On the Perturbation Series in Large Order of Anharmonic Oscillators

T. Koike

Abstract. We present a mathematically rigorous proof of the Bender-Wu (BanksBender) formula based on exact WKB analysis.

I Introduction

We will consider the large n asymptotics of a perturbation series of an eigenvalue

$$
\begin{equation*}
E^{K}=K+\frac{1}{2}+\sum_{n=1}^{\infty} A_{n}^{K} \lambda^{n} \tag{1}
\end{equation*}
$$

of a generalized anharmonic oscillator

$$
\begin{equation*}
\left(-\frac{d^{2}}{d x^{2}}+\frac{1}{4}\left(x^{2}+\lambda x^{2 N+2}\right)\right) \psi=E \psi, \tag{2}
\end{equation*}
$$

where $\lambda>0, K=0,1,2, \cdots$ and $N=1,2, \cdots$.
In [3](for $N=1$) and [2](for $N \geq 2$) the following interesting formula is presented:

$$
\begin{align*}
A_{n}^{K}= & (-1)^{n+1} \frac{N 4^{\left(K+\frac{1}{2}\right) / N}}{K!\sqrt{2 \pi^{3}}}\left(\frac{B\left(\frac{3}{2}, \frac{1}{N}\right)}{2 N}\right)^{-K-\frac{1}{2}-n N} \\
& \times \Gamma\left(K+\frac{1}{2}+n N\right)\left(1+O\left(\frac{1}{n}\right)\right), \quad(n \rightarrow \infty), \tag{3}
\end{align*}
$$

where $B(x, y)$ and $\Gamma(x)$ respectively denote the beta and the gamma function.
For $N=1$ there are some rigorous proofs of the above formula; [8] in connection with the resonance problem, and [5] from the resurgent theory. Generalization for a higher dimensional case was considered in [9].

The purpose of this article is to give another proof of the above formula for general N using the exact WKB analysis ([1], [4], [5]) along the original idea in [3]. By the help of Stokes geometry, our argument becomes simpler and more transparent; it clearly explains why complex turning points do not give any effects on the above formula (cf. [2]).

I would like to thank Prof.Kawai and Prof.Takei for giving me many valuable advise and comments. I also thank Prof.Aoki for providing me with a computer program for drawing Stokes curves, some of which I used in this article.

II Calculation of eigenvalues

Following Bender-Wu, we start our argument with the relation ((2.7) in [3])

$$
\begin{equation*}
A_{n}^{K}=\frac{1}{2 \pi i} \int_{-\infty}^{0} \frac{\Delta E^{K}(\lambda)}{\lambda^{n+1}} d \lambda \tag{4}
\end{equation*}
$$

where $\Delta E^{K}(\lambda)$ denotes the difference of $\left.E^{K}\right|_{\arg \lambda=\pi}$ and $\left.E^{K}\right|_{\arg \lambda=-\pi}$. This relation was derived from the analyticity of an eigenvalue. (See [6],[8].) By this relation, our problem is reduced to the determination of an eigenvalue for small λ and for $\arg \lambda= \pm \pi$. Keeping this fact in mind, we introduce a large parameter η in (2) by setting $\lambda \mapsto \eta^{-N} e^{i \theta}(\theta=\arg \lambda)$ and $x \mapsto \sqrt{\eta} x$ so that (2) becomes

$$
\begin{equation*}
\left(-\frac{d^{2}}{d x^{2}}+\eta^{2}\left(Q(x)-\eta^{-1} E\right)\right) \psi=0 \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
Q(x)=\frac{1}{4}\left(x^{2}+e^{i \theta} x^{2 N+2}\right) \tag{6}
\end{equation*}
$$

One important point is, however, Stokes geometry is degenerate for θ ($=$ $\arg \lambda)= \pm \pi$: that is, there exists a Stokes curve connecting turning points. (See the left of Fig. 1, for example.) To resolve this degeneracy, we rotate the contour in (4) in the following way:

$$
\begin{equation*}
A_{n}^{K}=\frac{1}{2 \pi i} \int_{-\infty e^{i \epsilon}}^{0} \frac{\Delta E^{K}(\lambda)}{\lambda^{n+1}} d \lambda \tag{7}
\end{equation*}
$$

where ϵ is a sufficiently small positive number. (See the right of Fig. 1. We can show this modified relation in a similar way as that of the original one. See also $\S \mathrm{V}$ in [2].) Hence we determine an eigenvalue of (5) for $\theta= \pm \pi+\epsilon$.

