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On the Perturbation Series in Large Order
of Anharmonic Oscillators

T. Koike

Abstract. We present a mathematically rigorous proof of the Bender-Wu (Banks-
Bender) formula based on exact WKB analysis.

I Introduction

We will consider the large n asymptotics of a perturbation series of an eigenvalue

1 o0
EK:K+§+ZA§/\", (1)
n=1

of a generalized anharmonic oscillator

e 1, 2N+2
(_W+Z(£ + A?N ) ) = By, (2)
where A >0, K =0,1,2,---and N =1,2,---.
In [3](for N = 1) and [2](for N > 2) the following interesting formula is
presented:

7K7%7nN

AEK (—1)n+1N4(K+%)/N (B(%v%)>

K!'\/2m3 2N

«T <K+%+nN) <1+0(%)>, (n—o0),  (3)

where B(z,y) and T'(z) respectively denote the beta and the gamma function.

For N =1 there are some rigorous proofs of the above formula; [8] in connec-
tion with the resonance problem, and [5] from the resurgent theory. Generalization
for a higher dimensional case was considered in [9)].

The purpose of this article is to give another proof of the above formula
for general N using the exact WKB analysis ([1], [4], [5]) along the original idea
in [3]. By the help of Stokes geometry, our argument becomes simpler and more
transparent; it clearly explains why complex turning points do not give any effects
on the above formula (cf. [2]).

I would like to thank Prof.Kawai and Prof.Takei for giving me many valuable
advise and comments. I also thank Prof.Aoki for providing me with a computer
program for drawing Stokes curves, some of which I used in this article.
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IT Calculation of eigenvalues
Following Bender-Wu, we start our argument with the relation ((2.7) in [3])

1 [ AEK())
K _ 7
An = 2mi ) o, Antl X, )

where AEX () denotes the difference of EK|arg \—, and EK|a]rg y—_,- This rela-

tion was derived from the analyticity of an eigenvalue. (See [6],[8].) By this relation,
our problem is reduced to the determination of an eigenvalue for small A and for
arg A = . Keeping this fact in mind, we introduce a large parameter 7 in (2) by
setting A — n~Ne' (0 = arg\) and = — /fz so that (2) becomes

(- g5 + 7 Q@) =07'B) ) w =0 )
where )
Q(l') — Z (332 +€i9m2N+2) ) (6)

One important point is, however, Stokes geometry is degenerate for 6 (=
arg \) = £ that is, there exists a Stokes curve connecting turning points. (See
the left of Fig. 1, for example.) To resolve this degeneracy, we rotate the contour
in (4) in the following way:

1 [°  AEK()

K _
A )\7L+1

= dA
K=o , (™)

—o0 et€

where € is a sufficiently small positive number. (See the right of Fig. 1. We can
show this modified relation in a similar way as that of the original one. See also
§V in [2].) Hence we determine an eigenvalue of (5) for § = £7 + e.

There are one double turning point at x = 0 and 2N simple turning points
at x = exp(i((2k + )7 —0)/2N) (k=0,1,2,---,2N — 1).

For 0 = —m + €
First we compute EX()\) when 6 (= arg\) = —m + e. The examples of Stokes
curves are given in the right of Fig. 1 (for N = 1) and Fig. 2 (for N = 2). (The
left of Fig. 1, 2 are that for e = 0.)

We can determine analytically continued eigenvalues by the rotating sector
condition (cf.[3], see also [8]); we require that the solutions of (5) tend to 0 in the

sectors
(N +2) <%N+®}' ®)

As a path of the analytic continuation of solutions connecting these sectors ¥4 (6)
near oo, we can choose and fix the following path I throughout this article: We
define I" with the help of Stokes curves for € = 0. If € is equal to 0, z = +1 are

Y¥i(0) = {xe C;

arg(+x) + 5
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Figure 1: Stokes curves (N = 1) for e = 0 (left) and for € > 0 (right).
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Figure 2: Stokes curves (N = 2) for e = 0 (left) and for € > 0 (right).

turning points, and x = +i also become turning points if N is even. Let 7y be a
Stokes curve emanating from x = 0 in the direction of positive imaginary axis, v,
(resp. 7—) a Stokes curve emanating from z = 1 (resp. + = —1) and penetrating
into the upper (resp. lower) half plane (cf. Fig. 1, 2). Then we take I" as a path
which is sufficiently close to v+ U{z; —1 <z < 1} U~_, crosses two Stokes curves
{z;—1 <z < 0} and 7y, just once, and never crosses any other Stokes curves. The
examples of I" are given in Fig. 3. For € > 0, we find that this I" crosses two Stokes
curves when N is odd, and four Stokes curves when N is even. We denote them
by ~1 and v (or 71,---,74 ) as is shown in Fig. 3.
In the following we use WKB solutions which are normalized as

b = \/Sl—dd exp (in /Om \/de> exp (j: /: (Soaa = 1V/Q(@)) dx) . (9)
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Figure 3: Path of analytic continuation for § = —7 +e¢. (left: N = 1, right: N = 2.
Wiggly lines indicate cuts.)

where

Sodd = "I Sodd,j = - 4 ... 10
dd jZE_ln adj = 1V Q(z) N (10)

is the odd degree part of a solution S of the Riccati equation associated with (5).
(See [1].)
Here we choose the branch of \/Q(x) so that

e we place cuts from each simple turning point to oo (See Fig. 3.);
1
o /Q(x) = 5% +0(z?).

