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On the Asymptotic Exactness of Thomas-Fermi
Theory in the Thermodynamic Limit

P.B. Matesanz and J.P. Solovej

Abstract. In this paper we obtain a new version of stability of matter, which in
particular shows that Thomas-Fermi theory is asymptotically correct in the limit
of large nuclear charges uniformly in the number of nuclei. As a consequence we
give a new lower bound on the volume of matter with an improved dependence on
the nuclear charges.

I Introduction

One of the most celebrated results in mathematical physics is the Theorem on Sta-
bility of Matter. This result, which was originally proved by Dyson and Lenard [5],
states that the binding energy per particle, for a a system of charged quantum
particles, where either the positive or negatively charged particles are fermions, is
bounded independently of the number of particles.

Another and maybe more intuitively understandable formulation of this result
is that the volume occupied by the particles increases at least linearly in the
number of particles.

Since the original work of Dyson and Lenard there has been numerous im-
provements and generalizations. In particular the work of Lieb and Thirring [21]
(see also the review [14]) established the connection between stability of matter
and the semi-classical Thomas-Fermi theory and greatly improved the numerical
constants found by Dyson and Lenard. Among other proofs of stability of matter
we can mention the work of Federbush [6] and the recent proof of Graf [10], which
we shall use in the present work.

The result on stability of matter has been generalized to include relativistic
effects [3, 9, 22, 20], classical magnetic fields [8, 17], and quantized fields [7].

In the present work we are concerned with another type of generalization
of stability of matter. We are interested in the correct dependence in the physical
parameters. One of the remarkable features of macroscopic matter is that the mean
atomic spacing is nearly independent of the type of atoms that the matter consists
of. Or put differently the mean atomic spacing is nearly independent of the nuclear
charges.

In Thomas-Fermi theory distances scale as the −1/3 power of the nuclear
charge, i.e., Z−1/3. One would therefore naively expect that in macroscopic matter
the volume per particle would behave as Z−1. This is however in stark contrast to
the near independence of Z which is found experimentally.
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The Lieb-Thirring proof of stability of matter implies (see [21]) a lower bound
on the volume per atom of the form Z−1 for large Z. Our main goal here is to
show that this is indeed not optimal. We prove that there exists δ′ > 0 such that
the volume per atom is bounded below by Z−1+δ′ . Based on the experimental
evidence one would hope to prove δ′ = 1, we are, however, very far from such a
result (see Theorem 2).

Our proof is based on first showing that Thomas-Fermi theory not only gives
a bound on the energy, but that this bound is indeed asymptotically correct in the
limit of large nuclear charges. The bound of volume of matter is arrived at by a
careful study of Thomas-Fermi theory.

The fact that Thomas-Fermi theory is asymptotically correct in the limit of
large nuclear charge is a classical result due to Lieb and Simon [19].

The new feature is that we establish this asymptotics uniformly in the number
of nuclei allowing us to use the Thomas-Fermi approximation independently of the
number of nuclei.

We consider matter formed by M nuclei of charges Zj ≥ 1, j = 1, . . . ,M lo-
cated at positions Rj ∈ R3. We denote R = (R1, . . . , RM ) and Z = (Z1, . . . , ZM ).
We consider these nuclei as static and consider the non-relativistic Hamiltonian of
N electrons moving in the electric potential of the nuclei. The Hamiltonian is

HR,Z,N =
N∑
i=1

−∆i−
M∑
j=1

Zj
|xi−Rj|

+
∑

1≤i<j≤N

1
|xi−xj |

+
∑

1≤i<j≤M

ZiZj
|Ri−Rj |

.

(1)

Our improvement on stability of matter is as follows.

Theorem 1 (stability of matter) Let Z= 1
M

∑M
i=1Zi. Assume there are 0<a≤A<

∞ such that the charges satisfy aZ≤Zj≤AZ for all j and that Z≥1. Then there
is δ>0 universal and C,c>0 finite constants only depending on a,A such that

inf
Ψ∈H,‖Ψ‖=1

〈Ψ,HR,Z,NΨ〉H≥−CTF

M∑
j=1

Z
7/3
j −CMZ

7/3−δ

+cZ
7/3

M∑
j=1

Γ
(
Z

1/3
δ(Rj)

)
. (2)

Here the Hilbert space where the Hamiltonian acts is H=
N∧
L2(R3;C2) (Fermion

space), Γ(t)=min{t−1,t−7} and δ(Rj)=mini 6=j |Ri−Rj | is the distance of Rj to
its nearest neighbor.

In Theorem 1, the constant CTF is the corresponding Thomas-Fermi constant
(see Sect. IV below for the definition) in the case Z = 1, M = 1. The last term
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cZ
7/3∑M

j=1Γ
(
Z

1/3
δ(Rj)

)
is positive and is an estimate on the energy it takes

to bring the nuclei close, i.e., the pressure. A similar effect holds in the context
of Thomas-Fermi theory (we refer again to Sect. IV). It is worth noting that the
kind of estimate given in this theorem is essentially optimal. In fact, by taking
the nuclei very far apart and using the Theorem of Lieb and Simon [19] on the
exactness of Thomas-Fermi theory for one nucleus we obtain

inf
R:#R=M

inf
Ψ∈H,‖Ψ‖=1

〈Ψ,HR,Z,NΨ〉H≤−CTF

M∑
j=1

Z
7/3
j +CMZ

7/3−δ
. (3)

As an application of Theorem 1 we shall derive our results on the total volume
and density of matter. This is the content of the next theorem.

Theorem 2 (the volume of matter) With the conditions in Theorem 1, assume
moreover that for the configuration R

inf
Ψ∈H,‖Ψ‖=1

〈Ψ,HR,Z,NΨ〉H≤−CTF

M∑
j=1

Z
7/3
j +CMZ

7/3−δ
. (4)

Then we have that R should satisfy, for 0<δ1<δ/7 and k finite

#
{
j :δ(Rj)≤Z

−1/3+δ1
}
≤kMZ

−(δ−7δ1)
=o(M), Z 7→∞. (5)

Another interpretation of this result is as follows: Let us call

volume=
M∑
j=1

∣∣∣∣B(Rj , 12δ(Rj)
)∣∣∣∣; B(x,r)=

{
y∈R3 : |x−y|≤r

}
.

(Above, and hereafter, |G| stands for Lebesgue measure of G). Then we have the
estimate

volume≥k′MZ
−1+3δ1 (6)

where k′>0 is a universal constant.

