, and R > 0, introduce the operator

Tb,ω,λ,R := (H0(b) − b+ 1)−1/2(Vω − λ− 1)1(−R
2 ,R2 )3(H0(b) − b+ 1)−1/2, (4.10)

compact and selfadjoint in L2(R3).

Corollary 4.1. Let λ+ b be a continuity point of Db. Then almost surely we have

Db(λ+ b) = lim
R→∞

R−3n−(1;Tb,ω,λ,R),

the quantity n−(s;T ) being defined in (1.6).

Proof. It suffices to note that the Birman-Schwinger principle (see [B, Lemma 1.1])
implies N(−1; H̃(b, ω, λ,R)) = n−(1;Tb,ω,λ,R), and then to apply Proposition 4.1.

�
Fix X ∈

(
−1

2 ,
1
2

)3 and λ ∈ R. For s ∈ R, s �= 0, set

,̃λ(s;X) := −sign(s) ,
(
−λ+ 1

s
− 1;−1

s
V (X, .)

)

(see (2.1) for the definition of ,(λ; f)). Since ,(λ, V (X, .)) is a continuous function
with respect to λ ∈ R (see Proposition 2.1), and Vω is uniformly bounded (see
(1.4)), we find that ,̃λ(s;X) is a continuous function with respect to s ∈ R \ {0}
for any fixed λ ∈ R. Moreover,

,̃λ(−1,X) = ,(λ, V (X, .)), X ∈
(
−1

2
,
1
2

)2

.

For R > 0, ω ∈ Ω, λ ∈ R, X ∈
(
−1

2 ,
1
2

)2, and s ∈ R \ {0}, set

νR,ω,X,λ(s) =
{

n−(−s; τR(Vω(X, .) − λ− 1)) if s < 0,
−n+(s; τR(Vω(X, .) − λ− 1)) if s > 0,

the operator τR being defined in (3.15).

Proposition 4.2. For every λ ∈ R, X ∈
(
−1

2 ,
1
2

)2, and s ∈ R \ {0}, we have

,̃λ(s;X) = lim
R→∞

R−1νR,ω,X,λ(s) (4.11)

almost surely.
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Proof. We shall prove (4.11) in the case s < 0. In this case, by Proposition 2.1

,̃λ(s,X) = lim
R→∞

R−1N(−λ+ 1
s

− 1;h0,R − 1
s
Vω(X, .)) =

lim
R→∞

R−1N(−1;h0,R − 1
s
(Vω(X, .) − λ− 1)). (4.12)

On H2(R) define the operator

h̃s,ω,X,λ,R := − d2

dz2 − 1
s
(Vω(X, .) − λ− 1)1(−R

2 ,R2 ), R > 0.

Applying the minimax principle, and bearing in mind that h0,R− 1
s (Vω(X, .)−λ−1)

and h̃s,ω,X,λ,R are second-order ordinary differential operators, we get

0 ≤ N(−1; h̃s,ω,X,λ,R) −N(−1;h0,R − 1
s
(Vω(X, .) − λ− 1)) ≤ 2.

Therefore, (4.12) implies

,̃λ(s,X) = lim
R→∞

R−1N(−1; h̃s,ω,X,λ,R). (4.13)

On the other hand, by the Birman-Schwinger principle we have

N(−1; h̃s,ω,X,λ,R) = n−(−s; τR(Vω(X, .) − λ− 1)) ≡ νR,ω,X,λ(s). (4.14)

Putting together (4.13) and (4.14), we obtain (4.11) with s < 0. The proof in the
case s > 0 is completely analogous. �

For λ ∈ R and s ∈ R \ {0} set

k̃λ(s) :=
∫
(− 1

2 ,
1
2)2

,̃λ(s;X)dX. (4.15)

Obviously, k̃λ(s) is continuous with respect to s. Moreover,

k̃λ(−1) = k(λ), λ ∈ R. (4.16)

Remark. The function νR,ω,X,λ(s) of the variable s ∈ R \ {0} is non-negative
on (−∞, 0), non-positive on (0,∞), and non-decreasing on (−∞, 0) and (0,∞).
By (4.11) and (4.15), the functions ,̃λ(s;X) and k̃λ(s) have the same properties.

