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On the Perturbation Series in Large Order
of Anharmonic Oscillators

T. Koike

Abstract. We present a mathematically rigorous proof of the Bender-Wu (Banks-
Bender) formula based on exact WKB analysis.

I Introduction

We will consider the large n asymptotics of a perturbation series of an eigenvalue

EK = K +
1
2

+
∞∑
n=1

AKn λ
n, (1)

of a generalized anharmonic oscillator(
− d2

dx2 +
1
4
(
x2 + λx2N+2))ψ = Eψ, (2)

where λ > 0, K = 0, 1, 2, · · · and N = 1, 2, · · ·.
In [3](for N = 1) and [2](for N ≥ 2) the following interesting formula is

presented:

AKn = (−1)n+1N4(K+ 1
2 )/N

K!
√

2π3

(
B(3

2 ,
1
N )

2N

)−K− 1
2−nN

×Γ
(
K +

1
2

+ nN

)(
1 +O

(
1
n

))
, (n→∞), (3)

where B(x, y) and Γ(x) respectively denote the beta and the gamma function.
For N = 1 there are some rigorous proofs of the above formula; [8] in connec-

tion with the resonance problem, and [5] from the resurgent theory. Generalization
for a higher dimensional case was considered in [9].

The purpose of this article is to give another proof of the above formula
for general N using the exact WKB analysis ([1], [4], [5]) along the original idea
in [3]. By the help of Stokes geometry, our argument becomes simpler and more
transparent; it clearly explains why complex turning points do not give any effects
on the above formula (cf. [2]).

I would like to thank Prof.Kawai and Prof.Takei for giving me many valuable
advise and comments. I also thank Prof.Aoki for providing me with a computer
program for drawing Stokes curves, some of which I used in this article.
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II Calculation of eigenvalues

Following Bender-Wu, we start our argument with the relation ((2.7) in [3])

AKn =
1

2πi

∫ 0

−∞

∆EK(λ)
λn+1 dλ, (4)

where ∆EK(λ) denotes the difference of EK
∣∣
arg λ=π and EK

∣∣
argλ=−π. This rela-

tion was derived from the analyticity of an eigenvalue. (See [6],[8].) By this relation,
our problem is reduced to the determination of an eigenvalue for small λ and for
arg λ = ±π. Keeping this fact in mind, we introduce a large parameter η in (2) by
setting λ 7→ η−Neiθ (θ = argλ) and x 7→ √ηx so that (2) becomes(

− d2

dx2 + η2 (Q(x)− η−1E
))

ψ = 0, (5)

where
Q(x) =

1
4
(
x2 + eiθx2N+2) . (6)

One important point is, however, Stokes geometry is degenerate for θ (=
arg λ) = ±π: that is, there exists a Stokes curve connecting turning points. (See
the left of Fig. 1, for example.) To resolve this degeneracy, we rotate the contour
in (4) in the following way:

AKn =
1

2πi

∫ 0

−∞ eiε

∆EK(λ)
λn+1 dλ, (7)

where ε is a sufficiently small positive number. (See the right of Fig. 1. We can
show this modified relation in a similar way as that of the original one. See also
§V in [2].) Hence we determine an eigenvalue of (5) for θ = ±π + ε.

There are one double turning point at x = 0 and 2N simple turning points
at x = exp(i((2k + 1)π − θ)/2N) (k = 0, 1, 2, · · · , 2N − 1).

For θ = −π + ε
First we compute EK(λ) when θ (= arg λ) = −π + ε. The examples of Stokes
curves are given in the right of Fig. 1 (for N = 1) and Fig. 2 (for N = 2). (The
left of Fig. 1, 2 are that for ε = 0.)

