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Invariant Tori, Effective Stability, and Quasimodes with
Exponentially Small Error Terms II -
Quantum Birkhoff Normal Forms

G. Popov

Abstract. The aim of this paper is to obtain quasimodes for a Schrödinger type
operator Ph in a semi-classical limit (h↘ 0) with exponentially small error terms
which are associated with Gevrey families of KAM tori of its principal symbol H.
To do this we construct a Gevrey quantum Birkhoff normal form of Ph around the
union Λ of the KAM tori starting from a suitable Birkhoff normal form of H around
Λ. As an application we prove sharp lower bounds for the number of resonances
of Ph defined by complex scaling which are exponentially close to the real axis.
Applications to the discrete spectrum are also obtained.

Let M be either Rn or a compact real analytic manifold of dimension n ≥ 2 and
let

Ph =
J∑
j=0

Pj(x, hD)hj , 0 < h ≤ h0 , (.1)

be a formally selfadjoint h-differential operator acting on half densities in
C∞(M,Ω

1
2 ), where Pj(x, ξ) are polynomials of ξ with analytic coefficients, and

D = (D1, . . . ,Dn), Dj = −i∂/∂xj. We denote the principal symbol of Ph by
H(x, ξ) = P0(x, ξ), (x, ξ) ∈ T ∗(M), and suppose that its subprincipal symbol is
zero. Our main example will be the Schrödinger operator

Ph = −h2∆ + V (x) ,

where ∆ is the Laplace-Beltrami operator on M , associated with a real analytic
Riemannian metric and V (x) is a real analytic potential on M bounded from
below.

Given % > 1, we define a G% (Gevrey) quasimode Q of Ph as follows:

Q = {(um(·, h), λm(h)) : m ∈Mh},
where um(·, h) ∈ C∞0 (M) has a support in a fixed bounded domain independent
of h, λm(h) are real valued functions of h ∈ (0, h0], Mh is a finite index set for
each fixed h, and

(i) ||Phum − λm(h)um||L2 ≤ C e−c/h
1/%

, m ∈Mh ,

(ii) |〈um, ul〉L2 − δm,l| ≤ C e−c/h
1/%

, m, l ∈Mh ,

for 0 < h ≤ h0. Here C and c are positive constants, and δm,l is the Kronecker
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index. Recall that for any C∞ quasimode Q the right hand side in (i) and (ii) is
ON (hN ) for each N ≥ 0. We define the G% micro-support MS%(Q) ⊂ T ∗(M) of
Q as follows: (x0, ξ0) /∈MS%(Q) if there exist compact neighborhoods U of x0 and
V of ξ0 in a given local chart such that for any G% function v with support in U∫

e−i〈x,ξ〉/h v(x)um(x, h)dx = O
(
e−c/h

1/%
)
, as h↘ 0 ,

uniformly with respect to m ∈Mh and ξ ∈ V .
We are going to find a Gevrey quasimode Q of Ph, the Gevrey micro-support

of which coincides with the union Λ of a suitable Gevrey family of Kolmogorov-
Arnold-Moser (KAM) invariant tori Λω, ω ∈ Ωκ, of H, obtained in [19]. For this
aim we construct a Quantum Birkhoff Normal Form (QBNF) of Ph around Λ
in suitable Gevrey classes starting from the Birkhoff Normal Form (BNF) of its
principal symbol H obtained in Theorem 1.1 [19]. In other words, conjugating Ph
with an unitary h-Fourier Integral Operator (h-FIO) we transform it to a suitable
h-pseudodifferential operator (h-PDO) P 0

h acting on sections in C∞(Tn; L), where
L is a flat Hermitian linear bundle of Tn = (R/2πZ)n associated to the Maslov
class of the invariant tori. The operator Ph has a Gevrey symbol

p0(ϕ, I, h) ∼
∞∑
j=0

(Kj(I) +Rj(ϕ, I))hj , (ϕ, I) ∈ Tn ×D ,

such that each Rj is flat at the Cantor set

Tn ×Eκ , Eκ = {I ∈ D : ω(I) ∈ Ωκ} ,

where ω : D→ Ω is a Gevrey diffeomorphism, Ω is a neighborhood of Ωκ, ω(I)−
∇K0(I) is flat at Eκ, and K0(I)+R0(ϕ, I) is just the BNF of H around Λ obtained
in [19]. Then Rj turn out to be exponentially small around Tn×Eκ and we obtain
a Gevrey quasimode of Ph (see Corollary 1.2). In the C∞ case a similar QBNF
was first obtained by Colin de Verdière [7] for the Laplace-Beltrami operator ∆
on a compact Riemannian manifold M . As a consequence, C∞ quasimodes for ∆
were obtained in [7].

Quasimodes provide information about the spectrum of Ph. If Ph has discrete
spectrum, we can find eigenvalues of Ph exponentially close to the quasi-eigenvalues
λj(h). Moreover, the total multiplicity of the part of the spectrum of Ph approx-
imated by Q modulo an exponentially small error term is given asymptotically
by (2πh)−nVol (Λ) as h↘ 0. The notion “total multiplicity” will be explained in
Sect. 1.2. In the case of “scattering”, using a result of Stefanov [25], we shall find a
large set of resonances of Ph (defined by complex scaling) which are exponentially
close to the real axis (see Sect. 1.3).

Quasimodes associated to a Cantor family of invariant tori were first obtained
by Lazutkin [14] for the Laplace operator in strictly convex bounded domains in R2

(see also [15] and references there) and for n ≥ 2 by Colin de Verdière [7] who also
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constructed a QBNF around a family of invariant tori in the C∞ case. Quasimodes
associated with invariant tori of the classical Hamiltonian have been obtained also
in [5], [6], [8], [18]. An extension of Nekhoroshev’s theorem in quantum mechanics
is proposed by Bellissard and Vittot [3]. They investigate the rate of divergence in
the Rayleigh-Schrödinger perturbation series when the unperturbed Hamiltonian
is given by a family of harmonic oscillators whose frequencies satisfy a small di-
visor condition. If 0 is a nondegenerate minimum of V , Sjöstrand [22] obtained a
quantization formula for all eigenvalues of Ph in an interval [0, hδ], where δ > 0 is
fixed. Stronger result has been proved recently for Gevrey smooth potentials V (x)
by Bambusi, Graffi and Paul [1]. They obtained a quantization formula modulo
O(h∞) for all eigenvalues of Ph in an interval [0, ϕ(h)] where ϕ(h)b lnh → 0 as
h ↘ 0 and b is an explicitly determined constant. A link between Nekhoroshev’s
stability for the classical system and the semi-classical asymptotics with exponen-
tially small error term of the low lying eigenvalues of the corresponding Schrödinger
operator is suggested by Sjöstrand [22].

The techniques developed in the present paper could be used to obtain quasi-
modes with exponentially small error terms for the Laplace operator −∆ with
Dirichlet (Neumann) boundary conditions in a domain Ω ⊂ Rn with a compact
analytic boundary which are associated to Gevrey families of invariant tori of the
broken bicharacteristic flow.

The paper is organized as follows: The main results are formulated in Sect.
1. In Sect. 2 we define suitable classes of Gevrey symbols, h-PDOs and h-FIOs.
We conjugate Ph with an elliptic h-FIO Th to a h-PDO P̃h of Gevrey class acting
on sections in C∞(Tn; L), the principal symbol of which is just the BNF of H and
the subprincipal symbol is 0. In Sect. 3 we obtain a QBNF of P̃h conjugating it
with an elliptic h-PDO Ah. We first find the full symbol of Ah on the Cantor set
Tn×Eκ and then use a suitable Whitney extension theorem in Gevrey classes. To
obtain the full Gevrey symbol of Ah on Tn×Eκ we have to solve the homological
equation

〈∇K0(I), ∂ϕ〉f(ϕ, I) = g(ϕ, I) , ϕ ∈ Tn ,

uniformly with respect to I ∈ Eκ and to provide the corresponding Gevrey esti-
mates for the solution. Here g(ϕ, I) is a Gevrey function in Tn ×Eκ in the sense
of Whitney, and ∫

Tn
g(ϕ, I) dϕ = 0 .

The analysis of the solution of the homological equation is done in Sect. 4. In Sect.
5 we complete the construction of the normal form of Ph near Λ.

I QBNF around KAM tori and quasimodes

1.1 Main results. We are going to formulate the main assumptions on the principal
symbol H of Ph. Fix κ > 0 and τ such that τ > n − 1 when n ≥ 3 and τ > 3/2
when n = 2. Given a bounded domain Ω ⊂ Rn we consider the set Ξκ of all
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ω ∈ Ω having distance ≥ κ to the boundary of Ω and satisfying the Diophantine
condition

|〈ω, k〉| ≥ κ

|k|τ , for all 0 6= k ∈ Zn , (I.1)

where |k| = |k1| + · · · + |kn|. We denote by Ωκ the set of points of a positive
Lebesgue density in Ξκ, namely, ω ∈ Ωκ iff for any neighborhood U of ω the
Lebesgue measure of U ∩Ωκ is positive. Fix s = τ ′+ 2 with τ ′ > max{τ, 5/2}. We
suppose that there exists a real analytic exact symplectic diffeomorphism

χ1 : Tn ×D −→ U ⊂ T ∗(M) ,

where D is a domain in Rn such that the Hamiltonian

H̃(φ, I) def= (H ◦ χ1)(ϕ, I) (I.2)

admits a Gs-BNF around a family of invariant tori with frequencies in a suitable
Ωκ. In other words, we assume that the Hamiltonian H̃(φ, I) satisfies :

(BF ) There exists a domain Ω, a Gs-diffeomorphism ω : D→ Ω, and an exact sym-
plectic transformation χ0 ∈ G1,s(Tn×D,Tn×D) such that H̃(χ0(ϕ, I)) =
K0(I)+R0(ϕ, I) in Tn×D, whereK0 ∈ Gs(D) andR0 ∈ G1,s(Tn×D) satisfy
Dα
I R0(ϕ, I) = 0 andDα

I (∇K0(I)−ω(I)) = 0 for any (ϕ, I) ∈ Tn×ω−1(Ωκ)
and α ∈ Zn+. Moreover, there exists a generating function Φ ∈ G1,s(Tn×D)
of χ0 such that ||Id−ΦϕI(ϕ, I)|| ≤ ε in Tn ×D for some 0 < ε < 1.

