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On the Initial Value Problem for the Ishimori System

C.E. Kenig, Gustavo Ponce and Luis Vega

I Introduction

In this paper we study Ishimori system

DS = S N (025 £ 02S) + b(0:00y S + 9,00,.5),
teR, z,yeR (L1)
02¢ F 83@25 = F25 - (0,5 N 9yS),

where S(-,t) : R? — R® with [|S]| =1, S — (0,0,1) as ||(z,y)|] — oo,
and A denotes the wedge product in R3.

This model was proposed by Y. Ishimori in [Is] as a two dimensional gener-
alization of the Heisenberg equation in ferromagnetism, which corresponds to the
case b= 0 and signs (—,+,+) in (1.1) and was studied in [SuSuBal.

For b =1 the system (1.1) is completely integrable by inverse scattering,
(see [AbHal,[BeCol,[KoMal,[Sn],[ZaKu] and references therein).

Using the stereographic variable u : R? — C one can get rid of the constraint
IIS]| = 1. Thus, for

_ S1+ 1S53 1

_ _ i SN 12
115, S—(S1,52753)—1+‘u|2(u+u, i(u—a),1—ul), (1.2)

the initial value problem (IVP) for (1.1) can be written as

iOpu + Ou £ Opu = —I-EIZ\Q ((0u)? — (0yu)?)
+1b(02 00y u + Oy POz ), (13)
2 2 g Oxu0yu+0,udyu .
Oz F 0y = 4 =snupr

u(xaya 0) = UO(‘Ia y))

with the condition u(x,y,t) — 0 as ||(z,y)| — oo.

The case (—,+) in (1.3), i.e. — in the first equation and + in the second, was
studied by A. Souyer [So]. He obtained local well posedness and global existence
of solution for small data in an appropriate Sobolev space. It was remarked in [So]
that the arguments there do not extend to the case (+,—) in (1.3).

The case, (+,—) in (1.3), was first studied by Hayashi-Saut [HySa]. They
consider the problem in a class of analytic functions which allowed them obtain



342 C.E. Kenig, Gustavo Ponce and Luis Vega Ann. Henri Poincaré

local and global existence for small analytic data, thus overcoming the so called
“loss of derivatives” introduced by the nonlinearity.

In [Hy], N. Hayashi removed the analyticity assumptions in [HySa] by estab-
lishing the local well posedness of the IVP (1.3), for the case (+,—), with small
data wuo in the weighted Sobolev space H4(R?) N L2((2? + y?)*dzdy).

Our main result here, Theorem 1.1, removes the smallness assumptions in
[Hy]. In particular we show the local well-posedness of the IVP (1.3) with (+, —)
sign, and data of arbitrary size in a weighted Sobolev space. Before stating our
results we shall discuss the problem in a more general context.

By inverting the operator 02 F (“)5 one can rewrite the system in (1.3) as an
scalar equation of Schrodinger type

i0pu + 0%u F 8§u = F(u,Vu,u,V.u, Ku,...) (1.4)

where F(-) represents the nonlinearity and K = 99(—A)~! for the + sign and
K an operator of “order one” for the — sign.
The IVP for the equation in (1.4), without the operator K in the nonlinearity
F () and in arbitrary dimension, i.e.
{Btu =ilu+ F(u,Vyu,u,V,u), = R" (L5)

u(z,0) = up(x),

where V, = (0,,..,0z,), L is a non-degenerate constant coefficient, second order
operator

EZZ@%J_ —Z@%j, for some k€ {1,..,n}, (1.6)

j<k >k

and F(-) is a polynomial, having no constant or linear terms, has been studied
in recents works.

In [KePoVel| we proved that (1.5) is locally well posed for “small” data, in
some weighted Sobolev spaces. The proof in [KePoVel] applies to the general form
of £ in (1.6). In [KePoVel] the key estimates were

. i — T i
(@) IDY2euollr = supezn (fy fo, D/ ?e™uo|*dzdt)!/?
< clluoll2; 1.7
.. t i(t—t'
(i) || Vs fo eCEF @) |||z < efl|[F|||7,

where {Q,}uczn is a family cubes of side one with disjoint interiors covering R",
and D = (—A)'Y2. The local smoothing effect in (i), known as Kato smoothing
effects, see [Kt], was proven by Constantin-Saut [CnSa], Sjolin [Sj], and Vega [Ve].
We proved the inhomogeneous version (ii) in [KePoVel].

It is essential the gain of one derivative in (1.7) (ii). This allows to use the
contraction principle in (1.5) and avoid the “loss of derivatives”. However, the
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[I| - |/l7 norm forces the use the following

G

b (L@ = Y (Supp.r1Supq, |G(x, 1), (1.8)
WETL™

This factor cannot be made small by taking T small, except if G(¢) is small at
t = 0. It is here where the restriction on the size of the data appears.

In [HyOz] for the one dimensional case n = 1, Hayashi-Ozawa removed
the smallness assumption on the size of the data in [KePoVel]. By introducing a
change of variables they reduced the problem to a new one which can be treated
by standard energy methods. This technique is similar to that used by A. Souyer
in [So] in his study of (1.3) with signs (—, +).

In [Ch] for the elliptic case £ = A, H. Chihara was able to remove the size
restriction on the data in [KePoVel] in any dimension.

Finally in[KePoVe2] we showed how to remove the smallness assumptions in
[KePoVel] for the general dispersive operator £ in (1.5), see (1.6).

The arguments in [Ch], [KePoVe2] are based in techniques involving 1.d.o’s.
However, in some cases it is not clear how to extend them to treat specific mod-
els arising in both mathematics and physics. For example, consider the IVP for
the Davey-Stewartson (D-S) system which arises in water waves problems, see
[DS],[DjRe],[ZaSc], and inverse scattering see [AbHa],[BeCol,[KoMa],

100 + ¢, 020 + Oov = ¢, [v[*v + c,udz e,
P2 + ¢, = Dulof? (19)
U(IIZ,y, 0) = UO(I'7y)

where c,, .., c, are real parameters.
In [GhSa], Ghidaglia-Saut studied the existence problem for solutions of
the IVP (1.9). They classified the system as elliptic-elliptic, elliptic-hyperbolic,
hyperbolic-elliptic and hyperbolic-hyperbolic according to the respective sign of
(cy,¢5): (+,4), (+,—), (—,+) and (—,—). In [LiPo], Linares-Ponce adapted the
results in [KePoVel] to show that in this hyperbolic-hyperbolic case the IVP (1.9)
is locally well posed for small data in weighted Sobolev spaces, (see also [HySal).
However, this smallness assumptions have yet to be removed. For the elliptic-
elliptic, elliptic-hyperbolic, and hyperbolic-elliptic cases, where a more complete
set of results are available, we refer to [GhSa],[Hy],[HySal,[LiPo], and references
therein.
The necessity of the decay assumption on the data can be justified by the
following result due to S. Mizohata [Mz]. Consider the linear IVP
Ov =iAv+b(x) - Vv + f(x,t), teR, xeR™, (1.10)
v(z,0) = vo(z) € LA(R"), )

with b(-) and f(-) smooth enough functions. In [Mz] it was shown that the
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following condition is necessary for the L2-local solvability of (1.8)

R
sup | Im / b(x + rw) - wdr| < oco. (L.11)
zER™ ,weS"—1 R>0 0

We observe that the condition (1.11) may fail for b € H*(R™). It holds for
be Ws’l(_R"), s large, however this class is not preserve by the associated linear
group {e™® : t € R}. Thus the use of weighted L? spaces seems natural.

Following [Hy] one extends the classification in for the DS system in (1.9)
given in [GhSa] to the Ishimori system by considering its generalized form

a ((8mu)2+02(6yu)2)
1+|ul?

+¢3(02 0y u + By pdyu),
020 + a0y = e P BUTOE
u(gjv Y, 0) = Uo(CC, y)a

i0pu + 02u + coﬁgu =c

(L12)

where c¢g,cqy € R— {0}, and ¢y, ¢9,c3,c5 € C.

As was remarked in [Hy] the local existence results for arbitrary size data
in [So] applies to the cases (co, c2,cs) = (¢, ¢,b) in (1.12) with ¢ € R — {0}, and
b > 0. The small data results in [Hy] corresponds to the elliptic-hyperbolic case, i.e.
co > 0, ¢4 <0, and as was mentioned there it does not extend to the hyperbolic-
hyperbolic case i.e. ¢y < 0, ¢4 < 0. In fact for this case no existence results are
known besides those in [HySa] for “small” analytic data.

In [Sn], L. Y. Sung using the gauge equivalence between the integrable case
of the Ishimori system, i.e. b = 1 in (1.3), and the DS system in (1.6) with
(co,c1,¢2,¢3) = (—1,2,—1,1) proved global existence of solution of (1.3), with
b =1 with “small” data.

Our main result is the following Theorem.

Theorem 1.1 Given N > 1 there exist s,m € Z* such that for any ug € H* N
L?(|z|™dx) the IVP (1.12) has a unique solution u(-) defined in the time interval
[0,T] satisfying that

u e C([0,T]: H*(R?) N L*(R? : |z|™dx)), (1.13)
and
v (@) T 2ull 2+ AN ) Ty Pl e < oo, (L14)
where
An(@) = (1+2%) N2 Ay(y) = (1 +y*) N2 (L15)

Moreover, the map data — solution from H*®(R?) N L?(R? : |z|™dzx) into the
class in (1.13)-(1.14) is locally continuous.
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If s > s, then the above results hold, with s’ instead of s, in the same
time interval [0,T).

