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Two Dimensional Magnetic Schrödinger Operators :
Width of Mini Bands in the Tight Binding
Approximation

H.D. Cornean and G. Nenciu

Abstract. The spectral properties of two dimensional magnetic Schrödinger opera-
tors are studied. It is shown in the tight-binding limit that when a nonzero constant
magnetic field is perturbed by an infinite number of magnetic and scalar ”wells”, the
essential spectrum continues to have gaps and moreover, it can be nonempty in be-
tween the Landau levels and is localized near the one well Hamiltonian eigenvalues
which develop into mini-bands whose width is believed to be optimally controlled.

Résumé. On va étudier les propriétés spectrales de l’operateur de Schrödinger pour
une particule bidimensionelle qui se trouve dans un champ magnétique, dans
l’approximation tight-binding. On va montrer que, pour un champ magnétique
constant, différent de zéro, perturbé par un nombre infini de puits magnétiques et
éléctriques, le spectre essentiel continue de présenter des lacunes spectrales et qu’il
peut être non vide entre les niveaux de Landau. Plus encore, chaque valeur propre
de l’hamiltonien avec un seul puits se transforme dans une bande spectrale dont la
largeur est controlée de manière précise.

I Introduction

In this paper we continue the study (begun in [C-N]) of the spectral properties of
two dimensional magnetic Schrödinger operators. In [C-N] we considered the ”one
well problem” i.e.

H = (p− a0 − a)2 + V, (1.1)

where a0 corresponds to a nonzero constant magnetic field, B0, the magnetic
perturbation B′(x) = curl a(x) is bounded in the sense that:

b ≡ max{||DαB′||∞, |α| ≤ 1} <∞ (1.2)

and the scalar perturbation V = V1 + V2 obeys:

V1 ∈ L2(R2), V2 ∈ L∞(R2) (1.3)

It is known that if both the magnetic and the scalar perturbations are vanishing
at infinity, then (see [I; H]):

σess(H) = σL(B0) = {(2n+ 1)B0 | n = 0, 1, ...} (1.4)
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It was proved in [C-N] that if dist(z, σL(B0)) = d > 0, then for sufficiently
small b, ||V1||2 and ||V2||∞ we have that z /∈ σ(H) and (H − z)−1 is an integral
operator with a kernel which obeys:

|K(x,x′)| ≤ const(d) exp (−µ|x− x′|), |x− x′| > 1 (1.5)

where µ goes to infinity when b, ||V1||2 and ||V2||∞ go to zero. (Actually, in [C-
N] the above estimate was given in the absence of the scalar potential, but the
extension is straightforward).

When the perturbations are vanishing at infinity, an important consequence
of (1.5) (proved in [C-N]) is that if E ∈ σdisc(H), its corresponding eigenfunctions
decay quicker than any exponential as |x| → ∞. Under more restrictive conditions
imposed on V and B′, a quicker (eventually Gaussian) decay can be proved (see
[E; Na 2; S; C-N]). In particular, it is easy to see that if V and B′ vanish outside
a compact set, then the decay is Gaussian.

In this paper we shall deal with the multiple well case. The reason for consid-
ering this case is that when adding to a nonzero constant magnetic field a magnetic
field perturbation and a scalar potential both having no decay at infinity a rich
structure of the spectrum arise: the Landau spectrum suffers a radical change and
one is expecting to find essential spectrum and gaps in between the Landau levels;
moreover in the tight binding limit , there is a remarkable enhancement in the
localization of the spectrum in comparison with a higher dimensional case ( see
Section 3 for precise formulation of our main result). The multiple well problem
has been considered both in the zero and nonzero magnetic field case but (see
[H-S 1,2; C; B-C-D; N-B; H-H; Na ]) mainly below the essential spectrum of the
”unperturbed” Hamiltonian; what we add to the existent results is that in the two
dimensional nonzero magnetic field case the width of the ”mini-bands” located
below or in between the Landau levels shrinks Gaussian like in the limit when the
inter well distance goes to infinity. Notice that the limit considered in [H-H; Na 1]
is the strong field case i.e. the magnetic field outside the wells goes to infinity.

The contents of the paper is as follows:
Section 2 fixes some notations and gives a few results needed in the next

section. Lemma 2.1 outlines the Gaussian decay of the kernel of the ”free resolvent”
(the magnetic field is constant here and the scalar potential is absent); in Lemma
2.2 the localization of eigenfunctions of magnetic Schrödinger operators is briefly
discussed.

Propositions 2.1 and 2.2 give explicit examples of one well Hamiltonians with
discrete eigenvalues in between the Landau levels.