Here || · || is the usual sup-norm in the space of n × n matrices. Recall that
Φ is a generating function of χ0 if χ0(∇IΦ(ϕ, I), I) = (ϕ,∇ϕΦ(ϕ, I)) for any
(ϕ, I) ∈ Tn × D. Theorem 1.1 in [19] shows that any real analytic Hamilto-
nian H̃(ϕ, I), (ϕ, I) ∈ Tn × D, which is a sufficiently small perturbation of a
non-degenerate real analytic completely integrable Hamiltonian H0(I), satisfies
(BF ) with Ω = ∇H0(D). The map χ1 provides “action-angle” coordinates for the
completely integrable Hamiltonian H0 and it can be constructed by the Liouville-
Arnold theorem. For example we can take M = Rn and suppose that V has a
non-degenerate minimum E0 = V (0) and that there are no resonances of order 4
(see (0.3), [19]). Then Corollary 1.3, [19], holds. In this case χ1 transforms H to
its Birkhoff normal form.

Set χ = χ1 ◦ χ0 : Tn × D −→ U ⊂ T ∗(M). Let Λ be the union of
the invariant tori Λω = χ(Tn × {I(ω)}) of H with frequencies ω ∈ Ωκ, where
Ω 3 ω → I(ω) ∈ D is the inverse to the frequency map D 3 I → ω(I) ∈ Ω. The
Maslov class of Λω, ω ∈ Ωκ, can be identified to an element ϑ of H1(Tn; Z) = Zn

via the symplectic map χ. Notice that ϑ = (2, . . . , 2) in the case when V has a
nondegenerate minimum E0 = V (0). As in [7] we consider the flat Hermitian line
bundle L over Tn which is associated to the class ϑ. The sections f in L can be
identified canonically with functions f̃ : Rn → C so that

f̃(x+ 2πp) = ei
π
2 〈ϑ,p〉f̃(x) (I.3)
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for each x ∈ Rn and p ∈ Zn. It is easy to see that an orthonormal basis of
L2(Tn; L) is given by em, m ∈ Zn, where

ẽm(x) = exp (i〈m+ ϑ/4, x〉) .

Set ν = τ + n + 1 and fix τ ′ such that τ + n− 1 > τ ′ > max(τ, 5/2). Then fix
ν > µ > τ ′ + 2, choose σ > 1 sufficiently close to 1 such that

ν > µ > σ(τ ′ + 1) + 1 , (I.4)

and set % = σν. Thus % could be any number bigger than ν and sufficiently close
to ν. Set ` = (σ, µ, %) and consider the corresponding class of Gevrey symbols
S`(Tn ×D) (see Sect. 2). Starting from the Gτ

′+1-BNF of H around Λ given by
(BH), we are going to find a QBNF of Ph around Λ in the class of h-PDOs in
L2(Tn; L) with a symbol in S`(Tn × D), conjugating Ph with a suitable h-FIO
with canonical relation C = graph (χ). Recall that Ph is a selfadjoint h-differential
operator acting on half densities in C∞(M,Ω

1
2 ) of the form (.1) with analytic

coefficients in M and with a subprincipal symbol equal to zero.

Theorem I.1 Suppose that there exists a real analytic exact symplectic map χ1 :
Tn × D → U ⊂ T ∗(M) such that the Hamiltonian H̃(ϕ, I) = H(χ1(ϕ, I)),
(ϕ, I) ∈ Tn × D, satisfies (BF ) for s = τ ′ + 2. Then there exist a family of
uniformly bounded h-FIOs Uh : L2(Tn; L)→ L2(M), 0 < h ≤ h0, associated with
the canonical relation C such that the following holds:

(i) U∗hUh − Id is a pseudodifferential operator with a symbol in the Gevrey
class S`(Tn ×D) which is equivalent to 0 on Tn ×D0, where D0 is a subdomain
of D containing the union Λ of the invariant tori

(ii) Ph ◦ Uh = Uh ◦ P 0
h , and the full symbol p0(ϕ, I, h) of P 0

h has the form
p0(ϕ, I, h) = K0(I, h) + R0(ϕ, I, h), where the symbols

K0(I, h) =
∑

0≤j≤ηh−1/%

Kj(I)hj and R0(ϕ, I, h) =
∑

0≤j≤ηh−1/%

Rj(ϕ, I)hj

belong to the Gevrey class S`(T ∗(Tn)), η > 0 is a constant, K0 is real valued, and
R0 is equal to zero to infinite order on the Cantor set Tn ×Eκ.

As a consequence we obtain a G% - quasimode Q of Ph with an index set

Mh = {m ∈ Zn : |Eκ − h(m+ ϑ/4)| ≤ hε}

where ε = ε(µ) ∈ (0, 1). It is easy to see that

#{m ∈Mh} =
1

(2πh)n
Vol (Tn ×Eκ)(1 + o(1))

=
1

(2πh)n
Vol (Λ)(1 + o(1)) , h↘ 0 , (I.5)

where Vol (Λ) stands for the Lebesgue measure of the union Λ of the invariant tori
in T ∗(M).
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Corollary I.2 Let um(x, h) = Uh(em)(x), and λm(h) = K0(h(m + 1
4ϑ), h), for

m ∈Mh. Then
Q = {(um(x, h), λm(h)) : m ∈Mh}

is a G%-quasimode of Ph. Moreover,

MS%(Q) = Λ. (I.6)

To prove Corollary 1.2 we write P 0
h = K0

h + R0
h, where the symbols of K0

h

and R0
h are K0(I, h) and R0(ϕ, I, h) respectively. It is easy to see that

P 0
h(em)(ϕ) = (λm(h) + R0(ϕ, h(m+ ϑ/4), h)) em(ϕ)

for any m ∈Mh. On the other hand,

|Dβ
ϕD

α
I R

0(ϕ, I, h)| ≤ C |α|+|β|+1 β! σα! µ , ∀ (ϕ, I, h) ∈ Tn ×D × (0, h0] ,

because of (II.3). Then there exist two positive constants C1 and c depending only
on the constant C such that for every α, β ∈ Zn+ the following estimate holds

|∂βϕ∂αI R0(ϕ, I, h)| ≤ C
|α|+|β|+1
1 β! σα! µ exp

(
−c |Eκ − I|−

1
µ−1

)
,

for each (ϕ, I, h) ∈ Tn×D×(0, h0], I /∈ Eκ, where |Eκ−I| = infI′∈Eκ |I ′−I| is the
distance to the compact set Eκ (see [19], (1.3)). Using the inequality µ < ν < %,
and choosing appropriately ε we prove that Q satisfies (i) in the introduction. On
the other hand (ii) and (I.6) follow directly from the definition of the index set
Mh, the orthogonality of em, and (i) in Theorem 1.1. 2

1.2 Applications to the discrete spectrum. Consider now the Schrödinger operator
Ph = −h2∆ + V (x) in M , where ∆ is the Laplace-Beltrami operator associated
with a real analytic Riemannian metric on M which coincides with the Euclidean
metric when M = Rn. Suppose that Ph satisfies the assumptions of Theorem 1.1
in a bounded subdomain of T ∗(M). Set E1 = max{H(x, ξ) : (x, ξ) ∈ Λ}. Suppose
that H−1((−∞, E2]) is compact for some E2 > E1 and fix E ∈ (E1, E2) and
E0 < min{H(x, ξ) : (x, ξ) ∈ Λ}. We need that assumption only when M = Rn.
Then Ph, 0 < h ≤ h0, has only a discrete spectrum in [E0, E]. Hereafter h0 > 0
is chosen sufficiently small. Fix c ≥ ε ≥ 0 and C ′ > C, where c and C are the
constants in the definition of Q. Denote by Πh the spectral projector of Ph and
for each 0 < h ≤ h0 and m ∈Mh set

∆h
ε,m =

[
λm(h) − C ′ e−(c−ε)/h1/%

, λm(h) + C ′ e−(c−ε)/h1/%
]
.

Then there exists at least one eigenvalue of Ph in ∆h
0,m, and we have

||Πh(∆h
ε,m)um − um|| ≤ e−ε/h

1/%
, 0 < h ≤ h0 � 1 ,m ∈Mh
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(see [15], Proposition 32.1 and (32.2)). Set

Ih = ∪{∆h
ε,m : m ∈Mh}

and fix A > 2(2π)−n Vol(Λ). Taking into account (I.5) we obtain that Ih ⊂ [E0, E]
is a finite union of disjoint intervals Ihj of length∣∣Ihj ∣∣ ≤ AC ′h−ne−(c−ε)/h1/%

.

Denote by Lhj the span of all um(·, h) such that m ∈Mh and λm(h) ∈ Ihj . Then

||Πh(Ihj )v − v|| ≤ A′h−ne−ε/h
1/% ||v|| , 0 < h ≤ h0 � 1 ,

for each v ∈ Lhj and some constant A′ > 0. Then it is natural to call

N∗h(Ih) =
∑
j

dim Πh(Ihj )Lhj

total multiplicity of the part of spectrum of Ph in Ih which is approximated by
the quasimode Q modulo an exponentially small error term (for C∞ quasimodes
see [15] ). Moreover, we have

dim Πh(Ihj )Lhj = dimLhj , 0 < h ≤ h0 � 1 ,

hence,

N∗h(Ih) = #{m ∈Mh} =
1

(2πh)n
Vol (Λ)(1 + o(1)) , h↘ 0 . (I.7)

Recall that the function Nh([E0, E]) counting with multiplicities the eigenvalues of
Ph in [E0, E] has a semiclassical asymptotic Nh([E0, E]) = (2πh)−nC1(1 + o(1)),
where C1 = Vol (H−1([E0, E]) is the Lebesgue measure of H−1([E0, E]) in T ∗(M).