We shall prove these theorems using a tiling of space into simplices and
an electrostatic inequality developed by Graf [10] and Graf-Schenker [11] which
enables us to localize the electrostatic interactions into the tiles and to ignore
the electrostatic interactions between these tiles up to some error which can be
controlled. This reduces our problem to bounded regions, and for these we shall
use Thomas-Fermi theory in order to estimate the maximal number of nuclei which
is allowed in order to have non-positive energy. We ignore the tiles with positive
energy, in the tiles which may have non-positive energy, we show how to reduce
the asymptotic estimates to that of the whole space.
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II Graf & Schenker (GS) electrostatic inequality

The setting we shall use for the GS inequality is as follows: Let Q=[0,1]3 be the
unit cube in R3. The cube Q can be written as a union of 24 congruent tetrahedra.
(To see this first note that there are 6 pyramids with top at the center of the
cube and base equal to one of the faces of the cube. Each pyramid consists of 4
congruent tetrahedra.) Denote by D0 the open interior of one of these tetrahedra.
We then have a “tiling” T = {Dα}α∈N, i.e, a collection of disjoint tetrahedra all
congruent to D0 such that

⋃
α∈NDα=R3. We shall also need to consider the tiling

Tl={lDα}α∈N of scale l>0, (which will be chosen later to be Z
−1/3+δ

).
Given a rotation R∈SO(3) and a y∈Q we denote by R(Tl+ ly) the tiling

{R(lDα+ ly)}.
We are now ready to state the result of Graf and Schenker. Given points

x1,... ,xK ∈R3. We then consider the function

δR,y(x,x′)=
{

1 if x,x′ belong to the same tetrahedron of R(Tl+ ly)
0 otherwise

for R∈SO(3) and y∈Q.

Theorem 3 (GS inequality) There is a C > 0 such that for all K ∈ N, all
(x1,... ,xK)∈R3K , all (z1,... ,zK)∈CK , and any l>0 we have

∑
1≤ i,j≤K

i 6=j

zizj
|xi−xj|

≥
〈 ∑

1≤ i,j≤K
i 6=j

zizj
|xi−xj |

δR,y(xi,xj)

〉
− C
l

K∑
i=1

|zi|2. (7)

For any function f on SO(3)×Q we have here defined its average over translations
and rotations

〈f〉 :=
∫
SO(3)×Q

f(R,y)dµ(R)dy (8)

where dµ(R) stands for Haar measure on SO(3).

We refer to [10] and [11] for a proof of this inequality.

III Localizing the Hamiltonian into the tiles

The inequality of Graf and Schenker allows us to localize the potential energy into
tiles. We shall also localize the kinetic energy. Since we are asking for estimates
from below it is natural to do this by Neumann-bracketing.
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Lemma 1 (localization estimate) Corresponding to a tiling R(Tl + ly) with R ∈
SO(3), y ∈Q we define the Neumann Laplacians −∆α for the tile lDα(R,y) :=
R(lDα+ ly), α∈N. and in terms of this the Hamiltonians

Hα,N ′ :=
N ′∑
i=1

−∆i
α−

M∑
j=1

Zjχα(Rj)
|xi−Rj |

+
∑

1≤i<j≤N ′

1
|xi−xj |

(9)

+
∑

1≤i<j≤M

ZiZjχα(Ri)χα(Rj)
|Ri−Rj |

acting on
N ′∧
L2(lDα(R,y);C2). Here χα is the characteristic function of lDα(R,y).

Then we have the following decoupling inequality:

inf specHR,Z,N ≥ inf
Nα:

∑
αNα=N

{∑
α

〈
inf specHα,Nα

〉}
− C
l

(N+
M∑
j=1

Z2
j ). (10)

Proof. Given α̃ = (α1,... ,αN ) ∈ NN . We consider the subset Aα̃(R,y) of R3N

given by

Aα̃(R,y)={(x1,... ,xN )∈R3N : xj ∈ lDαj (R,y), j=1,... ,N}.

We let Nα, α∈N denote the number of j such that αj =α. The sets Aα̃(R,y)
corresponding to different α̃ are disjoint and we can write R3N as the union

R3N =
⋃
α̃

Aα̃(R,y).

We denote by Ψα̃=ΨχAα̃ . We first investigate the kinetic energy

(Ψ,
N∑
j=1

−∆jΨ)=
∑
α̃

N∑
j=1

∫
Aα̃(R,y)

|∇jΨ|2 =
∑
α̃

∞∑
α=1

〈 ∑
j:αj=α

(
Ψα̃,−∆j

αΨα̃

)〉
.
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The left side is independent of R and y and we may therefore average over rotated
and translated tiles. From the Graf-Schenker inequality we have

(
Ψ,
[
−

M∑
j=1

N∑
i=1

Zj
|xi−Rj |

+
∑

1≤i<j≤N

1
|xi−xj|

+
∑

1≤i<j≤M

ZiZj
|Ri−Rj|

]
Ψ
)

≥
〈(

Ψ,
[
−

M∑
j=1

N∑
i=1

ZjδR,y(xi,Rj)
|xi−Rj |

+
∑

1≤i<j≤N

δR,y(xi,xj)
|xi−xj |

+
∑

1≤i<j≤M

ZiZjδR,y(Ri,Rj)
|Ri−Rj |

]
Ψ
)〉
− C
l

(N+
M∑
j=1

Z2
j )

=
∑
α̃

∞∑
α=1

〈(
Ψα̃,

[
−

M∑
j=1

N∑
i=1

Zjχα(xi)χα(Rj)
|xi−Rj|

+
∑

1≤i<j≤N

χα(xi)χα(xj)
|xi−xj |

+
∑

1≤i<j≤M

ZiZjχα(Ri)χα(Rj)
|Ri−Rj |

]
Ψα̃

)〉
− C
l

(N+
M∑
j=1

Z2
j ).

Note that, although Ψα̃ is not antisymmetric in all variables, it is antisymmetric
in the variables belonging to the same tile. Hence

(Ψ,HR,Z,NΨ)≥
∑
α̃

∞∑
α=1

〈
inf specHα,Nα

〉
‖Ψα̃‖2−

C

l
(N+

M∑
j=1

Z2
j ).

Noting that
∑
α̃‖Ψα̃‖2 =1 we conclude (10).

IV Some results about Thomas-Fermi theory

In this section we shall prove a result purely about Thomas-Fermi theory. It is
closely related to the results (and ideas) of Brezis and Lieb in [2] about the asymp-
totic behavior of many-body potentials in Thomas-Fermi theory. In this section
we shall assume that we deal with neutral systems. The effect of screening in neu-
tral systems is that long-range interactions are much smaller than for non-neutral
systems.

Suppose we have some configuration of M nuclei of charges Z=(Z1,... ,ZM )
and positions R=(R1,... ,RM ). The Thomas-Fermi model for this problem is de-
fined by the following functional on positive densities ρ∈L1(R3)∩L5/3(R3).

EβTF,R,Z(ρ) = β

∫
R3
ρ(x)5/3dx−

∫
R3
V (x)ρ(x)dx

+
1
2

∫∫
R3×R3

ρ(x)ρ(y)
|x−y| dxdy+

M∑
l<s

ZlZs
|Rl−Rs|

(11)
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where the potential is V (x)=
∑M

i=1
Zi

|x−Ri| and β>0 is a parameter. In our units
the physical value of this parameter is βphys = 3

5 (6π2)2/3. We shall however also use
Thomas-Fermi theory for other values of this parameter and we therefore allow it
to be arbitrary for the moment. The Thomas-Fermi energy is defined by

EβTF,R,Z := inf
0≤ρ∈L1(R3)∩L5/3(R3)

EβTF,R,Z(ρ). (12)

When β = βphys we shall write EβTF,R,Z simply as ETF,R,Z . If M = 1 and
Z= 1 we shall write CβTF instead of |EβTF,R,Z | and if β=βphys simply CTF (see
also Theorems 1–2).