To explain our method of proof we assume without loss of generality
co=1,c4 = —1,co = 1. Then we rotate coordinates in the zy-plane and rewrite
the equations in (1.12) as

10 + Au = clﬁaxuayu + ¢3(0;90,u + OypOyu),
(L16)

_ Oz ulyU—0,u0yu
0:0y9 = 5= Rpyr

and assuming, without loss of generality, a trivial radiation condition at infinity,
we write the IVP (1.16) as an scalar equation

10+ Au = ¢; #&uayu

(1.17)
_ OpuQyU—0, U0y u _ Oz u0y U400 udyu
eouudy ! (SR ) — erdyud; ! (SRR
where
o7 f(a,y) = / @ g, (resp. 871, (118)

First we observe that 9, ! is not a ¢.d.o. However by adding some decay
from the coefficients we get that for large M

5:v_1f(x>y) = (1 +11’2)M8;1 ((1 +1IQ)Mf(’y)> (119)

defines a 1.d.o. of order —1 in the z-variable. However 5;1 is not a 1.d.o. in
both variables. Thus the techniques in [Ch],[KePoVe2] and in recent related works
[CrKaSt], [Do] can not be carried out. One has to work in each variable separated
and when results in both variables are required one uses operator valued version
of some of the techniques. For example, to establish the local smoothing effect in
its homogeneous and inhomogeneous versions, see (1.7), we shall use the operator
valued version of the sharp Garding inequality, see [Ho]. Another feature of our
approach is that for the linearized system associated to (1.17) the coefficients of
the first order terms do not decay in both variables. More precisely, in a simplified
setting, our linearized IVP is as that in (1.8) with

where b; is a smooth function with decay in =z, uniformly in y, and bs is a
smooth function with decay in y, uniformly in z. Under these assumptions is clear
that Mizohata’s condition in (1.11) for the IVP (1.10) holds. However, we consider
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the operator 92 — 65 under the above decay assumptions on the coefficient b(-)
then the IVP (1.10) is, in general, ill-posed since in this case Mizohata’s condition
reads

R
sup | Im / bz +rw) - wdr] < oo, &= (ws,—w1). (I.21)
z€R2,weSH,R>0 0

This may explain why for the hyperbolic-hyperbolic Ishimori system no ex-
istence results are available besides those in [HySa] for “small” analytic data.

In fact, our main step in the proof of Theorem 1.1 is the following regularity
result for the linearized IVP associated to (1.17)

Oz = iA2 + 11052 + 120y 2 + <,018w8y_1<p22 + (pgayax—lsmz
0500, "6z + 010,05 ' psZ + p10s fi + P20y fo
+010,0; P fs + $30,0;  pafa + f,

z(x,y,0) = 2o(z,y),

(1.22)

where r; =r;(x,y), j = 1,2 are smooth functions, r; with decay in z, uniformly
in y, ro with decay in y, uniformly in z, ¢; = ¢;(z,y), j =1,..,8 are smooth
with decay in both variables, p1 = p1(z,y,t), p2 = p2(x,y,t) behave like ry, 7o
respectively uniformly in ¢ € [0,77], and ¢;, j = 1,..,4 are like the ¢;’s uniformly
in te0,7T].

Theorem 1.2 Under the above hypothesis on the coefficients given N > 1 there
exvist M >0, k€ ZT and T >0 small enough such that the solution of the IVP
(1.22) with ¢y > 0, ¢4 < 0 satisfies u € C([0,T] : L*(R?)) with

1/2 1/2
sup (2022 + IAn(@) 22+ AN )y 22
OStST x,y x,y, T z,y,T

< C||Z0H%g=y +cA Z?:l SUPg<i<T ||f]||%gy
teAlw @ L il |+ @ Rl ) (1.23)
AN @) 513, ATl )
+eTV2 fo3s
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where ¢ =c¢(N) and

2 2 _
ALT Zj:l ||pj||2L2TC§(]R§,y) + Zj:l ||)\N2($j)Pj||%fy’T
4 - - -
+T2j:1 H(ijichf(Ri,y) + ||¢1||2L%L§°y Haﬂ?d)Q”izTLgcy

18135 1, 1061025 1.

(1.24)
HIAV @dili, |, M @2lie
AN @)9sll7 |, AN @)allF .
where 1 =z, x2 =Y,
&j(,y,t) = L+ y*)M/2¢;(2,y,1), j=1,2,
(1.25)

¢i(z,y,t) = (L+22)M2¢;(2,y,1), j=3,4.

Moreover there is a continuous dependence of the solution with respect to
the coefficients in the norms appearing in (1.24). We observe that the result of
Theorem 1.2 holds for solutions of the IVP (1.22) with A 4 €A instead of A,
uniformly for e € (0, 1], (see Corollary 4.1 at the end of Section 4). This provides
a slightly weaker version of Theorem 1.1.

Theorem 1.3 Given N > 1 here exist s,m € Z+ such that for any ug € H* N
L?(|z|™dz) the IVP (1.12)with co > 0, ¢4 < 0 has a unique solution u(-) defined
in the time interval [0,T) satisfying that

we C([0,T]: H N L?(Jz|™ tdz)) N L°°([0,T] : H* N L?*(Jz|™dx)),  (1.26)
and
AN @) 2l e+ A () I Pl < s, (1.27)
where
Av(@) = (1 +2%)N20 An(y) = 1+~ (1.28)
If s’ > s, then the above results hold, with s instead of s, in the same time
interval [0,T].-

Once Theorem 1.3 has been established the proof of Theorem 1.1 follows by
combining Theorem 1.3 and Theorem 1.2 and their proofs.
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IT Preliminary estimates
This section contains some estimates to be used in the coming sections. We start
by recalling some results on .d.o’s
Definition 2.1 The symbol class S*(R?") consists of the set of a € C(R?*") such
that

1050 a(w,€)| < cap(1+ €N, 2 e RY, (IL.1)

for all multi-indices a, 3 € N™.
We say that a € S¥ (R*™) if it is of class CM(R?") and (2.1) holds for
lal, 8] < M.

Theorem 2.2 Let A, B € S, (R®") with M large. Then A(x,D)B(z,D) =
C(z, D), where

1
o(,€) = a(a, )bz, &) + 3 / 4y 02, )0, (1L.2)
[v[=1
with
Gy,0(7,§) = 08//6_iy"78§7)a(a:,£—i—@n)@g(ﬂ)b(x—i—y,f)dydn. (I1.3)

Moreover, the Sy (R?") seminorms of Q.o are bounded by products of semi-
norms of ag%, b, uniformly in 0 € [0,1].
Also A*(z,D) has symbol

- 1
(@6 =a@w+ Y / & (. €)d6), (1L.4)
=179
where
¢ o(2,6) = Os / / e~ 199 ale + y, € + On)dyd. (IL5)

Moreover, the S;j(R%) seminorms of Q% , are bounded by seminorms of
69)8;7)6, uniformly in 6 € [0,1].

Proposition 2.3 Given M > 0 there exists N > 0 such that

1 ;! ! =a(x =91
(1+Ix|2)Na“” ((1—|—|x’|2))Nf> =a(x,D)f =0, f (I1.6)

with a € Sy (R x R).
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Remark. This proposition allows to rewrite (1.22) substituting, after changing the
¢’'s and ¢’s, 9,1 by 9,1, 0;1 by ay—l everywhere.

Proof of Proposition 2.3. We use that

Eﬁb@%:/mg@ﬂm¢:/wxmmﬂx*fM@Wmﬁ (IL7)

— 00 —00

to obtain
151 ( f(z') )
(1+[z[2)N Yz Atz 12~
- (1+|qlg—\ ¥ S o X[0,00) (% = x’)%dm’ (IL.8)

o X[ oc)(r @) (14]e—z'|HYN
= TP J oo Wiy ey S (@)

Now we observe that

1 1 2\N
Py ey (U e =)
z—2x |2(N 7)

N
=2 j=0CN.j AN AN (11.9)

2a,,/2b

= Z;V:() Z a,b>0 CN,j,a,b(1+‘z‘2)(1+|m/|2)N .
a+b=N—j

Thus since

2b
x?a Z‘I

AT+EPY P (IL.10)

are bounded functions, together with all their derivatives, to establish the claim
we just need to show that if

_ X[0,00)(T)
then
Ry(€) = a(€) € ;.1 (11.12)
To prove (2.12) we write
_ ix
a(€) —/0 e (FSEBL |x|2)Nda:. (I1.13)

Clearly a € L*°(R). Next by integrating by parts it follows that

a(€) = _E - Z£/ o ‘xlg)NHd (IL.14)
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which shows that

la(§)] < for large €. (I1.15)

|§|
Also, (2.14) and integration by parts lead to

al(é) - 152 + €2 fo 1+|$2|_320)N+1‘d1'
dx (I.16)

2
_fo B had

2
52 T Jo ¢ R de
a 22
fO w ox ( 1+|2;|€)N+1') dx
which shows that

la’(§)] < for large |£]. (I1.17)

c
€12
The proof for the higher derivatives is similar. Thus we have established the
claim (2.12) and completed the proof of Proposition 2.2.
Let us now consider the action of v.d.o. in S, (R?"), on weighted L? spaces.
We recall the notation
1

An(z) = (x) N = e © € R™. (I1.18)