1.3 Applications to resonances. Consider a selfadjoint second order differential
operator in Rn

Ph =
∑
|α|+j≤2

aα(x)(hD)α hj .

As in [26] we impose the following hypothesis:

(H1) The coefficients aα(x) are real analytic and they can be extended holomor-
phically to

{rω : ω ∈ Cn, dist(ω,Sn) < ε, r ∈ C, |r| > R, arg r ∈ [−ε, θ0 − ε]}

for some ε > 0 and θ0 > 0 and the coefficients of −h2∆ − Ph tend to zero
as |x| → ∞ in that set uniformly with respect to h.
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(H2) For some C > 0 we have∑
|α|=2

aα(x)ξα ≥ C |ξ|2 , (x, ξ) ∈ T ∗(Rn) .

Then the resonances ResPh of Ph close to the real axis can be defined in a conic
neighborhood Γ of the positive half axis in the lower half plain by the method
of complex scaling (see [23] and [24]). They coincide in Γ with the poles of the
meromorphic continuation of the resolvent

(Ph − z)−1 : L2
comp(Rn) → H2

loc(R
n) , Im z > 0 .

Thang and Zworski [26] obtained a result which implies lower bounds of the the
resonances ResPh of Ph close to the real axis for any h ∈ (0, h0], provided that
there exists a quasimode Q for Ph. Stefanov [25] obtained sharp lower bounds, he
showed that for each h ∈ (0, h0] the number of the resonances of Ph close to the
real axis is not less than the cardinality of the index setMh of the quasimode Q.
We set

Nh = #{λ ∈ ResPh : Reλ ∈ [E0, E], 0 < −Imλ ≤ h−n−2e−c/h
1/% } ,

where the resonances are counted with multiplicities, c > 0 is the constant in the
definition of Q and E0 < E are as in 1.2. Burq [4] showed that there exists ε > 0
and C > 0 such that there are no resonances of Ph, 0 < h ≤ h0, in

{λ ∈ C : Reλ ∈ [E0, E], 0 < −Imλ ≤ εe−C/h } .

Combining Corollary 1.2 with Theorem 1.1 in [25] (which holds also for non-
compactly supported perturbations of −h2∆ satisfying (H1) and (H2)), and using
(I.5), we obtain the following:

Theorem I.3 Suppose that Ph satisfies (H1), (H2), and the assumptions of Theo-
rem 1.1. Then

Nh ≥
1

(2πh)n
Vol (Λ)(1 + o(1)) , h↘ 0 .

II Gevrey symbols h-PDOs and h-FIOs

2.1. Gevrey symbols. We are going to put the operator Ph in a QBNF around the
union of the invariant tori Λ conjugating it by an elliptic h-FIO with a suitable
Gevrey symbol. The resulting operator will be a h-PDO with a Gevrey symbol.
First we define the class of Gevrey symbols that we need. Denote by D a bounded
domain in Rn. Let X be either Tn or a bounded domain in Rm, m ≥ 1. Fix
σ, µ > 1, % ≥ σ + µ − 1, and set ` = (σ, µ, %). We introduce a class of formal
Gevrey symbols FS`(X ×D) as follows. Consider a sequence of smooth functions
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pj ∈ C∞0 (X×D), j ∈ Z+ such that supp pj is contained in a fixed compact subset
of X ×D. We say that

∞∑
j=0

pj(ϕ, I)hj (II.1)

is a formal Gevrey symbol in FS`(X × D) if there exists a positive constant C
such that pj satisfies the estimates

sup
X×D

|∂βϕ∂αI pj(ϕ, I)| ≤ Cj+|α|+|β|+1 β! σ α! µ j! % (II.2)

for any α, β and j.
The function p(ϕ, I;h), (ϕ, I) ∈ X ×Rn, is called a realization of the formal

symbol (II.1) in X ×D if for each 0 < h ≤ h0 it is smooth with respect to (ϕ, I)
and has compact support in X×D, and if there exists a positive constant C1 such
that

sup
Q

∣∣∂βϕ∂αI (p(ϕ, I, h)−
N∑
j=0

pj(ϕ, I)hj)
∣∣

≤ hN+1C
N+|α|+|β|+2
1 β! σ α! µ (N + 1)! % (II.3)

for any multi-indices α, β and N ∈ Z+, where Q = X ×D × (0, h0]. For example,
one can take

p(ϕ, I, h) =
∑

j≤ εh−1/%

pj(ϕ, I)hj ,

where ε > 0 depends only on the constant C1 and the dimension n (for σ = µ = 1
see [22], Sect. 1). We denote by S`(X ×D) the corresponding class of symbols.

Given g ∈ S`(X ×D), we say that g ∈ S−∞` (X ×D) if

sup
Q
|∂βϕ∂αI g(ϕ, I;h)| ≤ hN CN+|α+β|+1 β! σ α! µN ! %

for 0 < h ≤ h0, ∀N ∈ Z+, and for any multi-indices α, β ∈ ZN+ , or equivalently

sup
Q
|∂βϕ∂αI g(ϕ, I;h)| ≤ C

|α+β|+1
1 β! σ α! µ exp(−ch−1/%)

for some C1, c > 0, and any h ∈ (0, h0], α, β ∈ Zn+. Moreover, given f, g ∈
S`(X × D), we say that f is equivalent to g (f ∼ g) if f − g ∈ S−∞` (X × D).
It is not hard to prove that any two realizations of

∑∞
j=0 pjh

j in S`(X ×D) are
equivalent. When σ = µ and % = 2σ − 1, we set Sσ = S` and Sσ,−∞ = S−∞` .

Having two symbols p, q ∈ S`(X ×D) we denote their composition by p ◦ q ∈
S`(X ×D) which is the realization of

∞∑
j=0

cj h
j ∈ FS`(X ×D),
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where
cj(ϕ, I) =

∑
r+s+|γ|=j

1
γ!
Dγ
I pr(ϕ, I) ∂γϕqs(ϕ, I). (II.4)

In particular, S` becomes an algebra under this composition. Having a symbol
p ∈ S`(X ×D) associated to the formal symbol (II.1), we define its conjugate p∗

as the realization of the formal symbol

∞∑
j=0

cj h
j ∈ FS`(X ×D),

where
cj(ϕ, I) =

∑
r+|γ|=j

1
γ!
Dγ
I ∂

γ
ϕpr(ϕ, I).

To each symbol p ∈ S`(X ×D) we associate an h-pseudodifferential operator
(h-PDO) by

Phu(x) = (2π h)−n
∫

R2n
ei〈x−y,ξ〉/h p(x, ξ, h)u(y)dξdy, u ∈ C∞0 (X).

It is well defined modulo exp(−ch−1/%). Indeed, for any p ∈ S−∞` we have

||Phu||L2 ≤ C exp(−ch−1/%)||u||L2 , u ∈ C∞0 (X),

with some positive constants c and C. Then the composition of two h-PDOs Ph
and Qh with symbols p, q ∈ S`(X×D) is a h-PDO of the same class with a symbol
p ◦ q, and the L2-adjoint of Ph has a symbol p∗. Moreover, h-PDOs with symbols
of the class Sσ = S`, ` = (σ, σ, 2σ − 1), σ > 1, remain in the same class after a
Gσ change of the x variables, and they can be defined as well on any Gσ compact
manifold (see Theorem 2.3 [9]).

Let u(x, h) be a family of smooth functions in M for 0 < h ≤ h0. The G%

micro-support MS%(u) ⊂ T ∗(M) of u is defined as follows: (x0, ξ0) /∈ MS%(u) if
there exists c > 0 and compact neighborhoods U of x0 and V of ξ0 in a given local
chart such that for any G% function v with compact support in U∫

e−i〈x,ξ〉/h v(x)u(x, h)dx = O
(
e−ch

−1/%
)
, as h↘ 0 ,

uniformly with respect to ξ ∈ V . Obviously, (x0, ξ0, x0,−ξ0) does not belong to the
G% microsupport of the distribution kernel of the h-PDO Ph above if its amplitude
p ∈ S` belongs to S−∞` in a neighborhood of (x0, ξ0).

2.2. Quantization of χ1. We are going to quantize the real analytic symplectic
transformation (x, ξ) = χ1(y, η) defined by (I.2). Set

C1 = {(χ1(y, η), y, η) : (y, η) ∈ Tn ×D}
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and denote
C ′1 = {(x, y, ξ, η) : (x, ξ, y,−η) ∈ C1}.

Recall that χ1 : Tn × D → T ∗(M), D ⊂ Rn, is exact symplectic , hence C ′1 is
an exact Lagrangian submanifold of T ∗(M × Tn). In other words, the pull-back
ı∗α of the canonical one-form α of T ∗(M ×Tn) via the inclusion map is an exact
form,

ı∗α = df (II.5)

for some analytic function f on C ′1. This means that the Liouville class [ı∗α] of C ′1
is trivial in the first cohomology group H1(C ′1; R) which allows us to quantize χ1.
Given σ > 1, we are going to define a class of h-FIOs the distribution kernels of
which are oscillatory integrals in the sense of Duistermaat [5] associated with C ′1
and having Gevrey symbols in Sσ.