The energy satisfies the scaling properties

EβTF,R,Z=λEλβTF,λR,Z=λ7EβTF,λR,λ−3Z (13)

for any λ>0.
It is known that there is a unique function ρ which minimizes the functional

(12). This function fulfills the Thomas-Fermi equations

5
3βρ

2/3(x) = φ(x)
φ(x) = V (x)− 1

|y| ∗ρ(x) (14)

and is moreover the unique non-negative solution ρ of (14). This function has
the property that

∫
ρ=

∑M
j=1Zj , i.e., the density minimizing the functional (11)

corresponds to a neutral system. For future use we shall denote by φ(R,Z,x) the
unique solution φ of (14), and φat(R,Z,x) the one corresponding to a single “atom”
of charge Z located at R∈R3. We refer to the original paper [19] or the review
[15] for the proofs of these statements and for further results on Thomas-Fermi
theory.

We consider the following function :

fβ(R,Z)=EβTF,R,Z+CβTF

M∑
J=1

Z
7/3
j . (15)

Using the scaling properties of Thomas-Fermi theory we have

fβ(R,Z)=Z
7/3
fβ
(
Z

1/3R,Z−1Z
)
. (16)

In [2] the asymptotics of λ7fβ(λR,Z) for large λ was studied in the case of a
finite number of nuclei. Our goal here is to show an estimate on fβ(R,Z) similar
to the asymptotics of [2] which holds uniformly in the number of nuclei.
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Lemma 2 (pressure in Thomas-Fermi theory) Assume there is a constant a > 0
such that aZ≤Zj for all j. Then there is a universal c>0 (in particular indepen-
dent of M) such that for each R∈R3M we have

fβ (R,Z)≥cβ−1(aZ)7/3
M∑
j=1

Γ
(

(aZ)1/3β−1δ(Rj)
)

(17)

where Γ(t) = min{t−1,t−7} and δ(Rj) = mini 6=j |Ri−Rj | is as before the nearest
neighbor distance. Moreover, fβ is a non-decreasing function of all the Zi variables.

Proof. By the scaling property (13) it is enough to prove the lemma for Zj≥1 and
β=βphys and in this case we omit the superscript. Then we have the following (a
Feynman-Hellman type result)

∂

∂Zi
f (R,Z)= lim

x7→Ri
[φ(R,Z,x)−φat(Ri,Zi,x)]. (18)

The right side of (18) is non-negative because of Teller’s Lemma (see [15] Theo-
rem 3.4) , which implies that f (R,Z) is non-decreasing in any of the Zi arguments.
Therefore we have that

f (R,Z)≥f (R,(1... ,1)). (19)

Let H(λ) be defined by

H(λ)=f (R,(λ,... ,λ)). (20)

Applying Feynman-Hellman’s formula again we obtain

d

dλ
H(λ)=

M∑
i=1

lim
x7→Ri

[φ(R,(λ,... ,λ),x)−φat(Ri,λ,x))]. (21)

For any of the points Ri we choose a nearest neighbor, which shall be denoted R′i,
i.e., |Ri−R′i|=δ(Ri). Then, by Teller’s Lemma once again, we have that

d

dλ
H(λ)≥

M∑
i=1

lim
x7→Ri

[φ((Ri,R′i),(λ,λ),x)−φat(Ri,λ,x))] (22)
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Since H(0)=0, the estimate (22) implies that

H(1) ≥
∫ 1

0
dλ

M∑
i=1

lim
x7→Ri

[φ((Ri,R′i),(λ,λ),x)−φat(Ri,λ,x))]

=
1
2

∫ 1

0
dλ

M∑
i=1

[
lim
x7→Ri

[φ((Ri,R′i),(λ,λ),x)−φat(Ri,λ,x))]

+ lim
x7→R′i

[φ((Ri,R′i),(λ,λ),x)−φat(R′i,λ,x))]
]

(23)

=
1
2

M∑
i=1

f((Ri,R′i),(1,1))

=
1
2

M∑
i=1

f((0,Ri−R′i),(1,1)).

In order to finish the proof, it is hence enough to show that there is a c>0 such
that

cΓ(R)≤f((0,R),(1,1)) (24)

If |R|≥ 1, (24) follows from the analysis in [2]. On the other hand, if |R|≤ 1 we
will use the Thomas-Fermi equation directly to analyze the behavior. We have by
the Thomas-Fermi scaling

φ((0,R),(λ,λ),x)−φat(0,λ,x) = λ4/3
(
φ((0,λ1/3R),(1,1),λ1/3x)

−φat(0,1,λ1/3x))
)
.

By the Thomas-Fermi (14) equation and the fact (see [15] Corollary 3.6) that
φ((0,r),(1,1),x)≤φat(0,1,x)+φat(r,1,x) we have

lim
|x|→0

[
φ((0,r),(1,1),x)−φat(0,1,x)

]
=

1
|r|+

∫
(3φat(0,1,y))3/2

(5βphys)3/2|y| dy−
∫

(3φ((0,r),(1,1),y))3/2

(5βphys)3/2|y| dy

≥ 1
|r|+(1−

√
2)
∫

(3φ((0,r),(1,1),y))3/2

(5βphys)3/2|y| dy−
√

2
∫

(3φ(y−r))3/2

(5βphys)3/2|y| dy

≥ 1
|r| −C

for r < 1. The estimate (24) then follows from the Feynman-Hellmann identity
(18).



290 P.B. Matesanz and J.P. Solovej Ann. Henri Poincaré

V Estimating the kinetic energy

Now, in order to compare the localized Hamiltonians with their localized Thomas-
Fermi counterparts, we need to establish some inequalities like those of Lieb-
Thirring. More specifically, we ask for estimates on Tr(−∆0−V )α− where ∆0 is
the Neumann-Laplacian on the tile lD0 and V is a real-valued function. We are
interested mainly in the cases α=0,1. We point out that if we were dealing with
Dirichlet Laplacians, the problem can be automatically reduced to that of the
whole space just by extension. In the case at hand, this is not allowed, and be-
cause of that we shall formulate and prove first a version of these inequalities in the
case of a cube. Finally we are dealing with tiles rather than cubes, but the prob-
lem for the tiles can be reduced to that of the cubes as explained in the appendix
below.

Theorem 4 (Lieb-Thirring type estimate) Let Q be the unit cube in R3 and 0≤α.
If V is a real-valued function in L1

loc(Q) for which [V ]− ∈L3/2+α(Q), then the
following trace estimate holds:

Tr(−∆Q−V )α−≤Cα
∫
Q

[V ]3/2+α
− +Cα

[∫
Q

[V ]−

]α
(25)

Here −∆Q is the Neumann-Laplacian in Q. The constant Cα depends only on
α. The same result (possibly with a different constant Cα) holds if the cube Q is
replaced by the tile D0.