Section 3 contains the main result of this paper (namely Theorem 3.1) and
it is devoted to the multiple well case, when the wells are far apart one from each
other. For simplicity, we shall consider only the case of identical wells (but not
necessarily arranged in a periodic lattice). The heuristics behind the proofs is the
same as in the zero magnetic field case: due to the ”interactions” between wells,
each eigenvalue of the one well Hamiltonian develops into a mini-band whose width
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shrinks to zero as the separation between wells tends to infinity. From the technical
side our proof is in the spirit of the ”geometric perturbation theory ” in [B-C-D].
As in the zero magnetic field case, the size of the width of the ”mini-bands” is
dictated by the decay of the one well eigenfunctions and that’s where the difference
from higher dimensions appears: while in higher dimensions the width is shrinking
exponentially with the inter-well distance, in our setting the width has a Gaussian
decay (see Theorem 3.1 for the precise statement and the remark before its proof).

Finally, Corollary 3.1 gives the existence of essential spectrum in between the
Landau levels provided the one well Hamiltonian has discrete eigenvalues there.

II Preliminaries

As already said, we shall consider only the two dimensional case (i.e. the particle
is confined in the plane x3 = 0 and the magnetic field is orthogonal to that
plane). Let B(x) ∈ C1(R2). We shall use the following family of vector potentials
corresponding to B(x):

a(x,x′) =
∫ 1

0
ds sB(x′ + s(x− x′)) ∧ (x− x′) (2.1)

For x′ = 0, this is nothing but the usual transversal gauge (see e.g. [T]):

a(x, 0) ≡ a(x) =
∫ 1

0
ds sB(s x) ∧ x (2.2)

If we define
f(x,x′) = a(x)− a(x,x′) (2.3)

then there exists ϕ(x,x′) such that

∇xϕ(x,x′) = f(x,x′) (2.4)

The additional requirement

ϕ(x′,x′) = 0 (2.5)

gives

ϕ(x,x′) =
∫ x1

x′1

dt f1(t, x2; x′) +
∫ x2

x′2

dt f2(x′1, t; x
′) (2.6)

where xi, x′i, fi are the Cartesian components of x,x′ and f respectively. Perform-
ing the path integral of f(y,x′) on the segment

γ(x,x′) = {y(t) = x′ + t(x− x′)|t ∈ [0, 1]} (2.7)
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and because a(y(t),x′) · (x− x′) = 0 for all t, one obtains:

ϕ(x,x′) =
∫
γ(x,x′)

a(y) · dy (2.8)

The last equation shows that ϕ(x,x′) = −ϕ(x′,x) and ϕ(x′, 0) = ϕ(0,x) = 0,
therefore

ϕ(x,x′) = ϕ(x′, 0) + ϕ(x,x′) + ϕ(0,x) =
∫

∆
a(y) · dy (2.9)

where ∆ is the triangle γ(x′, 0)∪ γ(x,x′)∪ γ(0,x). The last equality says (via the
Stokes theorem) that −ϕ(x,x′) equals the flux of the magnetic field through ∆.

Using (2.8), after a little calculation one obtains (and this is true in three
dimensions, too):

ϕ(x,x′) = −
(∫ 1

0
dt

∫ 1

0
ds sB(s t (x− x′) + s x′)

)
· (x ∧ x′) (2.10)

If B(x) = B0 is constant, then

ϕ0(x,x′) = −1
2
B0 (x1 x

′
2 − x′1 x2)

a0(x,x′) =
1
2
B0 ∧ (x− x′) (2.11)

The Hamiltonian of a particle in the presence of the magnetic field and a
scalar potential V is (in the transversal gauge):

H = (p− a(x))2 + V (x)

p =
(
−i ∂
∂x1

,−i ∂
∂x2

)
(2.12)

a(x) =
(
−x2

∫ 1

0
ds s B(s x), x1

∫ 1

0
ds s B(s x)

)
In the case of a constant magnetic field, one has the Hamiltonian

H0 = (p− a0(x))2 where (2.13)

p = −i∇x and a0(x) =
(
−1

2
B0 x2,

1
2
B0 x1

)
(2.14)

which is essentially self-adjoint on C∞0
(
R2
)

and its spectrum is the well known
Landau spectrum

σ(H0) = σess(H0) ≡ σL(B0) = {(2n+ 1)B0 | n = 0, 1, 2, . . .} (2.15)
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For z 6∈ σ(H0) and g ∈ L2
(
R2
)
, we write

[
(H0 − z)−1g

]
(x) =

∫
dx′ K0(x,x′; z)g(x′)

(H0 − z)K0(x,x′; z) = δ(x− x′) (2.16)

Then takes place (see e.g. [J-P]):

Lemma II.1 Let

ϕ0(x,x′) = −B0

2
(x1 x

′
2 − x2 x

′
1)

ψ(x,x′) =
B0

4
|x− x′|2

α = −1
2

(
z

B0
− 1
)
6= −1,−2, . . .