Locally C ′1 can be defined by a nondegenerate real analytic phase function
as follows. Let us fix some ζ0 = (x0, y0, ξ0, η0) in C ′1. Choosing suitable analytic
local coordinates x in a neighborhood U0 of x0, we can parameterize (locally) the
Lagrangian manifold C1 by (y, ξ) ∈ U1 × U2, where U1 is a local chart of Tn and
U2 is a neighborhood of ξ0 in Rn. Then there exists a real analytic function φ(y, ξ)
in U1 × U2 such that C1 = {(φ′ξ, ξ, y, φ′y)} and det ∂2φ/∂y∂ξ 6= 0 in U1 × U2
(see [12], Proposition 25.3.3). It is uniquely defined up to a constant, and we fix
it by φ(y0, ξ0) = 〈x0, ξ0〉 − f(ζ0), where f is given by (II.5). The real analytic
phase function Ψ(x, y, ξ) = 〈x, ξ〉−φ(y, ξ) defines locally the Lagrangian manifold
C ′1, namely, rank d(x,y,ξ)dξΨ = n on OΨ = {(x, y, ξ) : dξΨ = 0}, and the map

ıΨ : OΨ 3 (x, y, ξ) −→ (x, y,Ψ′x,Ψ
′
y) ∈ C ′Ψ

is a local diffeomorphism in C ′1. Moreover, we have

Ψ(x0, y0, ξ0) = f(ζ0). (II.6)

We are ready to define h-FIOs associated to C1 and mapping C∞(Tn; Ω
1
2×L)

to C∞0 (M,Ω
1
2 ), where Ω

1
2 is the corresponding half density bundle and the sections

in L are defined by (I.3). Fix σ > 1 and choose a symbol a ∈ S`(U × U2) =
Sσ(U × U2), ` = (σ, σ, 2σ − 1), where U = U0 × U1. We extend a for y ∈ Rn by

ã(x, y + 2πp, ξ, h) = e−i
π
2 〈ϑ,p〉 a(x, y, ξ, h) , (x, y, ξ) ∈ U ×Rn , p ∈ Zn ,

and we extend φ as a 2π periodic function with respect to y in U0×(U1+2πZn)×U2.
Then given a section u ∈ C∞(Tn; L) of the linear bundle L we set

Thu(x) = (2π h)−n
∫

Rn

∫
U1

eiΨ(x,y,ξ)/h ã(x, y, ξ, h) ũ(y)dξdy, (II.7)

where ũ satisfies (I.3). Notice that ã(x, y, ξ, h)ũ(y) is 2π periodic with respect to
y in Rn and we can replace U1 by U1 + 2πp for any p ∈ Zn . Denote by Kh(Ψ, a)
the distribution kernel of Th. We define a class of h-FIOs

Th : C∞(Tn; Ω
1
2 ⊗ L) → C∞0 (M,Ω

1
2 )
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with Gσ Gevrey symbols as a finite sum of operators given microlocally by (II.7),
where the half density bundles have been trivialized by dividing with the corre-
sponding canonical half densities.

We denote the class of the distribution kernels Kh of Th by Iσ(M ×Tn, C ′1;
Ω

1
2 ⊗ L′, h), where L′ is the dual bundle to L. One can show that the definition

does not depend on the choice of the phase functions. Indeed, fix ζ0 ∈ C ′1 as above
and choose as above a real analytic nondegenerate phase function Φ(x, y, ξ) such
that C ′1 = CΦ locally near ζ0 and such that (II.6) holds. It can be proved that
there exists a symbol g ∈ Sσ such that ζ0 /∈ MS2σ−1(Kh − Kh(Φ, g)), where
Kh(Ψ, a) denotes the distribution kernel of (II.7) (one can also take more general
phase functions as in [5], Proposition 1.3.1). Here we use the following stationary
phase lemma:

Lemma II.1 Let Φ(x, y) be a real analytic function in a neighborhood of (0, 0) in
Rm1+m2 . Assume that Φ′x(0, 0) = 0 and that Φ′′xx(0, 0) is non-singular. Denote by
x(y) the solution of the equation Φ′x(x, y) = 0 with x(0) = 0 given by the implicit
function theorem. Then for any g ∈ Sσ(U), where U is a suitable neighborhood of
(0, 0) we have ∫

eiΦ(x,y)/h g(x, y, h)dx = eiΦ(x(y),y)/hG(y, h),

where G ∈ Sσ.

To prove the lemma we first use the Morse lemma with parameters for real
analytic functions which can be proved as in [12], Lemma C.6.1, and then we follow
the proof of Lemma 7.7.3 in [12] (see also [9]). Actually it could be proved that
Lemma 2.1 holds also when Φ ∈ Gσ.

The principal symbol of Th (see [5], [16]) is of the form eif(ζ)/hΥ(ζ), where
Υ is a smooth section in Ω

1
2 (C ′1)⊗MC ⊗ π∗C(L′). Here Ω

1
2 (C ′1) is the half density

bundle of C ′1, MC is the Maslov bundle of C ′1, and π∗C(L′) is the pull-back of L′

via the canonical projection πC : C ′1 → Tn. The bundle Ω
1
2 (C ′1) is trivialized by

the pull-back of the canonical half density of Tn ×D via the canonical projection
π2 : C ′1 → Tn×D. As in the proof of Theorem 2.5, [7], π∗C(L′) can be canonically
identified with the dual M ′C of the Maslov bundle. Hence, the principal symbol of
Th can be canonically identified with a smooth function b on C ′1. Moreover, for
any Th of the form (II.7) we have

b(φ′ξ(y, ξ), y, ξ,−φ′y(y, ξ)) = a0(φ′ξ(y, ξ), y, ξ)|det ∂2φ/∂y∂ξ(y, ξ)|−1/2 ,

where a0 is the leading term of the amplitude a.
We choose an operator T1h as above with a principal symbol equal to one

in a neighborhood of the pull-back via π2 of the union of the invariant tori Λ of
H ◦ χ1, given by (BF ).

Using Lemma 2.1 it can be proved that Qh = T ∗1hT1h is a h-PDO in
C∞(Tn,L), with a symbol q(x, ξ) =

∑∞
j=0 qj(x, ξ)h

j in Sσ(Tn×D). Moreover, its
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principal symbol is equal to 1 in a neighborhood U of Λ and we can assume that
q1(x, ξ) = 0 in U . To do this we write T1h = Ah+hBh, where the principal symbol
of Ah is equal to 1 in U , and then we solve a linear equation for the real part of the
principal symbol of B. Let us conjugate Ph by an operator T1h defined as above.
Using Lemma 2.1 it can be proved that P 1

h = T ∗1hPhT1h is a h-PDO in C∞(Tn,L),
with a symbol in Sσ(Tn×D). Moreover, we have P 1

h = T−1
1h PhT1h + h2Rh, where

Rh is a h-PDO. As in Lemma 2.9, [7], we obtain that the principal symbol of P 1
h

is equal to H ◦ χ1 and that its subprincipal symbol is zero.

2.3. Quantization of χ0. We are going to conjugate P 1
h with a h-FIO T2h :

L2(Tn; L) → L2(Tn; L) associated to the canonical relation graph (χ0), where
(x, ξ) = χ0(y, I) is given by (BF ). The distribution kernel of T2h has the form

(2π h)−n
∫

ei(〈x−y,I〉+φ(x,I))/h b(x, I, h) dI,

where φ(x, I) = Φ(x, I) − 〈x, I〉, and Φ ∈ G1,s(Tn ×D) is given by (BF ), while
b is a symbol of Gevrey class S˜̀(Tn ×D) with ˜̀= (σ, µ, σ + µ− 1) and µ > s =
τ ′ + 1 > σ > 1 is fixed in (I.4). We suppose that the principal symbol of T2h is
equal to 1 in a neighborhood of Tn ×D. Set Th = T1h ◦ T2h.

Proposition II.2 The operator P̃h = T ∗h ◦Ph ◦Th is a h-PDO with a symbol in the
class S˜̀, where ˜̀= (σ, µ, σ + µ− 1). Moreover, the principal symbol of P̃h equals
H̃ = H ◦ χ, and its sub-principal symbol is zero.

Proof. We are going to show that P̃h = T ∗2h ◦P 1
h ◦T2h is a h-PDO with a symbol in

S˜̀. Denote by a ∈ Sσ = S(σ,σ,2σ−1)(Tn ×D) the amplitude of P 1
h and recall that

b ∈ S˜̀(Tn×D). Choosing a suitable partition of the unity in Tn, we suppose that
the support of b(z, η, h) with respect to z is contained in a fixed local chart of Tn.
Then the Schwartz kernel of the operator P 1

h ◦ T2h can be written in the form

(2π h)−n
∫

Rn

ei(〈x−y,η〉+φ(x,η))/h

×
(

(2πh)−n
∫

Rn×D
eiψ(x,z,ξ,η)/h q(x, z, ξ, η, h) dzdξ

)
dη , (II.8)

where q(x, z, ξ, η, h) = a(x, ξ, h)b(z, η, h), and

ψ(x, z, ξ, η) = 〈x− z, ξ − η〉+ φ(z, η)− φ(x, η)

= 〈x− z, ξ − η + φ̃z(x, z, η)〉 .
Setting x̃ = (x, z) and ξ̃ = (ξ, η) we obtain that q(x̃, ξ̃, h) belongs to the symbol
class S˜̀. Consider the inner integral u(x, η, h) in (II.8). Changing the variables in
it we obtain

u(x, η, h) = (2πh)−n
∫

ei〈z,ξ〉/hQ(x, z, ξ, η, h) dzdξ (modSσ,−∞ ) ,
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where Q is again in S˜̀. Applying the Taylor formula at z = 0 and then integrating
by parts with respect to ξ we obtain that u belongs to S˜̀. Now we can write the
Schwartz kernel of the operator P̃h in the form