We did not find a reference for this theorem and we therefore include a proof in
the appendix. Using the theorem above we can provide an estimate for the kinetic
energy of N antisymmetric particles on a tile (of any scale l>0) in terms of the
1-particle density ρψ(x) which is defined as

ρψ(x) :=N

∫
(lD0)N−1

‖ψ(x,x2,... ,xN )‖2C2N dx2,... ,dxN (26)

for ψ∈
N∧

(L2(lD0;C2)) normalized.
This function is an analogue of a charge distribution, and has the property∫

lD0
ρψ=N .

Theorem 5 (kinetic energy estimate for fermions on a tile) Let

ψ∈
N∧
L2(lD0;C2) normalized and define ρψ as before. Then, if

H0 =
N∑
i=1

(−∆i
0)

we have

〈ψ,H0ψ〉≥KLT

∫
lD0

ρψ(x)5/3dx−K1|lD0|−1
∫
lD0

ρψ(x)2/3dx (27)
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where KLT and K1 are positive and finite absolute constants.

Proof. By a simple rescaling it is enough to consider the case l=1. Let us define the
potential V (x) =−ρψ(x)2/3 and the N-particle Hamiltonian HN :=

∑N
i=1(−∆i

0 +
λV (xi)) where λ> 0 is a parameter to be fixed later. This Hamiltonian acts on
N∧

(L2(lD0;C2)), and it can be diagonalized by the eigenfunctions of HV =−∆0+V
on L2(lD0;C2). In fact, the lowest eigenvalue of HN is just the sum of the first N
negative eigenvalues of HV so we have from Theorem 4 that

inf specHN =−Tr(HV )−≥−CLTλ
5/2
∫
D0

ρψ(x)5/3dx− C1λ

|D0|

∫
D0

ρψ(x)2/3dx

From the variational principle

〈ψ,H0ψ〉−
λ

|D0|

∫
D0

ρψ(x)5/3dx=〈ψ,HNψ〉≥ inf specHN

and thus we get

〈ψ,H0ψ〉≥(λ−CLTλ
5/3)

∫
D0

ρψ(x)5/3dx− C1λ

|D0|

∫
D0

ρψ(x)2/3dx (28)

The theorem follows by choosing λ appropriately. Theorem 5 will be one of the
main tools to provide a link between Quantum Theory and Thomas-Fermi theory.
This is the subject of the next section.

VI Estimating the energy of the tiles with too many nuclei

The principal task we will pursue in this section is to prove that the energy of
the localized pieces of the Hamiltonian on tiles is positive if the tile contains a
large enough number of nuclei, depending only on the average charge Z of these
nuclei and the scale l of the tiles. We shall use the estimate for the kinetic energy
given by Theorem 5, but we also need an estimate which allow us to compare
the electron-electron repulsion term of the localized quantum Hamiltonians with
the corresponding term in the Thomas-Fermi functional (11). Such an estimate is
provided by the Lieb-Oxford inequality (see [18]).

Lemma 3 (Lieb-Oxford inequality) Let ψ∈L2(R3N ;C2N ) normalized and
ρψ(x) the corresponding 1-particle density function. Then〈

ψ,
N∑
i<j

1
|xi−xj |

ψ

〉
≥ 1

2

∫∫
ρψ(x)ρψ(y)
|x−y| dxdy−1.68

∫
ρψ(x)4/3dx. (29)

We are now in a position to prove a lower bound on the localized Hamiltonians in
terms of the neutral Thomas-Fermi theory.
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Lemma 4 (lower bound in terms of TF theory) Let Hα,N ′ be the operator defined

in (9) acting acting on
N ′∧
L2(lDα(R,y);C2). Then there exists c>0 such that

inf specHα,N ′≥Eβ0
TF,Rα,Zα−cN

′(l−2 +1) (30)

where β0 =KLT/2 and Rα and Zα are the coordinates and charges of the nuclei
in the tile lDα(R,y).

Before proving this lemma we shall state the following corollary, which is a simple
consequence of it:

Corollary 1 Assume that Eβ0
TF,Rα,Zα ≥ 0 and that Zj ≥ aZ for all charges. Then

there is c,c′>0, depending only on a and β0, such that

inf specHα,N ′ ≥ −CTF

M∑
j=1

Z
7/3
j χα(Rj)+c′Z

7/3
M∑
j=1

Γ
(
Z

1/3
δα(Rj)

)
χα(Rj)

−cN ′(l−2 +1) (31)

where δα is the nearest neighbor distance among the nuclei in the collection Rα.

Proof. In our case at hand we have that 0<β0≤βphys. Call κ=βphys/β0≥1. We
have, by Lemma 4 that inf specHα,N ′≥Eβ0

TF,Rα,Zα−cN
′(l−2 +1) and in the case

Eβ0
TF,Rα,Zα≥0 we have, using the scaling properties of Thomas-Fermi theory (13),

Eβ0
TF,Rα,Zα =κETF,κRα,Zα≥ETF,κRα,Zα . Finally, by Lemma 2 we get

ETF,κRα,Zα ≥ −CTF

M∑
j=1

Z
7/3
j χα(Rj)+f(κRα,Zα) (32)

≥ −CTF

M∑
j=1

Z
7/3
j χα(Rj)+c(a,κ)Z

7/3
M∑
j=1

Γ
(
Z

1/3
δα(Rj)

)
χα(Rj)

where we have used the fact that Γ(tx)≥ t−7Γ(x); x>0, t≥1. �

Proof of Lemma 4 From the kinetic energy estimate (27) and the Lieb-Oxford

inequality (29) we get, for ψ∈
N ′∧(

L2(lDα(R,y);C2)
)

normalized that

〈ψ,Hα,N ′ψ〉 ≥ KLT

∫
ρ

5/3
ψ −

∫
Vα(x)ρψ(x)dx

+
1
2

∫∫
ρψ(x)ρψ(y)
|x−y| dxdy+Uα (33)

−C
(∫

ρ
4/3
ψ + l−3

∫
ρ

2/3
ψ

)



Vol. 1, 2000 On the Asymptotic Exactness of Thomas-Fermi Theory 293

where

Vα(x) :=
M∑
j=1

Zj
|x−Rj|

χα(Rj) and Uα :=
M∑
i<j

ZiZj
|Ri−Rj |

χα(Ri)χα(Rj) (34)

Using Hölder’s inequality and the fact that ρψ is supported in lDα(R,y) we have

∫
ρ

4/3
ψ ≤

(∫
ρ

5/3
ψ

)1/2

(N ′)1/2 and
∫
ρ

2/3
ψ ≤c(N ′)2/3l≤N ′l. (35)

Hence
KLT

2

∫
ρ

5/3
ψ −C

(∫
ρ

4/3
ψ + l−3

∫
ρ

2/3
ψ

)
≥−cN ′(l−2 +1) �

We shall see now that if a tile contains too many nuclei then the Thomas-
Fermi energy Eβ0

TF,Rα,Zα is positive. If on the other hand the tile contains so few
nuclei that the Thomas-Fermi energy is negative we shall in the next section prove
an estimate similar to (30) but with the correct physical constant βphys rather
than β0.

Lemma 5 Consider a tile lDα(R,y) and let Zα and Rα denote the charges and
positions of nuclei in this tile. Assume as before that all the nuclear charges are
bounded below by aZ and above by AZ. Let Mα denote the number of nuclei in the
tile. There is then a constant c>0 depending only on a, and A such that for all
β>0 EβTF,Rα,Zα≥0 if Mα≥max{2,cβ−3l3Z}.

