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Long Range Scattering and Modified Wave Operators
for some Hartree Type Equations IT*

J. Ginibre, G. Velo

Abstract. We study the theory of scattering for a class of Hartree type equations
with long range interactions in space dimension n > 3, including Hartree equations
with potential V(z) = Alz|~7. For 0 < v < 1 we prove the existence of modified
wave operators with no size restriction on the data and we determine the asymptotic
behaviour in time of solutions in the range of the wave operators, thereby extending
the results of a previous paper which covered the range 1/2 < v < 1.

1 Introduction

This is the second paper where we study the theory of scattering and more
precisely the existence of modified wave operators for a class of long range Hartree
type equations

iOpu+ %Au:§(|u|2)u (1.1)

where u is a complex function defined in space time IR"**, A is the Laplacian in
IR"™, and
luf?) = Xr77 Wt uf? (1.2)

with w = (=A)/2, X\ € IR, 0 < v < 1 and 0 < pu < n. The operator w"~™ can also
be represented by the convolution in x

W f=Chp |z Hx f (1.3)

so that (1.2) is a Hartree type interaction with potential V(z) = C|z|~*. The
more standard Hartree equation corresponds to the case v = u. In that case, the
nonlinearity g(Ju|?) becomes

g(lul?) =V ful® = Xa] ™7 ul? (1.4)

with a suitable redefinition of A.

A large amount of work has been devoted to the theory of scattering for the
Hartree equation (1.1) with nonlinearity (1.4) as well as with similar nonlinearities
with more general potentials. As in the case of the linear Schrédinger equation, one
must distinguish the short range case, corresponding to v > 1, from the long range
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case corresponding to v < 1. In the short range case, it is known that the (ordinary)
wave operators exist in suitable function spaces for v > 1 [11]. Furthermore for
repulsive interactions, namely for A > 0, it is known that all solutions in suitable
spaces admit asymptotic states in L? for v > 1, and that asymptotic completeness
holds for v > 4/3 [10]. In the long range case v < 1, the ordinary wave operators
are known not to exist in any reasonable sense [10], and should be replaced by
modified wave operators including a suitable phase in their definition, as is the
case for the linear Schrodinger equation. A well developed theory of long range
scattering exists for the latter. See for instance [1] for a recent treatment and for
an extensive bibliography. In contrast with that situation, only partial results are
available for the Hartree equation. On the one hand, the existence of modified wave
operators has been proved in the critical case v = 1 for small solutions [2]. On the
other hand, it has been shown, first in the critical case v = 1 [6, 9] and then in the
whole range 0 < v < 1 [5, 7, 8] that the global solutions of the Hartree equation
(1.1) (1.3) with small initial data exhibit an asymptotic behaviour as ¢ — +o0 of
the expected scattering type characterized by scattering states u4 and including
suitable phase factors that are typical of long range scattering. In particular, in
the framework of scattering theory, the results of [5, 7, 8] are closely related to the
property of asymptotic completeness for small data.

In a previous paper with the same title [4], hereafter referred to as I, we
proved the existence of modified wave operators for the equation (1.1) (1.2), and
we gave a description of the asymptotic behaviour in time of solutions in the ranges
of those operators, with no size restriction on the data, in suitable spaces and for
v in the range 1/2 < v < 1. The method is an extension of the energy method
used in [5, 7, 8], and uses in particular the equations introduced in [7] to study the
asymptotic behaviour of small solutions. The spaces of initial data, namely in the
present case of asymptotic states, are Sobolev spaces of finite order similar to those
used in [8]. The present paper is devoted to the extension of the previous results
to the whole range 0 < v < 1. The methods used here are natural extensions of
those used in I. They require in particular the same restrictions on g and n, in
particular p < n — 2 and n > 3. We refer to the introduction of I for a discussion
of those conditions.

The construction of the modified wave operators is too complicated to allow
for a more precise statement of results at this stage, and will be described in
Section 2 below, which is a summary and continuation of Section 2 of 1. That
construction involves the study of the same auxiliary system of equations as in I,
for a new function w and a phase ¢ instead of the original function u, and relies as
a preliminary step on the construction of local wave operators in a neighborhood of
infinity for that system. That step requires the definition of a modified asymptotic
dynamics which is significantly more complicated than that used in I.

We now give a brief outline of the contents of this paper. A more detailed
description of the technical parts will be given at the end of Section 2. After
collecting some notation and preliminary estimates in Section 3 and recalling from
I some preliminary results on the auxiliary system in Section 4, we define and study
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the asymptotic dynamics in Section 5. We then study the asymptotic behaviour
of solutions for the auxiliary system in Section 6. In particular we essentially
construct local wave operators at infinity for that system. We then come back
from the auxiliary system to the original equation (1.1) for u and construct the
wave operators for the latter in Section 7, where the final result will be stated in
Proposition 7.5.

We have tried to make this paper as self-contained as possible and at the
same time to keep duplication with I to a minimum. Duplication occurs in the
beginning of Section 3 and in Section 4 where we recall estimates and results from
I. On the other hand, Sections 6 and 7 follow the same pattern as Sections 5, 6 and
7 of I, with the appropriate changes needed to handle the more general situation.

We conclude this section with some general notation which will be used freely
throughout this paper. We denote by || - || the norm in L™ = L"(IR"). For any
interval I and any Banach space X, we denote by C(I, X) the space of strongly
continuous functions from I to X and by L*°(I, X) (resp. L{S.(I, X)) the space
of measurable essentially bounded (resp. locally essentially bounded) functions
from I to X. For real numbers a and b, we use the notation a V b = Max(a,b),
a Ab = Min(a,b) and [a] = integral part of a. In the estimates of solutions of the
relevant equations, we shall use the letter C' to denote constants, possibly different
from an estimate to the next, depending on various parameters such as ~, but
not on the solutions themselves or on their initial data. Those constants will be
bounded in v for y away from zero. We shall use the notation A(ay,az,---) for es-
timating functions, also possibly different from an estimate to the next, depending
in addition on suitable norms ai, as, - of the solutions or of their initial data.
Finally Item (p.q) of I will be referred to as Item (I.p.q). Additional notation will
be given at the beginning of Section 3.

In all this paper, we assume that n >3, 0 < u<n—2and 0 <~y <1.

2 Heuristics

In this section, we discuss in heuristic terms the construction of the modified
wave operators for the equation (1.1), as it will be performed in this paper. That
construction is an extension of that performed in I in the special case v > 1/2, and
we refer to Section 1.2 for a more detailed introduction and for general background.

The problem that we want to address is that of classifying the possible asymp-
totic behaviours of the solutions of (1.1) by relating them to a set of model func-
tions V = {v = v(u4)} parametrized by some data uy and with suitably chosen
and preferably simple asymptotic behaviour in time. For each v € V, one tries to
construct a solution w of (1.1) such that u(t) behaves as v(t) when ¢ — oo in a
suitable sense. The map () : u; — u thereby obtained classifies the asymptotic
behaviours of solutions of (1.1) and is a preliminary version of the wave operator
for positive time. A similar question can be asked for t — —oo. From now on we
restrict our attention to positive time.
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In the short range case corresponding to v > 1 in (1.1), the previous scheme
can be implemented by taking for V the set V = {v = U(t)uy} of solutions of the
equation

1
ia{U + §A’U = 0 s (21)
with U(t) being the unitary group
U(t) = exp (i(t/2)A) . (2.2)

The initial data u4 for v is called the asymptotic state for u.

In the long range case corresponding to v < 1in (1.1) (1.2), the previous set is
known to be inadequate and has to be replaced by a better set of model functions
obtained by modifying the previous ones by a suitable phase. The modification
that we use requires additional structure of U(¢). In fact U(¢) can be written as

U(t) = M(t) D(t) F M(t) (2.3)
where M (t) is the operator of multiplication by the function
M(t) = exp (iz®/2t) (2.4)
F is the Fourier transform and D(t) is the dilation operator defined by

(D(t) f) (@) = (i)™ f(z/t) . (2.5)

Let now p(® = ¢ (z,t) be a real function of space time and let 2(°)(z,t) =
exp(—ip® (z,t)). We replace v(t) = U(t)uy by the modified free evolution [12]
[13]

v(t) = M(t) D(t) 2O(t) wy (2.6)

where wy = Fuy. In order to allow for easy comparison of v with v, it is then
convenient to represent w in terms of a phase factor z(t) = exp(—iyp(t)) and of an
amplitude w(t) in such a way that asymptotically () behaves as (9 (¢) and w(t)
tends to w4. This is done by writing  in the form [7] [8]

u(t) = M(t) D(t) 2(t) w(t) = (Mw,¢)) () (2.7)

In I, we introduced three possible modified free evolutions v;(t) ¢ = 1,2,3 and
correspondingly three parametrizations of w(t) by (w;(t),p;(t)), i = 1,2,3. The
choice (2.6) (2.7) corresponds to i = 2. We shall work exclusively with that choice
throughout this paper, and the subscript 2 is therefore consistently omitted. In I
we used mostly the choice ¢ = 3 and dropped the subscript 3, so that (w,¢) in I
means (ws, ¢3) as opposed to (ws, p2) in this paper. This should be kept in mind
when comparing results from I and from this paper.

The construction of the wave operators for u proceeds by first constructing
the wave operators for the pair (w, ) and then recovering the wave operators for
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u therefrom by the use of (2.7). The evolution equation for (w, ) is obtained by
substituting (2.7) into the equation (1.1). One obtains the equation

(i0; + (2t*)"'A — D*gD) 2w = 0 (2.8)

for zw, with
=9 (uf*) =g (IDwf) (2.9)

or equivalently, by expanding the derivatives in (2.8),
{i0y + (2¢%) 7 TA —i(23) 7 2V - V + (Ap)) }w

+{0p— (2t)"" |Vy]? = D*gD}w=0 . (2.10)

We are now in the situation of a gauge theory. The equation (2.8) or (2.10) is
invariant under the gauge transformation (w, p) — (wexp(io), v + o), where o is
an arbitrary function of space time, and the original gauge invariant equation is not
sufficient to provide evolution equations for the two gauge dependent quantities w
and . At this point we arbitrarily add the Hamilton-Jacobi equation as a gauge
condition. This yields a system of evolution equations for (w, ¢), namely

Oyw = i(2t2) "L Aw + (2t2)71 (2Vp - V + (Ap)) w (2.11)

Aup = (2%) 7" |[Vp> + 177 go(w, w) (2.12)
where we have defined
go(wi,w2) = A Re w" ™" wy we (2.13)
and rewritten the nonlinear interaction term in (2.10) as
D*g (|Dw|*) D =t~ go(w, w)

The gauge freedom in (2.11) (2.12) is now reduced to that given by an arbitrary
function of space only. It can be shown, actually it has been shown in I, that the
Cauchy problem for the system (2.11) (2.12) is locally wellposed in a neighborhood
of infinity in time. The solutions thereby obtained behave asymptotically as w(t) =
O(1) and @(t) = O(t'77) as t — oo, a behaviour that is immediately seen to be
compatible with (2.11) (2.12).

We next study the asymptotic behaviour of the solutions of the auxiliary
system (2.11) (2.12) in more detail and try to construct wave operators for that
system. For that purpose, we need to choose a set of model functions playing the
role of v, in the spirit of (2.6). In the simple case v > 1/2 considered in I, that set
of model functions was taken to consist of solutions of the system

at w(o) =0
(2.14)
B ¢ =177 gy (w®,w®)
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The general solution of (2.14) is

wO () = wy
; (2.15)
O (t) =y +/1 dty t77 go(wy, wi) =Py + po(t)

and leads to (2.6) with ¢©(® = ¢, 4 g. The asymptotic states for (w,¢) then
consist of pairs (w4, 14 ). The choice (2.14) (2.15) is adequate for v > 1/2 because
comparison of (2.11) (2.12) with (2.15) yields 9;(¢ — o) = O(t~27) which is
integrable at infinity for v > 1/2, thereby allowing for imposing an initial condition
at t = oo for Y1 = ¢ — . For v < 1/2 however, the choice (2.14) (2.15) is not
sufficient and one needs to construct more accurate asymptotic functions. There
are several ways to do that. The one we choose can be motivated heuristically as
follows. Let p > 0 be an integer. We write

w = Z Wi+ Gp+1 = Wy + @11 (2.16)
0<m<p

Y = Z ©m + wp—&-l = d)p + 1/1p+1 (217)
0<m<p

with the understanding that asymptotically in ¢

Wi () =0 (t7™) , qpra(t) =0 (t™™) | (2.18)

em(t) = O (H7007) @) = o (170HY) L (2.19)

Substituting (2.16) (2.17) into (2.11) (2.12) and identifying the various powers of
t~7 yields the following system of equations for (wy,, ©m) :

O w1 = (262) 7 . (2Ve; -V + (Ap;) Wi (2.20)

0<j<m

—1 _
815 Pm+1 = (2t2) Z V‘)Oj ' v(;Dm—j +t77 Z g0 (wjvwm—i-l—j) (221)
0<j<m 0<j<m+1

for m+1 > 0. Here it is understood that w; = 0 and ¢; = 0 for j < 0, so that the
case m = —1 of (2.20) (2.21) reduces to (2.14) with w®) = wy and ¢(©) = ¢y. We
supplement that system with the initial conditions

wp(00) =wy, wp(co)=0 form>1 (2.22)

em(1) =0 for0<m<p . (2.23)
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The system (2.20) (2.21) with the initial conditions (2.22) (2.23) can be solved by
successive integrations : knowing (w;,¢;) for 0 < j < m, one constructs succes-
sively wy,+1 by integrating (2.20) between ¢ and oo, and then ¢,,+1 by integrating
(2.21) between 1 and t.