Corollary 4.2. For each λ ∈ R almost surely we have

lim
b→∞

lim
R→∞

b−1R−3Tr tb,R(Vω − λ− 1)l =
1

2π

∫
R

sldk̃λ(s), l ≥ 1, (4.17)

the operator tb,R being defined in (3.4).
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Proof. By Corollary 3.1, we have

lim
b→∞

lim
R→∞

b−1R−3Tr tb,R(Vω − λ− 1)l =

1
2π

lim
R→∞

R−1
∫
(− 1

2 ,
1
2 )2

Tr τR(Vω(X, .) − λ− 1)ldX = (4.18)

1
2π

lim
R→∞

R−1
∫
(− 1

2 ,
1
2 )2

∫
R

sldνR,ω,X,λ(s) dX.

Proposition 4.2 easily implies that

lim
R→∞

R−1
∫
(− 1

2 ,
1
2 )2

∫
R

sldνR,ω,X,λ(s) dX =

∫
(− 1

2 ,
1
2 )2

∫
R

sld,̃λ(s;X) dX =
∫

R

sldk̃λ(s), (4.19)

and the combination of (4.18) and (4.19) yields (4.17). �

Corollary 4.3. For each λ ∈ R and s < 0 we have

lim
b→∞

lim
R→∞

b−1R−3n−(−s; tb,R(Vω − λ− 1)) =
1
2π

k̃λ(s). (4.20)

Proof. We have ‖tR,b(Vω −λ−1)‖ ≤ c1 (see (3.3)). Moreover, k̃λ(s) = 0 if |s| > c1.
Hence we can apply the Kac-Murdock-Szegö theorem (see [R 1, Section 3]) and,
taking into account the continuity of k̃λ(.), to conclude that (4.20) follows from
(4.17). �

5 Proof of Theorem 2.1

In order to prove (2.3), it suffices to show that for each sequence {bj}j≥1 such that
bj → ∞ as j → ∞, we have

lim
j→∞

b−1
j Dbj (λ+ bj) =

1
2π

k(λ), λ ∈ R. (5.1)

Fix two sequences {λ±
m}m≥1 such that λ−

m < λ < λ+
m, m ≥ 1, limm→∞ λ±

m = λ,
and λ±

m+bj are continuity points of Dbj for all m ≥ 1 and j ≥ 1. Then by Corollary
4.1 we have

lim sup
j→∞

b−1
j Dbj (λ+ bj) ≤ lim sup

j→∞
lim

R→∞
b−1
j R−3n−(1;Tbj ,ω,λ+

m,R), (5.2)

lim inf
j→∞

b−1
j Dbj (λ+ bj) ≥ lim inf

j→∞
lim

R→∞
b−1
j R−3n−(1;Tbj ,ω,λ−

m,R), (5.3)

the operator Tb,ω,λ,R being defined in (4.10). By the minimax principle



818 W. Kirsch, G.D. Raikov Ann. Henri Poincaré

lim inf
j→∞

lim
R→∞

b−1
j R−3n−(1;Tbj ,ω,λ−

m,R) ≥

lim inf
j→∞

lim inf
R→∞

b−1
j R−3n−(1;PbjTbj ,ω,λ−

m,R Pbj ). (5.4)

Note that the operator PbTb,ω,λ,R Pb coincides with the operator tb,R(Vω − λ− 1)
(see (4.10), (3.4), and (3.2)). Hence, Corollary 4.3 and (4.16) entail

lim inf
j→∞

lim inf
R→∞

b−1
j R−3n−(1;PbjTbj ,ω,λ−

m,RPbj ) ≥

lim
b→∞

lim
R→∞

b−1R−3n−(1; tR,b(Vω − λ−
m − 1)) =

1
2π

k̃λ−
m

(−1) =
1
2π

k(λ−
m). (5.5)