(2π h)−n
∫

Rn

ei〈x−y , ξ〉/h

×
(

(2π h)−n
∫

Rn×D
eiΨ(y,z,ξ,η)/h b(z, ξ, h)u(z, η, h)dzdη

)
dξ. (II.9)

The phase function Ψ can be written as follows

Ψ(x, y, z, ξ, η) = 〈y − z , ξ − η〉+ φ(z, η)− φ(z, ξ)

= 〈y − z − φ̃ξ(z, ξ, η) , ξ − η〉

where

φ̃ξ(z, ξ, η) =
∫ 1

0
∂φ/∂ξ(z, ξ + t(η − ξ)) dt

is analytic with respect to z and Gµ with respect to (ξ, η), i.e. φ̃ξ ∈ G1,µ with
respect to (z, ζ), ζ = (ξ, η). The stationary points with respect to (z, η) are η = ξ

and z = y− φ̃ξ(z, ξ, ξ) in view of (BF ). Integrating by parts with respect to (z, η)
in the inner integral we can suppose that

|z − y + φ̃ξ(z, ξ, η)| , |η − ξ| � 1

on the support of b(z, ξ, h)u(z, η, h). On the other hand dzφ̃ξ(0, ξ, ξ) is nonde-
generate in view of (BF ) and there exists z = z̃(y, ϕ, ξ, I) given by the implicit
function theorem such that ϕ = z − y + φ̃ξ(z̃, ξ, η). Moreover, one can show that
z̃(y, ϕ, ξ, η) is real analytic with respect to (y, ϕ) and Gµ with respect to (ξ, η) and
that for any function g(z, ξ, η) of class Gσ,µ with respect to (z, ζ), ζ = (ξ, η), the
function g(z̃(y, ϕ, ξ, η), ξ, η) is Gσ,µ with respect to ((y, ϕ), (ξ, η)) (see Appendix
A.2). We make a change of the variables in the inner integral in (II.9) setting
ϕ = z − y + φ̃ξ(z, ξ, η) and I = η − ξ. Then the inner integral becomes

v(y, ξ, h) = (2πh)−n
∫

ei〈ϕ,I〉/hR(ϕ, y, ξ, I, h) dϕdI ,

where R ∈ S˜̀. Using the Taylor formula at ϕ = 0 and integrating by parts with
respect to I we obtain that v belongs to S

l̃
. Moreover, choosing the subprincipal

symbol of T2h so that T ∗2h = T−1
2h +O(h2), we obtain that the subprincipal symbol

of P̃h is 0. 2
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III Normal form of P̃h

We can suppose now that P̃h is a selfadjoint pseudodifferential operator with a
symbol p ∈ S˜̀(Tn × Γ), ˜̀= (σ, µ, σ + µ− 1), where

p(ϕ, I;h) ∼
∞∑
j=0

pj(ϕ, I)hj ,

and
p0(ϕ, I) = p0(I) = K0(I) , p1(ϕ, I) = 0, ∀(ϕ, I) ∈ Tn ×Eκ.

Recall that Eκ is a Cantor set in a bounded domain D such that each I ∈ Eκ
is of a positive Lebesgue density, i.e. the Lebesgue measure of Eκ ∩ U is positive
for any neighborhood U of I. Then given ` = (σ, µ, %), we can define S`(Tn ×Eκ)
as above, where the derivatives with respect to I in Eκ are taken in the sense of
Whitney. On the other hand, having a (formal) symbol

p(ϕ, I) =
∞∑
j=0

pj(ϕ, I)hj ∈ FS`(Tn ×Eκ) ,

we can extend it to a formal symbol p̃ ∈ FS`(Tn ×D) using a suitable Whitney
extension theorem in Gevrey classes (see [19], Theorem 4.1). In other words, using
that theorem we can extend simultaneously all pj to Gevrey functions of the same
class in Tn ×D with a Gevrey constant C independent on j. Recall that for any
f ∈ C∞(Tn ×D) with f(ϕ, I) = 0 for (ϕ, I) ∈ Tn ×Eκ, we have

∂αI ∂
β
ϕf(ϕ, I) = 0, for all (ϕ, I) ∈ Tn ×Eκ,

for any multi-indices α, β ∈ Zn+. Hence, if

p(k) =
∑

0≤j≤ηh−1/%

p
(k)
j hj , k = 1, 2 , η > 0 ,

are two extensions of the formal Gevrey symbol p in FS`(Tn×D), then p(1)−p(2)

is a flat function on Tn ×Eκ for each 0 < h ≤ h0.
We are going to transform P̃h to a normal formal P 0

h conjugating it with
an elliptic pseudodifferential operator Ah with a symbol a(ϕ, I, h) in S`(Tn × Γ)
where ` = (σ, µ, %), % = σν and ν = τ +n+ 1. To this end we consider p(ϕ, I;h) as
a symbol of the class S˜̀(Tn×Eκ), where ˜̀= (σ, µ, σ+µ− 1). The main technical
part in the proof is the following:

Theorem III.1 There exist symbols a and p0 in S`(Tn × Eκ), ` = (σ, µ, %), given
by

a(ϕ, I, h) ∼
∞∑
j=0

aj(ϕ, I)hj , p0(I, h) ∼
∞∑
j=0

p0
j (I)hj ,
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with a0 = 1, p0
0 = K0, p

0
1 = 0, such that

p ◦ a− a ◦ p0 ∼ 0

in S`(Tn ×Eκ).

Theorem 1.1 follows from the result above. First, using [19], Theorem 4.1, we
extend a to a symbol of a pseudodifferential operatorAh in S`(Tn×Γ), ` = (σ, µ, %)
so that a0 = 1, and set Vh = Th◦Ah. Then we have Ph◦Vh = Vh◦(P 0

h+Rh), where
P 0
h and Rh have the desired properties. Unfortunately, Vh may not be an unitary

operator. For this reason we consider the pseudodifferential operator Wh = V ∗h ◦Vh
with a symbol w(ϕ, I, h) =

∑∞
j=0 wj(ϕ, I)hj in S`(Tn × Γ). Then w0 = 1 and we

have:

Lemma III.2 For each j the function p0
j (I) is real valued on Eκ and wj(ϕ, I) does

not depend on ϕ for each I ∈ Eκ.

Proof. We have w0 = 1, p0
0(I) = K0(I), p0

1 = 0. Moreover, it is easy to see that

Wh ◦ (P 0
h +Rh) = (P 0∗

h +R∗h) ◦Wh ,

since Ph is selfadjoint. Then we have p0 ◦ w = w ◦ p0 on Tn × Eκ. This equality
implies

1
i
Lωw1(ϕ, I) + p0

2(I)− p0
2(I) = 0, I ∈ Eκ,

where Lω stands for the derivative along the vector field ω(I) = ∇K0(I), namely,

Lw def=
n∑
j=1

ωj(I)∂ϕj . (III.1)

Integrating in ϕ ∈ Tn we obtain that the imaginary part =p0
2 = 0 and w1(ϕ, I) =

w1(0, I). In the same way we get by induction

1
i
Lωwj(ϕ, I) + p0

j+1(I)− p0
j+1(I) = 0, I ∈ Eκ,

and as above we prove that p0
j is real valued and that wj+1 does not depend on

I ∈ Eκ. 2

The symbol q(ϕ, I, h) of Qh = (V ∗h ◦ Vh)−1/2 belongs to S`(Tn × Γ), ` =
(σ, µ, %), and q(ϕ, I, h)− q(0, I, h) has a zero of infinite order at Tn ×Eκ in view
of Lemma 3.2. Now Uh = Vh ◦Qh is the desired unitary operator. 2
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IV On the homological equation in Gevrey classes

The aim of this Section is to solve the equation Lωu = f in Gevrey classes in Eκ.

Lemma IV.1 Let ω ∈ C∞(Eκ; Rn) satisfy the following Gevrey type estimates:

|Dαω(I)| ≤ C
|α|
1 α! τ

′+2 , ∀ I ∈ Eκ, α ∈ Zn+ \ {0}, (IV.1)

|〈ω(I), k〉| ≥ κ |k|−τ , ∀ I ∈ Eκ, k ∈ Zn \ {0} . (IV.2)

Then there exists a positive constant C0 depending only on n, κ, τ ′, and C1, such
that∣∣Dα

I

(
〈ω(I), k〉−1)∣∣ ≤ C

|α|+1
0 α! max

0≤j≤|α|

(
|k|τj+τ+j(|α| − j)! τ ′+1

)
, (IV.3)

for any I ∈ Eκ, 0 6= k ∈ Zn and α ∈ Zn+.

Proof. Set gk(I) = 〈ω(I), k〉 for 0 6= k ∈ Zn. Applying the Leibnitz rule to the
identity Dα

I (gkg−1
k ) = 0, |α| ≥ 1, we get

Dα
I

(
gk(I)−1) = − gk(I)−1

∑
0<β≤α

(
α
β

)
Dβ
I gk(I)Dα−β

I

(
gk(I)−1) .

Assuming that (IV.3) is valid for |α| < m, we shall prove it for |α| = m. In view
of (IV.1) there exists C2 > 0 depending only on C1 and τ ′ such that

|Dα
I ω(I)| ≤ C

|α|
2

(
α!
|α|

)τ ′+2

, ∀ I ∈ Eκ , α ∈ Zn+ \ {0}.

Set C0 = ε−1C2 with some ε > 0 which will be determined later. Then using the
above inequality, (IV.2), as well as the estimate x!y! ≤ (x+ y)!, we obtain

∣∣Dα
I

(
gk(I)−1)∣∣ ≤ κ−1|k|τ+1α!