If (p+ 1)y < 1, that method of resolution reproduces the asymptotic be-
haviour in time (2.18) (2.19) which was used in the first place to provide a heuris-
tic derivation of the system (2.20) (2.21). One can however consider that sys-
tem and solve it by the same method for any integer p. If (p + 1)y > 1, the
asymptotic behaviour saturates at w,, = O(t~1) for my > 1 and ¢,, = O(1) for
(m+ 1)y > 1. If y7! is an integer, (m + 1)y = 1 for some m, then ¢,,(t) =
O(Log t) and w41 = O(t~1Log t).

We now argue that for sufficiently large p, ¢, is a sufficiently good approx-
imation for ¢ to ensure that 1,41 has a limit as ¢ — oco. In fact by comparing
the system (2.20) (2.21) with (2.11) (2.12), one finds that 0; ¥,41 is of the same
order in ¢ as 9; ppy1, namely 9; 1,41 = O(t~P+2)7) which is integrable at infin-
ity for (p + 2)y > 1. In this way every solution (w, ¢) of the system (2.11) (2.12)
as obtained previously has asymptotic states consisting of wy = tll}r(r)lO w(t) and

Yy = tlinolo Vp+1(1).
Conversely, under the condition (p + 2)y > 1, we shall be able to solve the
system (2.11) (2.12) by looking for solutions in the form (2.16) (2.17) with the

additional initial condition p41(00) = 94, thereby getting a solution which is
asymptotic to (Wp, ¢, + 4) with

w-W,=0 (NPHW) L o6y~ =0 (tl—@“”) . (2.24)

This allows to define a map Qg : (w4,94) — (w, ) which is essentially the
wave operator for (w, ¢).

It is an unfortunate feature of the methods used in this paper that both the
construction of the asymptotic states (wy, 1) of a given solution (w, ) and the
construction of (w, ) from given asymptotic states (w., ;) suffer from a loss of
regularity of roughly p+ 1 derivatives, which prevents the two constructions to be
inverse of each other in a strict sense.

We next discuss the gauge covariance properties of €g. Two solutions (w, ¢)
and (w’, ¢') of the system (2.11) (2.12) will be said to be gauge equivalent if they
give rise to the same wu through (2.7), namely if wexp(—ip) = w’exp(—i¢’). If
(w, ) and (w', ¢’) are two gauge equivalent solutions, one can show easily that the
difference p_ = ¢’ —¢ has a limit o when ¢ — oo and that w/, = wy exp(ic). Under
that condition, it turns out that the phases {¢;} and ¢, (but not the amplitudes)
obtained by solving (2.20) (2.21) are gauge invariant, namely ¢, = ¢!, for 0 <
m < p and therefore ¢, = ¢/, so that ¢/, =1, + 0. It is then natural to define
gauge equivalence of asymptotic states (w4, ) and (w’,,4’, ) by the condition
wy exp(—ith;) = w!, exp(—it)’,) and the previous result can be rephrased as the
statement that gauge equivalent solutions of (2.11) (2.12) in R(£y) have gauge
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equivalent asymptotic states. Conversely, we are interested in showing that gauge
equivalent asymptotic states have gauge equivalent images under . Here however
we meet with a technical problem coming from the construction of €y itself. For
given (w4, 14) we construct (w,¢) in practice as follows. We take a (large) finite
time to and we define a solution (ws,, ¢+, ) of the system (2.11) (2.12) by imposing
a suitable initial condition at ¢y, depending on (w4,%4), and using the known
results for the Cauchy problem with finite initial time. We then let tg tend to
infinity and obtain (w, ) as the limit of (wy,, pt,). The simplest way to prove
the gauge equivalence of two solutions (w,¢) and (w’,¢’) obtained in this way
from gauge equivalent (w4, %) and (w’,,v/,) consists in using an initial condition
at to which already ensures that (wy,,@:,) and (wj,, ¢}, ) are gauge equivalent.
Unfortunately the natural choice (wy,(to), 1, (t0)) = (Wp(to), dp(to) + ¥4) does
not satisfy that requirement as soon as p > 1 because ¢,(ty) is gauge invariant
while W), (to) exp(—1t4) is not. In order to overcome that difficulty, we introduce
a new amplitude V' and a new phase x defined by solving the transport equations

oV = (2t)"1(2Vgp_1 -V + (Ag,_1)) V (2.25)

dx =172 Vg, 1 - Vx (2.26)

with initial condition

V(o) =wy ,  x(o0) =ty . (2:27)
It follows from (2.25) (2.26) that V exp(—ix) satisfies the same transport equa-
tion as V, now with gauge invariant initial condition (V exp(—ix))(c0) = w4

exp(—it4 ), and is therefore gauge invariant. Furthermore, (V, x) is a sufficiently
good approximation of (Wp, 1) in the sense that

V(t) = Wy(t) =0 (t—(PH)W) s x@) =Y =0("") . (2.28)

One then takes (wy, (to), 1, (to)) = (V(to), ¢p(to) +x(to)) as an initial condition at
time Zo, thereby ensuring that (wy,, vy,) and (wy , ¢} ) are gauge equivalent. That
equivalence is easily seen to be preserved in the limit tg — oo. Furthermore, the
estimates (2.28) ensure that the asymptotic properties (2.24) are preserved by the
modified construction. As a consequence of the previous discussion, the map € is
gauge covariant, namely induces an injective map of gauge equivalence classes of
asymptotic states (w4, 14 ) to gauge equivalence classes of solutions (w, ¢) of the
system (2.11) (2.12).

The wave operator for u is obtained from ¢ just defined and from A defined
by (2.7). From the previous discussion it follows that the map AoQq : (wy,¥;) —
u is injective from gauge equivalence classes of asymptotic states (wi,14) to
solutions of (1.1). In order to define a wave operator for u involving only the
asymptotic state u4 but not an arbitrary phase ¢;, we choose a representative in
each equivalence class (w., 4 ), namely we define the wave operator for u as the
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map  :uy — u = (Ao Qy)(Fuy,0). Since each equivalence class of asymptotic
states contains at most one element with ¢, = 0, the map (2 is again injective. We
shall prove in addition that R(Q) = R(AoQy) if p < 2. (This need not be the case
if p > 3, because derivative losses in the construction generate a mismatch between
the regularity properties required on w4 and 14, so that gauge equivalence classes
of asymptotic states need not contain an element with ¢4 = 0 in that case).

The previous heuristic discussion was based in part on a number of asymp-
totic estimates in terms of negative powers of t. However if =1 is an integer some
of these estimates have to be replaced or supplemented by logarithms. In order to
treat all values of v € (0,1] in a unified way, we shall introduce a number of esti-
mating functions of time defined by integral representations. Those functions are
smooth in 7, in particular at integer values of y~'. They generate the logarithms
automatically whenever needed, and they recombine nicely between themselves in
the derivation of the main estimates. The simplest example thereof is ho(t) defined
by (3.19) below.

In the same way as in I, the system (2.11) (2.12) can be rewritten as a system
of equations for w and for s = V¢, from which ¢ can then be recovered by (2.12),
thereby leading to a slightly more general theory since the system for (w,s) can
be studied without even assuming that s is a gradient. In I, we first studied the
system for (w, s) and then deduced therefrom the relevant results for (w, ). Here
for simplicity we shall use exclusively the variables (w, ¢). The same remark applies
to the system (2.20) (2.21).

We are now in a position to describe in more detail the contents of the
technical parts of this paper, namely Sections 3-7. In Section 3, we introduce
some notation, we define the relevant function spaces needed to study the system
(2.11) (2.12), we recall from I a number of Sobolev and energy estimates, we
then introduce the estimating functions of time mentioned above and we derive
a number of estimates for them. In Section 4, we recall from I some preliminary
results on the Cauchy problem for the auxiliary system (2.11) (2.12) and on the
asymptotic behaviour of its solutions. In Section 5 we study the systems (2.20)
(2.21) and (2.25) (2.26) defining the asymptotic dynamics. We first derive a number
of properties and estimates for the solutions of the system (2.20) (2.21), defined
inductively (Proposition 5.1). We then prove the existence and some properties
of the solutions of the transport equations (2.25) and (2.26) in a slightly more
general setting (Propositions 5.2 and 5.3 respectively). We finally specialize those
results to the case at hand and compare V' with W), defined by (2.16) (Proposition
5.4). In Section 6 we study in detail the asymptotic behaviour in time of solutions
of the auxiliary system (2.11) (2.12). We first derive asymptotic estimates on the
approximation of the available solutions (w, ) of that system by the asymptotic
functions (W, ¢m,) defined by (2.16) (2.17), and in particular we complete the
proof of existence of asymptotic states for those solutions (Proposition 6.1). We
then turn to the construction of local wave operators at infinity. For a given solution
(V, x) of the system (2.25) (2.26) and a given (large) ¢y, we construct a solution
(Wiy, 1,) of the system (2.11) (2.12) which coincides with (V, ¢, + x) at to and
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we estimate it uniformly in o (Proposition 6.2). We then prove that when ¢, —
00, (Wiy, Pt,) has a limit (w, ) which is asymptotic both to (V, ¢, + x) and to
(Wp, ¢p + ¢4) (Proposition 6.3). Finally in Section 7, we exploit the results of
Section 6 to construct the wave operators for the equation (1.1) and to describe
the asymptotic behaviour of solutions in their range. We first prove that the local
wave operator at infinity for the system (2.11) (2.12) defined through Proposition
6.3 in Definition 7.1 is gauge covariant in the sense of Definitions 7.2 and 7.3 in the
best form that can be expected with the available regularity (Propositions 7.2 and
7.3). With the help of some information on the Cauchy problem for (1.1) at finite
time (Proposition 7.1), we then define the wave operator Q : uy — u (Definition
7.4), we prove that it is injective and under suitable restrictions, that it has the
expected range (Proposition 7.4). We then collect all the available information on
 and on solutions of (1.1) in its range in Proposition 7.5, which contains the main
results of this paper.

3 Notation and preliminary estimates

In this section, we define the function spaces where we shall study the auxil-
iary system (2.11) (2.12) and we recall from I a number of Sobolev and energy type
estimates which hold in those spaces. We then introduce a number of estimating
functions of time and we derive a number of relations and estimates for them.

We shall use Sobolev spaces of integer order H* defined for 1 < r < oo by

HY =S u:| wH || = Z | &u |, < oo
0<j<k

and the associated homogeneous spaces H* with norm

|us 2y || = [ 0%l

where
[ ullr = Z | 0% ||,
azlal=j
The subscript r will be omitted if r = 2.
Let ¢y = [n/2] and define ro by 6(rg) = £ so that o = 2n for odd n and
ro = oo for even n. Let k and ¢ be nonnegative integers with £ > ¢y — 1. We shall
look for w as a complex valued function in spaces LS (I, H*) or C(I, H*) and for

loc

¢ as a real valued function in spaces LS (I,Y*) or C(I,Y*) where

Vi=L*nH nHT' gt (3.1)

The spaces Y are easily seen to be duals of Banach spaces and satisfy the embed-
ding Y¥ c Y for £/ > ¢. We shall use systematically the notation

wle = | wsH* |, Jele= oYl (3.2)
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and the meaning of the symbol |a|, will be made unambiguous by the fact that the
pair (a,b) contains either the pair (w, k) or the pair (p,£). Note that the second
notation in (3.2) is different from, although closely related to, the similar notation
in I which was used for s = V.

We recall the following result from I (see Lemma 1.3.5).

Lemma 3.1. Let ¢ be a real function with Vo € L N H® for some { > n/2 and
let Kk < €4 1. Then the following estimate holds :

. k
lexp(—ig)wl, < C (14+ | Vs L= N H ) fulk (3.3)
Let in addition ¢ € L. Then the following estimate holds :

|(exp(—ip) — 1) wl;, <

[eS) ‘T4 [eS) rl k-l
c(Iele + 1902208 (14 1 To220 8 1) Jjule- G4

In order to state the estimates that are relevant for the study of the system
(2.11) (2.12), it is useful to give the following definition (see Definition 1.3.1).