Then

K0(x,x′; z) = ei ϕ0(x,x′) G0(x,x′; z) ≡

≡ Γ(α)
4 π

ei ϕ0(x,x′) e−ψ(x,x′)U(α, 1; 2 ψ(x,x′)) (2.17)

where Γ is the Euler function and U(α, γ; ξ) is the confluent hyper-geometric func-
tion [A-S].

From Lemma II.1 one sees that K0(x,x′; z) has a Gaussian decay as
|x− x′| → ∞. We shall use this in the following form:

Corollary II.1 Let χ1, χ2 ∈ L∞(R2) such that

|χ1|, |χ2| ≤M and dist{supp χ2, supp χ1} = d > 0.

Then for all 0 < δ < B0
4 and z ∈ ρ(H0), one has that

||χ1 (H0 − z)−1
χ2|| ≤ M2 const(z) exp(−δ d2) (2.18)

Proof. Use the explicit form of K0 and Young inequalities (see [C-N] for further
discussions).
Remark. Since under a gauge transformation

(Uχf) (x) = ei χ(x)f(x) and (2.19)(
U∗χ(H0 − z)−1Uχf

)
(x) =

∫
R2
dx′ Kχ(x,x′; z) =

=
∫

R2
dx′ e−i χ(x)K0(x,x′; z)ei χ(x′)f(x′)
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one has
|Kχ(x,x′; z)| = |K0(x,x′; z)| (2.20)

i.e. the Gaussian decay is valid for an arbitrary gauge.
Suppose now that the scalar potential V and the magnetic field which cor-

responds to a describe the one well case studied in [C-N] i.e. satisfy the following
conditions :

B = B0 +B′, B0 > 0
B′ ∈ C1 (R2) ; lim

n→∞
||B′||C1(R2\{|x|≤n}) = 0

V = V1 + V2 ; V1 ∈ L2 (R2) , V2 ∈ L∞
(
R2)

lim
n→∞

sup
|x|≥n

|V2(x)| = 0 (2.21)

In particular, under these conditions H is essentially self-adjoint on C∞0
(
R2
)

(see e.g. [C-F-K-S] ). Moreover, V is relatively compact with respect to (p − a)2

[C-F-K-S] which together with the results in [I, H] it implies that

σess(H) = σ(H0) = {(2n+ 1)B0 | n = 0, 1, 2, . . .} (2.22)

In the rest of this section,

g ∈ C∞
(
R2; R

)
; ||g||C2(R2) = M <∞ (2.23)

Let E ∈ σdisc(H) (the discrete spectrum of H) and let ψ be a normalized eigen-
function corresponding to E. We are interested now in controlling as good as
possible the term ||[H, g]ψ||.

Under the conditions (2.21), one has D(H) = D((p− a)2) and (pj−aj)(H+
i)−1 is bounded, j ∈ {1, 2}. Moreover, because

[H, g] = −i{(p− a) · ∇g +∇g · (p− a)} (2.24)

it follows that
||[H, g](H + i)−1|| ≤ const(M) (2.25)

which gives the following rough result:

||[H, g]ψ|| ≤ const(M) (E2 + 1)1/2 (2.26)

In order to obtain a sharper estimate on this term, we use the following form of
the I.S.M. localization lemma [C-F-K-S]:

Lemma II.2 Let ϕ ∈ D(H). Then:

< ϕ, gHgϕ >= <(< ϕ, g2Hϕ >)+ < ϕ, |∇g|2ϕ > (2.27)

and
< gψ, (H −E)gψ >=< ψ, |∇g|2ψ > (2.28)
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Under the conditions (2.21), there exists a constant c > 0 independent of ψ
such that:

| < gψ, V gψ > | ≤ 1
2
< gψ, (p− a)2gψ > +c||gψ||2 (2.29)

From (2.28) and (2.29) it follows that:

||(p− a)gψ||2 ≡< gψ, (p− a)2gψ >≤

≤ 2M2[|E|+ c+ 1]
∫
supp g

dx|ψ(x)|2 (2.30)

After a little calculation, from (2.24) and (2.30) one obtains:

||[H, g]ψ||2 ≤ const(E,M)

(∫
supp |∇g|

dx|ψ(x)|2
)

(2.31)

which is the needed estimate.
We’ll show now that there are many examples of one well Hamiltonians with

discrete spectrum in between the Landau levels. We put this in the form of two
propositions: the first one constructs a purely electric well which gives an eigenvalue
located anywhere we want outside σL(B0) and the second one states that any
sufficiently “small” purely magnetic well with definite sign creates eigenvalues
near any Landau level we choose.