Lemma 2.4 Given N > 0, there exists M = M(n,N) > 0 such that, if a €
59, (R?™), then

a(z,D) : L*(R™ : Ay (x)dz) — L*(R" : Ay(z)dx), (I1.19)
with norm depending only on n, N, cq g, |a,|8] < M.
Proof. (see [KePoVe2], Lemma 2.3).
Next we recall some fact of the theory of vector valued 1.d.o’s of classical

type, (as reference see [Ho], vol. 3, section 18.1, in particular Remark 2, page 79).
Let H = L?(R : dy), and consider operators of the form

Bf(z,y) = / e S1b(w, &) f* (&1, —)dé, (I1.20)

where for each (z,&;) € R?, b(x,&;) is the symbol of an operator in H.
In this case the class S%, is defined by the inequality

11059¢, bz, €1)[]] < ca,p(L + [€2)*17, (IL.21)

for |a|,|B] < M, where |||6§‘6?1b(:c,§1)|\| denotes the operator norm in H.
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Thus the calculus of ¥.d.o, L?-boundedness, etc., have corresponding version
in this context.
We also need the operator valued version of the sharp Garding inequality:

Theorem 2.5 Let b(x,&1) be the symbol of the operator B defined in (2.20). Assume
that b(x, &) satisfies (2.21) with k =1 for |a|+|8] < M, M large, (i.e., B € S},).
If

((b(x,&1)) +b(x,61)")h, hyy >0, Vhe H, (11.22)
forxz € R, and |&1| > N, then
Re(BS. ) = —cllf12(m) = —Clf122(go.toa (11.23)

where

@10 = [ ( / Bf(a:,mmdy) do = [(BS. fluda. (11.24)

Clearly a corresponding theory holds if we interchange = and y.

IIT Proof of Theorem 1.2 (Diagonalization)

We split the proof of Theorem 1.2 in two steps. This section contains the first step,
i.e. the diagonalization reduction.
By possibly changing ¢’s and ¢'s we can rewrite the IVP (1.22) replacing

oL, 8y_ L by 5; L 8~y_ ! respectively, (see the remark after the statement of Propo-

sition 2.3). Also we introduce the following notations:
R=10,+1r0y ; R=70,+ T20y, (I11.1)
L1=10:0, 02+ 30y0, s 5 L1 =3,0:0,'Fy +330,0, ', (IIL2)
Ly = 50,0, "6 + pr0y0; " ps 5 Lo =350:0, B + 30,0, B,  (IIL3)
Py =p10ofi + p20yfo 5 F1=0,0f1 + D0y fa, (I11.4)

Fy = $10:0,  ¢2fs + 300, *dafa
(IIL5)

Fy = 513m5;15273 +$38y5;1$474~
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Using (3.1)—(3.5) we rewrite the equation (1.22) as a system in @ = (2 z)7,

with the notations
A 0 R 0
,Cl 0 O £2 — Fl + F2 + f5
61 = < 0 £1> y ﬁ? = <£2 0 > ’ F= <F‘1 + F‘2 +E> (1117)

O = iHW + BW + 10 + Bod + F. (I11.8)

as

Our goal in this step is to “eliminate (32” by accepting “semilinear errors.”
We introduce the operator

0 S
A=1-5 S=(s 0] (I11.9)

where S;, i = 1,2 are to be determined, and write the system for ¢ = Aw. We
shall see that modulo “semilinear terms”, i.e. bounded L?-terms, one has

o . 0 ASl 0 _SlA
AH—HA_HS—SH—(_ASQ O>—<82A 0

0 AS) + S1A

similarly, modulo bdd-L?, term we have

0 RS — SiR
0 £181 — Slﬁ_l
Aﬂl - ﬁlA = (ZlSQ _ SQEl O ) 5 (11112)
0 L SiLy 0

and

. Si(F1+ F+ f5)
AF=F— <81(F1 +Fz +f5)> . (IIL.14)
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Indeed we shall show the following four statements (3.15(i))-(3.15(iv)):
S can be chosen such that A is invertible in various spaces, (II1.15(1))
ie. for ¥ =AW

sup ||@(t)||lgs < ¢ sup || 0(t)|| =, (I11.16)
jtl<T o<

and for N >0

I (@) T3 2] s+ () T2

z,y,t

(IIL.17)
< AN (@) I3 20 e+ AN )T P2 )

z,y,t

0 i(AS1 + SlA) 0 Lo . o9 .
(—i(ASQ +S5A) 0 > + <£2 0) is L*-bounded, (III.15(ii))

SiL 0
ABL = BiA < 10 ? S2£2> , AB — BA are L?-bounded, (IIL.15(iii))

<S1(F1 + F+ f5)

Sy (Fy +F2+f5)> has “semilinear control, (ITL.15(iv))

i.e.

1S1(F + Fo+ fi)llez,, + [S2(Fr + Fa + fo)llz

4 4
< CZ(”pj”L%L;Z + ||ij||L2TLg<; + ”(bj”L%L;% + ||V¢j||L2TLg<;> : Z [fallzserz,

x,y,t

2
> o lpillizis +elfsliz,, = 9. (IIL18)
j=1

Our choice for S is given as follows. Let 6 € C*(R), even, and

L |zl =2,
0(x) = {0, o] <1, (I11.19)
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and
@i e =g () fee), )
and define
S = %@A;ﬁ , Sy= %EQA;, (IT1.21)

where R is going to be chosen sufficiently large.

Verification of the Properties (3.15(i))—(3.15(iv))

We shall start with (3.15(iv)), estimating S;(F;) and obtain the “semilinear con-
trol” for it, see (3.18). For Si(F1) = S1(p10xf1 + P20, f2) we consider first

S1(p10.f1) = —%E2A§1(1515zf1)
= —%(LQA;&)(@JQ) - %EgAgl((&pl)ﬂ). (I11.22)
For the first term we write
LaAR 0, = 030,006 AR 0y + 70,0, L ps AR 0, = T+IL (I11.23)
We claim that both I and II are L2-bounded. For I we use that
I =50, '[106; 0] AR 0 + 050, 0602 AR (I11.24)

Since [p6;0s] , AR 0y 5;1 are L?-bdd, the first term in (3.24) is L?-bounded.
For the second term we observe that 02A " is L2-bdd.
For 11 in (3.23) we proceed similarly using that 0,0, A" is L2-bdd.
Arguing in a similar manner for S; (P20, f2) we see that

2
ISt (F) a2, < e (Ipillzazes + IVPsllzzes) 1fillosrz, (II1.25)

zy Ty
j=1

which is the desired “semilinear estimate”, see (3.18)).
We next estimate Si(F5)

Si(Fz) = Sl(élaxgy_l(EQf?))
= (p5aw5;1g06A}731(éﬂ?mg;lqgg‘]%,) (111.26)
+70,0; " os AR ($30:0, G f3).
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Since 5;1 is bounded in L?, we get the same bound as in (3.25) for Sy (F).
The bound for S;(Fz) and S;(fs) are similar.

Next we want to verify the property in (3.15(ii)). We look at
1 1
Lo+ i(AS) +S1A) = Loy — §A£2A1§1 - ELQA;QA, (I11.27)
and observe that A;A has multiplier

9 (I(&;z)l) 1= (€, 6). (II1.28)

Since Lo = @58I5;1w6+¢73y5;1g08 we get that Lo9g is L2-bounded (pg¢R,
wstr are ST in both variables). Thus

1 1
—§£2A;\,}A =—5La+ L*-bdd. (I11.29)
Now we consider
1 1 1 .
552 - §A£2AR = 5(52 — AL ARY). (II1.30)
We have that
ALy = (02 + 02)La = (02 + 02)(950:0;, 06 + 70,0, " 0s). (IIL.31)

The first term in the r.h.s. above can be written as

02(50.0, " ¢6) = (0205)020, “p6 + 5020, (92
+20050,0;, 1 (0006)0: + 05020, 0602 + 2(Duip5) 20, g (I11.32)

When we compose on the right with AI_{l, all terms except the next to last
give bounded operators in L2. Similarly for the second term in the r.h.s. of (3.31)

(070,05 038) = 070,05 1002 + o.w.cr. ARt — L2-bdd, (111.33)
where o.w.c.r. Algl — L? bdd means operators which composed on the right with
AR are L2-bdd.

Then, one sees that
AL AR = LoAAL' + L2-bdd = L5 + L-bdd, (I11.34)

and thus

i(AS) + S1A) + L5 = L*-bdd, (I11.35)
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and similarly
—i(ASy + S2A) + Lo = L2-bdd. (I11.36)
This proves (3.15(ii)).

Next we shall verify (3.15(iii)). First we shall check that A3, — 1A is L?-bdd,
by proving that £:S1, S1£1, £1S» and SyL; are L?-bdd. We recall that

0 L8 — S\
rer e 1) (I11.37)

A — A = (5152 ey 0

with £, = @18955;1(,02 + <p38y5;1<p4, Lo = 90533:5;1(;06 + @78y5;1<p8, and

S = ;—352%1 , with AR" defined in (3.20). (I11.38)
We first consider £187,
—2iL15 =
(010205 02 + 030,05 " 04) (95020, " 06 + 010,05 L 0s) AR}
= 010:0; 1 02050:0, Lo AR + 10,0, L pa0r0,07 L os AR (IIL39)
030,05 L a030:0, L o AR + 030,07 L oaprd, 0y Los AR
We take the first term on the r.h.s. of (3.39).