Definition 3.1. Let 0 < p < n — 2. A pair of nonnegative integers (k,£) will be
called admissible if it satisfies k < ¢, £ > n/2 and

04+24pu<(n/242k)A(n+k) (3.5)
and in addition k > n/2 if {+2+ p=n+k and
n/24+3+p<(n/24+2k)A(n+k)

if n is even.

For u = n—2, admissible pairs are pairs (k, ¢) such that k = £ > n/2. If (k, ¢)
is admissible, so is (k4 j, ¢+ j) for any positive integer j. Admissible pairs always
have k > 2. For n = 3, ;= 1, the pair (2,2) is admissible.

The following Sobolev like inequalities will be essential to study the system
(2.11) (2.12).

Lemma 3.2. Let £ > n/2 and k < {. Then the following estimates hold :
|2V -V + (Ap)) w,_y <Clple |wlk (3.6)

Vo1 - V|, < Clerle [pale (3.7)
Assume in addition that (k, ) is admissible. Let go be defined by (2.13). Then

|go(w1 w2)|, < Clwrlk fwalx (3.8)

lgo(w1 w2)|,_; < Clwily |welk—1 - (3.9)
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Sketch of proof. (3.6) follows from Lemma 1.3.4 by the same estimates as in Lemma
1.3.9. The estimate (3.7) essentially follows from Lemma I.3.3. The estimates (3.8)
and (3.9) follow from Corollary 1.3.1.
O
In addition to the previous estimates, we shall need energy type estimates
for solutions of the following transport equations

Byw = (2t2)_1{i9Aw+(2V¢-V+ (A¢))w} + Ry, (3.10)

Op = (2t2)*1{9|w\2+2v¢.w} + Ry (3.11)

where 0 is a real constant and ¢, R;, Ry are given functions of space time. Those
estimates will be stated in differential form for brevity, although they should be
understood in integrated from. They hold for functions that are sufficiently regular
in time, for instance locally bounded in the relevant norms.

Lemma 3.3. Let £ > n/2 and k < {.
(1) Let w satisfy (3.10). Then the following estimate holds :

|Oelwli] < Ct72|@le [wlk + | Ruli (3.12)
(2) Let ¢ satisfy (3.11). Then the following estimates hold :
0elplel < C 720l (10] |le + [Ples1) + [Rale (3.13)

[0elple—1] < C 72 |le—1 (16] e + |9le) + | Rafe—1 - (3.14)

Sketch of proof.
(3.12) follows from Lemmas I.3.2 and 1.3.4 by the same estimates as in Lemma
1.3.7.
(3.13) and (3.14) follow from Lemmas 1.3.2 and 1.3.3 by the same estimates
as in Lemmas 1.3.7 and 1.3.9.
O

Lemma 3.4. Let £ > n/2 and k < {. Let w and ¢ satisfy (3.10) and (3.11) respec-
tively, with 8 =0, Ry =0 and Re = 0. Then the following estimates hold :

10 wles1] < C 72 (18]e [wkr1 + [Dlesr [wle) (3.15)

O:lleri] < Ct72(10le [@less + [Dlere lole) - (3.16)

Sketch of proof.
(3.15) and (3.16) follow from Lemmas 1.3.2, 1.3.3 and 1.3.4 by the same esti-
mates as in Lemma 1.3.8.
O
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Lemma 3.5. Let ¢ > n/2 and k < {. Let wy, we and 1, w2 satisfy (3.10) and
(3.11) with ¢ = ¢1 and ¢ = ¢ respectively, and with 6 =0, Ry =0 and R = 0.
Let w_ = w1 —wa, o— = p1 — g and ¢_ = ¢1 — ¢o2. Then the following estimates
hold :

Dhfw- il < C 472 (6le ol + 6 e lwrlit || Vo- oo wilisr) , (3.17)
Orlio—lel < € 72 (I82lest lo—le+ 9-lext oale + 1| Vo oo lprlesr) - (3:18)

Sketch of proof.
(3.17) and (3.18) follow from Lemmas 1.3.2, 1.3.3 and 1.3.4 by the same esti-
mates as in Lemma 1.3.10.
(|
We now introduce a number of estimating functions of time and derive a
number of estimates and relations for them. We start with

t
ho(t) = / it 17 (3.19)
1
so that
1=yt =) fory A1
ho(t) = (3.20)
Log t fory=1

The basic building block for the subsequent functions is the function h defined by
h(t) = /100 dty 77tV (3.21)
which can also be written as
h(t) =t ho(t) +~y 1 t77 = /OO dty 72 ho(ty) (3.22)
t

and is explicitly computed as

YA =) =t for v # 1
h(t) = (3.23)
t71(1+ Log t) fory=1
It follows from (3.21) that ¢ h(t) is increasing in ¢ and from (3.20) (3.23) that
t h(t) ho(t)~! is decreasing in t. The function h satisfies the estimates

FPEVEY) Sht) < L—A T (e v ) (3.24)

The first inequality in (3.24) follows in part from (3.22) and in part from the
monotony of ¢ h(t), while the second inequality follows from (3.23) and holds only

for v # 1.
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In some cases where we shall need to indicate the dependence of hg and h on
v, we shall write ho(~,t) and h(v,t) for ho(t) and h(t).
We next define for any m > 0

Non(t) = /1 Cdh £ B () (3.25)

Qm(t):/loodtl V) BT () (3.26)

so that Ny = hg and Qo = h. Those functions are smooth in 7. Clearly N,, is
increasing and @, is decreasing in ¢, while t @Q,,(t) is increasing in ¢, so that
Qm(t) > Qum(1) t=1. From the fact that h is decreasing, it follows that

Nigj(t) <v77 Ni(t) <4~ ho(t) (3.27)

Qirj(t) <777 Qilt) <7~ h(t) (3.28)

for all ¢ > 0, j > 0. It follows from (3.24) that N,, and Q,, satisfy the lower and
upper bounds

Y™ ho ((m+1)7,1) < N () < (1 =7)"" 77" ho ((m + 1), 1) (3.29)

Y h((m4+1)7,t) <Qmt) < (1 =)™ ™ h((m+1)y,t) (3.30)

where the lower bounds hold for all v > 0 and the upper bounds for 0 < v < 1
if m > 1. From (3.20) and (3.23), it follows that N,,(¢) and Q,,(t) behave as
1=+ and ¢~ (m+17 respectively as t — oo if (m + 1)y < 1. If (m + 1)y =1,
Npn(t) and Q,,,(t) produce logarithms and behave as Log t and ¢t~! Log t respec-
tively as t — oo. If (m + 1)y > 1, N, (t) and @, () saturate respectively as
Constant and ¢! when ¢t — oco. For m > 1, the upper bounds in (3.29) and (3.30)
blow up when v tends to one, but the same conclusions still hold.
For (m + 2)y > 1, we finally define

Pn(t) = /loo dty t77 h(t Vi) K" (t1) (3.31)

R (t) = /OO dty 172 Po(t1) . (3.32)
t
In particular P is explicitly computed as
Py(t) = ho(t) (M) +y " t77) + 297 2y — 1)~ 1727 (3.33)
Clearly P,,(t) and R,,(t) are decreasing in ¢, while P,,(t) h(t)~! is increasing in

t, so that P, (t) > Pp,(1)vyh(t). It follows from (3.24) that P,, satisfies the lower
and upper bounds
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Pm(t){ 221 — )~ (m+D) }
Xy (177 hg ((m 1), 1) + ((m+2)y = 1) 270 27) L (3.34)

From (3.20) it follows that P,,(t) behaves as t'~(™+2)7 as t — oo if (m + 1)y < 1.
If (m+1)y =1, P,(t) behaves as t~7 Log t. If (m + 1)y > 1, P,,(t) saturates at
t~7 as long as v < 1.

We now collect a number of relations and estimates satisfied by the previous
estimating functions.

Lemma 3.6. Let i, j and m be nonnegative integers. Let 1 < a < b andt > 1. Then
the following identities and estimates hold :

/ Tt 172 Now(t1) = Qua(®) (3.35)
/ t dty 172 ho(t1) Nu(t1) = Npyr () — h(t) Npu(t) < N1 (t) (3.36)
/OO dty t1_2 ho(tl) Nm(tl) = Pm(t) for (m + 2)’7 >1 (337)
Ni(t) Nj(t) < ho(t) Nit;(t) (3.38)
Ni(t) Q;(t) < h(t) Niv;j(t) < Nigja(t) (3.39)
Qi(t) Q;(t) < h(t) Qit;(t) (3.40)

/OO dty t77 h(t1) Qm-1(t1) < / dty t77 Qum(t1) form>1, (m+2)y>1
t t (3.41)
/ dty 177 Qum(t1) < Pp(t) for (m+2)y>1 . (3.42)
/j dty t77 h(t1) Qm—1(t1) < Nppt1(t) (3.43)
/t dty 177 Qum(t1) < Nyya(t) (3.44)

1
b
[t 477 Qult) < Qu(@ (hoft) — ho(a) (3.45)
b

[t 477 bt) Qs (6) < 2Qn) (o(8) — ho(a) (3.46)

Rin(t) < C h(t) Qu(t)  for (m+2)y > 1 (3.47)
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where
Con = (2m +3)y (m +2)y — 1)

Proof.
(3.35). By the definition of N,, and Q.,

oo oo t1
/ dty 172 Ny (t1) :/ dty tﬁ/ dty t57 B (t2)
t t 1

:/ dty t;” hm(tg)/ dty t72 :/ diy t57 (EV ta) ™" W™ (ts) = Qum(t)
1 t 1

Vito
(3.36). By the definition of N,, and integration by parts

/t dty t72 ho(t1) Ny(t) = /t dt; B (ty) N (t1)
1

1

= —h(t) Nm(t) +/1 h(t) Npy(t) = N1 (8) = h(t) Nin(t)

(3.37). By the definitions of N,, and P, and integration by parts

/ dt1 t72 ho(t1) Ny(t1) = h(t) Nm(t)+/oodt1 77 AT (t)

- /OO dty t77 h(tVty) h™(t1) = Pp(t)

(3.38). By the definition of N,,

t t
Ni(t) N;(t) = / dty t77 hi(ty) / dty t37 B (to)
1 1

For fixed ¢ + j, the integral is logarithmically convex in ¢ (or j) and therefore
estimated by the maximum of its values for ¢ = 0 and j = 0, which are equal by
symmetry and equal to the RHS of (3.38).

(3.39). By the definition of N,, and @,

t o
M) Q) = [ 67 W (w) [ a7 (v ) R
1
We split the integral over ¢, into the subregions ¢t < t and t5 > t. In the region t5 <
t, by logarithmic convexity and symmetry, we estimate the integral by replacing
hi(t1) h(t2) by hiTi(t;). In the region ty > t, we make the same replacement
because to >t > t; and h is decreasing in t. We obtain

</ ity 57 R () B = BE) Nees (D)
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which yields the first inequality in (3.39). Using in addition the fact that h(t) <
h(t1) for t; <t yields the second inequality.

(3.40). By the definition of @,,, the LHS of (3.40) is logarithmically convex
in 7 or j for fixed ¢ + j, and symmetric in 7 and j, and is therefore estimated by
its end point values, namely with 4, j replaced by 0 and 7 + j.

(3.41) and (3.42). By the definition of @,

/ dty 77 h(t1) Qm—1(t1) :/ dty t7” h(tl)/ dby t57 (8 Vo)™ R (ty)

t t 1

(3.48)

We estimate the last integral by replacing h(t1) by h(t2), by logarithmic convexity

and symmetry in the region t2 > ¢ and by monotony of k in the region to < t(< 1),
thereby continuing (3.48) by

-g/ dty t;”/ dby t57 (£ Vta) ™ B ()
t 1

which is the RHS of (3.41) and the LHS of (3.42),

. :/ dty t57 h™(ty) / diy 77 (1 Vi) ~!
1

t

We estimate the last integral by h(tVt2) by first replacing ¢, Vita by 1 Vit Vg, since
t; > t, and then extending the integration over ¢; to [1,00), thereby obtaining

- < / dty ty 7 B (t2) h(tV ta) = Pp(t)
1

(3.43) and (3.44). By the definition of @,,

/1 dty 177 (h(t1)Qum—1(t1) or Qu(t1))

_ /1 ity £ /1 dts 157 (11 1) (h(tr) B (t2) or W™ (t)

t o]
< / dty t77 hm(tl)/ dty t57 (t1 Vi2) ' = Npga (t)
1 1

by logarithmic convexity and symmetry in the region ¢t5 < ¢ and by monotony of
h in the region to > t(> t1).