We can determine analytically continued eigenvalues by the rotating sector
condition (cf.[3], see also [8]); we require that the solutions of (5) tend to 0 in the
sectors

Σ±(θ) =
{
x ∈ C ;

∣∣∣∣arg(±x) +
θ

2(N + 2)

∣∣∣∣ < π

2(N + 2)

}
. (8)

As a path of the analytic continuation of solutions connecting these sectors Σ±(θ)
near ∞, we can choose and fix the following path Γ throughout this article: We
define Γ with the help of Stokes curves for ε = 0. If ε is equal to 0, x = ±1 are
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Figure 1: Stokes curves (N = 1) for ε = 0 (left) and for ε > 0 (right).
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+
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Figure 2: Stokes curves (N = 2) for ε = 0 (left) and for ε > 0 (right).

turning points, and x = ±i also become turning points if N is even. Let γ0 be a
Stokes curve emanating from x = 0 in the direction of positive imaginary axis, γ+
(resp. γ−) a Stokes curve emanating from x = 1 (resp. x = −1) and penetrating
into the upper (resp. lower) half plane (cf. Fig. 1, 2). Then we take Γ as a path
which is sufficiently close to γ+ ∪ {x;−1 < x < 1} ∪ γ−, crosses two Stokes curves
{x;−1 < x < 0} and γ0 just once, and never crosses any other Stokes curves. The
examples of Γ are given in Fig. 3. For ε > 0, we find that this Γ crosses two Stokes
curves when N is odd, and four Stokes curves when N is even. We denote them
by γ1 and γ2 (or γ1, · · · , γ4 ) as is shown in Fig. 3.

In the following we use WKB solutions which are normalized as

ψ± =
1√
Sodd

exp
(
±η
∫ x

0

√
Q(x)dx

)
exp

(
±
∫ x

∞

(
Sodd − η

√
Q(x)

)
dx

)
, (9)
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Figure 3: Path of analytic continuation for θ = −π+ ε. (left: N = 1, right: N = 2.
Wiggly lines indicate cuts.)

where

Sodd =
∞∑

j=−1

η−jSodd,j = η
√
Q(x)− E

2
√
Q(x)

+ · · · (10)

is the odd degree part of a solution S of the Riccati equation associated with (5).
(See [1].)

Here we choose the branch of
√
Q(x) so that

• we place cuts from each simple turning point to ∞ (See Fig. 3.);

•
√
Q(x) =

1
2
x+O(x2).

Then ψ− satisfies the boundary condition in Σ±(θ). We find that ψ− is dominant
on γ1 (resp. γ2) and subdominant on γ2 (resp. γ1 , γ3 , γ4), which implies that only
γ1 (resp. γ2) is relevant for the calculation of the Jost function. As a matter of
fact, using the connection formula near a double turning point, we find that ψ− in
Σ+(θ) becomes J+(η,E)ψ+ +J−(η,E)ψ− in Σ−(θ) after the analytic continuation
along Γ, where

J+(η,E) = iC

√
2π

Γ(F + 1
2 )
e−iπF ηF . (11)

Here

C =
∞∑
j=0

η−jCj = eE(log 4−iπ) + · · · , (12)

F = Res
x=0

Sodd = −E + · · · , (13)

are infinite series which are determined by the connection formula near a double
turning point(cf.[5], [7], [12]. In the above “· · ·” means the negative degree part
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with respect to η.) Hence the eigenvalue E must satisfy J+(η,E) = 0. We solve
this equation by the help of the implicit resurgent function theorem[10]. Since this
equation is equivalent to

1
Γ(F + 1

2 )
= 0⇔ F +

1
2

= −K (K = 0, 1, 2, · · · .), (14)

we obtain

EK = K +
1
2

+
∞∑
j=1

EKj η
−j . (15)

Remark. Many terms of {EKj } actually vanish; we can show by induction that

EK = K +
1
2

+
∞∑
j=1

ẼKj
(
eiθη−N

)j
, (16)

where each ẼKj is a constant independent of θ (cf. λ = eiθη−N ).

For θ = π + ε
Stokes curves are the same as in the case of θ = −π+ ε (cf. Fig. 1, 2). We define a
path Γ′ of the analytic continuation in a similar way as that for θ = −π + ε, that
is, let γ′+ (resp. γ′−) be the Stokes curve emanating from x = 1 (resp. x = −1) and
penetrating into the lower (resp. upper) half plane. (See the left of Fig. 2.) Then
we take Γ′ as a path which is sufficiently close to γ′+ ∪ {x;−1 < x < 1} ∪ γ′− and
never crosses any Stokes curves except for {x; 0 < x < 1} and γ0. In this case Γ′

cross 4 Stokes curves for ε > 0. We denote them by γ1, · · · , γ4 as is shown in Fig. 4.
We can verify that ψ− is dominant on γ1, γ3 and γ4 and subdominant on γ2.