9015m5;19023053m5y_1906A1}1 = @15@71(&902)905@:5;1%A§1

+010, ' 02(0205) 020, 06 AR + 010, 0205020, M0 AR

= @15;1(aw@)%é;l(aw%m;f + ¢15;1(8$¢2)¢55;1¢631AE1 (111.40)

+010, 02(005)0y  (Oatpe) AR + 010, 02(005)0y 060 AR

+9015;1<P2<P55’25;1¢6A1§1-

The first four terms in the right hand side of (3.40) are clearly L?-bdd. For

the fifth one we write

010, 25020, L e AR = 010, L papsd; H(02p6) AR

+2g015y’1<p29055y’1(8mg06)6zA1}1 + @15;19029055;1@63%A1}1, (I11.41)

which are all L2-bdd.

The second term in the right-hand side of (3.39) is slightly better because
815; 1is L2-bdd. The third one is like the second one and the fourth like the first
one. Thus collecting this information we find that £,S; is L2-bdd.

The proof of the L2-boundedness of S1£1, £1S2 and SoL; is similar.
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Thus we have completed the proof of the first part of (3.15(iii)) i.e., A1 — 1A
is L? bounded. The proofs of the L?-boundedness of S; Ly and S»L5 are similar.
Thus we study

0 RS, — S1R
It will be shown that RS;, SiR, RS>, SoR are L?-bdd. Thus since
21RS, = 7*1836((4,056355;1906 + (,0761/5;168)A1_%1)
+120, (105020, 06 + 70,0, L 03) ARY), (111.43)

the previous argument provides the result. A similar conclusion applies to SR,
RSQ and SQR

Finally we shall prove (3.15(i)), i.e., the invertibility of A. First we shall see
that S;, S, have operator norm on L?, which tends to zero as R T oo.
Thus, we consider

1 ~ = _
S = Z(%axa;l% +70,0; "os) AR (I11.44)

We take the first term in the r.h.s. of (3.44) and remark that the proof for
the second one is similar. Then

050:0, 106 AR = 050, (0upe) AR + 050, L0 AR (I11.45)

Now A;cl and &UA; have norms on L? which tend to zero as R T oo, see
(3.20). This proves the invertibility in L? of A = — S.
Next we shall show that for N > 1, and s > 0 the operator norm of

AN(2) ;8% and  An(y)J,Sid, %, j=1,2, (T11.46)

y

in L?([0,T] x R, x R,) tend to zero as R T co. We start out with

T3050,0, L os AR = [J2505)0,0, Los AR T
5 30,0, pe AR TS = T4IL . (I11.47)

For I we observe that [JZ;p5]0, = L1 is an operator of order s in z, uniformly
inyso Ly = (LiJ;®)J:, where LiJ* is an operator of order zero in z uniformly

in y, i.e.,

(Lad ) f(2,y) = Ty (- 9) (), (IIL.48)

where T, is a classical zero order v.d.o. in  with seminorms bounded uniformly
in y.
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Returning to (3.47), by the continuity of the v.d.o. of order zero in L?( Ay (x)
dx) (see Lemma 2.4) we have that
()Nl 2 ®2 x[0,7): A n () dewdyt)
= (L1 J; 5) (50, 06 AR Ty ) fll L2 (2) dadyde) (I11.49)
< O30, 06 AR T ) Fll L2 (2)) = CllO, M Tis AR T * ()l L2 (0w ()
< Cl3ps AR T (N2 @) = ClTswe Ty * AR ()l L2 ()
< CIAR (N2 (0n ()5
since 5;1 is bdd in L?(dy) and J:@eJ, ¢ is a 1p.d.o. of order 0 in z, uniformly
in y.
We are now going to prove that for N > 1
AR L*(An(2)dz dy dt) — L*(An(z)dx dy dt) (IT1.50)
is bounded with norm tending to zero as R T co uniformly in N < Nj.
It suffices to see that for f = f(x,y)
_
1+ a2

with norm tending to 0 as R | oo (the proof for general N € Z* is similar).
Taking Fourier transform it follows that

AR ((1+2?)f) is bdd in L*(dz dy), (ITL.51)

AR (4 #))

[(&1,82)]

1 . 0%
“e )/ emm&)%(“ a0 ) (61, €)1 dEs

|(§1,52)\)
Z(I£1+ 52 A
// Harg - 6£1f§17€2 dé1dg

1+x2

1 . 9(
= I — 9?2 i(@€ityge) _\ T/ )déyd
14+ 2 //( 8§1) {6 §% + 52 } 51752 51 52 (11152)

|(§17§2)\
1 )
= i(z&+ué2) (T _ §2
1122 //6 (I —%,) 51 +§2 F(&1,&)dgrdés

z* ‘(5+5)9<‘(£1§2 )
- W81 TY82
T //e i a F(&1,&)dérdés

92 0 |(51}§2)|)
_ o i(x€1+y€2) £
1122 //e 9, ZEwE f(&1,&2)d61dEs,
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from which the result follows.
Now for II in (3.47) we have

I(f) = p5J50.0; e AR T 5(f)
= 050, L[ J30u; 06l 7 S AR (f) + @50y o630 TS AR (f)  (ITL53)
=111 (f) + ILa(f).

In I, (), [J204; p6)J; % is a 1.d.o. of order 0 in z, uniformly in y and we
proceed as for I(-). For IIy(-), we combine that J$0,J; *Ap' = 9,AR" and that
0, AR is L?(A\y(z)dx dy dt) is bounded with norm tending to 0 as R T oco. The
proof of this last fact is similar to that in (3.52).

The other piece of Sy in (3.44) corresponds to

J3070,0; Los AR T
= [J3: 710,05 s AR 0 + 02 030,07 ps AR T (ITL.54)
= (359705 ) 20,07 s AR T + 01 T30, 07 M os AR T

=1 +1I.

Now for I’ we write

I = [J3;07) 0520, J30; s Ty P AR

= (T35 07)J5 ) T30; 1 (0 08) T * AR (IT1.55)

(25 1) *) 307 s T 0y AR
Since [J2; @7]5;1(%@8)];5 is a ¢.d.o. of order 0 (in fact, of order —2) in
x, uniformly in y we can handle the bound of the first term in the r.h.s. of (3.55)
as that for I in the previous case. For the second term in the r.h.s. of (3.55) we see
that [J2;p7]0; LosJo® is ath.d.o of order 0 (in fact, of order —2) in 2 uniformly in
y and 9,AR" is L?(An(x)dzdydt)-bounded with norm tending to zero as R T oo,
Finally we look at

Il = 7 J30,0; YosJy S ARt
= orJ30; 1 (Oys) I AR + 7307 ps T 0, AR (ITL56)

For the first term in the right hand side of (3.56) we use that <,07J§5;1(8y<pg)
J* is of order 0 in z (in fact, or order —1) uniformly in y, and for the second
one we use that ¢7J55;1¢8J*3 is of order 0 in z uniformly in y, together with a
previous argument. By symmetry we have finished the proof of (3.15(i))—(3.15(iv))
and concluded the diagonalization.

Thus we have that ¥ = Aw = A(z z)T verifies the system

0,0 = iHT + BT + 17+ C17 + G, (I11.57)
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with H, B, as in (3.6)—(3.7), C' an operator in the (x,y)-variables, which is
L?-bounded (indeed H2-bdd) and

G=F+E, (I1L58)
where
IE|L2,, < ® defined in (3.18), (I11.59)
and where
Py = p10ufi +p20yfo, Fo = ¢10,0;, ¢ fs + 630,05 'dufu, (IIL.60)
and
F= (g :t % i §z> . (IT1.61)

Thus we are reduced to proving the estimates for ¢/, which solves the “diagonal
system” (3.57).

IV Proof of Theorem 1.2 (Conclusion)

In this section we complete the proof of Theorem 1.2. From the results in the
previous section for all practical purpose to work with “diagonal system” (3.57) is
equivalent to work with the single equation
Oz = 1Az 4+ 11032 + 120y 2 + nplawgy_lwgz + <p38y5;1np4z
+e12+ 010uf1 + 620, o + 030:0, ' Gufs + ¢50,0; ‘defa+ 5 (IV.1)
=iAz+7-Vz+ <p18x5y—1g022 + <p38yc'~9;1<p4z + Ci1z+ T,
with C} bounded in L?, f5 € L7.L2, and 2(0) = zo(x).

We introduce classical ¢.d.o. in each variable. First we have C,(z, D, ), whose
symbol is

Cunnte) =exn (5 [Cios o () (Iv.2)

with 6(-) defined in (3.19), and pu(-) € C*°, an even function, p € L*([0, o)), with
a decay at infinity to be determined. Clearly C, € S°(R?). Similarly we define
Cy(y, Dy).

We observe that the symbol of 92C, = o(92C,,) is

0(07Cs) = —E10nm,r(x,&1) + 210, Cr,r (2, &1) + 020w R(2, 1), (IV.3)
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and
0(CL02) = =& Cr,r(z, &1).

Therefore

o(i[C,02 — B2C,]) = 2610,Cor n(, €1) + L2-bad

= — My (@) &016% (% ) Co,r, &1) + L-bdd.
Define the (self adjoint) operator C as
C = (C.Cy)"C.Cy = C;C.C Ty,
and
A=C?=C"C=CiCCLC,ChC,Ch0, = AL A,

We shall compute

O0i(Az, z) = (ADyz, z) + (Az, 0v2)
= (1AAz, z) + (A7 - Vz,2) + (A(@13x5;1@2)z, 2)
+<A9038y5;1<p4z,z> + (ACyz,2) + (AT, 2)
+(Az,iAz) + (Az,7- Vz) + (Az, golamgy’lgogz)
+(Az, @38y5;1w4z> + (Az,C1z) + (Az,T).