(3.45) follows immediately from the fact that @, is decreasing in ¢.
(3.46). We first prove that

h(t) Qum-1(t) < 2Qm(t) . (3.49)
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In fact

Qum_1(t) h(t) = /100 dty t77 (tvtl)‘l/loo diy 57 (V)" B (t)

:/ dty t77 (tvtl)*l/ dts t57 (tV )" (R H(t) + ()
1 t1

(oo} (oo}
< 2/ dty t77 (t\/tl)_l/ dby t57 (EV £ Vitg) ™" R (t) < 2Qum(t) (3.50)
1

t1
since h is decreasing in ¢ and

/ diy t57 (EV E Vi) < h(tV i) < h(t)
t1

Now (3.46) follows from (3.49) and (3.45).
(3.47). We first define for future use

t e’}
Q= Qu+Qh =t [ 67w () + [ an 7T w) L (351
1 t
t [o%s}
P, =P, + P} = h(t)/ dt; t77 h™(t1) +/ dty t77 RTHE) , (3.52)
1 t

oo (oo}
R, =R, + R} :/ dty t72 P (1) +/ dty t72 Pr(ty) (3.53)
t t

and we estimate R, and R, separately. We first estimate
[e’e] t1
R, = / dty t72 h(ty) / dty t; 7 h™(ts)
t 1

< h(t) /oo dty t57 (£ V t5) ™" R™(ty) = h(t) Qm(t) (3.54)

by the monotony of h and after performing the integral over t;. We next use the

differential equation
yh+th =ttt (3.55)

satisfied by h to rewrite P as follows

YPH(t) = —/ dty 777 B () B () +/ dt, t777 B ()
t t

Integrating by parts in the first integral and using (3.51), we obtain
(m+ 1)y Pi(t) =177 h™FH() + (1= )P (t) + (m+1) QF(1)
namely
((m+2)y = 1) PL(t) = t' 77 A" () + (m + 1) QL (t)
Substituting that result into the definition of R (t), we obtain
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((m+2)y —1) Ry (t) =

(oo} oo
/ diy 7777 BTN 4 (m o+ 1)/ dty 77 R () (0 — )
t t

< Q)+ (m+ 1)t QL(t)
< (h(t) + (m+1)t7") Qi (1)

by the monotony of h,
<+ (m+1)) hQn(t) (3.56)

by (3.24). Collecting (3.54) and (3.56) yields (3.47).
O

4 Cauchy problem and preliminary asymptotics for the auxiliary
system

In this section, we collect a number of results from I on the Cauchy problem
and on the asymptotic behaviour of solutions for the auxiliary system

Ow =i (262)7" Aw+ (262)7 2Ve-V+(Ap)w  (2.11) = (4.1)

dp = (22) " |[Vl> + 177 go(w,w) . (2.12) = (4.2)

Those results are immediate extensions of results contained in I. The main
differences are that (i) the results are stated here in terms of ¢ whereas they are
stated in I in terms of s = Vi, and (ii) here we use systematically the estimating
functions of time hg and h introduced in Section 3, thereby covering the whole
interval 0 < v < 1. The proofs will be sketched briefly or omitted.

We first recall the results on the local Cauchy problem with finite initial time
(see Proposition 1.4.1).

Proposition 4.1. Let (k, ) be an admissible pair. Let tg > 0. Then for any (wo, ©o) €
HF @ YZ, there exist Ty with 0 <T_ <ty < Ty < oo such that :

(1) The system (4.1) (4.2) has a unique solution (w,p) € C(I,H* @ Y?)
with (w, ) (to) = (wo, o), where I = (T, T4). If T— > 0 (resp. T4 < 00), then
|w(t)|k + [@(t)|e — oo when t decreases to T— (resp. increases to Ty ).

(2) If (wo, p0) € H¥ &Y for some admissible pair (K',¢') with k' > k and
¢ > (, then (w,p) € C(I, H¥ oY),

(3) For any compact subinterval J CC I, the map (wo, o) — (w,p) is
continuous from H¥=' @ Y*~=1 to L>(J, H*~1 @ Y*~1) uniformly on the bounded
sets of H* © Y, and is pointwise continuous from H* © Y* to L>(J, H* @ Y*).

We next recall the results on the local Cauchy problem in a neighborhood of
infinity in time (see Proposition 1.5.1).
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Proposition 4.2. Let (k, £) be an admissible pair. Let (wo, $o) € H* @Y and define
a = |wolr and b = |Pole. Then there exists Ty < oo, depending on a, b, such that
for all tg > Ty, there exists T < tgy, depending on a, b and tg, such that the system
(4.1) (4.2) with initial data w(ty) = wg, w(to) = ho(to)Po has a unique solution
(w, ) in the interval [T,00) such that (w,hy'y) € (C N L®)([T,00), H* @ Y*).
One can define Ty and T by

Cb+a?) h(Ty) =1 (4.3)

T =ho (to) h(Th)™" (4.4)
and the solution (w, ) is estimated for all t > T by

lw(t)], < C a (4.5)

lo(t)|e < C(b+a?) ho(tVity) . (4.6)

Sketch of proof. The proof is almost identical with that of Proposition 1.5.1 and
follows from a priori estimates of the maximal solution obtained from Proposition
4.1. Define y = |w|j and z = |p|;. By Lemmas 3.2 and 3.3, y and z satisfy

Oy <Ct72y 2
(@.7)
|02] < Ct72 22+ Ct77 o2

For t > tg, we take t > o, we define Y = Y () =|| y; L= ([to,t]) || and Z = Z(¥) =
|| ho(t)~tz; L>([to,t]) ||, we substitute those definitions into (4.7), we integrate
over t with the appropriate initial condition and we obtain

Y <a+CY Z h(t)
(4.8)
Z<b+CY?*+C Z* hity)

by (3.19) (3.22).

For ¢ < tgy, we take T < tg, we define Y = Y (f) =| y; L>([t,t0]) || and
Z =Z(t) =| z; L>=([t, to]) ||, we substitute those definitions into (4.7), we integrate
over t with the appropriate initial condition and we obtain

Y<a+CtlY Z
(4.9)
Z<(b+CY?) ho(te)+C ¢t 22

The proof then proceeds from (4.8) and (4.9) in the same way as that of
Proposition 1.5.1.
O
For subsequent applications, we shall need the following lemma, which is
essentially identical with Lemma 1.5.1.
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Lemma 4.1. Let a > 0, b > 0, to > 1 and let y, z be nonnegative continuous
functions satisfying y(to) = yo, z(to) = z0 and

|0y <t 2 ho(t) by +t2az

(4.10)
|0i2) <t 2 ho(t)bz+t7Vay
Define g, zZ by
(y,2) = (5, 2) exp(bl(t) — h(to)]) - (4.11)
Then for v(t§ At7) > 2a?, the following estimates hold :
Y<2yo+azty)
(4.12)
zZ < 29+ 2a(yo + a 2o tgl) ho(t)
fort > tg, and
¥ <o+ 2a(z0+a yo ho(to)) t~*
(4.13)

z < 2(zp + a yo ho(to))
for 1 <t <tp.
As an easy consequence of Lemma 4.1, we obtain the following uniqueness
result at infinity for the system (4.1) (4.2) (see Proposition 1.5.2).

Proposition 4.3. Let (k,£) be an admissible pair. Let (w;,¢;), i = 1,2 be two
solutions of the system (4.1) (4.2) such that (w;, hy'p;) € L=([T,00), H* ® Y*)
for some T > 0 and such that |w1(t) — wa(t)|k—1 ho(t) and |p1(t) — p2(t)|e—1 tend
to zero when t — oo. Then (w1, ¢1) = (w2, @2).

We finally recall the existence result for the limit of w(t) as ¢ — oo for the
solutions of the system (4.1) (4.2) obtained in Proposition 4.2 (see Proposition
1.5.3).

Proposition 4.4. Let (k,0) satisfy k < £+ 1 and ¢ > n/2. Let (w, ) satisfy (4.1)
and be such that (w,hy ') € (CNL>®)([T,00), H* @ Y?*) for some T > 0. Let

a =||w; L¥([T,00), H*) ||, b= hg'e; L=([T,00),Y) || . (4.14)

Then there exists wy € HF such that w(t) tends to wy strongly in H*1 and
weakly in H* when t — oo. Furthermore the following estimates hold

lwile < a (4.15)
@(to) — W(t)|1 < C a b h(to At) (4.16)
[@(t) = wilk—1 < C abh(t) (4.17)

for to, t sufficiently large, namely bh(tg At) < C or bh(t) < C, where w(t) =

UQ/tw(t).
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5 Existence and properties of the asymptotic dynamics

In this section we derive the relevant properties of the solutions (w,, @m ) of
the system (2.20) (2.21) with initial conditions (2.22) (2.23) and of the solutions
(V, x) of the transport equations (2.25) (2.26) with initial conditions (2.27). We
use systematically the estimating functions of time N,,, @,, and P,, defined by
(3.25) (3.26) and (3.31). We begin with the system (2.20) (2.21), which is solved
by successive integrations, as explained in Section 2.

Proposition 5.1. Let (k,£) be an admissible pair, let p > 0 be an integer, let wy €
HP and let a = |wy |pyp. Let {wo = wi,wmi1} and {m}, 0 < m < p, be the
solution of the system (2.20) (2.21) with initial conditions (2.22) (2.23). Then

(1) w1 € C([1,00), HF+P=m=1) o € C([1,00), YHP~™) and the following
estimates hold for allt > 1 :

W1 (0) i1 < Ala) Quu() (5.1)

|om () |e4p—m < A(a) Nm(t) (5.2)
for some estimating function A(a).

If in addition (p 4+ 2)y > 1 and if we define ppy1 by (2.21) with initial
condition p,41(00) = 0, then w41 € C([1,00), Y 1) and the following estimate
holds :

ot (ler < Ala) By(t) - (5.3)

(2) The functions {¢m} are gauge invariant in the following sense. If w', =
wy exp(io) for some real valued function o and if w', gives rise to {¢],}, then
O = Pm for0 <m <p+1.

(8) The map wy — {Wmt1,Pm} is uniformly Lipschitz continuous on the
bounded sets from the mnorm topology of w, in HF*P to the norms
| Qw15 L (1, 00), H*2=m=1) || and || Niplipms L2 ([1,00), YEH=m) |, 0 <
m < p. A similar continuity holds for ¢pi1.

Proof. Part (1). The proof proceeds by induction on m. We assume the results
to hold for (wj, ;) for j < m and we prove them for w1 and ¢,,41. We first
consider wy,11 which is obtained from (2.20). From Lemma 3.2, especially (3.6)
with (k, ¢) replaced by (k + p —m,f + p — m) which is again an admissible pair
and from the induction assumption, we obtain

0 wmttlspmos <A@ Y N0 Quoga )+ Nu®} . (54)
0<j<m—1

Integrating (5.4) between ¢ and oo, using the initial condition wy,y1(c0) = 0
and using (3.39) (3.35) shows that w,,+1 € C([1,00), H**P~™~1) and that w1,
satisfies (5.1).

We next consider ¢,,4+1 which is obtained from (2.21). From Lemma 3.2,
especially (3.7) (3.9) with again (k, ¢) replaced by (k+p—m,{+p—m), from the
induction assumption and from the result for w,, 1, we obtain
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|8t Pm+1 |€+p—m—1 <

A@{2 DT N Ny O+t (Y Qi) Quor— () +Qu()) | -
0<j<m 0<j<m—1
(5.5)

Integrating (5.5) between 1 and ¢, using the initial condition ¢, +1(1) = 0, and us-
ing (3.38) (3.36) and (3.40) (3.43) (3.44) shows that ¢,, 11 € C([1,00), Y¢+P—m—1)
and that ¢,y satisfies (5.2).