Proof. By the scaling property (13) of Thomas-Fermi theory we need only consider
the case β=βphys and l=1. From Lemma 2 we have

ETF,Rα,Zα≥−CTFMα(AZ)7/3 +c(aZ)7/3λ−1M ′ (36)

where M ′ is the number of nuclei in the tile for which the distance to the nearest
other nuclei in the tile is less than or equal to λ(aZ)−1/3 for some 0< λ< 1.
We can place Mα−M ′ disjoint balls of radius (aZ)−1/3λ/2 centered at all the
remaining nuclei. Since Mα≥2 it is clear that either Mα−M ′= 0 or this radius
is universally bounded. Thus we see that these balls cover a region of universally
bounded volume. We conclude that (Mα−M ′)≤caZλ−3.

Hence

ETF,Rα,Zα≥MαZ
7/3
(
−CTFA

7/3 +ca7/3λ−1
)
−c(aZ)10/3λ−4

and the lemma follows if we choose λ small enough. �
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VII Proving the main result

We shall now use a semiclassical approximation to show that if the number of
nuclei in a tile is small enough then one may use the correct physical constant
βphys instead of β0 in the lower bound in (30) . The semiclassical approximation
will be done using the method of coherent states in a manner very similar to the
argument given in [15].

Lemma 6 (lower bound in terms of physical TF theory) Let Hα,N ′ be the opera-

tor defined in (9) acting acting on
N ′∧
L2(lDα(R,y);C2). We assume as before that

aZ ≤Zj ≤AZ for all j = 1,... ,M . Assume moreover that Eβ0
TF,Rα,Zα ≤ 0, where

β0 =KLT/2 and Rα and Zα are the coordinates and charges of the nuclei in the
tile lDα(R,y). Then there exist constants c,C>0 depending only on a,A such that

if we choose δ=2/87 and l=Z
− 1

3 +δ
then

inf specHα,N ′≥ETF,Rα,Zα−cN ′Z
4
3−δ−CMαZ

7
3−δ, (37)

where Mα is the number of nuclei in the tile.

Proof. Lemma 5 shows that the condition Eβ0
TF,Rα,Zα ≤ 0 implies that

Mα≤max{2,Cl3Z}. We shall choose l such that l3Z≥1 (see the end of the proof)
we may therefore assume that Mα≤Cl3Z.

For ψ∈
N ′∧(

L2(Dα(R,y);C2)
)

normalized we consider again the 1-particle den-
sity function ρψ(x) defined in (26). Using the Lieb-Oxford inequality (29) and the
positivity of the Coulomb kernel,

D(f,g) :=
1
2

∫∫
R3×R3

f(x)g(y)
|x−y| dxdy

we find that for any 0≤ ρ̃∈L1(R3)∩L5/3(R3) and 0<ε<1 we have

〈ψ,Hα,N ′ψ〉≥
〈
ψ,

N ′∑
i=1

hiψ

〉
−D(ρ̃,ρ̃)−(1.68)

∫
ρψ(x)4/3dx+ε〈ψ,H0ψ〉+Uα (38)

where we have introduced the one-particle operator

h :=−(1−ε)∆α−Vα(x)+ | · |−1∗ ρ̃(x)

and used Vα and Uα defined in (34). In equation (38) we have kept part of the
kinetic energy 〈ψ,H0ψ〉=

∑N ′

i=1〈ψ,−∆i
αψ〉 in order to later use it to control errors.

We choose ρ̃ to be the density that minimizes the Thomas-Fermi problem
with parameter β equal to (1−ε)βphys, i.e., EβTF,Rα,Zα(ρ̃)=EβTF,Rα,Zα .
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It is not convenient to work with Neumann Laplacians, so our next goal is
to replace them by Dirichlet Laplacians. In order to do this we take a partition of
unity, with the following properties, on lDα(R,y)

0≤Θt,Ξt ≤ 1 (39)
Θ2
t +Ξ2

t = 1 (40)
Θt(x)=1 if dist(x,∂lDα) ≥ t (41)

Θt(x)=0 if dist(x,∂lDα) ≤ t

2
(42)

|∇Θt|∞+ |∇Ξt|∞ ≤ C

t
(43)

|∆Θt|∞+ |∆Ξt|∞ ≤ C

t2
. (44)

For any φ∈L2(lDα(R,y);C2) we then have (omitting the parameters R,y)∫
lDα
|∇φ|2 =

∫
lDα

Θ2
t |∇φ|2 +

∫
lDα

Ξ2
t |∇φ|2

=
∫
lDα
|∇(φΘt)|2 +

∫
lDα
|φ|2Θt∆Θt+

∫
lDα
|∇(φΞt)|2 +

∫
lDα
|φ|2Ξt∆Ξt

≥
∫
lDα
|∇(φΘt)|2 +

∫
lDα
|∇(φΞt)|2−

C

t2

∫
lDα
|φ|2. (45)

Let γ be the one-particle density matrix on L2(lDα;C2) defined as the oper-
ator with integral kernel

γ(x,y) :=N ′
∫

(lDα(R,y))N′−1
〈ψ(y,x2,... ,xN ′),ψ(x,x2,... ,xN ′)〉dx2 ...dxN ′ (46)

where 〈 , 〉 here denotes the inner product (antilinear in the first variable) in C2N
′
.

Because of the antisymmetry of ψ, the one-particle density matrix γ satisfies the
fundamental operator inequalities

0≤γ≤1; 0≤Trγ≤N ′. (47)

To any positive definite trace class operator γ′ on L2(R3;C2) we have a non-
negative density ργ′ ∈ L1(R3), defined by Tr(γ′f) =

∫
ργ′(x)f(x)dx for any f ∈

L∞(R3) identified as a multiplication operator on L2(R3;C2) (it is a simple exercise
in measure theory to see that this defines an L1 function). In the special case (46)
we have ργ(x) = γ(x,x) = ρψ(x). Moreover (assuming that ψ is in the operator

domain of H0) we have that
〈
ψ,
∑N ′

i=1hiψ
〉

= Tr(hγ) so in terms of γ we can
rewrite (38) as

〈ψ,Hα,N ′ψ〉≥Tr(hγ)−D(ρ̃,ρ̃)−(1.68)
∫
R3
ρψ(x)4/3dx+ε〈ψ,H0ψ〉+Uα. (48)
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By (47) γ can be written as

γ=
∑
i

λi〈ui,·〉ui; 0≤λi≤1; {ui} orthonormal set (49)

where the functions ui belong to the Sobolev space H2(lDα(R,y);C2). using this
spectral representation together with (45) yields

Tr(hγ)≥Tr(hΘtγΘt)+Tr(hΞtγΞt)−
C

t2
N ′ (50)

where in (50) both Θt and Ξt are regarded as multiplication operators.
Let γ(1)

t =ΘtγΘt and γ(2)
t =ΞtγΞt. Then γ(1)

t and γ(2)
t fulfill the bounds (47)

if γ does. We now notice that

Tr
(
hγ

(1)
t

)
=Tr(hΘtγΘt)=Tr

(
h̃ΘtγΘt

)
(51)

where h̃ is defined as h but with Dirichlet boundary conditions instead of Neumann
boundary conditions.