There are one double turning point at $x=0$ and $2 N$ simple turning points at $x=\exp (i((2 k+1) \pi-\theta) / 2 N)(k=0,1,2, \cdots, 2 N-1)$.

For $\boldsymbol{\theta}=-\boldsymbol{\pi}+\boldsymbol{\epsilon}$
First we compute $E^{K}(\lambda)$ when $\theta(=\arg \lambda)=-\pi+\epsilon$. The examples of Stokes curves are given in the right of Fig. 1 (for $N=1$) and Fig. 2 (for $N=2$). (The left of Fig. 1, 2 are that for $\epsilon=0$.)

We can determine analytically continued eigenvalues by the rotating sector condition (cf.[3], see also [8]); we require that the solutions of (5) tend to 0 in the sectors

$$
\begin{equation*}
\Sigma_{ \pm}(\theta)=\left\{x \in \mathbf{C} ;\left|\arg (\pm x)+\frac{\theta}{2(N+2)}\right|<\frac{\pi}{2(N+2)}\right\} \tag{8}
\end{equation*}
$$

As a path of the analytic continuation of solutions connecting these sectors $\Sigma_{ \pm}(\theta)$ near ∞, we can choose and fix the following path Γ throughout this article: We define Γ with the help of Stokes curves for $\epsilon=0$. If ϵ is equal to $0, x= \pm 1$ are

Figure 1: Stokes curves $(N=1)$ for $\epsilon=0$ (left) and for $\epsilon>0$ (right).

Figure 2: Stokes curves $(N=2)$ for $\epsilon=0$ (left) and for $\epsilon>0$ (right).
turning points, and $x= \pm i$ also become turning points if N is even. Let γ_{0} be a Stokes curve emanating from $x=0$ in the direction of positive imaginary axis, γ_{+} (resp. γ_{-}) a Stokes curve emanating from $x=1$ (resp. $x=-1$) and penetrating into the upper (resp. lower) half plane (cf. Fig. 1, 2). Then we take Γ as a path which is sufficiently close to $\gamma_{+} \cup\{x ;-1<x<1\} \cup \gamma_{-}$, crosses two Stokes curves $\{x ;-1<x<0\}$ and γ_{0} just once, and never crosses any other Stokes curves. The examples of Γ are given in Fig. 3. For $\epsilon>0$, we find that this Γ crosses two Stokes curves when N is odd, and four Stokes curves when N is even. We denote them by γ_{1} and γ_{2} (or $\gamma_{1}, \cdots, \gamma_{4}$) as is shown in Fig. 3.

In the following we use WKB solutions which are normalized as

$$
\begin{equation*}
\psi_{ \pm}=\frac{1}{\sqrt{S_{\mathrm{odd}}}} \exp \left(\pm \eta \int_{0}^{x} \sqrt{Q(x)} d x\right) \exp \left(\pm \int_{\infty}^{x}\left(S_{\mathrm{odd}}-\eta \sqrt{Q(x)}\right) d x\right) \tag{9}
\end{equation*}
$$

Figure 3: Path of analytic continuation for $\theta=-\pi+\epsilon$. (left: $N=1$, right: $N=2$. Wiggly lines indicate cuts.)
where

$$
\begin{equation*}
S_{\mathrm{odd}}=\sum_{j=-1}^{\infty} \eta^{-j} S_{\mathrm{odd}, j}=\eta \sqrt{Q(x)}-\frac{E}{2 \sqrt{Q(x)}}+\cdots \tag{10}
\end{equation*}
$$

is the odd degree part of a solution S of the Riccati equation associated with (5). (See [1].)

Here we choose the branch of $\sqrt{Q(x)}$ so that

- we place cuts from each simple turning point to ∞ (See Fig. 3.);
- $\sqrt{Q(x)}=\frac{1}{2} x+O\left(x^{2}\right)$.