Proposition II.1 Take λ ∈ R, λ /∈ σL(B0). Then there exists a bounded, compactly
supported potential V ∈ L∞

(
R2
)

such that λ is a discrete eigenvalue for the
operator sum H = H0 + V .

Proof. Fix λ as mentioned above. From Lemma II.1, one can easily see that

K0(x, 0;λ) = K0(0,x;λ) = K0(x, 0;λ) (2.32)

where the over-line means complex conjugation. Because the confluent hyper-
geometric function U(α, 1, ξ) is analytic in {ξ ∈ C, <ξ > 0} and together with the
realty of K0(x, 0;λ) one obtains the existence of A > 0, 0 < ε < A and 0 < δ < 1
such that if A−ε ≤ |x| ≤ A+ε, then K0(x, 0;λ) is not changing sign and moreover,
one can suppose without loss that

K0(x, 0;λ) ≥ δ (2.33)

Define now:

η1 ∈ C∞0 (R2), 0 ≤ η1 ≤ 1 and

η1(x) =
{

1 if |x| ≤ A
0 if |x| ≥ A+ ε

(2.34)
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η2 ∈ C∞(R2), 0 ≤ η2 ≤ 1 and

η2(x) =
{

0 if |x| ≤ A− ε
1 if |x| ≥ A (2.35)

ψ(x) = η1(x) + η2(x)K0(x, 0;λ) (2.36)

We also require η1 and η2 to be radially symmetric.
Using (2.33) and the definitions of the cut-off functions, one obtains that

ψ ∈ L2
(
R2
)

and ψ(x) ≥ δ if |x| ≤ A+ ε.
Take now Φ ∈ L∞

(
R2
)

such that:

Φ(x) =
{ 1

ψ(x) if |x| ≤ A+ ε

1 if |x| > A+ ε
(2.37)

Finally, the potential we are looking for will be:

V = −Φ · {(H0 − λ)η1 + [H0, η2]K(·, 0;λ)} (2.38)

Due to the fact that a0 is written in the transversal gauge (which implies
a0(x) · x = 0), it follows that H0 maps radially symmetric functions into real
functions, and that V is real, bounded and compactly supported. Moreover, H ψ =
λ ψ.

Proposition II.2 Let B′ ∈ C1
0
(
R2; R

)
be a nonnegative, compactly supported func-

tion and let a′(x) be the transversal gauge which gives B′.
For b > 0, define Hb = (p − a0 − ba′)2. Let En = (2n + 1)B0 be the n-th

Landau level. Then for b sufficiently small, Hb will have at least one eigenvalue
near En.

Proof. Because B′ has compact support, one has |a′(x)| ≤ const· < x >−1 where

< x >≡
(
1 + x2

) 1
2 .

Denote with W (b) = −b(p − a0) · a′ − ba′ · (p − a0) + b2a′2 and with V =
−(p− a0) · a′ − a′ · (p− a0). It is easy to see that W (b) is relatively bounded to
H0; one can then apply the analytic perturbation theory around En if b is kept
small enough. The reduced operator defined in RanPn (Pn being the projector
associated with En) will have the form:

Heff (b) = EnPn + PnT (b)Pn
T (b) ≡ bPnV Pn +O(b2). (2.39)

The only thing we should check is that PnT (b)Pn is not zero; this would imply that
Heff (b) − En has nonzero spectrum, therefore Hb will have (discrete) spectrum
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near En. To achieve that, one can compute < fn, V fn > where fn stands for
the spherically symmetric, real eigenfunction of H0, corresponding to En. This
computation gives:

< fn, V fn >= 2 < fn,a0 · a′fn >= B0

∫
dx f2

n(x)
∫ |x|

0
dρ ρB′(ρ, θ) (2.40)

This quantity is not zero because B′ is not changing sign; therefore, if b is small
enough, PnT (b)Pn 6= 0.

Remark. This type of argument also works in the case of a purely electric well;
one only has to check that the term in (2.40) (where V stands now for the scalar
potential) is different from zero. In conclusion, it is not difficult to give examples
of one well Hamiltonians with discrete spectrum outside the Landau levels; the
really hard problem is to study their behaviour near the essential spectrum.

III Gaps in the essential spectrum

Consider
ΓN = {x(i)}Ni=1 ⊂ R2, N ≤ ∞ (3.1)

Without loss of generality, one can always take x(1) = 0. The main assump-
tion about ΓN is that:

inf
j 6=k
|x(j)− x(k)| = r > 0 (3.2)

and since the limit to be considered is r → ∞, we assume for technical reasons
that r is sufficiently large, say r ≥ 1000.