Now (48), (50) and (51) imply that

〈ψ,Hα,N ′ψ〉 ≥ Tr
(
h̃γ

(1)
t

)
−D(ρ̃,ρ̃)+Uα−(1.68)

∫
R3
ρψ(x)4/3dx

+ε〈ψ,H0ψ〉+Tr
(
hγ

(2)
t

)
− C
t2
N ′. (52)

Now we shall use coherent states given as follows: pick some function g ∈
H1(R3) which is spherically symmetric and with

∫
R3 |g|2 =1. Introduce a parameter

r>0 and the family of functions gr :=r−3/2g(r−1·). The coherent states we shall
use are then given by

fp,s;r(x)=gr(x−s)eip·x; p,s∈R3 (53)

and let us introduce the projections

πp,s;r=〈fp,s;r,·〉fp,s;r⊗I; I=
(

1 0
0 1

)
. (54)

Then, for any m∈L2(R3;C2) a computation gives

‖m‖2 = (2π)−3
∫
R3×R3

〈m,πp,s;rm〉dpds∫
R3
|∇m(x)|2dx = (2π)−3

∫
R3×R3

|p|2〈m,πp,s;rm〉dpds

−‖m‖2
∫
R3
|∇gr(x)|2dx (55)∫

R3
|m(x)|2φ̃r(x)dx = (2π)−3

∫
R3×R3

φ̃(s)〈m,πp,s;rm〉dpds
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where φ̃r(x)= |gr|2 ∗ φ̃(x) and φ̃ is any function on R3. We shall now use this for
the specific choice φ̃(x)=Vα(x)−| · |−1 ∗ ρ̃(x), i.e., the potential appearing in the
operators h and h̃. Introducing the operator h̃r=−(1−ε)∆i− φ̃r we split the first
term in (52) as follows

Tr
(
h̃γ

(1)
t

)
=Tr

(
h̃rγ

(1)
t

)
+ar

(
γ

(1)
t

)
. (56)

Here

ar(γ
(1)
t )=−

∫
R3

[
Vα(x)−|gr|2 ∗Vα(x)−(Ψ(x)−|gr|2 ∗Ψ(x))

]
ρ
γ

(1)
t

(x)dx

where Ψ= | · |−1∗ ρ̃ and ρ
γ

(1)
t

(x) is the density corresponding to the operator γ(1)
t .

We may then write

Tr
(
h̃rγ

(1)
t

)
= (2π)−3

∫
R3×R3

[
(1−ε)|p|2− φ̃(s)

]
M(p,s)dpds

−Trγ(1)
t

∫
R3
|∇gr(x)|2dx (57)

where M(p,s)=Tr
(
γ

(1)
t πp,s;r

)
. We have here considered γ(1)

t as an operator on all

of L2(R3;C2). The function M(p,s) satisfies

0≤M(p,s)≤2. (58)

If we minimize (57) over the functions with the property (58) we find that
the minimum is given by the “bath-tub” principle, which tell us that the mini-
mizer actually is the function M(p,s)=2χ{(p,s):φ̃(s)−(1−ε)|p|2≥0}. A straightforward
calculation then shows that

Tr
(
h̃rγ

(1)
t

)
−D(ρ̃,ρ̃)+Uα≥EβTF,Rα,Zα−CN

′r−2. (59)

Returning to the estimate of the error term ar we note that Ψ−|gr|2 ∗Ψ≥
0 since (being the convolution of | · |−1 against some integrable function) ψ is
superharmonic and |gr|2 is spherically symmetric and of integral one. Therefore

ar(γ
(1)
t ) ≥ −

∫
R3

(
Vα−|gr|2 ∗Vα

)
ρ
γ

(1)
t

≥ −
∥∥Vα−|gr|2 ∗Vα∥∥5/2

∥∥∥ργ(1)
t

∥∥∥
5/3

(60)

by Hölder’s inequality. We will use the term ε〈ψ,H0ψ〉 in (52) to control the errors
ar(γ

(1)
t ) and −C

∫
ρ

4/3
ψ through the use of the Lieb-Thirring estimate Theorem 5.

If we write

br :=ε〈ψ,H0ψ〉−(1.68)
∫
ρψ(x)4/3dx−ar(γ(1)

t ) (61)
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we find from Theorem 5 and Hölder’s inequality (see also (35) )that

br≥−Cε−3/2
∥∥Vα−|gr|2 ∗Vα∥∥5/2

5/2−C(ε−1 + l−2)N ′ (62)

where we have used the obvious fact that ρ
γ

(1)
t
≤ρψ. From Minkowski’s inequality

we have that

∥∥Vα−|gr|2 ∗Vα∥∥5/2 ≤
Mα∑
j=1

Zj
∥∥| ·−Rj|−1−|gr|2 ∗| ·−Rj|−1

∥∥
5/2

≤ AZ

Mα∑
j=1

∥∥| ·−Rj|−1−|gr|2 ∗| ·−Rj|−1
∥∥

5/2

but a computation gives∥∥| ·−Rj|−1−|gr|2 ∗| ·−Rj|−1
∥∥

5/2 =Cr1/5 (63)

so we get ∥∥Vα−|gr|2 ∗Vα∥∥5/2
5/2≤Cr

1/2(ZMα)5/2≤CMαr
1/2l9/2Z

4
(64)

It remains to estimate the term Tr
(
hγ

(2)
t

)
in (52). First we note that

Tr
(
hγ

(2)
t

)
=Tr

(
htγ

(2)
t

)
with ht=−(1−ε)∆α−Vα(x)χ{x:dist(x,∂(lDα))≤t}.

(65)

Now we will apply the Lieb-Thirring inequality from Theorem 4

Tr
(
htγ

(2)
t

)
≥ −Tr

(
htγ

(2)
t

)
−
≥−Tr(ht)−

≥ −CLT

∫
lDα

Vα(x)5/2χ{x:dist(x,∂(lDα))≤t}dx (66)

−C1l
−3
∫
lDα

Vα(x)χ{x:dist(x,∂(lDα))≤t}dx

where in (66) we have used that 0≤γ(2)
t ≤1. Again using Minkowski’s inequality

we conclude that∫
lDα

Vα(x)5/2χ{x:dist(x,∂(lDα))≤t}dx≤C
(
MαZ

)5/2
t1/2≤CMαt

1/2l9/2Z
4

(67)

l−3
∫
lDα

Vα(x)χ{x:dist(x,∂(lDα))≤t}dx≤CMαl
−2tZ. (68)
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Finally we must deal with the fact that it is β= (1− ε)βphys and not βphys that
appears in (59). We first note that it follows from the assumption thatEβ0