Then ψ_{-}satisfies the boundary condition in $\Sigma_{ \pm}(\theta)$. We find that ψ_{-}is dominant on γ_{1} (resp. γ_{2}) and subdominant on γ_{2} (resp. $\gamma_{1}, \gamma_{3}, \gamma_{4}$), which implies that only $\gamma_{1}\left(\right.$ resp. $\left.\gamma_{2}\right)$ is relevant for the calculation of the Jost function. As a matter of fact, using the connection formula near a double turning point, we find that ψ_{-}in $\Sigma_{+}(\theta)$ becomes $J_{+}(\eta, E) \psi_{+}+J_{-}(\eta, E) \psi_{-}$in $\Sigma_{-}(\theta)$ after the analytic continuation along Γ, where

$$
\begin{equation*}
J_{+}(\eta, E)=i C \frac{\sqrt{2 \pi}}{\Gamma\left(F+\frac{1}{2}\right)} e^{-i \pi F} \eta^{F} \tag{11}
\end{equation*}
$$

Here

$$
\begin{align*}
C & =\sum_{j=0}^{\infty} \eta^{-j} C_{j}=e^{E(\log 4-i \pi)}+\cdots \tag{12}\\
F & =\operatorname{Res}_{x=0} S_{\mathrm{odd}}=-E+\cdots \tag{13}
\end{align*}
$$

are infinite series which are determined by the connection formula near a double turning point(cf.[5], [7], [12]. In the above "..." means the negative degree part
with respect to η.) Hence the eigenvalue E must satisfy $J_{+}(\eta, E)=0$. We solve this equation by the help of the implicit resurgent function theorem[10]. Since this equation is equivalent to

$$
\begin{equation*}
\frac{1}{\Gamma\left(F+\frac{1}{2}\right)}=0 \Leftrightarrow F+\frac{1}{2}=-K \quad(K=0,1,2, \cdots .) \tag{14}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
E^{K}=K+\frac{1}{2}+\sum_{j=1}^{\infty} E_{j}^{K} \eta^{-j} \tag{15}
\end{equation*}
$$

Remark. Many terms of $\left\{E_{j}^{K}\right\}$ actually vanish; we can show by induction that

$$
\begin{equation*}
E^{K}=K+\frac{1}{2}+\sum_{j=1}^{\infty} \widetilde{E}_{j}^{K}\left(e^{i \theta} \eta^{-N}\right)^{j} \tag{16}
\end{equation*}
$$

where each \widetilde{E}_{j}^{K} is a constant independent of $\theta\left(\mathrm{cf}. \lambda=e^{i \theta} \eta^{-N}\right)$.
For $\theta=\pi+\epsilon$
Stokes curves are the same as in the case of $\theta=-\pi+\epsilon$ (cf. Fig. 1, 2). We define a path Γ^{\prime} of the analytic continuation in a similar way as that for $\theta=-\pi+\epsilon$, that is, let γ_{+}^{\prime} (resp. γ_{-}^{\prime}) be the Stokes curve emanating from $x=1$ (resp. $x=-1$) and penetrating into the lower (resp. upper) half plane. (See the left of Fig. 2.) Then we take Γ^{\prime} as a path which is sufficiently close to $\gamma_{+}^{\prime} \cup\{x ;-1<x<1\} \cup \gamma_{-}^{\prime}$ and never crosses any Stokes curves except for $\{x ; 0<x<1\}$ and γ_{0}. In this case Γ^{\prime} cross 4 Stokes curves for $\epsilon>0$. We denote them by $\gamma_{1}, \cdots, \gamma_{4}$ as is shown in Fig. 4. We can verify that ψ_{-}is dominant on γ_{1}, γ_{3} and γ_{4} and subdominant on γ_{2}.

Figure 4: Path of analytic continuation for $\theta=\pi+\epsilon$. (left: $N=1$, right: $N=2$. Wiggly lines indicate cuts.)