Concerning the magnetic field and the potential, we assume:

B0 > 0 , B′ ∈ C1(R2) and supp B′ ⊂ {|x| ≤ 1}
V ∈ L2(R2), supp V ⊂ {|x| ≤ 1} (3.3)

Let

BN (x) = B0 +
N∑
j=1

B′(x− x(j)), VN (x) =
N∑
j=1

V (x− x(j)),

aN (x) =
∫ 1

0
ds sBN (s x) ∧ x (3.4)

Consider now for N = 1, 2, . . . ,∞ the following family of Hamiltonians:

HN = (p− aN )2 + VN . (3.5)

These operators are essentially self-adjoint on C∞0 (R2) and for N <∞

σess(HN ) = σL(B0) (3.6)
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In particular,
H1 = (p− a1)2 + V1 (3.7)

is the ”one well” Hamiltonian.
The main result of this section is contained in

Theorem III.1 Let 1 ≤ N < ∞, c < d, K ≡ [c, d], K ∩ σL(B0) = ∅ and suppose
that

σ(H1) ∩K = {E1 < . . . < Es} ⊂ σdisc(H1), s ≥ 1
mult(Ej) = mj , j ∈ {1, . . . s}

If c, d are not eigenvalues for H1, then there exist r0(K,m1, . . . ,ms), C <∞
and u > 0 independent of N such that

i) σ(HN ) ∩K ⊂
s⋃
j=1

[Ej − δ,Ej + δ], 0 ≤ δ ≤ Ce−u r2
, for all r ≥ r0 (3.8)

ii) dim{Ran PN [σ(HN ) ∩K]} = N
s∑
j=1

mj (3.9)

where PN is the spectral measure associated with HN .

Remark. If one drops the compactness condition in (3.3) but imposes additional
conditions to (2.21) in order to ensure the finiteness of the ”total perturbations”
in H∞, such as:

max{|B′(x)|, |V (x)|} ≤ const (1 + |x|)−β, β > 2 (3.10)

then the proof of Theorem 3.1 can be adapted such that ii) remains true and i) is
changing in the sense that instead of a Gaussian decay in r, we can only say that
δ goes to zero when r goes to infinity and this comes from the fact that in this
case, the wells are no longer well individualized.
Proof of i). Define :

ΣN ≡ σ(HN ) ∩K (3.11)

Because of (3.6), ΣN is discrete if not empty. For simplicity, we suppose s = 1
and m1 = 1; the proof in the general case is similar.

During the proof of this theorem, E ∈ ΣN will denote an eigenvalue of HN

and ψ a corresponding normalized eigenfunction.
We give first a few helpful technical lemmas and we start with some defini-

tions. For (p1, p2) ∈ Z2 and δ > 0, define:

K(p1, p2; δ) =
{

x ∈ R2| |xj −
r

100

(
pj +

1
2

)
| ≤ δ

2
, j ∈ {1, 2}

}
(3.12)
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It is easily seen that for any δ ≥ r
100 ,⋃

(p1,p2)∈Z2

K(p1, p2; δ) = R2 (3.13)

If m ∈ R2, then the translation tm : L2 → L2, (tmf)(x) = f(x −m) is an
unitary operator. Given any j ∈ {1, . . . , N}, there exists (pj1, p

j
2) ∈ Z2 such that:

x(j) ∈ K(pj1, p
j
2; r/100) and x(k) 6∈ K(pj1, p

j
2; r/100) if j 6= k (3.14)

If β, γ ∈ {−1, 0, 1} then define

Kj(δ) =
⋃
β,γ

K(pj1 + β, pj2 + γ; δ), δ > 0 (3.15)

By construction,

dist{x(j), ∂Kj(r/100)} ≥ r/100. (3.16)

Denote with

FN =
N⋃
j=1

Kj(r/100) (3.17)

Lemma III.1 Take

K(p, q; r/100) 6⊂ FN and η ∈ C∞0 (R2),
supp η ⊂ K(p, q; r/98).