We finally assume that (p+2)y > 1 and estimate 0; ¢,11 by (5.5) with m = p.
The last result and in particular the estimate (5.3) then follow by integration
between ¢ and oo and use of (3.38) (3.37) and (3.40) (3.41) (3.42) with m = p.
Part (2). We define for 0 <m <p+1

B, = E Wi Wn—j

0<j<m

so that By = |w4|? and B,, is bounded in time and tends to zero at infinity for
m > 1, for instance in H{ norm. The equation (2.21) for ¢,,1 can be rewritten
as

Oy Pm+1 = (21‘,2)71 Z V@j . V(pm_j + AW B+ . (56)

0<j<m

We next compute

O Bm+1 = (2t2)_1 Z 2Re wj Z (QVme_i_j -V + (A gom_i_j))wi

0<j<m 0<i<m—j

=t72 > (Vem-r-V+ (A omt)Bs
0<k<m

(5.7)
Using (5.6) and (5.7), we now show by induction on m that B,, and ¢, are
gauge invariant. In fact assume that B; and ¢; are gauge invariant for j < m.
Then 9; By,+1 is gauge invariant by (5.7) and therefore B,,4+1 is gauge invariant
because By, +1(00) = 0. Substituting that result into (5.6) and using the induction
assumption, we obtain from (5.6) that d; @41 is gauge invariant, and therefore
©m+1 1S gauge invariant since @,,+1(1) = 0 for m < p and @,41(c0) = 0.
Part (3). Let {wm, om} and {w),,, ¢}, } be the solutions of the system (2.20) (2.21)
associated with w; and w/ . From the fact that the RHS of (2.20) (2.21) are
bilinear, it follows as in Part (1) by induction on m that the following estimates
hold, with a = |w |k4p V |W/ |k4p :

‘wm-&-l - w;n+1|k+p,m,1 < Aa) lwg = W) [ktp Qm(t) (5.8)

om = Prnlespom < Ala) [wy = whlkrp Non(t) (5.9)
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for 0 <m <p, and if (p+ 2)y > 1,
[ept1 — opr1l,y S Ala) lwy — wylerp Pplt) (5.10)

The continuity as stated in Part (3) follows from those estimates.
O
Remark 5.1. There is no upper bound on p in Proposition 5.1. However if (p+1)y >
1, all the (wpm,@m) with (m + 1)y > 1 have the same asymptotic behaviour in
time and behave respectively as ¢t ! and Constant as ¢t — oo, because Q,, and N,,
saturate to those behaviours in that case.
We define for future reference (see also (2.16) (2.17))

0<j<m 0<j<m

where wj, ¢; are obtained by Proposition 5.1.
We now turn to the study of the transport equation

0,V =02t2)"" (2Vp-V + (Ag)) V (5.12)
which we shall use later with ¢ = ¢,_1, as explained in Section 2 (see (2.25)).

Proposition 5.2. Let £ > n/2 and 1 < k < (. LetT > 1,1 = [T, 0), let ¢ € C(1,Y?)
with ho'¢ € L®(1,Y") and let wy € H*. Then
(1) The equation (5.12) has a solution V € (CNL>¥)(I, H*) which is estimated
by
IV L HY) || < Jw[rexp(C by (5.13)
where
b=[ ho'¢; LY (5.14)

and which tends to w4 at infinity in the sense that
V() —wylr_1 <Cbexp(C by~ b Jwylp h(t) . (5.15)

(2) The solution V is unique in L°°(I,L?) under the condition that
| V(t) — wy ||2 tends to zero as t — oo.

(3) The map (wy,P) — V is uniformly Lipschitz continuous in wy for the
norm topology of H* and is continuous in ¢ for the topology of convergence in
Y pointwise in t to the norm topology of L>(I, H*) for halgb in bounded sets of
L>(1,Y"Y).

Proof. Part (1). We first take ¢ty € I. Using a regularization (for instance parabolic),
energy estimates as in Lemmas 3.2 and 3.3 (see especially (3.6) and (3.12)), and a
limiting procedure, one obtains easily the existence of a solution V4, of the equation
(5.12) with initial condition V4, (to) = w4, and such that

Vi, €C(I, H* 1) N (Cp N L*)(I, H)
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Using the same energy estimates, one then shows that

OulVia ()] < € b 72 ho()) Vi, (D), (5.16)

AUV (0) = wileca] < C b ()

Vlt) —ui|, #losl) a7

and for two solutions V;, and V;, associated with ¢y and t;

OulViq () = Vay (D] < C b 472 ho(t)

Vo) =Va|,_ - (58

Integrating (5.16) (5.17) between ty and ¢ and integrating (5.18) between ¢,
and ¢, we obtain respectively

[Viy ()11 < w1 exp (C bR(E) — h(to)]) < |wisexp(C by "), (5.19)

Vi) =w| < Jwile (exp (C blA(t) — hlto)]) — 1) a0
5.20

< Jwilx C bexp (Cby~") [h(t) — h(to)|

Vi) = Ve )] | <

Vig(t1) —wy | exp (C bla(t) = h(ty))

(5.21)
< |V (t1) — w+)k71 exp (Cby~h)
Substituting (5.20) into (5.21) yields
Vio (8) = Ve (8)] 1 < || C bexp(2C by™1) [h(ta) — h(to)| - (5.22)

It follows from (5.22) that when tq — oo, V;, has a limit V € (C N L*)(I, H*1)
satisfying (5.15). One sees easily that V satisfies the equation (5.12). From the
estimate (5.19) it follows by a standard compactness argument that V' € (Cy, N
L>®)(I, H*) and that V satisfies the estimate (5.13). Furthermore V also satis-
fies (5.16) so that |V (t)| is Lipschitz continuous in ¢, which together with weak
continuity in H* implies strong continuity in H*.

Part (2). If V7 and V4 are two solutions of (5.12) one obtains by the same energy
estimates as above

IVA(t) = Va(t) [l < [ V() = Va(t') [l2 exp (C BIA(E) = R(E)]) . (5.23)

Taking the limit ¥ — oo shows that Vi = V5.

Part (3). Continuity of V' with respect to w4 follows immediately from the linearity
of the equation (5.12) and from the estimate (5.13). In order to prove continuity
with respect to ¢, we first derive an estimate for the difference of two solutions
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V1 and V5 associated with ¢; and ¢s. We assume that ¢; € C(I,Y”l) with
hole € L(I, YY), that ¢o € C(I,Y?) with hy'¢e € L®(I,Y"), that V; € (CN
L>)(I, H**1) and that Vo € (CNL>®)(I, H*). Let V. =V, —Va and ¢ = ¢y — ¢o.
It follows from (5.12) that

aV_ = (2t2)_1{ (2Vs - V + (Ad)) Vo + (2Vé_ - V + (Ag_)) vl} . (5.24)
Let

a=Max || Vi (L H) || b=Masx | hy ' L=(1,Y") |
=1, =1,

Estimating (5.24) by Lemma 3.5, we obtain

V-lx| < Ct2{Igale IV-lu+ 16—l IVale + 18-+ Vil }

(5.25)
<cC t_Q{b ho [V_|k + alo—|¢ + o]+ |V1|k+1}
where |f|« =|| Vf ||oo- On the other hand, by Lemma 3.4 we obtain
OulVilis| < C 2 {l61le Vilisr + I6rlea Vile
(5.26)
<C t_Q{b ho [Vilk+1 + a|¢1|e+1}
Integrating (5.26) between ty and ¢ and using the fact that
10wyl < Cot 2 hoy+2 (5.27)

implies

y(t) < y(to) exp (Co |h(t) — h(to)]) + /dtl z(t1) exp (Co |h(t) — h(t1)|)‘

to

t
/ dtl Z(tl) ) 5
to

< exp (C'O 7_1) <y(to) +

(5.28)
we obtain

t
mumﬂ<c(mwmmy4[dunﬂ@muﬂ) (5.29)

where C' depends on a, b. Substituting (5.29) into (5.25) and integrating between
to and t yields similarly
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t
V_(®)]k < C{lV(tO)k + + [Vito)lk+1 /dh £ 2o (t)]«
to

t
/ dty 17216 (1)]e
to

+

t t1
[ ol [ i |¢1<t2>e+1} . (5.30)
to tO

In particular if V3 and V5, are solutions of (5.12) with ¢; and ¢2 respectively and
with initial data wy, € H**1 and Wyg € H* at time to, as obtained in Part (1),
then the following estimate holds uniformly in ¢g and ¢

V() < c{wﬂ —wsal+ [t o)
1

(e [ el ) [Caet ool e

where all the integrals are convergent under the assumptions made on ¢; and ¢s.

We can now prove the continuity with respect to ¢. The proof proceeds as
in Step 7 of that of Proposition 1.4.1. We introduce a regularization defined as
follows. We choose a function ¢, € S(IR") such that [ dz ¢ (z) = 1 and such that
€172 (1 (&) — De=o = 0. We define . (x) = e~ "¢1(2/¢), so that ¢e(£) = ¢1(€)
and we define the regularization by f — f. = 1. * f for all f € §’. An immediate
computation yields

Fofellz <l ovell  fllz=e"" 1 0¢n [ Il f 2 (5.32)

and

[ fe=Flloo < I (e = DF I <% €727 @n(€) = 1) llo || £; H/*H |

(5.33)

Let now wy € H and ¢, ¢' € C(I,Y*) with hy ', hy'¢' € L>°(I,Y*) and such

that

Ihg s L=(LY ) || v [ hg'¢/s L(1Y) || < b

Let V and V' be the solutions of the equation (5.12) with ¢ and ¢’ respectively

and with initial data w,; at ¢y obtained in Part (1). We regularize wy, ¢, ¢’ to

Wie, Ge, PL, so that the following estimates hold :

[Wielor1 SC e Mwile o |peler <C e Yole o ol <C et ¢l
(5.34)
and
6= ¢l <C ¥ gle , ¢ — Ll <C 2P0 . (5.35)

The estimates (5.34) follow from (5.32) and the estimates (5.35) follow from (5.33)
and from the definition of Y. Let V. and V. be the solutions of (5.12) obtained
from (w4e, ¢e) and (wie, ¢L). We estimate

V() =V Ok < [V(E) = Va@lk + [Ve() = VIOl + VI =V )]k - (5:36)

We estimate the three norms in the RHS of (5.36) by applying successively (5.31)
with (V1,Va) = (V, V), (Ve, VY) and (V/,V'). We obtain
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V)=V )k <

c{|w+ et 2100 - 9201 + 160 - 0.0, + 160 - S0, )

ret [l 2 (lofo) - 0001, +1ox(0 - S0, + 160 - S0 ) b 51
where we have used (5.34). Using the inequalities

|¢e — L1, < [0 —¢'),
lpe — O], <o —¢'|, <|o— e
lpL — ¢'|, < |pe — ¢l, + 2|6 — ¢'e

and (5.35), we can continue (5.37) by

V(i) - V') < C{ lwy —wiel, + /100dt t72|p(t) — p(t)], + /2
(5.38)

+(1+e) /1006” 210(0) = 9/ (1), |

For fixed ¢, by the Lebesgue dominated convergence theorem, the first integral in
the RHS tends to zero when € — 0, while the second integral tends to zero when
¢ — ¢ in Y pointwise in . The RHS of (5.38) can then be made arbitrarily small
by first taking e sufficiently small and then letting ¢’ tend to ¢ in the previous
sense for fixed e.

O

We next turn to the analogous transport equation
dhx=t"2Vo¢ Vx (5.39)
which we shall use together with (5.12), as explained in Section 2.

Proposition 5.3. Let £ > n/2. Let T > 1, I = [T,00), let ¢ € C(I,Y**!) with
hotp € L®(1, YY) and let oy € Y. Then
(1) The equation (5.39) has a solution x € (CNL>)(I,Y*) which is estimated
by
16 L, YY) || < [+ ]eexp(C by (5.40)

where
b=| byt L(LY) ||, (5.41)

and tends to Yy at infinity in the sense that

X(t) = ¥ile-1 < C b exp(C by )|wle h(t) (5.42)
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(2) The solution x is unique in L°°(I,L°°) under the condition that
|| x(t) — ¥+ ||oo tends to zero as t — oo.

(8) The map (Y4, 9) — x is uniformly Lipschitz continuous in 14 for the
norm topology of Yt and is continuous in ¢ for the topology of convergence in
YL pointwise in t to the norm topology of L>(I,Y"), for hglq’) in bounded sets
of L(I, Y4+,

(4) Let in addition w, € H* and let V be the solution of (5.12) obtained
in Proposition 5.2. Then for fixed ¢, V exp(—ix) is gauge invariant in the fol-
lowing sense : if (V,x) and (V',X') are the solutions obtained from (w,vy)
and (W', ) and if wiexp(—ipy) = w! exp(—iv) ), then V(t)exp(—ix(t)) =
V'(t) exp(—ix'(t)) for allt € I.

Proof. Parts (1) (2) (3). The proof is the same as that of Proposition 5.2, starting
from the estimates (3.13) (3.14) (3.16) (3.18) of Lemmas 3.3, 3.4 and 3.5.
Part (4). It follows from (5.12) and (5.39) that Vexp(—ix) also satisfies (5.12),
with gauge invariant initial condition V'(co)exp(—ix(o0)) = w4 exp(—ith4). The
result then follows from the uniqueness statement of Proposition 5.2, part (2).
O

In the subsequent applications, we shall use the solutions of the equations
(5.12) and (5.39) associated with ¢ = ¢,_1 defined by (5.11) (see (2.25) (2.26)).
In particular we shall use V' as a substitute for W), also defined by (5.11), and we
shall need the fact that V' is a sufficiently good approximation of W,. We collect
the relevant properties in the following proposition.

Proposition 5.4. Let (k,¢) be an admissible pair. Let p > 1 be an integer. Let
wy € HEPHL et a = |wy|pipr1 and let ¢ = ¢,—1 be defined by (5.11) and
Proposition 5.1, so that hy'¢ € (C N L®)([1,00),Y*2). Let V be the solution of
(5.12) defined by Proposition 5.2, so that V € (C N L*>)([1,00), H**2).