Then v_ satisfies the boundary condition in X1 (#). We find that ¢_ is dominant
on 1 (resp. ¥2) and subdominant on 5 (resp. v1 , v3 , v4), which implies that only
~1 (resp. 72) is relevant for the calculation of the Jost function. As a matter of
fact, using the connection formula near a double turning point, we find that ¥ _ in
¥4+ (0) becomes Ji(n, E)Y¢pr +J_(n, E)p_ in £_(0) after the analytic continuation

along I', where
V2T inp F

Ji(n, E) = iC !
+(n, E) =i I‘(F+%)e g )
Here
0 = S -t o
=0
F = RE(S)SOdd:_E+"" <13)

are infinite series which are determined by the connection formula near a double
turning point(cf.[5], [7], [12]. In the above “---” means the negative degree part
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with respect to n.) Hence the eigenvalue F must satisfy Ji(n, E) = 0. We solve
this equation by the help of the implicit resurgent function theorem[10]. Since this
equation is equivalent to

1 1
— =0 F+-=-K (K=0,1,2,---.), 14
vy -3 ( ) (14
we obtain
 — »
EK:K+§+§ Efn. (15)
j=1

Remark. Many terms of {EJK } actually vanish; we can show by induction that

1 =~ . j
K _ K (,i0,—N\J
E _K+§+2Ej (en=N), (16)
j=1
where each EJK is a constant independent of 6 (cf. A = e¥n=N).
For 0 =7+ €
Stokes curves are the same as in the case of § = —7 + € (cf. Fig. 1, 2). We define a
path I of the analytic continuation in a similar way as that for § = —7 + ¢, that
is, let 4/, (resp. 7_) be the Stokes curve emanating from x = 1 (resp. x = —1) and

penetrating into the lower (resp. upper) half plane. (See the left of Fig. 2.) Then
we take I as a path which is sufficiently close to v/, U {z; -1 <z <1} U4" and
never crosses any Stokes curves except for {z;0 < z < 1} and ~p. In this case I
cross 4 Stokes curves for € > 0. We denote them by ~v1,---,~v4 as is shown in Fig. 4.
We can verify that ¢)_ is dominant on 71, 3 and 74 and subdominant on ~s.
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Figure 4: Path of analytic continuation for § = 7 + €. (left: N = 1, right: N = 2.
Wiggly lines indicate cuts.)



198 T. Koike Ann. Henri Poincaré

We now consider the analytic continuation of 1_ along I”. By using the
connection formula near a simple turning point (cf. [1], [4], [5]) together with the
connection formula near a double turning point, we obtain the following expression
of the Jost function:

J/+(’I7, E) =1 (D2 + A_ — A+ + A+D1D2 + AJrAfDl) s (17)
where
+a +a
A = o (-2 [ VA e (<2 [ (Soaa —ny/@@) d )
0 9]
1 V2
Dl = = " n7F7
CT(-F+1/2)
Dy = 0427T e~imEpl,
I'(F+1/2)
Here a = e~*/N and C, F are the same infinite series as in (12) and (13). Let w

denote / vV Q(z)dz. (A simple calculation shows
0

—ie/N 3 1

e
:—B— —

“ N

= ) (18)

where B(z,y) denotes the beta function.) Then we find that J/ (1, E) has the
following form:

J/+(777 E) = J/+,0<777 E) + er,1(777 E)e—’flw + er,2(777 E)e—2’f]w? (19)
where J'+’l(77, E) contains no exponential term. Let us suppose E has the form
E = Eo(n) + Ex(n)e”™ + Ea(n)e™ ™ +---. (20)

Then by substituting (20) into (19) and comparing the same exponential terms,
we find the following:

e Since Ey(n) must satisfy Da(n, Ey) = 0, or equivalently F' + 1/2 = —K
(K =0,1,2,---), its solution

1
Ef =K+5+ . (21)
is equal to (15).
e Next E;(n) must satisfy
0D ~ ~ ~
Z2FE 4+ A_— A, + DDA, =0, (22)
OE E=Ef
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where

Azt:exp(_g/ﬁa(&Md_anx;D(m>. (23)

o0

Let us first note that the identity

0 1
— =(-1)"n! =0,1,2,--- 24
e I S ) (24)
implies
D
oD; _ —iV2rCny KT K 4o (25)
oF
Secondly, since
@ 1Ew
Sodd,odx = —— (26)
[ o
and
Z_ﬁjrl = exp <—2m’ E{:e(s] S"dd‘g, N _0)
— 67271’1:F (27)

(which can be verified by deforming the contour appropriately), we obtain

Avf - AV+ = AV+ (g,gll - 1)
_ (eiEw/N 4. ) (e=2miF _ 1), (28)
That is,
~ ~ s 1
A -4 ‘ = 2exp L (K + = 2
( +) E=EK P <N < * 2)) * (29)
Thirdly we have
27 ;
DD B — e—zTrF
1D2| gy I(F+)r(-F+1) pe
= 0. (30)
Through (22), (25), (29) and (30), we obtain
2 1 1
EE — 2t K+3(K+3)/N(p 4., 31

Combining the above results for § = +7 + €, we conclude that the leading
term of AEX is )
24 4(K+%)/N,’7K+%e—mu_ (32)
2m3 K|
Hence by using (7) we have the desired result.
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