∑
0<β≤α

(
β!
|β|

)τ ′+1

C
|β|
2 C

|α−β|+1
0

× max
0≤j≤|α−β|

(
(|α− β| − j)! τ ′+1|k|τj+τ+j

)
≤ dε C

|α|+1
0 α ! max

0≤j≤|α|−1

(
(|α| − j − 1)! τ

′+1|k|τ(j+1)+τ+j+1
)

≤ dε C |α|+1
0 α! max

0≤j≤|α|

(
(|α| − j)! τ ′+1|k|τj+τ+j

)
,

where

dε = κ−1
∑
0<β

ε|β| < εκ−1
∞∑
s=2

snεs−2 < 1
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choosing ε sufficiently small. 2

For any m > 0 we set 〈k〉m = 1 + |k1|m + · · ·+ |kn|m, k ∈ Zn. Next, for any
j ∈ Z+ we denote

m(j) = [(τ ′ + 1)j + τ ] + n+ 1 ,

where [p] stands for the integer part of p ∈ R. Set W (k) = (1 + |k|)n+ε with

0 < ε ≤ min{τ ′ − τ, [τ ]− τ + 1}.

Then
τj + j + τ + n+ ε < m(j) ≤ (τ ′ + 1)j + ν , ∀j ∈ Z+ ,

with ν = τ + n+ 1. Taking into account the inequality

|k|m ≤ nm〈k〉m , m > 0, k ∈ Zn,

and using Lemma 4.1, we get

W (k)
∣∣Dα

I

(
〈ω(I), k〉−1)∣∣ ≤ C

|α|+1
0 α! max

0≤j≤|α|

(
(|α| − j)! τ ′+1〈k〉m(j)

)
, (IV.4)

for any I ∈ Eκ, α ∈ Zn+, and 0 6= k ∈ Zn, with a constant C0 > 0 depending only
on n, κ, and C1.

Suppose that f ∈ C∞(Tn ×Eκ) satisfies∣∣Dα
ID

β
ϕf(ϕ, I)

∣∣ ≤ d0C
µ|α|+|β| Γ(µ|α|+ σ|β|+ q) (IV.5)

for any I ∈ Eκ, α, β ∈ Zn+, and some q > 0, where Γ(x), x > 0, is the Gamma
function and σ and µ are suitable positive constants. Let∫

TN
f(ϕ, I)dϕ = 0 . (IV.6)

We are going to solve the equation

Lωu(ϕ, I) = f(ϕ, I) , u(0, I) = 0 , (IV.7)

and provide the corresponding estimates for the derivatives of u, where Lω is
defined in (III.1) and ω(I) satisfies (IV.1), (IV.2) and (IV.4) on Eκ.

Proposition IV.2 Let f ∈ C∞(Tn×Eκ) satisfy (IV.5) and (IV.6), where σ > 1 and
µ−1 > σ(τ ′+1). Then the equation (IV.7) has a unique solution u ∈ C∞(Tn×Eκ)
and there is c0 = c0(n,C0) > 1, C0 being the constant in (IV.4), such that if
C > c0, then the solution u of (IV.7) satisfies the estimate∣∣Dα

ID
γ
ϕu(ϕ, I)

∣∣ ≤ Rd0C
µ|α|+|γ|+ν Γ (µ|α|+ σ|γ|+ σν + q) , (IV.8)

for any I ∈ Eκ, and α, γ ∈ Zn+, where R > 0 depends only on n, τ , τ ′ and C0.
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Proof. Consider the Fourier expansions of f and u

f(ϕ, I) =
∑
k∈Zn

ei〈k,ϕ〉 fk(I),

u(ϕ, I) =
∑
k∈Zn

ei〈k,ϕ〉 uk(I),

where
fk(I) = (2π)−n

∫
Tn

e−i〈k,ϕ〉 f(ϕ, I)dϕ,

and uk(I) is defined in the same way. Now, u0 = 0 in view of (IV.6), and

uk(I) = 〈ω(I), k〉−1 fk(I), I ∈ Eκ, 0 6= k ∈ Zn .

Integrating by parts, and using (IV.5) we get for any γ ∈ Zn+ and m ∈ Z+ the
following estimate for the Fourier coefficients of f :

|kγ〈k〉mDα
I fk(I)| ≤ (n+ 1)d0 C

µ|α|+|γ|+m Γ(µ|α|+ σ|γ|+ σm+ q) ,

for any I ∈ Eκ, k ∈ Zn, and any α, γ ∈ Zn+. Now, taking into account (IV.4) we
estimate the quantity

Ak = W (k) |kγDα
I uk(I)|

≤
∑

0≤β≤α

(
α
β

)
β !C |β|+1

0 max
0≤j≤|β|

∣∣∣(|β| − j)! τ ′+1 kγ 〈k〉m(j) D
α−β
I fk(I)

∣∣∣
≤ (n+ 1)d0

∑
0≤β≤α

α!
(α− β)!

C
|β|+1
0 max

0≤j≤|β|

∣∣∣(|β| − j)! τ ′+1 Γ(s)Ct
∣∣∣ .

Here, t = µ|α− β|+ |γ|+m(j) and we write

s
def= µ|α− β|+ σ|γ|+ σm(j) + q.

Using the inequality µ− 1 > σ(τ ′ + 1) we get

s ≤ µ|α− β|+ σ(τ ′ + 1))j + σ|γ|+ σν + q

≤ µ|α| − |β| − σ(τ ′ + 1))(|β| − j) + σ|γ|+ σν + q .

On the other hand, by Stirling’s formula we have

(x !) τ
′+1 ≤ Cx2 Γ((τ ′ + 1)x) , x ≥ 1,

with some constant C2 > 0. Using the relations

Γ(s+ 1) = sΓ(s) , Γ(s)Γ(u) ≤ Γ(s+ u) , ∀ s , u ≥ 1 ,
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and the inequalities σ > 1 and s ≥ 1, we obtain for each 0 ≤ j < |β|

α!
(α− β)!

(|β| − j)! τ ′+1 Γ(s)

≤ C
|β|
2 (s+ |β| − 1) · · · sΓ(s) Γ((τ ′ + 1)(|β| − j))

≤ C
|β|
2 Γ(s+ |β|+ σ(τ ′ + 1)(|β| − j))

≤ C
|β|
2 Γ(µ|α|+ σ|γ|+ σν + q) .

Obviously, the same inequality holds for j = |β|. Moreover,

t ≤ µ|α|+ |γ| − |β|+ ν.

Hence,

Ak ≤ (n+ 1)d0 C0

∑
0≤β≤α

(C0C2C
−1)|β| Cµ|α|+|γ|+ν Γ(µ|α|+ σ|γ|+ σν + q) .

We choose c0 > C0C2 > 1 and set ε = C0C2c
−1
0 . Then for any C > c0 we obtain

Ak ≤ d0 R1C
µ|α|+|γ|+ν Γ(µ|α|+ σ|γ|+ σν + q) ,

where

R1 = (n+ 1)C0

∞∑
s=1

snεs−1 .

Finally, we obtain ∣∣Dα
ID

γ
ϕu(ϕ, I)

∣∣ ≤ ∑
k∈Zn\0

W (k)−1Ak

≤ d0 RC
µ|α|+|γ|+ν Γ(µ|α|+ σ|γ|+ σν + q) ,

where

R = R1

∑
k∈Zn

W (k)−1 .

The proof of the proposition is complete. 2
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V Proof of Theorem 3.1

Set ` = (σ, µ, %), where % = σν. We are looking for symbols a and p0 in S`(Tn×Eκ)
of the form

a ∼
∞∑
j=0

aj(ϕ, I)hj , p0 ∼
∞∑
j=0

p0
j (I)hj ,

where aj ∈ C∞(Tn ×Eκ) and p0
j ∈ C∞(Eκ). Consider the symbol

r = p ◦ a− a ◦ p0 ∼
∞∑
j=0

rj(ϕ, I)hj .

We have a0 = 1, p0
0(I) = p0(I) = K0(I), and p0

1 = p1 = 0 in Tn × Eκ. Then
r0 = r1 = 0 and for any j ≥ 2 we get

rj(ϕ, I) =
1
i
(Lw aj−1)(ϕ, I) + pj(ϕ, I) − p0

j (I) + Fj(ϕ, I) .

Here F2(ϕ, I) = 0, and for j ≥ 3, we have

Fj(ϕ, I) = Fj1(ϕ, I) − Fj2(ϕ, I) ,

Fj1(ϕ, I) =
j−2∑
s=1

∑
r+|γ|=j−s

1
γ!
Dγ
I pr(ϕ, I) ∂γϕ as(ϕ, I) ,

Fj2(ϕ, I) =
j−2∑
s=1

as(ϕ, I) p0
j−s(I) .