Denote with m =
(
r

100

(
p+ 1

2

)
, r

100

(
q + 1

2

))
. Then:

HNη = ei ϕN (.,m)tm H0 t−me
−i ϕN (.,m)η (3.18)

Proof. If x ∈ supp η, then :

aN (x) = aN (x,m) +∇ϕN (x,m) (3.19)
VN(x) = 0

aN (x,m) =
∫ 1

0
ds sBN (m + s(x−m)) ∧ (x−m)

Because for all y ∈ {m + s(x−m), 0 ≤ s ≤ 1} one has

BN (y) = B0 (3.20)

then

aN (x,m) = a0(x−m) and
HNη = ei ϕN (x,m)[p− a0(x−m)]2e−i ϕN (x,m)η

= ei ϕN (.,m)tm H0 t−me
−i ϕN (.,m)η
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Lemma III.2 Fix j ∈ {1, . . . , N}. Take ηj ∈ C∞0 (R2) and supp ηj ⊂ Kj(r/98).
Then :

HNηj = ei ϕN (.,x(j))tx(j) H1 t−x(j)e
−i ϕN (.,x(j))ηj (3.21)

Proof. As before,
aN (x) = aN (x,x(j)) +∇ϕN (x,x(j)) (3.22)

Since r − 3
√

2
98 r > 1 and x ∈ supp ηj , then

|x(j)− x(k) + s(x− x(j))| ≥ |x(j)− x(k)| − |x− x(j)| > 1, j 6= k (3.23)

therefore:

aN (x,x(j)) = a0(x− x(j)) +

+
∫ 1

0
ds s

N∑
k=1

B′(x(j)− x(k) + s(x− x(j))) ∧ (x− x(k))

= a1(x− x(j)) +

+
∫ 1

0
ds s

∑
k 6=j

B′(x(j)− x(k) + s(x− x(j))) ∧ (x− x(k))

= a1(x− x(j)) (3.24)

If x ∈ supp ηj , then VN (x) = V (x− x(j)); putting all these together, (3.21)
follows.

Lemma III.3 Under the same assumptions made in Lemma 3.1, suppose now that

0 ≤ η ≤ 1 and

η(x) =
{

1 if x ∈ K(p, q; r/99)
0 if x 6∈ K(p, q; r/98) (3.25)

Then there exist C1 > 0 and u > 0 (which are independent of N , (p, q) and
E ∈ ΣN) such that:∫

K(p,q;r/100)
dx |ψ(x)|2 ≤ e−ur2C1

∫
K(p,q;r/98)\K(p,q;r/99)

dx |ψ(x)|2 (3.26)

Proof. (3.18) implies that

[HN , η]ψ = ei ϕN (.,m)tm (H0 −E) t−me
−i ϕN (.,m)ηψ (3.27)

or
ηψ = ei ϕN (.,m)tm (H0 −E)−1 t−me

−i ϕN (.,m)[HN , η]ψ (3.28)

If
x ∈ K(p, q; r/100) and x′ ∈ K(p, q; r/98) \K(p, q; r/99) (3.29)
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then

|x− x′|2 ≥ r2

4

(
1
99
− 1

100

)2

(3.30)

and using Corollary 2.1, one has (0 < u < B0
64

( 1
99 −

1
100

)2):∫
K(p,q;r/100)

dx |ψ(x)|2 ≤ e−ur2C1 ||[HN , η]ψ||2 (3.31)

Using (2.31) in (3.31), one obtains (3.26).

Lemma III.4 There exist u > 0, C <∞ with the properties given in Lemma III.3
such that: ∫

(FN )c
dx |ψ(x)|2 ≤ C e−ur2

(3.32)

Proof. Adding the contributions given by all K(p, q; r/100) 6⊂ FN in (3.26) and
because ∑

(p,q)

∫
K(p,q;r/98)\K(p,q;r/99)

dx |ψ(x)|2 ≤ 4 (3.33)

the result follows.
We are now able to prove the first affirmation of Theorem 3.1. For j ∈

{1, . . . , N} take

ηj ∈ C∞0 (R2), 0 ≤ ηj ≤ 1 and

ηj(x) =
{

1 if x ∈ Kj(r/99)
0 if x 6∈ Kj(r/98) (3.34)

Let

ψ̃ =
N∑
j=1

ηjψ (3.35)

then from Lemma 3.2 one has:

(HN −E)ψ̃ =
N∑
j=1

ei ϕN (.,x(j))tx(j) (H1 −E) t−x(j)e
−i ϕN (.,x(j))ηjψ (3.36)

or
N∑
j=1

||(H1 −E)t−x(j)e
−i ϕN (.,x(j))ηjψ||2 =

N∑
j=1

||[HN , ηj ]ψ||2 (3.37)

But

||(H1 −E)t−x(j)e
−i ϕN (.,x(j))ηjψ||2 ≥ dist2{E, σ(H1)}||ηjψ||2 (3.38)
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therefore, together with (3.37) and (2.31) one obtains:

dist2{E, σ(H1)}
N∑
j=1

||ηjψ||2 ≤ C
∫

(FN )c
dx |ψ(x)|2 (3.39)

or

dist2{E, σ(H1)}
(

1−
∫

(FN )c
dx|ψ(x)|2

)
≤ C

∫
(FN )c

dx|ψ(x)|2 (3.40)

and together with (3.32), the affirmation stated in (3.8) follows.