We shall use that

(1AAz, z) + (Az,iAz) = (i[AA — AA]z, 2),

i[AN — AA] = i(ADZ — 02A) + (A0 — D:A),
o(i(AD? — 92 A)) = <4Mu2(x)|§102 <%>> azay + bdd-L?,
o(i(Aai - 8§A)) = (—4M,u2(y)|§2|92 <%2)) aza, +bdd-L?

0(Az) = ax(z,81) = Canr r(7,61) + St
o(Ay) = ay(y, &) = Canr,r(y,&2) + S,

361

(IV.4)

(IV.5)

(IV.6)

Iv.7)

(IV.8)

(IV.9)

(IV.10)

(IV.11)

(IV.12)

(IV.13)
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with S;1, 51 € S71(R?) (see Theorem 2.2). Also

z My
(Az,z) = (C*Cz,z) = (Cz,Cz), (IV.14)
and

(A7 -Vz,2) + (Az,7-Vz) = (A7 - V2z,2) + (2, AT - Vz)
= 2Re(AF- Vz, z). (IV.15)

The sum of the third and ninth terms in the right hand side of (4.8) gives
2 Re(Agalazgy‘lcpgz, 2), the sum of the 4th and 10th gives 2 Re(Ap3d,0; *paz, 2),
the sum of the 5th and 11th gives 2Re(AC; z, 2z), and finally the sum of 6th and
12th gives 2 Re(AT’, z).

In order to apply the vector value sharp Garding inequality (Theorem 2.5)
we write out operators in a vector valued form. Thus from (4.11)-(4.13)

o(i[AD? — 02 A]) = —4Mp*(2)|&1 |02 (%) azay + bdd-L?, (IV.16)
and
M2 ()6 |6 <%) 00 = —AM 2 (2)[1]67 (%) Curt.r(z, &) + Lo, (IV.17)

where Ly = Lo(x,&;1) is the symbol of a bdd operator in L?(dz). Thus, modulo
L2-bdd operator (Lg) we have

i[A92 — 07 Al f(2,y) (IV.18)
= J e (—AMp2 (0)[1]6% (& ) Cuar,mle, €0)(Ay f (2, ) (61))déa.
Now

(Ayf(az, =)= (&) = [ e Ay f(z, =) (y)da
= Ay ([ e " f(z,—)dz) (y). (IV.19)

Thus, i[Ad; — 07 A] has vector valued symbol (modulo L2, -bdd operator)

—AM i ()]€1 03 (%) Cam,r(w,&1)A,y. (IV.20)

Next we look at the term (Ar10,2,z) = (A Ayr10,2, 2). We recall that r1 =
r1(x,y) decays in x, uniformly in y, then we write

ri(z,y) = A% (@AY (@)r1(z,y) = A ()71 (2,9), (Iv.21)
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and
Ay Ayr10y = Ay AyAA (2)710, = ApX% (2) AyT10,
= A% (2)0, Ay — ApA% (2) Ay (0:71) (IV.22)
=24 (2)0, AL Ay + Lgy—bdd.
Similarly

A%@;gy_l% = Aa:Ay(Plawgy_l(p2
= A A3 (2)10,0; 02 = AX (2) Ay $10:0; s
= A% (2)8, Ay 218, Yoo + L2-bdd (IV.23)
= A}, (2)0: As Ay 318, Yoz + L2-bdd.
Thus modulo Liy—bdd operators we have the vector value symbols
0'(147“1630) = )\?V(l')(i§1>04M,R(£L‘, fl)Ay’Fl + Lg-bdd, (IV24)
and
U(A(p1ax5y_1<p2) = A?v(x)(igl)04M,R(x7 gl)Ayalg?;lSOQ + L?-bdd. (IV25)

Note that all these operators are of order 1.
In order to apply the vector valued sharp Garding inequality (Theorem 2.5)
we make the following claims :

Claim 1 We can choose M, R, i so that for |£1| large
~Mp2(@)[116% (% ) Cuarr(e, €014, + A7)
< /\?V(J:)i§104M7R(JL‘, gl)Ayfl — )\?V(x)i§1C4M7R(x, 51)EAZ, (IV.26)

as operators on L*(R : dy), and

~Mp(2)[6116° (% ) Canr,r(a €14, + 43}
< i} (2)Cant (2, €1) Ay 310, Lo (IV.27)
—i&1 A3 () Cant, (. €1){2(0, 1) 1AL},

as operators on L*(R : dy).

Claim 2 With M, R, chosen as in Claim 1, we can choose R even larger so that
C. is invertible in L*(dx).

Proof of Claim 1. Since
A, =C,C,CC, then A7 = A, (IV.28)
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Thus, we take f € L?(R : dy) and want to show that for & large

—2Mp (@) 116% () Care,rl(@, €0)(A, £, f)

< 2Re(=N%(2)i& Canr,r(z, &) Ayii f, f)
= 2Re{-} (2)i& Cans,r(z, &) (AyFLf, )}

It suffices to show that for & large

A% (@)[€1|Cana, (2, €0) (Ay L £, )]
< Mp?(x)|&1)60? (%) Cam,r(7,61)(Ay [, )

or

@) (A1 £ )] < My ()62 (5) (A,f. )

for & large. Thus, for & such that |£1] > 2R (4.31) becomes (see (3.19))

M (@) [(AyFof, )] < Mp?(2)(Ayf, f).
Choosing
@) = (@), N>1,
we reduce the proof of (4.26) to see that
[(AyFLf, )] < M{Ayf, f).
We recall that A, = C;C,C;C,, and so
(Ayf. f) = (CFC,f,CyC f) = 1CyCy 72
Now
(A1 F )] = (71 F. CLCy )] < C3C T f 122 | CCf s
Thus we just need to establish the inequality
||C’;Cyf1f|\L§ < ]\4||C';‘C'yf||L§7 uniformly in z.
Letting g = C;C, f, it suffices to show that there exist M, R so that
1C;Cy71(CyCy) " glire < Mgl 1,

uniformly in . We recall that

5(Cy) = Caraly, £2) = exp (# [ s £ (52)) |

(IV.29)

(IV.30)

(IV.31)

(IV.32)

(IV.33)

(IV.34)

(IV.35)

(IV.36)

(IV.37)

(IV.38)

(IV.39)
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We first choose M such that

|71 (z, y)| < (IV.40)

E .
With M so chosen, we will choose R. First we compute C; Cy. From Theorem
2.2 it follows that

U(C;) = OM,R(ya 62) + q1 (y7 fQ)a (IV41)

where ¢1(y, &2) involves

Note that the SY seminorms of Cps r(y, £2) are uniformly bounded, depending only
on M for R > 1. Thus the S° seminorms of ¢ (y,&2) are cpr /R, for R > 1. Hence

* . Cc
Cr=Cy+Ey, with [||Bol|| < EM’ (IV.43)
with ||| - ||| denoting the operator norm in L?(R : dy). Thus
c,c, =C,Cy+ EC, = C,Cy + E, (IV.44)

where E| = EyC, inherits the boundedness property of Ey in (4.43). Now we
compute C,C}

G(Cycy> = C2M,R(ya 52) + q2 (y7 §2); (IV45)

where ¢2(, -) depends on d¢, Cps, g and 0,Cs g, (see Theorem 2.2). A computation
similar to that in (4.42) gives

10yCr,r(y, &) < enm,  |06,C0mr(Y, &2)| < cm /R, (IV.46)
for R > 1. Therefore combining (4.44)-(4.46) it follows that
* Y 2 €2 o (&2
o(CyCy) =exp | =M | p(s)ds =07 | 5 | | +e(y,82), (IV.4T7)
0 &l \R
where the operator E(y, D,) with symbol e(y,£2) has operator norm ||| - ||| satis-
fying
CYM . 2
E| < —= in L*(dy). (IV.48)

R
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Now we define the operator S = S(y, D,) by its symbol s(y,{2) as

s(y, &) = exp <M /Oy p?(s)ds 2—;92 (%)) : (IV.49)

As before one sees that its operator norm [||S||| in L?(dy) satisfies
1S]]| < Cun, for R>1. (IV.50)

The same argument gives that

CyCyS =1+ Ey, and SC;C, =1+ Ey, (IV.51)
with
Cu .
H|EJ|||§?, j=1,2, and R>1. (IV.52)

For M fixed we choose R large enough such that
Cum

— <1/2 IV.53
R — / i ( )
and get that for
Tn=I+E) ", Ty = (I+ Ey)™ !, (IV.54)
one has
Tl <2 j=12  TS=STh=(C,C)" (IV.55)
Also
. Cu
T, = I+E3, with |||E3||| < f’ (IV56)
and
. , Cu
ST, = S+ SE3; with |||E}||| < —=-. (IV.57)
Thus
(CpCy) ™t =S+ Ej. (IV.58)
Now we proceed to estimate the norm of
C;‘Cyfl(C;‘Cy)*l = 0, Cy71S + C’;‘C’yﬁEg. (IV.59)
We notice that
c
1C; Cyr Esll] < =2 as operator in L*(dy), uniformly in z, (IV.60)

R
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and

o(718) = 71 (x,y) exp (M /Oy 12 (s)ds é—;e)? (%)) . (IV.61)

Since modulo L?-bdd operator with norm bounded by Cis/R, CyCyr1S is the
product of the symbols Casor(y,&2) and 71 (z, y)Car,—2r(y, &2) we get

CyCyi (CyCy) ™t =71 + CyCyi1 By + By, (IV.62)

where the seminorms of the symbol of E4 are controlled by products of the one of
¢, Canr,r and those of 9y (C_on,r(-)71 (2, —)), uniformly in x. Hence

C
[l|Eall] < fM, as operator in L?(dy) uniformly in z, (IV.63)

and consequently form (4.60), (4.63)

C;Oyfl(cjcy)_l =71 + Es, (IV.64)
with
CVM . 2 . .
[|1Es]|| < & operator in L*(dy), uniformly in z. (IV.65)
Since
M
I71(z,9)l < 15 (IV.66)

we obtain (4.38) by fixing R such that Cj;/R < M/10. This proves the first part
of Claiml, i.e. the inequality (4.26).