TF,Rα,Zα≤
0 that ETF,Rα,Zα≤CMαZ

7/3
. To see this note first that if we use the minimizer

ρβ0 for the functional Eβ0
TF,Rα,Zα as a trial density in the functional Eβ0/2

TF,Rα,Zα we
conclude that

0≥Eβ0
TF,Rα,Zα≥

β0

2

∫
ρ

5/3
β0

+E
β0/2
TF,Rα,Zα≥

β0

2

∫
ρ

5/3
β0
−CMαZ

7/3

where the last estimate follows from the no-binding Theorem of Thomas-Fermi
theory, i.e., the positivity of the function fβ0/2 (see Lemma 2). Now using ρβ0 as
a trial density in the physical Thomas-Fermi functional ETF,Rα,Zα gives

ETF,Rα,Zα ≤ ETF,Rα,Zα(ρβ0)=(βphys−β0)
∫
ρ

5/3
β0

+Eβ0
TF,Rα,Zα

≤ (βphys−β0)
∫
ρ

5/3
β0
≤2(βphys−β0)β−1

0 CMαZ
7/3
.

We are now in a position to estimate EβTF,Rα,Zα in terms of the physical
Thomas-Fermi energy ETF,Rα,Zα . Indeed using the scaling (13) we see that

EβTF,Rα,Zα = (1−ε)6
ETF,Rα,(1−ε)−3Zα

= (1−ε)6

f(Rα,(1−ε)−3Zα)−CTF(1−ε)−7
M∑
j=1

Z
7/3
j χα(Rj)


≥ (1−ε)6

f(Rα,Zα)−CTF(1−ε)−7
M∑
j=1

Z
7/3
j χα(Rj)


= (1−ε)6

ETF,Rα,Zα−CTF

[
(1−ε)−7−1

] M∑
j=1

Z
7/3
j χα(Rj)


≥ ETF,Rα,Zα−CMαZ

7/3
[2−(1−ε)6−(1−ε)−7] (69)

where in the third line of (69) we have used that f is a nondecreasing function
of the nuclear charges. together with the observation that (1−ε)−3>1 and in the
bottom line the fact that ETF,Rα,Zα≤CMαZ

7/3
and (1−ε)6

<1.
The lemma now follows if we combine all the estimates (52), (56), (59), (61),

(62), (64), (66), (67), (68), and (69) and choose ε=Z
−δ

, r=Z
−57δ/2

, l=Z
−1/3+δ

,
t=Z

−51δ/2
, where δ=2/87. �

The following Lemma is of purely geometrical content. It claims that if two
nuclei are nearest neighbors and are close enough, then the set of (R,y)∈SO(3)×Q
for which the two nuclei belong to the same tile of the tiling {lDα(R,y)} has
positive measure.



300 P.B. Matesanz and J.P. Solovej Ann. Henri Poincaré

Lemma 7 Let B(x0,r0)⊂D0 be the maximal ball contained in D0 and assume that
x,x′∈R3 satisfy |x−x′|≤ lr0/2. Then, if we call

Ax,x′={(R,y)∈SO(3)×Q :x,x′ belong to the same tile of {lDα(R,y)}}

we have the estimate

µ(Ax,x′)≥
π

6
r3
0, µ= measure on SO(3)×Q. (70)

Proof. It is fairly easy to see that the claim is translationally invariant. We may
therefore assume that x= x0 = 0. Then x,x′ ∈B(0,lr0/2). For |y| ≤ r0/2 and all
R∈SO(3) we have

R−1(B(0,r0/2))−y=B(0,r0/2)−y⊂D0.

Hence x,x′∈B(0,lr0/2)⊂ lR(D0 +y)= lDα(R,y) and the result follows. �

We are now ready to give a proof of our main result, Theorem 1 :

Proof of Theorem 1. We make the tiling localization as before with a tiling of scale
l=Z

−1/3+δ
. Let A= {α :Eβ0

TF,Rα,Zα ≥ 0}. We then find from (10) together with
(30) and (37) that

inf specHR,Z,N ≥
〈∑
α∈A

Eβ0
TF,Rα,Zα

〉
+

〈∑
α6∈A

ETF,Rα,Zα

〉

−CMZ
7/3−δ−CNZ4/3−δ

. (71)

Using Corollary 1 and Lemma 2 we get

inf specHR,Z,N ≥ −CTF

M∑
j=1

Z
7/3
j −CMZ

7/3−δ−CNZ4/3−δ

+c′Z
7/3

M∑
j=1

〈∑
α

Γ
(
Z

1/3
δα(Rj)

)
χα(Rj)

〉
(72)

where c′>0 and δα(Rj) denotes the nearest neighbor distance among nuclei in the
tile lDα(R,y).

If δ(Rj)≤ lr0/2 we use Lemma 7 to conclude that〈∑
α

Z
7/3

Γ
(
Z

1/3
δα(Rj)

)
χα(Rj)

〉
≥c′′Z7/3

Γ
(
Z

1/3
δ(Rj)

)
.
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For a nucleus Rj such that δ(Rj)≥ lr0/2 we cannot argue as above, but in

this case we have that Z
7/3

Γ(Z
1/3
δ(Rj))≤Z

7/3−7δ�Z
7/3−δ

and this contribution
can therefore be included at the expense of increasing the constant in front of the
error term.

It is a result of Lieb [16] that if N ≥N0, where N0 is the greater integer
smaller than or equal M +2

∑M
j=1Zj then inf specHR,Z,N ≥ inf specHR,Z,N0 . We

may therefore without loss of generality assume that N≤c(Z+1)M and we hence
conclude that

inf specHR,Z,N≥−CTF

M∑
j=1

Z
7/3
j −CMZ

7/3−δ
+cZ

7/3
M∑
j=1

Γ
(
Z

1/3
δ(Rj)

)
.

This concludes the proof of Theorem 1. �

The proof of Theorem 2 follows inmediately from Theorem 1 noticing that

M∑
j=1

Γ
(
Z

1/3
δ(Rj)

)
≥Z−7δ1#

{
Rj ∈R :δ(Rj)≤Z

−1/3+δ1
}
.

A Appendix: the Lieb-Thirring inequality (Th. 4)

Proof of Theorem 4. We shall look first at the case α= 0. In the case of the
Laplacian on the whole space the corresponding inequality, which holds without
the last term, is the celebrated CLR estimate, proved independently by Cwickel [4],
Lieb [13], and Rozenblum [23]. We are however not aware of a reference in the
Neumann case. For completeness we therefore include a proof. The method of Lieb
uses the Feynman-Kac formula and gives by far the best constant. In order not to
introduce the Feynman-Kac formula on the cube we here appeal to Rozenblum’s
method.

The appearance of the constant term is due to the fact that even if V =0, 0
is an eigenvalue corresponding to a constant eigenfunction.

On the orthogonal complement of the constants the Neumann Laplacian sat-
isfies a Sobolev inequality similar to the Dirichlet Laplacian (see e.g. [1]). More
precisely, there exists CS>0 such that for all rectangular boxes Q̃⊂R3 with ec-
centricity (the ratio between the longest and the shortest side) bounded by 2 we
have for all φ∈L2(Q̃) with

∫
Q̃
φ=0 that∫

Q̃

|∇φ|2≥CS
{∫

Q̃

|φ|6
}1/3

.