Proof of ii). Let’s show first that

dim{Ran[PN (ΣN )]} ≥ N. (3.41)

Denote with ψ1 the normalized eigenvector of H1 corresponding to E1:

H1ψ1 = E1ψ1, ||ψ1|| = 1 (3.42)

With the notations introduced in (3.34), let

VN =
{
ψ̃j = ei ϕN (.,x(j))ηjtx(j)ψ1

}
j=1,N

(3.43)

be an orthogonal system.
Because

||ψ̃j ||2 = ||(t−x(j)ηj)ψ1||2 ≥ 1−
∫

(F1)c
dx |ψ1(x)|2 ∼ 1− Ce−ur2

(3.44)

then for r large enough, VN is an ”almost orthonormal system” and

dim VN = N, r ≥ r0 (3.45)

(notice that r0 does not depend upon N).
Suppose now that (3.41) were false; this would imply the existence of an

r > r0 such that
dim{Ran[PN (ΣN )]} ≤ N − 1. (3.46)

(3.46) and (3.8) would imply then that:

dim{Ran[PN (K)]} ≤ N − 1. (3.47)

Then there exists ψ̃ ∈ VN , ||ψ̃|| = 1 such that:

ψ̃ ∈ {Ran[PN (K)]}⊥ (3.48)
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Because < ψ̃j , ψ̃k >= 0 if j 6= k and using (3.44), one has that

ψ̃ =
N∑
j=1

Cjψ̃j ,
N∑
j=1

|Cj |2 ∼ 1− Ce−ur2
0 (3.49)

Without loss, suppose that there exists δ > 0 such that [E1− δ,E1 + δ] ⊂ K.
Then (3.48) implies

||(HN −E1)ψ̃|| ≥ δ. (3.50)

But using Lemma 3.2, one obtains:

(HN −E1)ψ̃ =
N∑
j=1

Cj(HN −E1)ψ̃j

=
N∑
j=1

Cje
i ϕN (.,x(j))tx(j)(H1 −E1)t−x(j)ηjtx(j)ψ1

=
N∑
j=1

Cje
i ϕN (.,x(j))tx(j)(H1 −E1)(t−x(j)ηj)ψ1 (3.51)

Using that

< tx(j)(H1 −E1)(t−x(j)ηj)ψ1, tx(k)(H1 −E1)(t−x(k)ηk)ψ1 >= 0, j 6= k (3.52)

one has

||(HN −E1)ψ̃||2 =
N∑
j=1

|Cj|2||[H1, (t−x(j)ηj)]ψ1||2. (3.53)

From (2.31), (3.32) and (3.49) it follows that

||(HN −E1)ψ̃||2 ∼ e−ur2
0 (3.54)

which can be made arbitrarily small and then contradicting (3.50).
Let’s prove now that

dim{Ran[PN (K)]} ≤ N (3.55)

In order to prove (3.55), we shall construct a finite rank operator P ′N (not
necessary an orthogonal projector) such that:

dim Ran P ′N ≤ N and
||PN (K)− P ′N || < 1, for all r ≥ r0 (3.56)

Proposition III.1 Suppose (3.56) fulfilled. Then (3.55) takes place.
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Proof. Assume that dim{Ran[PN (K)]} ≥ N+1 for some r ≥ r0. Then there exists
ψ ∈ Ran[PN (K)], ||ψ|| = 1 such that:

ψ ∈ [Ran(P ′N )]⊥ (3.57)

But
| < ψ, (PN (K)− P ′N )ψ > | ≤ ||PN (K)− P ′N || < 1 (3.58)

and
| < ψ, (PN (K)− P ′N )ψ > | = | < ψ,PN (K)ψ > | = 1 (3.59)

which contradicts (3.58).
Let’s construct now P ′N . Using (3.8), one obtains the existence of r0(ε) such

that
{|z −E1| = ε} ∩ σ(HN ) = ∅ (3.60)

as soon as r ≥ r0(ε) (ε being chosen sufficiently small then kept fixed).
The idea consists (see for similar reasoning [B-C-D] and [Na 1]) in approxi-

mating the resolvent (HN − z)−1 for |z − E1| = ε and then integrating over the
contour.