We turn to the proof of (4.27), the second part of Claim 1, i.e. for f € L*(R :
dy)

Re{~Mp*(@)|&116* (& ) Cont,r(@ €0(A, £ 1))
< Re{i€i A3 (2)Canr,  (Ay 210, 0o f, ). (IV.67)

We proceed as in (4.28)—(4.34). By taking &; such that [£;] > 2R we need to
show that

(A, @10, oo f, f)| < M(A,f, f) (IV.68)

or

(CyCy@10, 02 f, CyCy )] < MIIC;Cy 35 (IV.69)
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Thus, it suffices to show that
C2Cy 318, Yoo (C2Cy) || < M, in L*(dy) uniformly in . (IV.70)
We saw in (4.56)-(4.58) that
(C3Cy) ™t =S+ ES, with [[|E4||| < Cu/R, (IV.71)
so we shall show that M can be chosen so that for R large enough
|||C;Cy¢15;1g025|\| < M/2, as operator in L*(dy), uniformly in z.  (IV.72)

From (4.47) one has that

Y
o(C;,C,) = exp <—M/ p?(s)ds §—292 <§—2>) +e(y, &2), (IV.73)
0 |€2] R
with o(E(y, Dy)) = e(y,&2) and |||E||| < Cp/R. We notice that
(pQS = S(pg + FE, with |||E6H| < CM/R, (IV74)
and
o(C3Cy21) = Prlwsy)exp (=M [ w2 (@)ds £26% (%)) + er(@,y.62)
- @1 (1’, y)CZM,R(ya 52) + 67(%, y7€2)7 (IV75)

with o(EZ(y, Dy)) = e7(x,y,§2) satisfying that
CM . 2 . .
[1E7]|| < & % operator in L*(dy), uniformly in z. (IV.76)

Thus the problem has been reduced to show that

11Z1Cant, 1 (4, Dy)3,, ' C—ont, v (y, Dy)pall| < M/4, (Iv.77)

as operator in L?(dy) uniformly in x. But we can choose M > 1 such that

- M4
@1l oo (2), 92l Loo m2) < T (IV.78)
Thus we see that it suffices to show that
~ M1/4
1C=2m,r (Y, Dy)0, " Cont,r(y, Dy)l|| < T (IV.79)

with M large and R chosen after M. We recall that

No

a0, 1) =D i )m(&)wi(), (IV.80)

Jj=0
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where Q/J]l, wjz’s are multiplication operators by bounded smooth functions and in
m(-) is a multiplier in S&l. So we can reduce ourselves to show that

M1/4
[C2n1,r(y, Dy)m(Dy)C2n1,r(y, Dy)|l| < (TV.81)
From Theorem 2.2 we have
a(m(Dy)C-2m,r(Y, Dy)) = a(y,&2) + q(y, &2), (IV.82)
where
st =miern (-2 [ (), v
and
1
.6 = [ a2 (1V.54)
0
with
4y, &) = / / e Mm! (&3 + 61)0yC_anr,r(y + 2, &2)dz dn. (IV.85)
Now
0,C-an.0(062) = C-anr o )220 0) 250 (2. (IV.56)
therefore
a5(y &) = 6% () [ =m0 (€2 + m)ba (y + =, Ea)d=
= 40? (%) 01,5(y, &2), (IV.87)
with
bi(y, &2) = Mp*(y)C—anr,r (. &2). (IV.88)

Note that m’ € S72, and b; € S° with semi-norms depending only on M and not
on R > 1. Thus ¢ 5 € S~2 with bounds depending only on M. But then the S°
seminorms of g5 are Cp;/R?, uniformly in §. Hence

m(Dy)C_QMJ{(y, Dy) = C_QMVR(y7 Dy)m(Dy) + Eg, (IVSQ)
with

[||Es||| < Car/R, as operator in L?(dy). (IV.90)
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Finally
Cont,r(Y, Dy)Cam.r(y, Dy)m(Dy) = m(Dy) + Ey, |||Eyll| < Cn/R. (IV.91)

We now take M so large that
1/4

< T (IV.92)

[ml o) <
and then choose R large, and (4.27), and consequently Claim 1, has been proved.
Note that Claim 2, and the symmetric of Claim 1 (a),(b) follow in the same
manner.
We now fix A\, M and R as in all the claims, to obtain using the vector valued
sharp Garding inequality that

2Re(i[AD2 — AD?)z,2) + 2Re(Ar10,2,2) + 2 Re(Agplaxgy_lgagz, z)

i (IV.93)
< ~atalt ($) Adysn) + conmllel,
and
2Re(i[AD] — A7)z, z) + 2Re(Ary0, 2, 2) + 2Re<A5038y5;1304z, z)
) (IV.94)
< -alel () Aedy) + conmllel
Thus upon integration between 0 and T in (4.8) we get
IC2(1)]132 < IICz0l3: Mfo 2(2))61160° (%) AuAyz, 2)dt
~M [P )Il6? (%) Andyz, 2)at (IV.95)

)T supo<rcr [|2(8)[72 + 2Re [ (AT, 2) ().
Hence if we denote by Q, = Q(z, D1) (resp. Qy = Q(y, D2)) the operator defined

by its symbol
el (%) (e 2olee(2)). aveo

T
M/ ((Qz Az Ayz, 2) + (QyAzAyz, 2))dt + cpr sup Hz(t)H%z
0 0<t<T

it follows that

< C(M)||z0||22 + T su 2(1)||?
< C(M)llzol 7 (M’R)ogé)TH @)z (IV.97)

t
+ sup Q‘Re/ (AT, z)dt'
0<t<T 0
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We now work with the term

(QeArAyz, 2) = (QuALCIC,CiCy 2, 2)
=(Q2A.CyCy2,CrCy2) = [[ QA C;Cy2CyCyz dx dy. (IV.98)

We remark that Q. A, is a ¥.d.o., in the x variable, of order 1, and that the
symbol of A, > c(ar, gy modulo terms of order —1. By the sharp Garding inequality
in the z variable, we have, uniformly in y that

/QwAwC;Cyzmdx > cour) [ QuCyCy2C;Cy 2 da
—cou,r) [ 12(@,y)|? da. (IV.99)
Thus from (4.98)-(4.99), upon y-integration, it follows that
(QuAzAyz, z) > c(ar,r)(R2CyCyz, CyCyz) — C(M,R)”Z”QLgﬁy' (IV.100)

We remark that p?(z)|¢1]02 (%) A, is the symbol of a v¢.d.o., in the z-

variable, of order 1, and that the symbol of A, > c(js,z) modulo terms of order
—1. By the sharp Garding inequality in the = variable, we have, uniformly in y
that

[ 12(x))€1162 (%) A,CiC,y2C;Cyz da (IV.101)
> ¢(M,R) [ 12 (z)|&:1]67 (%) CyCy2CsCyzdr — ciup R) fw |2(x,y)|? dz.
Thus upon y-integration it follows that

(1?(2)[&1]67 (%) Ay Ayz, z) (IV.102)

> e (@116 (%) C3Cy2 C5C02) = curm 121122
Next we observe that

Q.= 0s (@l ($)) = W2 2+ Lo (V03

where Lg is L2-bdd. Hence, from (4.100)-(4.103) and (4.33) we have

1/2 ~x
(QuAcAyz,2) = conmllu(@) T2 > CrCy2l2: — coanmllz]122
% 1/2
= conmllCiCy (@) T2 %23 — coumllzlZ. (IV.104)

1/2
> e my AN (@) T2 22013 — con |2 )12,
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since CyCy is invertible in Li’y. Gathering this information we end up with

T 1/2 1/2
ST AN (@) 2" 2]122 + [[An () Ty 2 2)122)dt + supg<ier | 2(1)]| 2
< C(M,R)”ZO”% + e, r) T Supg< i<t 2(t)]|22 (IV.105)

+¢(m,R) SUPo<i<T ’fot (AT, z)dt'
It remains to study (AL, z) = (', Az). We recall that from (4.1)

T = 105 f1 + $20, f2 + ¢30:0; dafs + ¢50,0; b6 f1 + fs. (IV.106)

First we have for ¢ € [0, 7]

Ty

supo<i<r [12(8)l| 2, (IV.107)

SuPo<¢<T ||Z(t)||%gy + C(M,R)T||f5||i2T_x )

t
} / <fs7Az>dt’ < ST slea, I A2ls, b < € fT | fsllea, Ilzs, de

< CTV?||f5]l s

T,x,y
_1
— 2¢(M,R)