Thus if ∫
Q̃

[V ]3/2− ≤(CS)3/2≡A (73)
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we have for all φ with
∫
Q̃
φ=0 that

∫
Q̃

|∇φ|2 +
∫
Q̃

V |φ|2 ≥
∫
Q̃

|∇φ|2−
∫
Q̃

[V ]−|φ|2

≥ CS

{∫
Q̃

|φ|6
}1/3

−
{∫

Q̃

[V ]3/2−

}2/3{∫
Q̃

|φ|6
}1/3

≥0

Hence −∆Q̃+V ≥0 in {χQ̃}⊥ if
∫
Q̃

[V ]3/2− ≤(CS)3/2≡A.

Now the idea, which goes back to Rozenblum [23], is to try to cover the whole
original unit cube by cubes of eccentricity bounded by 2 (which from now on will
be called bricks) such that in each of them the condition (73) is satisfied. In order
to do this we shall employ the following special case of a general covering lemma
given by M. de Guzmán [12].

Lemma 8 (covering lemma) Let J(G) be a real-valued function defined over the
class of Borel subsets of a d-dimensional cube Q which is lower-semiadditive (i.e
J(G1∪G2)≥J(G1)+J(G2) if G1∩G2 =∅) and continuous in measure (i.e if Gt
is a nested family of sets continuous in measure, t→J(Gt) is continuous). Then,
for every integer n≥1, there is a covering Ξ of Q by bricks Q̃⊂Q such that the
number of bricks #Ξ≤n, each point of the cube belongs to at most d bricks and
for any Q̃∈Ξ

J(Q̃)≤ 2d+1

n
J(Q). (74)

We will use this Lemma 8 for the function

J(G)=
∫
G

[V ]3/2− (75)

together with the following, which is a consequence of the min-max principle for
the eigenvalues of self-adjoint operators:

n−(−∆Q+V )=min{codimV; V⊂L2(Q) :−∆Q+V >0 on V} (76)

where n−(−∆Q+V ) is the number of non-positive eigenvalues of −∆Q+V . Now
there are two cases: if

∫
Q̃

[V ]3/2− ≤A, then we have exactly one non-positive eigen-

value. If, on the other hand, this is not satisfied, we choose n such that 16
n

∫
Q

[3V ]3/2−
≤A and also being the smallest integer with this property. Moreover, let Q̃1,... ,Q̃n
be the covering given by the Guzmán Lemma and let V be sp{χQ̃1

,... ,χQ̃n}
⊥. Since
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1≤
∑n
j=1χQ̃j≤3 we have, for φ∈V∫

Q

|∇φ|2 +
∫
Q

V |φ|2 ≥
∫
Q

|∇φ|2 1
3

n∑
j=1

χQ̃j −
∫

[V ]−|φ|2
n∑
j=1

χQ̃j

≥ 1
3

n∑
j=1

{∫
Q̃j

|∇φ|2−
∫
Q̃j

[3V ]−|φ|2
}

≥ 0

which follows since ∫
Q̃

[3V ]3/2− =33/2J(Q̃)≤ 16
n

33/2J(Q)≤A

by our choice of n and this proves the α=0 case. Hence

n−(−∆Q+V )≤codim V=n≤ 33/216
A

∫
Q

[V ]3/2− +1. (77)

In order to deal with other α values, we need a bound on the bottom of the
spectrum. This is provided by the following: write φ∈H1(Q) as φ=φ1 +φ2 where
φ1 =(

∫
Q
φ)χQ. We have |φ|2≤2|φ1|2 +2|φ2|2 and then, assuming also φ normalized

we get since |φ1|2≤‖φ‖2χQ (recall that Q is a unit cube)∫
Q

|∇φ|2 +
∫
Q

V |φ|2 ≥ CS

{∫
Q

|φ2|6
}1/3

−2
{∫

Q

[V ]
3

2−2s
−

} 2−2s
3
{∫

Q

|φ2|6
} 1−s

3

−2
∫
Q

[V ]−

≥ inf
t>0

{
CSt−2

{∫
Q

[V ]
3

2−2s
−

} 2−2s
3

t1−s

}
−2
∫
Q

[V ]−

≥ −C(s)
{∫

Q

[V ]
3

2−2s
−

} 2(1−s)
3s

−2
∫
Q

[V ]− (78)

where we have picked some 0<s<1 in (78). Now we can end the proof noticing
that

Tr(−∆Q+V )α−=α

∫ ∞
0

n−λ(−∆Q+V )λα−1dλ (79)

(here n−λ(−∆Q+V ) is the number of eigenvalues less than or equal to λ ) and
moreover

n−λ(−∆Q+V )≤n−(−∆Q− [V +λ]−) (80)
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which is an easy consequence of the minimax principle. Now (79), (80) together
imply

Tr(−∆Q+V )α−≤α
∫ |inf spec(−∆Q+V )|

0
n−(−∆Q− [V +λ]−)λα−1dλ. (81)

Now we choose s= 2α
3+2α and from (78), (79), (80) we get

Tr(−∆Q+V )α−≤α
∫ |inf spec(−∆Q+V )|

0
λα−1dλ

{
C0

∫
Q

[V +λ]3/2− dx+1
}

≤C0α

∫
Q

dx

∫ [V ]−

0
[V +λ]3/2− λα−1dλ+ |inf spec(−∆Q+V )|α

=C0α

∫
Q

dx[V ]
3
2 +α
−

∫ 1

0
(1−λ)3/2λα−1dλ+ |inf spec(−∆Q+V )|α

≤Cα
∫
Q

[V ]3/2+α
− +2α

{∫
Q

[V ]−

}α
(82)

where in the last inequality we have used the elementary inequalities

(x+y)α≤xα+yα; x,y≥0, 0<α≤1

or
(x+y)α≤2α−1(xα+yα); x,y≥0, 1<α

and this completes the proof for the unit cube.
In order to prove the Theorem in the case of the tetrahedra described in

the beginning of Sect. II we shall show that the Neumann eigenfunctions in a
tetrahedra can be extended to Neumann eigenfunctions in the unit cube. Note
that we can get all 24 tetrahedra making up the unit cube by repeated reflections
(through faces) of one of the tetrahedra, say, D0. Moreover, it can be easily seen
that it always takes an even number of reflections to return to a given tetrahedron.
Since an even number of reflections leaving D0 invariant is the identity we see
that any function on D0 can be extended consistently to the whole unit cube by
reflections.

If φ is an eigenfunction of −∆D0−V , then φ∈H2(D0) (the Sobolev space of
order 2) with ∂Nφ|∂D0

=0. If we therefore define φ̃ as the extension by reflection
of φ to the whole unit cube Q then φ∈H2(Q) with ∂Nφ|∂Q=0. Moreover, if Ṽ is
the reflected extension of V , then φ̃ is a Neumann eigenfunction of −∆Q− Ṽ with
the same eigenvalue. Thus

Tr(−∆D0−V )α− ≤ Tr(−∆Q− Ṽ )α−
≤ Cα

∫
Q

[Ṽ ]3/2+α
− +Cα

(∫
Q

[Ṽ ]−
)α

= 24Cα
∫
D0

[V ]3/2+α
− +Cα

(
24
∫
D0

[V ]−
)α

�
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