We now consider the analytic continuation of ψ_{-}along Γ^{\prime}. By using the connection formula near a simple turning point (cf. [1], [4], [5]) together with the connection formula near a double turning point, we obtain the following expression of the Jost function:

$$
\begin{equation*}
J_{+}^{\prime}(\eta, E)=i\left(D_{2}+A_{-}-A_{+}+A_{+} D_{1} D_{2}+A_{+} A_{-} D_{1}\right) \tag{17}
\end{equation*}
$$

where

$$
\begin{aligned}
A_{ \pm} & =\exp \left(-2 \eta \int_{0}^{ \pm a} \sqrt{Q(x)} d x\right) \exp \left(-2 \int_{\infty}^{ \pm a}\left(S_{\mathrm{odd}}-\eta \sqrt{Q(x)}\right) d x\right) \\
D_{1} & =\frac{1}{C} \frac{\sqrt{2 \pi}}{\Gamma(-F+1 / 2)} \eta^{-F} \\
D_{2} & =C \frac{\sqrt{2 \pi}}{\Gamma(F+1 / 2)} e^{-i \pi F} \eta^{F}
\end{aligned}
$$

Here $a=e^{-i \epsilon / N}$, and C, F are the same infinite series as in (12) and (13). Let ω denote $\int_{0}^{a} \sqrt{Q(x)} d x$. (A simple calculation shows

$$
\begin{equation*}
\omega=\frac{e^{-i \epsilon / N}}{2 N} B\left(\frac{3}{2}, \frac{1}{N}\right) \tag{18}
\end{equation*}
$$

where $B(x, y)$ denotes the beta function.) Then we find that $J_{+}^{\prime}(\eta, E)$ has the following form:

$$
\begin{equation*}
J_{+}^{\prime}(\eta, E)=J_{+, 0}^{\prime}(\eta, E)+J_{+, 1}^{\prime}(\eta, E) e^{-\eta \omega}+J_{+, 2}^{\prime}(\eta, E) e^{-2 \eta \omega} \tag{19}
\end{equation*}
$$

where $J_{+, l}^{\prime}(\eta, E)$ contains no exponential term. Let us suppose E has the form

$$
\begin{equation*}
E=E_{0}(\eta)+E_{1}(\eta) e^{-\eta \omega}+E_{2}(\eta) e^{-2 \eta \omega}+\cdots \tag{20}
\end{equation*}
$$

Then by substituting (20) into (19) and comparing the same exponential terms, we find the following:

- Since $E_{0}(\eta)$ must satisfy $D_{2}\left(\eta, E_{0}\right)=0$, or equivalently $F+1 / 2=-K$ ($K=0,1,2, \cdots$), its solution

$$
\begin{equation*}
E_{0}^{K}=K+\frac{1}{2}+\cdots \tag{21}
\end{equation*}
$$

is equal to (15).

- Next $E_{1}(\eta)$ must satisfy

$$
\begin{equation*}
\left.\left(\frac{\partial D_{2}}{\partial E} E_{1}+\widetilde{A}_{-}-\widetilde{A}_{+}+D_{1} D_{2} \widetilde{A}_{+}\right)\right|_{E=E_{0}^{K}}=0 \tag{22}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{A}_{ \pm}=\exp \left(-2 \int_{\infty}^{ \pm a}\left(S_{\text {odd }}-\eta \sqrt{Q(x)}\right) d x\right) \tag{23}
\end{equation*}
$$

Let us first note that the identity

$$
\begin{equation*}
\left.\frac{\partial}{\partial z} \frac{1}{\Gamma(z)}\right|_{z=-n}=(-1)^{n} n!\quad(n=0,1,2, \cdots) \tag{24}
\end{equation*}
$$

implies

$$
\begin{equation*}
\frac{\partial D_{2}}{\partial E}=-i \sqrt{2 \pi} C \eta^{-K-\frac{1}{2}} K!+\cdots \tag{25}
\end{equation*}
$$

Secondly, since

$$
\begin{equation*}
\int_{\infty}^{a} S_{\text {odd }, 0} d x=-\frac{i E \pi}{2 N} \tag{26}
\end{equation*}
$$

and

$$
\begin{align*}
\widetilde{A}_{-} \widetilde{A}_{+}^{-1} & =\exp \left(-\left.2 \pi i \operatorname{Res}_{x=0} S_{\text {odd }}\right|_{\theta=\pi+\epsilon-0}\right) \\
& =e^{-2 \pi i F} \tag{27}
\end{align*}
$$