Next we consider

t t
/ <¢1awf1,Az>dt’ _ ‘ / (6100 fr) Au Ay 2)dt] . (IV.108)
0 0

Writing 0, = RgEng2 ;/2 with R, a 1.d.o. of order zero in x, one sees that

<¢18Tf17AszZ> - <¢1RTJI1/2 zl/z,flaAmAyZ>
= ([p1Ra; Ja 21 I2 1, AgAyz) + (T2 Ro Y 1, AgAyz)  (IV.109)
= ([p1Re; T2 *) T2 1, AuAyz) + (T2 [Re; 61 T8 f1, AcAy2)
(2P Rogy T2 15 Ag Ay 2).
Since [¢1Ry; Jo/? 722, and Ja/*[Ry; ¢1)Ja/? are ¢b.d.0’s of order zero in z, uni-

formly in y and ¢, the first and second term in the r.h.s. of (4.109) are bounded,
after integration in time, by

T
C o llzllez, lleallop ez

2)

[ fllz, dt (IV.110)
< CT1/2||¢1HL2T(C§(R§W)) SUPg<¢<T ||z(t)||L§y SUPg<¢<T ||fl||LA2

zy

For the third term in the r.h.s. of (4.109) we have that

(TP Ry T2 1, AgAyz) = (61032 f1, RETY? A Ay 2)
= (P s> 1, RT P Ap s P A, 1P 2). (IV.111)
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Using that P = R} 1/2A Jo 1245 a 1.d.o. of order zero in z we get from
(2.19), Lemma 2.4, that

(RE TP A ds Ay a2, 608" )

|
[ PA T 220002

< (f\PA TY221202, ()

<c/, (f 1A, T2 2202 (2)

a) " (Jlonr ik s) " ay

AR (@)

@) (1o pstes) " ay

o (IV.112)
1/2 1/2
< CW = 1A T 22X (@) dy + e my [ 16027 i 342
1/2 2 2
2
Hence fixing ¢ € [0, 7] one gets
t
C(M,R) ‘fo $10, f1, Az) dt‘
< 3Ly SV 2P% @) dedy dt + 5 supoci<r 1203
+C(M,R)Tsup0§t§THf1( )||L2 ||¢1||L2 CN(RQ )) (IV113)
1/2
teoarn [, IM@REAIE,
The bound for the term
t
<¢28yf2, Az}dt‘ (IV.114)
0

is similar. We next turn to the estimate for
<¢38way_1¢4f3a AmAyZ>

— (65071 (0pda) fi, AuAy2) + (6307 GaBu f5, ApAyz).  (IV.115)

For the first term in the r.h.s. of (4.115) one has, after integration in time, the
bound

t
carr) Jo 12z N0slliee, 10xballnee | fsllL2 , dt

(IV.116)
< 7 SUDg<y<r ||Z(t)||2L3 » + ¢, R)||f3HL°°L2 ||¢3|| 2L, ||a:v¢4HL2 Lz,

For the second term in (4.115) we write 0, = R, T2 T

(830, 6400 f5, AuAyz) = (350, RoJs > 04Ts” 3, Ap Ay2)

(030, 643 Ro a1 Ta f3, Au Ay 2)

1/2 to have

(IV.117)
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where [¢4; Ry J;/Q] ,%/2 is a 1.d.o. of order zero in x, uniform in y. Thus, the second
term in the r.h.s. in (4.117) can be estimated as in (4.112). For the first one in we
write

(630, "Ry Ja* 60 da’® f, Ap Ay2)
= (R Ja* $30,  daJa"* f3, AsAy2) (IV.118)
(635 RaJs'*10, 0a s f3, ApAy2).

Now

[63; RoJa’ 210, 0a T = (¢33 Rud*) 22 0520, 64 da?

= [ps: Ro T 10220, 0 P pu T (IV.119)

Since [¢s; RxJ;/z] 172 and J;1/2¢4J;/2 are 1.d.o. of order zero in x uniformly in
y the bound of the second term in (4.118) follows the argument in (4.112). For the
first term in (4.118) using that J;/QR;AIJ;UQ is a1).d.o. of order zero in x, and A,

is a 1.d.o. of order zero in y we obtain, using the notation A = J;/2R;ijgl/2Ay
and Theorem 2.4 that

(Rod 2630,  dads” f3, Ac Ay 2)
= (¢30; $a s’ f, Ji PR AL A 2)
= (930, pada’? fa, Ja P REAL TP A T3P )
= ($30, 00" f, AT2*2) (IV.120)
1/2 ~ 1/2
< (JFVAL 203 (@) dy) ([ 160, 01027 fol? S5 )

1/2 ~ 1/2
<e([F1" 2P dedy)  (J] 10207 001 P 55)

Thus after integrating in time we get the bound

1/2
Haw (@) 22 e

(IV.121)

2 1/2
+C(n,R) H—)”f?z) L ”)\N(-f):]w/ fBH%,gyT
Ty

Y1 _
Lg,, H An (@)

Gathering this information we get the desired bound for the term in (4.115).
In the same approach shows that the term

T ~
/ (¢50,0, " p6 f1, ApAyz)dt, (IV.122)
0
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is bounded by

1/2
Lsupgcyer 200132+ AN 203,
+earm fallize s I05lZ; 1o 10ud6llT Lo (IV.123)
2

1/2
AN(y)Jy/ f4’ 2

() 2 ¢ ?

5 96

C(M,R) H/\N(y)HLw AN ) HL‘X’ T
z,y, oY

z,y, T

Finally, collecting the information in (4.105)-(4.123) we complete the proof
of Theorem 1.2.

Corollary 4.1 Under the hypothesis of Theorem 1.2 the same results hold for
solutions of the IVP (1.22) with ¢A + €A instead of ¢A, uniformly for € € (0, 1].

Proof of Corollary 4.1. With the notation in (4.7) it suffices to see that (see (4.8))

c(AAz,z) + €{Az, Az) = 2Rec(AAz,2) < c|z|2

with ¢ independent of € € (0, 1]. Thus, we write

(AD22,2) = (AyAL022,2) = (A 0y Ap0y2, 2) + (Ay[Ay; 0042, 2).

Since C;C; , CyCy are invertible (see Claim 2 after (4.27)) it follows that

(Ay0,Ag0rz,z) = —(AyAz0y2,052)
GO C DB < —clBels (IV.124)

which combined with

(4,403 0:1002, )] < cll@ozllzz ll2llzz (IV.125)

yields the result.

V Proof of Theorem 1.3

We split the proof in three steps.

STEP 1. Existence of a local solution «¢ of (5.1) in a time interval [0,T¢].
The proof of Theorem 1.3 is based on the viscosity method. Thus, for € €
(0,1] we consider the IVP

{ Opu — iAu — eAu = G(u, Vyu, @, V), (V.1)

U(l‘,y,O) = UO(xvy)7
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where

G(u, Vyu, i, Vi) = ¢ ﬁ@wu%u

(V.2)
— Ozudyu—0,u0yu — Oy U0y U— 0y U0y u
+068$u8y 1 (W) + C78yu8m L (W) .
We write (5.1) in the intergal equation form
t
u(t) = elFItByy 4 / e HNEAG(y, Vu, @, Vi) (t)dt (V.3)
0
and defines the operator ® = @,,, as
t
B(v)(t) = el TPy + / eHNEAG(y, Vv, B, Vo) ()dE (V.4)
0
for
v E X;{a ={veC(0,T): H®) : sup |u®)|pgs <a}. (V.5)
0<t<T
We shall use that if f € H®, s € R, then for e € (0,1]
(e+i)tA . < s
e (e+i)j2;lH < ||f||1z ; (V.6)
|Vae D g < £ | fllazomr,

where V, = (0,,0,).
Using that H*(R?), with s > 1, is an algebra respect to the pointwise
product of function, it follows that for s >3 and T" > 0

sup [|G(v, ) ()] o1 < cs sup [o(t)]Fe- (V.7)
0<t<T 0<t<T

Thus, inserting (5.6)-(5.7) in (5.4) we get that for s >3

supg<s<r || (V) (t]| 1

< eslluollme +es 2 [ DG, ) ()] o2t (V.8)

< cslluo s 4 cs e 121/2 SUPg<i<T Hv(t)”%

Therefore, fixing
a = 2¢luollgs  and  T. = (20 ¢ eV |Jug|| %), (V.9)

in (5.5) it follows that ®(X7¢) C X[;. A similar argument shows that

—_

sup |[|®(v) — ®(w)||gs < 5 sup |lv — wl| gs, (V.10)
0<t<T. 0<t<T.
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T.
for any v, w € Xg¢.

u € C([0,T.] : H*).

Hence, (5.3), and consequently (5.1) has a unique solution

STEP 2. A priori estimates for the ws in  C([0,T] : H* N L*((2? +
y?)™2dady)), with T > 0 independent of € € (0, 1].

In this step, one of the key in the proof, we will use Theorem 1.2.

From (5.3) one has that

sup |lu(®)|lL2 < colluollL2 +coT/? sup ||u€(t)|\?;p (V.11)
0<t<T. 0<t<T.