We solve the equations rj = 0, j ≥ 2, as follows: First we put

p0
j (I) = (2π)−n

∫
Tn

(pj(ϕ, I) + Fj(ϕ, I)) dϕ , (V.1)

then, using Proposition 4.2, we find aj−1 from the equations

1
i
Lwaj−1(ϕ, I) = fj(ϕ, I) , (V.2)

∫
Tn

aj−1(ϕ, I)dϕ = 0 , (V.3)

where fj(ϕ, I) = p0
j (I)− pj(ϕ, I)− Fj(ϕ, I). For j = 2 we obtain

p0
2(I) = (2π)−n

∫
Tn

p2(ϕ, I) dϕ,
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and
1
i
Lwa1(ϕ, I) = p0

2(I) − p2(ϕ, I) ,
∫

Tn
a1(ϕ, I) dϕ = 0. (V.4)

On the other hand, we can suppose that pj , j ∈ Z+, satisfy the estimates

|∂αI ∂βϕpj(ϕ, I)| ≤ C
j+|α|+|β|+1
1 α!µβ!σ (j!)σ+µ−1

≤ C
j+|α+β|+1
0 α!β! Γ+((µ− 1)|α|+ (σ − 1)|β|+ (σ + µ− 1)(j − 1)) , (V.5)

for any multi-indices α, β ∈ Zn+, j ∈ Z+, where Γ+(x) = Γ(x) for x ≥ 1 and
Γ+(x) = 1 for x ≤ 1. In particular, using Proposition 4.2 we find a solution a1 of
(V.4) such that

|∂αI ∂βϕa1(ϕ, I)| ≤ 2RC0C
µ|α|+|β| Γ(µ|α|+ σ|β|+ %) ,

choosing C > c0. Fix j ≥ 3 and suppose that there exist p0
k(I), 2 ≤ k ≤ j − 1,

satisfying (V.1) and ak(ϕ, I), 1 ≤ k ≤ j − 2, satisfying (V.2) and (V.3), and such
that

|∂αI p0
k(I)| ≤ dk−3/2Cµ|α|Γ(µ|α|+ (k − 1)%) , 2 ≤ k ≤ j − 1 , (V.6)

|∂αI ∂βϕak(ϕ, I)| ≤ dkCµ|α|+|β| Γ(µ|α|+ σ|β|+ k%) , 1 ≤ k ≤ j − 2 , (V.7)

for any (ϕ, I) ∈ Tn×Eκ and α, β ∈ Zn+, where d ≥ 2RC0. Choosing appropriately
d as a function of n, τ, µ, σ, C0 and C only, we shall prove that p0

j and aj−1 satisfy
the same estimates. First we estimate the derivatives of Fj .

Lemma V.1 Let C > 4C0. Then for any α and β in Zn+ we have

|Dα
ID

β
ϕFj1(ϕ, I)| ≤ R1d

j−2Cµ|α|+|β|Γ(µ|α|+σ|β|+ (j − 1)%) , (ϕ, I) ∈ Tn×Eκ ,

where R1 depends only on n, τ, µ, σ, C0 and C.

Proof. Set

Br,s,γ(ϕ, I) =
1
γ!
∂γI pr(ϕ, I)∂γϕas(ϕ, I), (V.8)

where
3 ≤ r + s+ |γ| = j , 1 ≤ s ≤ j − 2. (V.9)

Then |γ|+ r ≥ 2, and by (I.4) we have

(µ−1)|γ|+(σ+µ−1)(r−1) ≥ (µ−1)(|γ|+r−1)−σ ≥ µ−σ−1 > στ ′ > 1 . (V.10)

Taking into account the above inequality, (V.5) and (V.7) we obtain

|∂αI ∂βϕBr,s,γ(ϕ, I)|
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≤
∑
α1≤α

∑
β1≤β

1
γ!

(
α
α1

)(
β
β1

)
|∂γ+α1
I ∂β1

ϕ pr(ϕ, I)| |∂α−α1
I ∂γ+β−β1

ϕ as(ϕ, I)|

≤ ds
∑
α1≤α

∑
β1≤β

(γ + α1)!
β1!
γ!

(
α
α1

)(
β
β1

)
×Γ((µ− 1)|γ + α1|+ (σ − 1)|β1|+ (σ + µ− 1)(r − 1))

≤ Γ(µ|α− α1|+ σ|γ + β − β1|+ s%)C |γ+α1|+|β1|+r+1
0 Cµ|α−α1|+|γ+β−β1| .

Now Lemma A.2 yields
|∂αI ∂βϕBr,s,γ(ϕ, I)| ≤

ds Cµ|α|+|β|
∑
α1≤α

∑
β1≤β

Γ(µ|α|+ σ|β|+ (σ + µ− 1)(|γ|+ r − 1) + s%)

×(2C0/C)|α1+β1|C
|γ|+r+1
0 (2C)|γ| .

Set δ = %− σ − µ+ 1. Since ν > µ we have

δ = σν − µ− σ + 1 > (µ− 1)(σ − 1) > 0 .

On the other hand,

(j − 1)%− δ(|γ|+ r − 1) = (σ + µ− 1)(|γ|+ r − 1) + s% ≥ 1 .

Hence, using Lemma A.1 we get

Γ(µ|α|+ σ|β|+ (σ + µ− 1)(|γ|+ r − 1) + s%)

= Γ(µ|α|+ σ|β|+ (j − 1)%− δ(|γ|+ r − 1))

≤ Γ(µ|α|+ σ|β|+ (j − 1)%)
δ Γ(δ(|γ|+ r − 1))

.

Suppose that C > 4C0. Then, for any r, s, γ satisfying (V.9) we obtain

|∂αI ∂βϕBr,s,γ(ϕ, I)| ≤ R0 d
j−2 Cµ|α|+|β| Γ(µ|α|+ σ|β|+ (j − 1)ν)

× C0C
2|γ|+2r

δ Γ(δ(|γ|+ r − 1))
,

where
R

1/2
0 =

∑
α∈Zn+

2−|α| .
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Hence, we obtain

|Dα
ID

β
ϕFj1(ϕ, I)| ≤

j−2∑
s=1

∑
|γ|+r=j−s

|Dα
ID

β
ϕBr,s,γ(ϕ, I)|

≤ R1 d
j−2Cµ|α|+|β| Γ(µ|α|+ σ|β|+ (j − 1)%) , (V.11)

where

R1 =
R0C0

δ

∑
p∈Zn+1

+

C2|p|+2

Γ(δ(|p|+ 1))
< ∞ .

We have proved the lemma. 2

Now we can estimate p0
j(I), j ≥ 3, given by (V.1). Notice that

∫
Tn

Fj2(ϕ, I)dϕ =
j−2∑
s=1

p0
j−s(I)

∫
Tn

as(ϕ, I)dϕ = 0

in view of (V.3). Hence,

p0
j(I) = (2π)−n

∫
Tn

(pj(ϕ, I) + Fj1(ϕ, I))dϕ ,

and taking into account (V.5) and (V.11) we obtain for any j ≥ 2 the following
inequality:

|∂αI p0
j (I)| ≤ R1d

j−2Cµ|α|Γ(µ|α|+ (j − 1)%)

+ C
|α|+j+1
0 Γ(µ|α|+ (j − 1)(σ + µ− 1))

≤ dj−3/2Cµ|α|Γ(µ|α|+ (j − 1)%) ,

since % = σν > µ + (σ − 1)ν > σ + µ − 1. Here we choose d sufficiently large
as a function of n, τ, µ, σ, C0 and C. This proves (V.6). It remains to estimate
Fj2(ϕ, I) and aj−1(ϕ, I).

Lemma V.2 For any α and β in Zn+we have

|Dα
ID

β
ϕFj,2(ϕ, I)| ≤ M2 d

j− 3
2 Cµ|α|+|β|Γ(µ|α|+σ|β|+(j−1)%) , (ϕ, I) ∈ Tn×Eκ ,

where M2 depends only on n, τ, µ, σ, C0 and C.
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Proof. In view of (V.6) and (V.7) we have

|Dα
ID

β
ϕ(as(ϕ, I)p0

j−s(I))| ≤
∑
γ≤α

(
α
γ

)
|Dγ

ID
β
ϕas(ϕ, I)||Dα−γ

I p0
j−s(I)|

≤ dj−
3
2Cµ|α|+|β|

∑
γ≤α

(
α
γ

)
Γ(µ|γ|+ σ|β|+ s%)

×Γ(µ|α− γ|+ (j − s− 1)%).

Recall that 1 ≤ s ≤ j − 2 and µ > τ ′ + 2 > 9/2. Using Lemma A.3 and the
inequalities

B(σ|β|+ s%, (j − s− 1)%) < B(s, j − s− 1) <

(
j − 2
s− 1

)−1

,

we obtain

|Dα
ID

β
ϕ(as(ϕ, I)p0

j−s(ϕ, I))|

≤ M dj−
3
2Cµ|α|+|β|

∑
γ≤α

(
|α|
|γ|

)−1/6

B(σ|β|+ s%, (j − s− 1)%)1/3

×Γ(µ|α|+ σ|β|+ (j − 1)%) < M1 d
j− 3

2Cµ|α|+|β|
(
j − 2
s− 1

)−1/3

×Γ(µ|α|+ σ|β|+ (j − 1)%),

where M1 = 2M
∑
γ∈Zn+

2−|γ|/6. On the other hand

j−2∑
s=1

(
j − 2
s− 1

)−1/3

≤ 2
+∞∑
p=0

2−p/3 < ∞ .

Then we get

|Dα
ID

β
ϕFj,2(ϕ, I)| ≤ M2 d

j− 3
2 Cµ|α|+|β| Γ(µ|α|+ σ|β|+ (j − 1)%) ,

which proves the lemma. 2

Finally, combining Lemma 5.1 and Lemma 5.2 we estimate the right hand
side of (V.2) as follows:

|∂αI ∂βϕfj(ϕ, I)| ≤ M3 d
j− 3

2 Cµ|α|+|β| Γ(µ|α|+ σ|β|+ (j − 1)%) , ∀α, β ∈ Zn+ ,

where M3 depends only on n, τ, µ, σ, C0 and C. Now applying Proposition 4.2 we
find a solution aj−1 of (V.2) and (V.3) which satisfies (V.7) for k = j−1, choosing
d = d(n, τ, µ, σ, C0, C) sufficiently large. 2
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Appendix

A.1. We are going to recall certain properties of the Gamma function

Γ(x) =
∫ ∞

0
e−t tx−1 dt , x > 0.

We have the following relation

Γ(x)Γ(y) = Γ(x+ y)B(x, y) , x, y > 0 ,

(see [2]), where

B(x, y) =
∫ 1

0
(1− t)x−1 ty−1 dt .

In particular, B(x, y) ≤ y−1 for any x ≥ 1 and y > 0, and we obtain

Lemma A. 1 For any x ≥ 1 and y > 0 we have

Γ(x) Γ(y) ≤ 1
y

Γ(x+ y) .