(which can be verified by deforming the contour appropriately), we obtain

$$
\begin{align*}
\widetilde{A}_{-}-\widetilde{A}_{+} & =\widetilde{A}_{+}\left(\widetilde{A}_{-} \widetilde{A}_{+}^{-1}-1\right) \\
& =\left(e^{i E \pi / N}+\cdots\right)\left(e^{-2 \pi i F}-1\right) \tag{28}
\end{align*}
$$

That is,

$$
\begin{equation*}
\left.\left(\widetilde{A}_{-}-\widetilde{A}_{+}\right)\right|_{E=E_{0}^{K}}=-2 \exp \left(\frac{i \pi}{N}\left(K+\frac{1}{2}\right)\right)+\cdots \tag{29}
\end{equation*}
$$

Thirdly we have

$$
\begin{align*}
\left.D_{1} D_{2}\right|_{E=E_{0}^{K}} & =\left.\frac{2 \pi}{\Gamma\left(F+\frac{1}{2}\right) \Gamma\left(-F+\frac{1}{2}\right)} e^{-i \pi F}\right|_{E=E_{0}^{K}} \\
& =0 \tag{30}
\end{align*}
$$

Through (22), (25), (29) and (30), we obtain

$$
\begin{equation*}
E_{1}^{K}=\frac{2 i}{\sqrt{2 \pi^{3}} K!} \eta^{K+\frac{1}{2}} 4^{\left(K+\frac{1}{2}\right) / N}(1+\cdots) \tag{31}
\end{equation*}
$$

Combining the above results for $\theta= \pm \pi+\epsilon$, we conclude that the leading term of ΔE^{K} is

$$
\begin{equation*}
\frac{2 i}{\sqrt{2 \pi^{3}} K!} 4^{\left(K+\frac{1}{2}\right) / N} \eta^{K+\frac{1}{2}} e^{-\eta \omega} . \tag{32}
\end{equation*}
$$

Hence by using (7) we have the desired result.

References

[1] T. Aoki, T. Kawai and Y. Takei, The Bender-Wu analysis and the Voros theory. ICM-90 Satellite Conf. Proc. "Special Functions", Springer-Verlag, 1991, pp. 1-29.
[2] T.I. Banks and C.M. Bender, Anharmonic oscillator with polynomial selfinteraction. J. Math. Phys., 1972, 13, pp. 1320-1324.
[3] C.M. Bender and T.T. Wu, Anharmonic oscillator. II. A study of perturbation theory in large order. Phys. Rev. D, 1973, 7, pp. 1620-1636.
[4] E. Delabaere, H. Dillinger and F. Pham, Résurgence de Voros et périodes des courves hyperelliptique. Annales de l'Institut Fourier, 1993, 43, pp. 163-199.
[5] E. Delabaere, H. Dillinger and F. Pham, Exact semiclassical expansions for one dimensional quantum oscillators. J. Math. Phys., 1997, 38, pp. 6126-6184.
[6] E. Delabaere and F. Pham, Unfolding the quartic oscillator. Ann. Phys., 1997, 261, pp. 180-218.
[7] A.O. Jidoumon, Modèles de résurgence paramétrique: fonctions d'Airy et cylindroparaboliques. J. Math. Pures et Appl., 1994, 73, pp. 111-190.
[8] E. Harrell and B. Simon, The mathematical theory of resonances whose width are exponentially small. Duke math. J., 1980, 47, pp. 845-902.
[9] B. Hellfer and J. Sjöstrand, Résonances en limite semi-classique. Mémoire de la Société Mathématique de France. ${ }^{\circ}$ 24/25. Supplément au Bulletin de la S.M.F., 1986, 114, fascicule 3.
[10] F.Pham, Fonctions résurgentes implicites. C. R. Acad. Sci. Paris, 1989, 309, série I, pp. 999-1001.
[11] B. Simon, Coupling constant analyticity for the anharmonic oscillator. Ann. Phys., 1976, 58, pp. 76-136.
[12] Y. Takei, On the connection formula for the first Painlivé equation. RIMSKôkyûroku, 1995, 931, pp. 70-99.
T. Koike

Member of JSPS fellows
Research Institute for Mathematical Sciences
Kyoto University
Kyoto, 606-8502 JAPAN
Communicated by J. Bellissard
submitted $17 / 02 / 98$, revised $29 / 08 / 98$; accepted $23 / 11 / 98$