The combination of (5.3)-(5.5) yields

lim inf
j→∞

b−1
j Dbj (λ+ bj) ≥

1
2π

k(λ−
m). (5.6)

On the other hand, we have

Tbj ,ω,λ+
m,R = PbjTbj ,ω,λ+

m,R Pbj + (Id − Pbj )Tbj ,ω,λ+
m,R(Id − Pbj )

+2Re PbjTbj ,ω,λ+
m,R(Id − Pbj ). (5.7)

Set
T̃b,ω,λ,R :=

(Id − Pb)(H0(b) − b + 1)−1/2|Vω − λ− 1|1(−R
2 ,R2 )3(H0(b) − b+ 1)−1/2(Id − Pb).

Applying the elementary operator inequalities

(Id − Pbj )Tbj ,ω,λ+
m,R(Id − Pbj ) ≥ −T̃bj ,ω,λ+

m,R,

2Re PbjTbj ,ω,λ+
m,R(Id − Pbj ) ≥ −ε2tbj ,R(|Vω − λ+

m − 1|) − ε−2T̃bj ,ω,λ+
m,R, ε > 0,

we find that (5.7) implies

n−(1;Tbj ,ω,λ+
m,R) ≤ n−(1; tbj ,R(Vω − λ+

m − 1) − ε2tbj ,R(|Vω − λ+
m − 1|)) +

n+(1; (1 + ε−2)T̃bj ,ω,λ+
m,R), ε > 0. (5.8)

It is easy to verify the estimate

‖T̃bj ,ω,λ+
m,R‖ ≤ (bj + 1)−1(c0 + |λ+

m + 1|), R > 0. (5.9)

Fix ε > 0 and assume that bj is so large that (1+ε−2)(bj +1)−1(c0 + |λ+
m|+1) < 1.

Then (5.9) entails
n+(1; (1 + ε−2)T̃bj ,ω,λ+

m,R) = 0. (5.10)
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By the Weyl inequalities for the eigenvalues of compact selfadjoint operators we
have

n−(1; tbj ,R(Vω − λ+
m − 1) − ε2tbj ,R(|Vω − λ+

m − 1|)) ≤

n−(1 − ε; tbj ,R(Vω − λ+
m − 1)) + n+(1; εtbj ,R(|Vω − λ+

m − 1|)), ε ∈ (0, 1). (5.11)

The estimate (3.5) implies

n+(1; εtbj ,R(|Vω − λ+
m − 1|)) ≤ c5εbjR

3 (5.12)

with c5 := (c0 + |λ+
m + 1|)/4π. Now, the combination of (5.8), (5.10), (5.11), and

(5.12) yields

lim sup
j→∞

lim
R→∞

b−1
j R−3n−(1;Tbj ,ω,λ+

m,R) ≤

lim sup
j→∞

lim sup
R→∞

b−1
j R−3n−(1 − ε; tbj ,R(Vω − λ+

m − 1)) + c5ε, ε ∈ (0, 1). (5.13)

By Corollary 4.3

lim sup
j→∞

lim sup
R→∞

b−1
j R−3n−(1 − ε; tbj ,R(Vω − λ+

m − 1)) =

lim
b→∞

lim
R→∞

b−1R−3n−(1−ε; tb,R(Vω−λ+
m−1)) =

1
2π

k̃λ+
m

(−1+ε), ε ∈ (0, 1). (5.14)

The combination of (5.2), (5.13), and (5.14) yields

lim sup
j→∞

b−1
j Dbj (λ+ bj) ≤

1
2π

k̃λ+
m

(−1 + ε) + c5ε, ε ∈ (0, 1).

Letting ε ↓ 0, we get

lim sup
j→∞

b−1
j Dbj (λ+ bj) ≤

1
2π

k̃λ+
m

(−1) =
1
2π

k(λ+
m). (5.15)

Letting m → ∞ (hence, λ±
m → λ) in (5.6) and (5.15), we arrive at (5.1).
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