(1) Let W, be defined by (5.11) and Proposition 5.1 so that W, €
(€N L*®)([1,00), H**1). Then

[V(t) = Wp(t)], < Ala) Qp(t) (5.43)
for some estimating function A(a).
(2) Let i, € YL and let x be the solution of (5.39) defined by Proposition
5.3, so that x € (CNL*>®)([1,00), Y1), Then

IX(t) =¥l < Ala) |t lesa h(2) (5.44)

and V (t) exp(—ix(t)) is gauge invariant.
(8) The map wy — V is continuous from H¥TP+L to L°°([1,00), H**?) and
the map (w4, 1y ) — X is continuous from HFTPHL @ YL to [°([1,00), Y ).
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Proof. Part (1). From (2.20) and (5.11) it follows that

0, W, = (22)" { (2Vép1-V+ (Db 1)) Wy > (2Vpi -V + (Apy) wj}

(5.45)
so that

OV = Wy) = (262) " { (2961 T+ (A1) (V = W)+

S @V V+(Ap)wy )
i<p—1,j<p
i+j>p

From Lemma 3.3, esp. (3.12) and Lemma 3.2, esp. (3.6), we obtain

OV = Wyle| < C{t72ho®) b IV =Wyle+t72 3" lpile lwslinn ) (5.46)
i<p—1,j<p

itjzp

where
b=|lhg" ¢p-1; L>([1,00),Y") |

Integrating (5.46) between ¢ and infinity, using (5.1) (5.2) (5.27) (5.28), we obtain

V)~ W), < Aa) /twdtl 2% Nilh) Qah)

i<p—1,j<p

i+i>p (5.47)
<A(a) Y Qu(t) < Aa) Qp(t)

p<m<2p—1

by (3.39) (3.35) and (3.28).
Part (2) is a partial rewriting of Proposition 5.3 in the special case ¢ = ¢p_1.
Part (3). The continuity properties stated there follow by combining those of
Propositions 5.1, part (3), 5.2 part (3) and 5.3, part (3).

O
Remark 5.2. By keeping track of the orders of derivation more accurately, one sees
easily that Proposition 5.4 holds with (k, ¢) replaced everywhere by (k—1,¢—1).
We have stated Proposition 5.4 at the level of regularity which will be used in the
subsequent applications.

6 Asymptotics and wave operators for the auxiliary system

In this section we derive the main technical results of this paper. We prove
that sufficiently regular solutions (w, ) of the auxiliary system (4.1) (4.2) have
asymptotic states (w.,t), and conversely that sufficiently regular asymptotic
states (w4, ) generate solutions (w, ) of the auxiliary system in the sense
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described in Section 2, thereby allowing for the definition of the wave operator
Qo : (w+71/)+) - (w,cp).

We first prove the existence of asymptotic states of solutions (w, ¢) of (4.1)
(4.2). The existence of wy is already established in Proposition 4.4 under rather
general assumptions. However the existence of ¢4 requires a more complicated
construction and stronger assumptions.

Proposition 6.1. Let (k,¢) be an admissible pair. Let p > 0 be an integer. Let
T >21=]I[T ), let (w,p) be a solution of the system (4.1) (4.2) such that
(w, hytp) € (CNL®) (I, HF+PHIV2 g VP gnd let

a = || w; L([T, 00), HFFPHDV2) || b = || hg o L([T00), YP) ||
(6.1)
Let wy = tlim w(t) € HF¥PTL be defined by Proposition 4.4. Let {wm i1, om},
0 < m < p be defined by Proposition 5.1, and let Wy,, ¢p, 0 < m < p, be defined
by (5.11). Then the following estimates hold for allt € I :

‘w(t) - vv,,t(t)]]ﬁp_m_1 < A(a,b) Qul(t) (6.2)

) = o), <A@E) Nun(®) (63

for 0 < m <p, and for some estimating function A(a,b).
If in addition (p + 2)y > 1, then the following limit exists

lim (p(t) = 6(1)) = vy (6.4)

t—o0

as a strong limit in Y1, and the following estimate holds

o) = 6p(t) = 4| < A@b) B(1) (6.5)

Proof. The proof proceeds by induction on m. For 0 < m < p, we define
Gm+1(t) = w(t) = Wi (t) (6.6)

"/}erl(t) = Lp(t) - ¢m(t) : (67)
We also define go = w and ¢y = . We assume that the estimates (6.2) (6.3) hold
for (gj,%;), 0 < j <m and we derive them for (gm+41,Vm+1)-
We substitute the decompositions w = Wy, +@m+1 and ¢ = ¢ + 141 in the
LHS of (4.1) (4.2) and we partly substitute the decompositions w = Wy,_1 + ¢m
and ¢ = ¢p—1 + ¥y, in the RHS of the same equations. Using in addition (2.20)
(2.21), we obtain

O Gm+1 = (2t2)‘1{iAw + 2V -V + (Ap)) gm
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OV Y+ (D) Wi+ Y. Ve V4 (Ap))ws} , (68)
0 §1L+J]§Z 7;:; 1

O bmir = (2 (Vo +Vom 1) Vom+ > V-V

+tﬂ{go(qm7Q1) + 90(@m> Win—1 — wo) + 290(qm+1,wo) + E go(wiij)} .
0<i,j<m—1
i+j>m+1

(6.9)
The equation (6.9) holds only for m > 1 and the last bracket thereof has been
obtained by using the fact that

90 (Gm, w + Win—1) — 290 (Wi, wo) = go(qm, q1) + 9o (@m> Win—1 — wo)

+290 (¢m+1,wo)
For m = 0, (6.9) should be replaced by

O 1 = (2%) Vel + t 7" (go(qr, @) + 290(q1, wo)) - (6.9)o

We estimate the RHS of (6.8) (6.9) by Lemma 3.2 with (k, ¢) replaced by (k+p—
m, {+p—m), which is again an admissible pair. We use Proposition 5.1 to estimate
Wi—1, wj, pm—1 and ¢;, and we use the induction hypothesis to estimate g, g1,
Gm+1 and . Note that W,,,_1 — wg, which occurs only for m > 2, satisfies the
same estimate as ¢gi. In the induction procedure, as in the proof of Proposition
5.1, one has first to complete the estimation of ¢,,4+1 before estimating ,,4+1. One
then obtains

‘at (Zm-‘rl‘ < A(a,b) t_Q{l—i-ho Qm-1+ Npm + Z N; Qj—l} ;
Fpmmet m<it+j<2(m—1)
(6.10)

< Ala, b){f? (ho Nt YN Nj)

m<i+j<2(m—1)

O ¢m+1’

l+p—m—1

+t77 (h Qm-1+ Qm + Z Qi1 Qj—l)} (6.11)

mA1<i4j<2(m—1)

for m > 1, and

< —2 )
]at ql‘w_l < A(a,b) t~2(1 + ho) (6.10)0

0 1|

< A(a,b) {t2hg +t R} . (6.11)g
l+p—1
Integrating (6.10) between ¢ and infinity with the condition gn,41(c0) = 0 which
follows from the definition and using (3.39) (3.35) (3.28) and the fact that

t71Qm (1) < Qn(t) yields (6.2).
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Integrating (6.11) between T and ¢, using (3.38) (3.36) (3.27) for the first
bracket and (3.40) (3.43) (3.44) (3.28) for the second bracket yields

0], O A@b) N (1)
< (C Np1(T)™' + A(a, b)) Nppga(t)

with
C= ‘merl(T)’

l+p—m—1
where we have used the fact that N,,1 is increasing in 7', and we have assumed
that T is bounded away from 1. This yields (6.3).

We next turn to the proof of (6.5). In that case, the RHS of (6.11) withm =p
is integrable in time, which proves the existence of the limit (6.4). Integrating (6.11)
between ¢ and infinity and using (3.38) (3.37) for the first bracket and (3.40) (3.41)
(3.42) (3.28) for the second bracket yields (6.5).

O

We now turn to the construction of solutions (w, ¢) of the system (4.1) (4.2)
with given asymptotic states (w4,4). For that purpose we first take a (large)
positive ¢y and we construct the solution (wy,, ¢y,) of (4.1) (4.2) with initial data
(V(t0), ¢p(to) + x(t0)) at to. The solution (w, ) will then be obtained therefrom
by taking the limit ¢y — 0o, as explained in Section 2.

Proposition 6.2. Let (k,¢) be an admissible pair and let p be an integer such that
(p+2)y > 1. Let wy € HFHWPHOV2 gnd o, € YL, Let ¢ = ¢,y be defined by
(5.11) and Proposition 5.1, so that hy'¢ € (C N L>®)([1,00),Y* 2). Let V and x
be the solutions of (5.12) and (5.89) respectively, obtained in Propositions 5.4, so
that (V,x) € (CN L®)([1,00), H**2 @ Y1), Let

ay = |w+|k+(p+1)v2 ) by = [Yylerr - (6.12)

Then there exist To and T, 1 < Ty, T < oo, depending only on (v,p, a4, by) such

that for all to > To V T, the system (4.1) (4.2) with initial data wy,(to) = V(to),

w1, (to) = dp(to) + x(to) has a unique solution in the interval [T, 00) such that

(wiy, by piy) € (COLX) ([T, 00), H* & Y*). One can define Ty and T by conditions
of the type

Alag,by) WTo) =1 (6.13)

Aar,by) (p+2y =17 W(T) =1 . (6.14)

The solution satisfies the estimates

[0 ()) = VD)V |wey () = W) < Alarbs) Qlte)  (6.15)

10 (8) = @) = X(D)|, V [t (5) = 6,(8) = Y|, < Alas,b+) Qplto) ho(t) (6.16)
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fort > to,

i, () = VO]V |weg () = W) < Aarb) Q) (6.17)

Pralt) = &p(t) = x(O)] V[0 (t) = 6p(t) = 0] < Alar,ba) B (6.18)

forT <t<tgy, and
[weo ()] < Alat,br) 5 oo (t)le < Aag,by) ho(t) (6.19)
forallt >T.

Proof. The result follows from Proposition 4.1 and standard globalisation argu-
ments provided we can derive (6.15) (6.16) (6.17) (6.18) as a priori estimates
under the assumptions of the proposition. Let (wy,, ¢+,) be the maximal solution
of (4.1) (4.2) with the appropriate initial condition at tg. Define ¢ = w;, — V' and
P = @y, — ¢p — x. Comparing the equations (4.1) (4.2) and (5.12) (5.39), we obtain

O q= (2t2)‘1{iAwto + 2Vt - V4 (Api,) g+ V(W + 9p +X) - V

+HAW+ ey +0) V' (6.20)
0 = (262) HIVYR+2V0- V(6 +) + [TX2+2VX- Vo + > Vi Vo |

77 g0(0, @) +200(a, V) + 9o(V = Wy, VW) + 3 golws wy) | (6:21)
0<i,j<p
i+j>p+1

where the last bracket is obtained by rewriting

90(weg, wey) = Y gol(ws, wy)
i+j<p
We estimate (g,) by Lemmas 3.2 and 3.3, especially (3.6) (3.12) for ¢ and (3.7)
(3.8) (3.13) for ¢ and we obtain

‘ath‘ S Ct 2 {|Viksa + lotole lale + 1¥ + @p + Xle [V]ks1} (6.22)

aulle] < € 2 {1lE + [Wle 6+ xles +

Heplert Ixlern+ Y leilen |90j|z+1}
0<i,j<p
itj=>p

+C 0 {laf} + lale [VIk+ 1V = Wolu [V 4+ Wolo+ D il fugle} - (623)

0<i,j<p
i+j=>p+1
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From Propositions 5.1 and 5.4, it follows that there exist a and b depending on
(a4,by), such that the following estimates hold.

Vikz<a , Wple<a , [V-Wk<aQy ,
lwilr <a Qj-1 for1<j<p
|éples1 <bho , |pjlex1 <bN; for0<j<p ,
IXle41 <SO<SCON,<CbvyP hg fort > 2

We now define y = |¢| and z = |¢|,. Using the previous estimates, we obtain from
(6.22) (6.23)

O] < C t—Q{aJr (z+bho)y+ (z+b N,,)a} (6.24)

18,2 < C t’Q{(z—Fb ho)z+8 3 N Nj} +

0ii<p
) ”’*;’ , (6.25)
Ct‘*{y(y—l—a)—i—a Qp+a Z Qin}.
0<ij<p-1
itj>p—1

In the last bracket in (6.25), the terms in a? are absent for p = 0 since in that case
V=Wy=wy=wg4.