Next, we apply the operator 92 to the equation in (5.1) and write the result
using the notation

vy = Osu, (V.12)
to get that

Orv1 — iAv; — eAvy = 11 (ug)0zv1 + 12(u0)Dyv1
+1(10) 020, o2 (uo)v1 + ©5(10)0:0, 6 (o)1

+p102 f1 4 P20y f2 + 01100, d12f1 + ¢2,10:0,  p22f1 (V.13)
+¢5,10.0, ' d5.2f2 + 06,10:0; ' P 2.f2 + [5,

v(x,y,0) = Bug(x,y),

where

r1(uo) = r1,1(uo) + 71,2 (uo)

1 —1 [ Bxu0dyilio— Dz Uoyu
= 1+1\u3|28yu0 + Cﬁay 1 ( & (1+0|U0|2)20 0) 9 (V14)
ro(uo) = r2,1(uo) + 72,2 (u0)
= _Clo_g 4o 1+ 7L Oz u 0y o — Oz oy Uo (V 15)
THfug[? 7@ ™0 T &7% (1FTuol?)? ) :
ay’fto
¢1(uo) = c6 Oy, p2(uo) = (1 [ug|?)? (V.16)
(u) = —cg Dy (ug) = —2v¥0__ (V.17)
P5(Uo 6 Oz U0, Pe{Uo (1 T |u0|2)2 .
p1 =ri(u(t)) — r1(uo), p2 = r2(u(t)) — r2(uo), (V.18)

P11 = @1(u(t)) —p1(uo),  d12 = pa((u (), (V.19)
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P21 =¢1(uo), P22 = @2(u(t) — p2(uo), (V.20)
P51 = @s(u(t)) —ps(uo), P52 = pa((u(t)), (V.21)
P61 = @5(uo), P62 = P2(u(t)) — pa(uo), (V.22)
J1=03u =, fo=05u=1, (V.23)

and f5 contains all the lower order term and satisfies

sup |\f5||L2
0<

<ecs sup flu| .. (V.24)
oy 0<t<T
To obtain the desired a priori estimate we apply Theorem 1.2 to the IVP (5.13).
Thus, we need to show that the constant A in (1.24) can be made as small as we
please by taking T sufficiently small, uniformly in € € (0, 1].

We shall only be concerned with the term in (1.24) not having the factor T

on it, i.e. the second, sixth and seventh. We observe from (5.14)-(5.22) that in each
of these factor there is a term of the form

o (0) = gtu0) = [ Gatur ()it (v.25)

Thus, using the equation (5.13) we obtain an appropriate bound with a factor T
on it. Thus, for the second terms in (1.24) we have

-2 -2 t
NS @P1 3, = IR @) fi o (e, #)de 3
- t a9y ut 1 0au Dy D, Dyu
= ARP(@) fy (D o, (2 Doy |2 (V.26)

< OT supgperp(|lu (@)l + [uOlfga) Xjajcs IV @)U 12 )-

Next, we have the estimate for the sixth term in (1.24)

PR @03, = NN @A Wl
- |\A—1<x>x1<y><¢1<u6<t>> — (o), ,
= AN @A W) fy S (@)t |, (V.27)

< CT||>\N (w) a )0 ()70
< T+ supgcycr [u () 574) Fjaj<o AN @A @0 U T 2

The other terms in (1.24) can be bounded in a similar manner. Thus to close these
estimates we need to bound terms of the form

> I WO |z 12, (V.28)

la|<6
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with L = maxz{N, M}. To achieve this we use the operators
T, =2+ 2itd,, T,=y+2itd,, (V.29)
and the following commutative relations and identities
[Lz; 0y —iA] = [I'y; 0 —iA] = 0,

[Fw§ A] = —20,, [Fy§ A] = _2811’ (VSO)
Ly, 0:] = [y;0y] = =1,  T'(fg) = fT(g) + 2itgdf.

We shall estimate
Tuf, Tous, T2u, .., (TP0%u%) 5<ar, |al<6: (V.31)

in this order. For the first step we apply I’y in (5.1) and use the notation
wy = [u® to get

(O — 1A — eA)wy =1 ﬁayuawwl
(V.32)

— 1/ 0zu0yu—0,u0yu —1_  /0udyu—0,udyu
+ce0, w10, (W) + ¢c70yw10, U(i(f_,_‘mz)z =) + f5.1,

where f51 satisfies an estimate similar to that (5.24). To apply Theorem 1.2 we
rewrite the IVP (5.31) using the notation in (5.14)-(5.22) as

(V.33)

(8,5 — 1A — €A)w1 =7 (uo)axwl + r272(u0)8yw1
+p10: f1 + (r22(u(t)) — r2,2(u0))9y f1 + f5.1,

with f1 = wW1.

We observe that the coefficients in the equation in (5.33) are basically the
same as those in (5.13). In fact, this is the case for all the equation for the terms
in (5.31) except that in each case || fs,.||r2 can be bounded using the previous
terms.

Hence, defining for T > 0

[ullr = sup (lu@®llae + 13" (@* + yH)u®)] ) (V.34)

with m > L, s > 2m and using that
v =T, —2itd,; z° =T2+4itl',0, + 4202 + 2it; 2° =T +2t(...), (V.35)
from the above argument we get that

ullr < c(lluollas + 1AL (@ + y*)uol|2)
+eT(1+T2) (lullF + [Juc]$) - (V.36)
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Then we conclude that there exists Ty = To(||uo || = + || Ayt (2 +y*)uo||r2) >
0 such that the solution u¢’s can be extended to the interval [0,77] such that
u¢ € C([0,T) : H* N L*((2? + y?)™dxdy)), with

[ullz, < 2¢5m (luollms + A" (@ + y?)uoll2) = é. (V.37)

STEP 3. Convergence of u’s in L>°([0,7] : L?)-norm as ¢ | 0.
In this step we shall use again Theorem 1.2.
For € >¢ >0 we define w = w" = u¢ — u¢ which satisfies the IVP

Ow — 1Aw — € Aw — (e — €') Auc

’
_ ac € ac 3
=C mﬁyu axw + maxu 8yw

+r12(u(t))0pw + caaqu’aglax —w%{ﬁ;j%yf (V.38)
12 (W (D)Byw + crdpu 0510, (208w’
+Q(aaufa|§17aﬂufg‘gpw)(t)v

where (see (5.37))
QO ufy <1, ufs <y, @) B)llz, < ebllw(®)zz, - (V.39)

To apply Theorem 1.2 we rewrite (5.38) using the notation in (5.14)-(5.22) as

Ow — i1Aw — € Aw — (e — €')Auc

= 11(u0)Opw + 12 (ug) Oyw

+01(10) 00, o2 (uo)w + ©3(u0) 0y 0y *@a(ug)w

+¢5(10) 020, p6 (u0)@ + 7 (u0)dyd; ps (uo)@

+p1,10. f + 2,10, f

+¢1,10:0, 1,21 + $2,10:0; b2 2 f1 + ¢310,0; b3 21
+¢4,10,0; baaf1 + 0510:0,  ¢5.2f2 + d6,10:0,  de 2. f2
+67,10,0; b7 2f2 + 6810,07 s 2 f2 + QO%uS, 1, O uy W) (1),

(V.40)

where @1, @2, p5, p were defined in (5.16)-(5.17) and

o
p3(uo) = —cr0yuo, pa(uo) = ( 20 (V.41)

1+ [uol?)?”

Ox
p3(uo) = crdyuo, a(ug) = ( -0 (V.42)

1+ [uo[?)?’
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. ue/ayue anyuo € _
P11 =C1 <(1 T PE A |u0|2)2> + (r1,2(u(t)) — r1,2(u0)),
B uf Oyus U0z Ug .
p2,1 =C <(1 + ‘u6/|2)2 - (1 ¥ |U0|2)2> + (T2,2(U’ (t)) 7"272<U0))
, 0, uc
$1,1 = Ozu’ — Dyug, P12 = va
Oy uc Oyl

:6’U/’ = — B
Pu = Outior 022 = T TR (T fwoP 2

/ 0, U’
= a € _ 8 = =
¢3,1 yu yu07 ¢3,2 (1 I |u6|2)27
0, u* Oz Uo

:8”7 = — 5
Pt = Ot 942 S TR TR (T P

. 9
¢5.1 = —(Opu’ — Opuo), @52 = 0+ [aP)?
= _aw 5 = - -
R (ke
& o 89517,6
¢7,1 = Oyu’ — dyuo, P72 = 0+ P2
oyut Oz lo

:a’u’ = — 5
Do =0ytior P82 = (TP T (T w2

fi=w, fo=0.
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(V.43)

(V.44)

(V.45)

(V.46)

(V.47)

(V.48)

(V.49)

(V.50)

(V.51)

(V.52)

(V.53)

To apply Theorem 1.2 to the IVP (5.40) we observe that as in the previous
cases all the terms in (1.24) involved a factor T or a factor of the form described
in (5.25), which can be bounded with a bound having a factor T' on it. Thus, for

T sufficiently small we get

lim sup ||w®¢ ()]|2 = 0.
E’E,_’O[O,T] T,y

(V.54)
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This proves the convergence of the wu€’s to a function wu. By interpolation we
get that the u’s converges to w in C([0,7] : H*~' N L?(|z|™ 'dz)). Using
weak*-compactness and Fatou’s lemma it follows that u € NL>°([0,T] : H®), and
u € NL>([0,T] : L?(|z|™dz)) respectively. It is clear that in the time interval
[0,7] w is a solution of the IVP (5.1).

Finally we remark that the proof of the uniqueness of the solution w in
its class is similar to the argument described in (5.38)-(5.53), therefore it will be
omitted.
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