Γ′Γ′
γ1

γ2

γ3

γ4

γ1

γ2

γ3

γ4

Figure 4: Path of analytic continuation for θ = π + ε. (left: N = 1, right: N = 2.
Wiggly lines indicate cuts.)
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We now consider the analytic continuation of ψ− along Γ′. By using the
connection formula near a simple turning point (cf. [1], [4], [5]) together with the
connection formula near a double turning point, we obtain the following expression
of the Jost function:

J ′+(η,E) = i (D2 +A− −A+ +A+D1D2 +A+A−D1) , (17)

where

A± = exp
(
−2η

∫ ±a
0

√
Q(x)dx

)
exp

(
−2
∫ ±a
∞

(
Sodd − η

√
Q(x)

)
dx

)
,

D1 =
1
C

√
2π

Γ(−F + 1/2)
η−F ,

D2 = C

√
2π

Γ(F + 1/2)
e−iπF ηF .

Here a = e−iε/N , and C, F are the same infinite series as in (12) and (13). Let ω

denote
∫ a

0

√
Q(x)dx. (A simple calculation shows

ω =
e−iε/N

2N
B(

3
2
,

1
N

), (18)

where B(x, y) denotes the beta function.) Then we find that J ′+(η,E) has the
following form:

J ′+(η,E) = J ′+,0(η,E) + J ′+,1(η,E)e−ηω + J ′+,2(η,E)e−2ηω, (19)

where J ′+,l(η,E) contains no exponential term. Let us suppose E has the form

E = E0(η) +E1(η)e−ηω +E2(η)e−2ηω + · · · . (20)

Then by substituting (20) into (19) and comparing the same exponential terms,
we find the following:

• Since E0(η) must satisfy D2(η,E0) = 0, or equivalently F + 1/2 = −K
(K = 0, 1, 2, · · ·), its solution

EK0 = K +
1
2

+ · · · , (21)

is equal to (15).
• Next E1(η) must satisfy(

∂D2

∂E
E1 + Ã− − Ã+ +D1D2Ã+

)∣∣∣∣
E=EK0

= 0, (22)
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where

Ã± = exp
(
−2
∫ ±a
∞

(
Sodd − η

√
Q(x)

)
dx

)
. (23)

Let us first note that the identity

∂

∂z

1
Γ(z)

∣∣∣∣
z=−n

= (−1)n n! (n = 0, 1, 2, · · ·) (24)

implies
∂D2

∂E
= −i

√
2πCη−K−

1
2K! + · · · . (25)

Secondly, since ∫ a

∞
Sodd,0dx = − iEπ

2N
(26)

and

Ã−Ã
−1
+ = exp

(
−2πi Res

x=0
Sodd

∣∣∣
θ=π+ε−0

)
= e−2πiF (27)

(which can be verified by deforming the contour appropriately), we obtain

Ã− − Ã+ = Ã+

(
Ã−Ã

−1
+ − 1

)
=

(
eiEπ/N + · · ·

) (
e−2πiF − 1

)
. (28)

That is, (
Ã− − Ã+

)∣∣∣
E=EK0

= −2 exp
(
iπ

N

(
K +

1
2

))
+ · · · . (29)

Thirdly we have

D1D2|E=EK0
=

2π
Γ(F + 1

2 )Γ(−F + 1
2 )
e−iπF

∣∣∣∣
E=EK0

= 0. (30)

Through (22), (25), (29) and (30), we obtain

EK1 =
2i√

2π3 K!
ηK+ 1

2 4(K+ 1
2 )/N (1 + · · ·). (31)

Combining the above results for θ = ±π + ε, we conclude that the leading
term of ∆EK is

2i√
2π3 K!

4(K+ 1
2 )/NηK+ 1

2 e−ηω. (32)

Hence by using (7) we have the desired result.
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