We next estimate y and z from (6.24) (6.25), taking C' = 1 for the rest of the
proof. We distinguish two cases.
Case t > to. Let ¢t > ¢p and define Y =Y (t) = || y; L*([to,?]) || and Z = Z(t) =
| hotz; L ([to,?]) ||- Then for all ¢ € [to, ]

By < t-2{a +(Z+b)Yho+aZhy+ab N,,} (6.26)

Oz < t*2{(z+b)z Bt YN, Nj}

0<i,j<p

i+j>p
(6.27)
+t‘7{Y(Y +a)+a® Q, + d? Z Qi Qj} :
0<i,j<p—1
itj>p—1
Integrating (6.26) between tg and ¢ and using (3.35) we obtain
y<aty'+(Z+b)Y h(te) +a Z h(to) +a b Q,to) (6.28)
and therefore
Y < (Z+b)Y h(to) +a Z h(to) + a Bi(to) (6.29)

where
Bi(to) =ty +b Qplto) < (Qp(1)™" +b) Qplto) - (6.30)
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Integrating (6.27) between tg and ¢, we obtain similarly
2 < (Z+b)Z ho(t) hto) + Y (Y +a) ho(t) + C(b* + a®) ho(t) Qp(to) . (6.31)

Here we have used the following relations

Lty 72 W20 < ho(B)(A(to) — h()

to

t t
/ dty 172 Ni(t1) N;(t) g/ dty 172 ho(t1) Nigj(t1)

< ho(t) / dty 172 Niwj(t1) = ho(t) (Qirs(to) — Qurs ()

by (3.38) (3.35),

/ Lt 7 Qults) < Qulto) (hol) — ho(to))

to

by (3.45), and
t
/ dty t77 Qi(t1) Qj(t1) <
to

/t diy 177 B(t) Qies(h) < 2Qis 1 (to) (ho(t) — ho(ty))

by (3.40) and (3.46).
From (6.31) we obtain

Z < (Z+b)Z h(to) + Y(Y +a) + Ba(to) (6.32)

with
By = C(b* 4+ a?) Q,(ty) . (6.33)

Now (6.29) (6.32) define a closed subset R of IR" x IR™ in the (Y, Z) variables,
containing the point (0,0), and (Y, Z) is a continuous function of ¢ starting from
that point for = to. If we can find an open region R, of IRt x IRT containing
(0,0) and such that RN Ry C Ry, then (Y, Z) will remain in R N R4 for all time,
because R N R is both open and closed in R. We first take ¢y sufficiently large so
that

4b h(to) <1 , 16a® h(tg) <1 , 4Bi(tg) <1 (6.34)

and we choose for R the region 47 h(to) < 1. From (6.29) (6.32) (6.34) it follows
that in R NR4
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{ Y <2a (Z h(to) + Bl(to)) <a

A S 4da 'Y + 2B2(t0)

and therefore

Y S 4a Bl(to) + 2B2(t0) h(to)

(6.35)
Z <4 (4@2 Bl(to) + Bg(to))
so that the condition 4Zh(to) < 1 is implied by
16 (4@2 B1(t0) + Bg(to)) h(to) <1 . (636)

The estimates (6.15) (6.16) with V' and x now follow from (6.35), while the
conditions (6.34) (6.36) reduce to the form (6.13).

The estimates (6.15) (6.16) with W, and ¢ follow from the previous ones,
from (5.43) (5.44) and from the fact that

Qp(t) ho(t) h(t)™! = (t Qp(t)) (ho(t) t™" h(t)™")
is an increasing function of ¢, so that
h(t) < h(t1) Qp(t1) ™" ho(t1) ™" Qp(to) ho(t)

for any (fixed) t; < to.
Case t < to. Let ¢ < o and define Y = Y (f) =|| Q, ' y; L=([t,t0]) || and Z =
Z(t) =|| Pyt 2 L= ([t, to]) || It then follows from (6.24) (6.25) that for all ¢ € [£, o]

|(“)ty|gt’g{a—i—ZYPpr—H)YhoQp+aZPp+apr} (6.37)

002l <t2{Z2 PE4+b Z ho By+8? Y Ni N}

0<i,j<p
i+j=p

+t—7{Y2 @taY Qta®Qy+d® Y Q@ Qj} . (6.38)
0<i,j<p—1
itj>p—1

Integrating (6.37) between ¢ and tg, using (3.32) (3.35) and
to
[t 77 B) Qulta) < Q0 (By(t) ~ Ry)
t

/%anMMQmos%ww@—mm>

t
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we obtain
y<at ' +ZY Ry(t) Qu(t) +bY h(t) Qu(t) +a Z Ry(t) +a b Qu(t) (6.39)
and therefore by (3.47)
Y<ac+ZY R,(t)+bY h(t)+Cpa Z h(t)+ab (6.40)
where ¢ = Q, (1)L
We integrate similarly (6.38) between ¢ and to. We use the relations

/tto diy 17 Pi(t) < Pp(t) (Ry(t) — Rp(to)) < Fp(t) Ry(t)

/%“1m2manawu < By(t) (h(t) = hlto))

IN

to
/ dty 172 ho(t1) Nivj(t)
t

Piyj(t) = Piyj(to)

to
/ dty 172 Ni(t1) Nj(t)
t

IN

by (3.38) (3.37),

to

[ a7 Q) < Qut) [ dn 67 Qultr) < @ul0) B0
t t
by (3.42) and
/t dty t17 Qit1) Qj(t1) < Piyjya(t)
by (3.40) (3.41) (3.42). We obtain

2 < Z? Py(t) Ry(t)+b Z Py(t) h(t)+Y? Py(t) Qp(t) +a Y P,(t)+C(a*+b?)Py(t)
(6.41)
and therefore

Z<Z*PR,(t)+bZ h(t)+Y? Qu(t) +a Y + Cla® +b*) . (6.42)

We now take ¢ sufficiently large so that bh(t) < 1/4 and we proceed as in the case
t > to by taking for R4 the strip defined by ZR,(t) < 1/4, C,Zh(t) < b, thereby
obtaining from (6.40) (6.42)

Y < 2a(2b+ ¢)
(6.43)
Z <20 (a® +b?) +4a?(2b+¢) (1 + 2(2b + ¢)Qp(1))

The conditions bh < 1/4, ZR < 1/4, Zh < b are then satisfied for ¢t > T with T
defined by a condition of the form (6.14), where the singular factor ((p+2)y—1)~1
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comes from C,. The estimates (6.17) (6.18) with V' and x follow from (6.43), and
the analogous estimates with W, and v follow therefrom and from (5.43) (5.44).
Finally the estimates (6.19) follow from (6.15) (6.16) (6.17) (6.18) and from
Proposition 5.1.
O
We can now take the limit ¢y — oo of the solution (wy,, ¢,) constructed in
Proposition 6.2, for fixed (wy,v4).

Proposition 6.3. Let (k,¢) be an admissible pair and let p be an integer such that
(p+2)y > 1. Let wy € H-HWPHOV2 gnd oy, € Y+ Let ¢ = ¢,y be defined by
(5.11) and Proposition 5.1, so that hg ¢ € (C N L®)([1,00),Y*?). Let V and x
be the solutions of (5.12) and (5.39) respectively, obtained in Proposition 5.4 so
that (V,x) € (CNL>®)([1,00), H*T2 @ Y1) and let ay, by be defined by (6.12).
Then

(1) There exists T, 1 < T < oo, depending only on (v,p,a+,by) and there
exists a unique solution (w, @) of the system (4.1) (4.2) in the interval [T, 00) such
that (w, hytp) € (CNL®)([T,00), H* ©Y*) and such that the following estimates
hold for allt > T.

w(t) = V)V [w(t) = Wo(t)] < Alar.bs) Quplt) (6.44)

@(t) = 6p(t) = X(O)| v [o()) = 6,(t) =] < Alar,bs) B(t)  (6.45)

lw®)le < Alay,by)  le®)]e < Alay,by) ho(t) (6.46)

One can define T' by a condition of the type (6.14).

(2) Let (wy,,pr,) be the solution of the system (4.1) (4.2) constructed in
Proposition 6.2 forty > ToVT and such that (wy,, hy *¢r,) € (CNL®) ([T, 00), H*®
Y*4). Then (wy,, pi,) converges to (w,p) in norm in L=(J, H*=* & Y*~1) and in
the weak-+ sense in L>=(J, H*®Y"*) for any compact J C [T, 00), and in the weak-*
sense in H* @ Y pointwise in t.

(8) The map (wi,¥4) — (w,p) defined in Part (1) is continuous on
the bounded sets of H*+P+OV2 g YL from the norm topology of (wy,vy) in
HM*P=L g Y =1 1o the norm topology of (w,¢) in L=(J, H* =1 @ Y*~1) and to the
weak-* topology in L>=(J, H* @& Y*) for any compact interval J C [T, o0), and to
the weak-* topology in H* ® Y* pointwise in t.

Proof. Parts (1) and (2) will follow from the convergence of (wy,, ) when tyg — oo
in the topologies stated in Part (2). Let To VT < to < t1. From (6.17) (6.18) it
follows that

[, (t0) = wry (t0) | = | (t0) = V(t0)| | < A Qylto) (6.47)

o1 (t0) = 1o (t0)|, = |1, (t0) = du(to) = x(t0) |, < A Py(t0) (6.48)
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We now estimate (ws, — wr,, 91, — @1, ) in HF 1 @ Y1 for t < tg. Let

Yy = ‘wto — Wy, , 2= ‘@to — Pty (649)

k—1 -1

From (6.19) and Lemma 3.3, it follows that y and =z satisfy the system (4.10).
Integrating that system for ¢ < ¢y with initial data at tg, we obtain from Lemma
4.1

y(t) < A(y(to) + 7" (2(to) + y(to)ho(to)))
(6.50)
z(t) < A(z(to) + y(to)ho(to))

From (6.47) (6.48) (6.50) and from the fact that P,(to) and Q,(to)ho(to) tend to
zero when to — oo, it follows that there exists (w,¢) € C([T,00), H*~t @ Y1)
such that (wy,, @1, ) converges to (w, @) in L= (J, H* =1 @ Y*~1) for all compact in-
tervals J C [T, 00). From that convergence, from (6.17) (6.18) (6.19) and standard
compactness arguments, it follows that (w, hg @) € (Cuws N L=)([T,00), H* Y,
that (w, ) satisfies the estimates (6.44) (6.45) (6.46) for all ¢ > T, and that
(wy,, t,) converges to (w, ) in the other topologies considered in Part (2). Fur-
thermore, (w, ) satisfies the system (4.1) (4.2) and by Proposition 4.1, part
(1), (w,¢) € C([T,o<), H* @ Y*). Finally, uniqueness of (w, ) under the con-
ditions (6.44) (6.45) follows from Proposition 4.3 and from the fact that P,(¢) and
Qp(t)ho(t) tend to zero when ¢t — oo.
Part (3). Let (w4, v4) and (w’,, ) belong to a fixed bounded set of H*+(P+1V2¢,
YL Let (Wy, ¢p) and (W}, ¢},) be the associated functions defined by (5.11) and
Proposition 5.1 and let (w, ¢) and (w’, ¢’) be the associated solutions of the system
(4.1) (4.2) defined in Part (1). We assume that (w’,,4,) is close to (wy,t4) in
the sense that

w0y =y larpo1 < (6.51)

[y =y le1 <eo - (6.52)

We now take to > T and we estimate (w — w’, ¢ — ¢') in HF"1 @ Y*~1 for t < t,.
Let

y=lw—wl-1 , z2=le—¢ 1 . (6.53)

From (4.1) (4.2) and Lemma 3.3, it follows that (y, z) satisfy the system (4.10).

Integrating that system between tg and ¢ yields the estimate (6.50) for (y, z) defined
by (6.53). From (6.44) (6.45) we obtain

ylto) < A Qplte) + [ Wy(te) = Wy(to)|,

(6.54)

2(to) < A Py(to) + 20 + |énlto) = ) to)|
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From estimates similar to (5.8) (5.9), and from (6.51) (6.52) it then follows that

y(to) < A(Qp(to) + )
(6.55)
Z(to) S A (Pp(to) +e ho(to)) + €0

We now choose ty so that Q,(to) = €. Substituting (6.55) with that choice into
(6.50) and using the asymptotic behaviour of @, and P, for large ¢, we obtain

y(t) < A(m(e) +t~" (0 +mle)))

(6.56)
z(t) < A(eo +m(e))
where
6((p+2)771)/(p+1)'\/ for (p + 1)/}/ < ]_
m(e) =< &7 Loge for(p+ 1)y =1 (6.57)
ev for(p+ 1)y > 1

This implies the (uniform Holder) continuity of (w,¢) as a function of
(w4, ) in the norm topology of L>(J, H*=! @ Y*~1) for all compact intervals
J C [T, 00). The other continuities follow therefrom and from the boundedness of
(w, hg ') in L®([T,00), H* ® Y*) by standard compactness arguments.

O

7 Asymptotics and wave operators for u

In this section we complete the construction of the wave operators for the
equation (1.1) and we derive asymptotic properties of solutions in their range. The
construction relies in an essential way on those of Section 6, esp. Proposition 6.3,
and will require a discussion of the gauge invariance of those constructions.