For any 0 ≤ y ≤ x, x, y ∈ Zn+ we set
(
x
y

)
= x!

y!(x−y)! where 0! = 1 by

convention.

Lemma A. 2 For any α1 ≤ α, β1 ≤ β, and γ ∈ Zn+ and for any s ≥ 1, r ≥ 0 with
|γ|+ r ≥ 2, we have

(γ + α1)!
β1!
γ!

(
α
α1

) (
β
β1

)
Γ((µ− 1)|γ + α1|+ (σ − 1)|β1|+ (σ + µ− 1)(r − 1))

×Γ(µ|α− α1|+ σ|γ + β − β1|+ s%)

≤ 2|γ+α1| Γ(µ|α|+ σ|β|+ (σ + µ− 1)(|γ|+ r − 1) + s%) .

Proof. Using the equality xΓ(x) = Γ(x+ 1), x > 0, we obtain

(γ + α1)!
β1!
γ!

(
α
α1

)(
β
β1

)
Γ(µ|α− α1|+ σ|γ + β − β1|+ s%)

≤ 2|γ+α1| |α|!
|α− α1|!

|β|!
|β − β1|!

Γ(µ|α− α1|+ σ|β − β1|+ σ|γ|+ s%)

≤ 2|γ+α1| Γ(|α|+ |β|+ (µ− 1)|α− α1|+ (σ − 1)|β − β1|+ σ|γ|+ s%)

= 2|γ+α1| Γ(µ|α|+ σ|β| − (µ− 1)|α1| − (σ − 1)|β1|+ σ|γ|+ s%) .

On the other hand, s% > 1 and by (V.10)

(µ− 1)|γ + α1|+ (σ + µ− 1)(r − 1) > 1 ,

and applying Lemma A.1 we complete the proof of the assertion. 2
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Lemma A. 3 Let µ ≥ 9/2. Then there exists a positive constant M such that for
any x, y ∈ Z+ and p ≥ 1, q ≥ 1, we have(

x+ y
x

)7/6

Γ(µx+ p) Γ(µy + q) ≤ M Γ(µ(x+ y) + p+ q)B(p, q)1/3.

Proof. Suppose that x ≥ 1 and y ≥ 1. We have

Γ(µx+ p)Γ(µy + q) = Γ(µ(x+ y) + p+ q)B(µx+ p, µy + q).

On the other hand

B(µx+ p, µy + q) =
∫ 1

0
tµx+p−1(1− t)µy+q−1dt ≤ B(µx, µy),

and in the same way we get

B(µx+ p, µy + q) ≤ B(p, q).

Hence

Γ(µx+ p) Γ(µy + q) ≤ Γ(µ(x+ y) + p+ q)B(µx, µy)2/3 B(p, q)1/3 . (A.1)

By Stirling’s formula there exists L > 0 such that for any x ≥ 1 we have

L−1 ≤ Γ(x)(2π)−1/2x
1
2−xex ≤ L .

Then
Γ(µx) ≤ L(2π)1/2xµx−

1
2 e−µxµµx−

1
2

≤ Lµ+1Γ(x)µ
( x

2π

)µ−1
2
µµx−

1
2 .

In the same way we get

Γ(µy) ≤ Lµ+1Γ(y)µ
( y

2π

)µ−1
2
µµy−

1
2 ,

Γ(µ(x+ y))−1 ≤ Lµ+1Γ(x+ y)−µ
(

2π
x+ y

)µ−1
2

µ−µ(x+y)+ 1
2 .

Hence

B(µx, µy) ≤ L3µ+3(2π)
1−µ

2 µ−1/2
(

xy

x+ y

)µ−1
2

B(x, y)µ =

≤ M

(
xy

x+ y

)µ−1
2

B(x, y)
µ−1

2
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= M

(
x+ y
x

)(1−µ)/2

≤ M

(
x+ y
x

)−7/4

,

since µ ≥ 9/2. This proves the assertion for x , y ≥ 1. On the other hand, if x = 0
and y ≥ 0, we have

Γ(p)Γ(µy + q) = Γ(µy + p+ q)B(p, µy + q) ≤

≤ Γ(µy + p+ q)B(p, q) ≤ Γ(µy + p+ q)B(p, q)1/3 ,

which completes the proof of Lemma A.3. 2

A.2. At the end of this section, we collect some more or less known facts about the
composition of Gevrey functions. Fix µ ≥ σ ≥ 1. Let f ∈ Gσ in a neighborhood
of 0 ∈ Rn1 and g = (g1, . . . , gn1) ∈ Gσ,µ with respect to (x, y) ∈ Rn2 × Rn3

in a neighborhood of (0, 0), g(0, 0) = 0. Following an argument in [11] (see also
[9]), we shall show that h(x, y) = f(g(x, y)) belongs to Gσ,µ in a neighborhood of
(0, 0) ∈ Rn2 ×Rn3 .

Set F (z, x, y) = f(z) and denote L = (L1, . . . , Ln2) and K = (K1, . . . ,Kn3),
where

Lj = ∂/∂xj + 〈∂g/∂xj , ∂/∂z〉 , Kj = ∂/∂yj + 〈∂g/∂yj , ∂/∂z〉 .

Then given (α, β) ∈ Zn2
+ × Zn3

+ , we obtain

(∂/∂x)α(∂/∂y)βh(x, y) =
(
LαKβF

)
(g(x, y), x, y) . (A.2)

Set n = n1 +n2, m = n3, and t = (z, x), and denote by U a compact neighborhood
of (0, 0) in Rn×Rm. Consider gk as functions in U and denote by A the finite set
of functions a = 1, ∂gk/∂xj , and ∂gk/∂yj defined in U . Fix C > 0 such that∣∣(∂/∂t)α(∂/∂y)βa(t, y)

∣∣ ≤ C |α+β|+1α!σβ!µ

in U for any a ∈ A and any (α, β) ∈ Zn+ × Zm+ . We suppose that F (t, y) satisfies
the same inequalities in U . Notice that the right hand side of (A.2) is a sum of at
most (n+m)N , N = |α+ β|, terms of the form

Dγ,δ(t, y) = P γ1
1 Qδ11 · · ·P

γN
N QδNN F (t, y) ,

where

γj , δj ∈ {0, 1} , γj + δj = 1 , |γ| =
N∑
j=1

γj ≥ |α| , |δ| =
N∑
j=1

δj ≤ |β| , |γ|+ |δ| = N ,

and Pj = aj(t, y)∂/∂tkj , Qj = bj(t, y)∂/∂ymj , with aj and bj in A. We use the
convention P 0

j = Q0
k = 1. Then |γ|!σ|δ|!µ ≤ (|α|+|β|)!σ|β|!µ−σ ≤ CN+1

0 |α|!σ|β|!µ,
and the statement follows from the following lemma, which is a variant of [11],
Lemma 5.3 and [9], Lemma 3.1.
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Lemma A. 4 There exists a constant C1 > 0 independent of γ and δ such that∣∣Dγ,δ(t, y)
∣∣ ≤ (C1C)N+1|γ|!σ|δ|!µ . (A.3)

To prove (A.3), we notice that∣∣Dγ,δ(t, y)
∣∣ ≤ CN+1|γ|!σ|δ|!µ#BN ,

where
BN = {u ∈ ZN−1

+ : u1 + · · ·+ uj ≤ j, 1 ≤ j ≤ N − 1} ,

and #BN stands for its cardinality. Setting w1 = u1 and wj = u1 + · · · + uj,
2 ≤ j ≤ N−1, we obtain 0 ≤ w1 ≤ 1 and 0 ≤ wj ≤ wj+1 ≤ j+1 for 1 ≤ j ≤ N−2.
Assigning to any such w = (w1, . . . , wN−1) the unit cube [w1, w1 + 1] × · · · ×
[wN−1, wN−1 + 1] in RN−1, we estimate #BN from above by the volume of

WN = {s = (s1, . . . , sN−1) ∈ RN−1 : 0 ≤ sj ≤ sj+1 +1 ≤ N+1, 1 ≤ j ≤ N−2} .

On the other hand,

volWN ≤ 2N−1(N − 1)(N−1)/(N − 1)! ≤ CN+1
1 ,

and we obtain the desired inequality.
In the same way one can prove that h(x, y) = f(x, g(y)) is a Gσ,µ func-

tion if f ∈ Gσ,µ and g ∈ Gµ. Using a similar argument one can prove also the
implicit function theorem in Gevrey classes (see also [13]). More precisely, let
f = (f1, . . . , fn1) ∈ Gσ,σ,µ, µ ≥ σ ≥ 1, with respect to (z, x, y) ∈ Rn1 ×Rn2 ×Rn3

in a neighborhood of (0, 0, 0). Suppose that f(0, 0, 0) = 0 and that dzf(0, 0, 0) is
nondegenerate. Let z = z̃(x, y), z̃(0, 0) = 0, be the function given by the implicit
function theorem. Then we obtain z̃ ∈ Gσ,µ in a neighborhood of (0, 0).
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[12] L. Hörmander, The analysis of linear partial differential operators, I-IV,
Springer-Verlag, Berlin, 1985

[13] H. Komatsu, The implicit function theorem for ultradifferentiable mappings,
Proc. Jap. Acad., Ser. A, Vol. 55, 1979, pp. 69–72

[14] V. Lazutkin, Asymptotics of the eigenvalues of the Laplacian and quasi-
modes. A series of quasimodes corresponding to a system of caustics close
to the boundary of the domain. Math. USSR Izvestija, Vol. 7, 1973, pp. 185–
214 1974, pp. 439–466

[15] V. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions,
Springer-Verlag, Berlin, 1993

[16] V. Petkov and G. Popov, Semi-classical trace formula and clustering of eigen-
values for Schrödinger operators, Ann. Inst. Henri Poincaré, Phys. Theor.,
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