Let

m(p, q) = (r/100(p+ 1/2), r/100(q + 1/2)) ifK(p, q; r/100) 6⊂ FN (3.61)

and
Γ∞ = ΓN

⋃
{m(p, q)}(p,q) (3.62)

It is possible to construct a quadratic partition of unity which has the fol-
lowing properties (see [C-F-K-S]):

• ∑
m∈Γ∞

η2
m = 1, ηm ∈ C∞0 (R2), 0 ≤ ηm ≤ 1 (3.63)

•
ηm(x) = 0 if x 6∈ Km(r/99) and m ∈ ΓN (3.64)

•
ηm(x) = 0 if x 6∈ K(p, q; r/99) and m ∈ {m(p, q)}(p,q) (3.65)

•
||(∂ηm/∂xi)||C1 ≤ const

r
, m ∈ Γ∞, i = 1, 2 (3.66)

Lemma III.5 The operator

AN (z) =
∑

m∈ΓN

ei ϕN (.,m)ηmtm(H1 − z)−1t−mηme
−i ϕN (.,m)

+
∑

m∈Γ∞\ΓN

ei ϕN (.,m)ηmtm(H0 − z)−1t−mηme
−i ϕN (.,m) (3.67)
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is bounded and moreover
||AN (z)|| ≤ const

ε
(3.68)

where the constant in (3.68) is independent upon N .

Proof. Take f ∈ L2(R2). Then, from (3.60) and (3.63), AN (z)f consists in a sum
in which each term is bounded and from (3.64) and (3.65) there results that each
term is orthogonal to all others except at most 16 ”neighbours”.

AN (z) is our approximation of the resolvent. From Lemma 3.1 and Lemma
3.2, one obtains:

(HN − z)AN (z)

=
∑

m∈ΓN

ei ϕN (.,m)tm(H1 − z)t−mηmtm(H1 − z)−1t−mηme
−i ϕN (.,m)

+
∑

m∈Γ∞\ΓN

ei ϕN (.,m)tm(H0 − z)t−mηmtm(H0 − z)−1t−mηme
−i ϕN (.,m)

= 1 +
∑

m∈Γ∞

ei ϕN (.,m)tm[Hm, (t−mηm)](Hm − z)−1t−mηme
−i ϕN (.,m)

≡ 1 + TN (z) (3.69)

where

Hm =
{
H1 if m ∈ ΓN
H0 if m ∈ Γ∞ \ ΓN

(3.70)

By essentially the same argument used in deriving (2.25), one obtains:

||[Hm, (t−mηm)](Hm − z)−1|| ≤ const(ε)
r

. (3.71)

As in Lemma 3.5, one finally obtains

||TN (z)|| ≤ const(ε)
r

. (3.72)

Take r1(ε) ≥ r0(ε) such that ||TN (z)|| ≤ 1
2 if r ≥ r1(ε); then one can write:

(HN − z)−1 = AN (z)−AN (z)TN (z)[1 + TN (z)]−1 (3.73)

Integrating over {|z −E1| = ε}, it follows that:

PN ([E1 − ε, E1 + ε])

=
∑

m∈ΓN

ei ϕN (.,m)ηmtmP1({E1})t−mηme
−i ϕN (.,m) +RN

≡ P ′N +RN (3.74)

where
||RN || < 1, r ≥ r2(ε) ≥ r1(ε) (3.75)

and the proof is completed, due to the fact that P ′N has its rank equal to N .
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Corollary III.1 Let N = ∞. Then Theorem III.1 remains true (with N formally
replaced with ∞).

Proof. Define

ΓN(R) = {x ∈ Γ∞ | |x| ≤ R} (3.76)

Then :

HN(R) → H∞ in the strong sense (3.77)

From the essential self-adjoint-Ness on the same core and from (3.77), one
obtains

HN(R) → H∞ in the strong resolvent convergence sense (3.78)

(see e.g. [K] ).
Then Theorem VIII.1.4 in [K] and (3.8) imply that (3.8) remains

true for H∞.
Finally, to show that

dim{Ran P∞[σ(H∞) ∩K]} =∞ (3.79)

one can use an ad-absurdum argument as that used in proving (3.41).
Remark. It is easy to show now that when increasing r, one still can find essential
spectrum of H∞ near a part of σL(B0).

Take for example the old eigenvalue B0; an eigenfunction of H0 which corre-
sponds to it reads as:

ψ0(x) =

√
B0

2 π
exp

(
−B0 |x|2

4

)
.

Take ε > 0 sufficiently small and let’s prove that (K = [B0 − ε,B0 + ε]):

dim{Ran P∞[σ(H∞) ∩K]} =∞

The ad-absurdum argument used in proving (3.41) can be applied again,
replacing H1, ψ1, E1 and Kj with H0, ψ0, B0 and K(p, q).
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