We first define the wave operator for the auxiliary system (4.1) (4.2).
Definition 7.1. We define the wave operator {2y as the map

Q0 : (’LU+,’(/J+) - (?U»SO) (71>

from HEFPHOVZ g Y6+ o the space of (w,p) such that (w,hy'y) €
(€N L>®)([T,o00), H* @ Y*) for some T, 1 < T < oo, where (w, ) is the solu-
tion of the system (4.1) (4.2) obtained in Proposition 6.3, part (1).

Before defining the wave operators for u, we now study the gauge invariance
of gy, which plays an important role in justifying that definition, as was explained
in Section 2. For that purpose we need some information on the Cauchy problem
for the equation (1.1) at finite times. In addition to the operators M = M (t) and
D = D(t) defined by (2.4) (2.5), we introduce the operator

J=J(t) =z +itV | (7.2)
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the generator of Galilei transformations. The operators M, D, J satisfy the com-
mutation relation
iMDV=JMD . (7.3)

For any interval I C [1,00) and any nonnegative integer k, we define the space

A(I) = {u: D*M*u € C(I, H")}
(7.4)
— {u:< J(t) >k uec(I, 1)}

where < A >= (1 +)\2)1/ 2 for any real number or self-adjoint operator A and where
the second equality follows from (7.3). Then (see Proposition 1.7.1).

Proposition 7.1. Let k be a positive integer and let 0 < p < nA2k. Then the Cauchy
problem for the equation (1.1) with initial data u(ty) = uo such that < J(ty) >*
up € L? at some initial time to > 1 is locally well posed in X*(-), namely

(1) There exists T > 0 such that (1.1) has a unique solution with initial data
u(lf()) = ug n Xk([l V (fo — T)ﬂfo + T])

(2) For any interval I, tg € I C [1,00), (1.1) with initial data u(to) = ug has
at most one solution in X*(I).

(8) The solution of Part (1) depends continuously on ug in the norms con-
sidered there.

We come back from the system (4.1) (4.2) to the equation (1.1) by recon-
structing u from (w, ¢) by (2.7) and accordingly we define the map

Az (w,p) = u=M Dexp(—ip)w . (7.5)

It follows immediately from Lemma 3.1 that the map A satisfies the following
property.

Lemma 7.1. The map A defined by (7.5) is bounded and continuous from C(I, H* @
Y*) to XE(I) for any admissible pair (k,€) and any interval I C [1,00).

We now give the following definition.
Definition 7.2. Let (k,£) be an admissible pair and let (w, @) and (w’, ¢’) be two
solutions of the system (4.1) (4.2) in C(I, H* @ Y*) for some interval I C [1,00).
We say that (w, ) and (w’,¢") are gauge equivalent if they give rise to the same
u, namely if A(w,p) = A(w’, "), or equivalently if

exp(—ip(t)) w(t) = exp(—iy'(t)) w'(t) (7.6)
forall t € I.

A sufficient condition for gauge equivalence is given by the following Lemma.

Lemma 7.2. Let (k,£) be an admissible pair and let (w,p) and (w',¢") be two
solutions of the system (4.1) (4.2) in C(I, H* © Y*). In order that (w,y) and
(w', ") be gauge equivalent, it is sufficient that (7.6) holds for one t € I.
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Proof. An immediate consequence of Lemma 7.1, of Proposition 7.1, part (2), and
of the fact that (k, ) admissible implies & > 1 + p/2.
O
The gauge covariance properties of 2y will be expressed by the following two
propositions.

Proposition 7.2. Let (k, £) be an admissible pair. Let (w, @) and (w', ") be two solu-
tions of the system (4.1) (4.2) such that (w, hy @), (W', hy ') € (CNL®)([T,0),
H*aY?Y) for some T > 1, and assume that (w, @) and (w', ') are gauge equivalent.
Then

(1) There exists o € Y ™1 such that ¢'(t) — p(t) converges to o when t — oo
strongly in Y*=2 and in the weak-+ sense in Y¢~1. The following estimates hold :

1¢'(t) = o(t) = o Y2 | < A h(2) (7.7)

for some constant A depending on T and on the norms of hy'y, hy'y!
in L=(-, YY), with the exception of the case n even, £ = n/2 + 1 where the L™
norm of Vo satisfies only

I V' (t) = Vo(t) = Vo |l < AR()? . (7.8)

(2) Let wy and w'y be the limits of w(t) and w'(t) as t — oo, obtained in
Proposition 4.4. Then w', = w, exp(—io).

(3) Let p > 0 be an integer. Assume in addition that wy., w', € H*P and let
bp; by, be associated with w,, w', according to (5.11) and Proposition 5.1. Assume
that the following limits exist

lim (o(t) = (D) =vi , Jim (YO -g0) =v  (79)

t—oo t—oo
as strong limits in L>. Then ¢/, =14 + 0.
Proof. Part (1) is essentially identical with Proposition 1.7.2, part (1).
Part (2). We define ¢_(t) = ¢'(t) — ¢(t) and we estimate
Iy —wi e |l < [Jw} —w'(#) 2 + || w'(t) = exp(ip-(H)w(t) ||2

+ || (exp(ip— (1)) — exp(io))w(t) [ + || exp(io)(w(t) —wy) |2
<flwfy—w'®) 2 + Twlt) —we 2 + [o-(t) =0 lloo [w(t) 2 (7.10)

by gauge invariance. The last member of (7.10) tends to zero as t — oo.
Part (3). By gauge invariance, namely Proposition 5.1 part (2) and Part (2) of
this proposition, (b;, = ¢, and therefore

Wy =y = lim (¢ = o) =0 (7.11)

t—o0

a
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Remark 7.1. The additional assumptions of Proposition 7.2, part (3) are satisfied
either if (w,p), (w',¢’) satisfy the assumptions of Proposition 6.1, or if (w, ),
(w',¢") € R(0). We shall not consider the former case any further. In the latter
case, it follows from (7.11) that actually o € Y+,

Proposition 7.2 prompts us to make the following definition of gauge equiv-
alence for asymptotic states.

Definition 7.3. Two pairs (wy,t;) and (w9 ) are gauge equivalent if
wy exp(—ithy) = w', exp(—it,).

With this definition, Proposition 7.2 implies that two gauge equivalent so-
lutions of the system (4.1) (4.2) in R(fp) are images of two gauge equivalent
pairs of asymptotic states. The next proposition shows that conversely two gauge
equivalent pairs of asymptotic states have gauge equivalent images under €.

Proposition 7.3. Let (k,¢) be an admissible pair and let p be an integer such that
(p+2)y > 1. Let (wy,y), (wy,¢),) € HFPHIV2 g YL pe gauge equivalent,
and let (w, ), (w',¢’) be their images under Qy. Then (w,p) and (W', ¢") are
gauge equivalent.

Proof. Let ¢y be sufficiently large and let (wy,, ¢,) and (wy,, ¢}, ) be the solutions
of the system (4.1) (4.2) constructed by Proposition 6.2. From the initial conditions

Wy, (to) = V(to) , wéo (to) = V’(to) ,

Pt (to) = Pp(to) +x(to) ¥, (to) = By,(to) + X' (t0)
from the fact that ¢, = ¢, by Proposition 5.1 part (2) and that V exp(—ix) =
V' exp(—ix’) by Proposition 5.4, part (2), it follows that

wiy (to) exp(—itpr, (to)) = w}, (to) exp(—igi, (o))

and therefore by Lemma 7.2, (wy,, 1,) and (wy,, ¢y ) are gauge equivalent, namely

wey (1) exp(—ispy, (1)) = wi, (t) exp(—iep}, (1)) (7.12)

for all ¢ for which both solutions are defined.

We now take the limit ¢ty — oo for fixed ¢ in (7.12). By Proposition 6.3 part
(2), for fixed ¢, (wy,, ¢,) and (wy,, gy, ) converge respectively to (w, ¢) and (w’, ")
in H*~' @ Y*~!. By Lemma 3.1, one can take the limit ¢ty — oo in (7.12), thereby
obtaining (7.6), so that (w, ) and (w’, ¢’) are gauge equivalent.

|

We can now define the wave operators for u. We recall from the heuristic
discussion of Section 2 that we want to exploit the operator Qg defined in Defi-
nition 7.1, reconstruct u through the map A defined by (7.5) and eliminate the
arbitrariness in ¢ by fixing 1, = 0, thereby ensuring the injectivity of the wave
operator for u.
Definition 7.4. We define the wave operator 2 as the map

Q:up —u=(AoQy) (F uy,0) (7.13)
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from F HFTP+HOV2 to X*([T,00)) for some T, 1 < T < oo, where k is the first
element of an admissible pair, and Qy and A are defined by Definition 7.1 and by
(7.5).

The fact that Q acts between the spaces indicated follows from Proposition
6.3 and Lemma 7.1.

Proposition 7.4.
(1) The map Q is injective.
(2) If 0 < p <2, then R(2) = R(A o Q).

Proof. Part (1) follows from the fact that 2 is an injective map between gauge
equivalence classes and that an equivalence class of asymptotic states contains at
most one representative with ¥, = 0.
Part (2) follows from the fact that the gauge equivalence class of a given (wy, 1)
actually contains an element with ¢, = 0, namely (w4 exp(—it4),0), by Lemma
3.1.
O

Remark 7.2. Part (2) of Proposition 7.4 does not extend to the case p > 3 because
in that case (wy,vy) € H*PT1 @ Y1 does not imply that w, exp(—ith,) €
HF*P+1l 50 that the gauge equivalence class of a given (w.,, ) need not contain
an element with ¥4 = 0.

We now collect the information obtained for the solutions of the equation
(1.1) so far constructed. The main result of this paper can be stated as follows.

Proposition 7.5. Let n > 3, 0 < p < n—2 and 0 < v < 1. Let (k,?) be an
admissible pair. Let p > 0 be an integer with (p+2)y > 1. Let uy € F HFH@P+)V2
and ay = |F uy|pq(pr1yve. Let Wy and ¢, be defined by (5.11) and Proposition
5.1 with wy = F uy. Then

(1) There exists T, 1 < T < oo, and there exists a unique solution u €
X*([T,0)) of the equation (1.1) which can be represented as

u=M Dexp(—ip)w

where (w, ) is a solution of the system (4.1) (4.2) such that (w,hy*p) € (CN
L=)([T,0), H* @ Y*) and such that

‘w(t) _F u+‘k ho(t) — 0 (7.14)

—1

o) = ap()],  —0 (7.15)
when t — oo, where hy is defined by (3.19). The time T can be defined by (6.14)

(2) The solution is obtained as uw = Q(uy) where the map Q is defined in
Definition 7.4. The map ) is injective.
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(3) The map Q is continuous on the bounded sets of F H*+®+VV2 from the
norm topology in F H¥*P~1 for uy to the norm topology in X*~1(I) and to the
weak-x topology in X*(I) for u for any compact interval I C [T, 00), and to the
weak topology in MDHF* pointwise in t.

(4) The solution u satisfies the following estimates for t > T

< J(t) >* (explioy(t,z/)u(t) = M(t) D(t) F uy) 2 < Alay) By(t) (7.16)

for some estimating function A(ay), where P,(t) is defined by (3.31).
(5) Let r satisfy 0 < 6(r) =n/2 —n/r < kAn/2, 6(r) < n/2 if k = n/2.
Then u satisfies the following estimate

| u(t) = exp(—igy(t, 2/t) M(t) D(t) F uy ||, < Alay) t7°0) By(t) . (7.17)
Proof. Parts (1) (2) (3) follow from Proposition 6.3, Proposition 4.3, from Defini-
tion 7.4, Proposition 7.4 part (1), and Lemma 7.1.

Part (4). From the definition (7.2) of J(t), from the commutation relation (7.3)

and from Lemma 3.1, it follows that the LHS of (7.16) is estimated by

I-llz="|exp(i(¢p = w)w = Fuy| <fw—Fuply+ |(exp(i(dp —¢)) — 1w
< o= Fougli+1dp = elea (L [0 = 9le-1)" ol

The result now follows from the estimates (4.17) and (6.45) (6.46).
Part (5) follows from Part (4) and from the inequality

k

[l = 2D M* fl, <Ct°0) ||<V>F D" M* £,
Ct=°0 | < Jt) >* -

which follows from the commutation relation (7.3) and from Sobolev inequalities.

O
Remark 7.3. In (7.16) and (7.17) one could replace M DFuy by U(t)us since
U(t)uy — MDFuy = O(t™1) in the relevant norms. One could also replace Fu.
by W), but this would not produce any improvement in the final estimates, since
the main contribution of the difference between u and its asymptotic form is that
of the phase.

Finally, by combining Proposition 7.5 with the known results on the Cauchy
problem for the equation (1.1) at finite times, one could extend the solutions u to
arbitrary finite times and define more standard wave operators ; : uy — u(1)
where u = Quy. We refer to I for the details.
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