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Solution of Certain Integrable Dynamical Systems
of Ruijsenaars-Schneider Type
with Completely Periodic Trajectories

F. Calogero and J.P. Francoise

Abstract. The first main result of this paper is the solution of the (complex) equa-
. . .. . . n . . .
tions of motion Z;+i22; = Zk:l,k;&j 2j 2 f(zj—2k) with f(z) = 2a cotgh (az)/[1+

r2sinh?(az)], and the consequent confirmation of the conjecture that all the tra-
jectories of this dynamical system are completely periodic with period (at most)
T’ =Tn!,T = 27 /2. We also discuss a symplectic reduction scheme which features
new Lie-theoretic aspects for these systems. These developments are introduced
here in the perspective of applying them in future studies to implement geometric
quantization techniques.

I Introduction

It was recently pointed out [1] that the dynamical systems of Ruijsenaars-Schneider
(RS) type characterized by the equations of motion

n

5+i0% = Y Haflz—a), j=1,...,n, (1.1)
k=1,k#j

are “integrable” or “solvable” [2], if

f(z)=2/z “case (1)”, (1.2a)

() =2/[z(1 +r?2?)] “case (i)”, (1.2b)

f(2) = 2acotgh(az) “case (1ii)”, (1.2¢)

f(2) = 2a/sinh(az) “case (iv)”, (1.2d)

f(2) = 2acotgh(az)/[1 4+ r’sinh*(az)] “case (v)”, (1.2e)

f(z) = —aP’(az)/[P(az) — P(ab)] “case (vi)”, (1.2f)

and it was conjectured that, if and only if the constant {2 is real and nonvanishing,
all their trajectories z;(t),j = 1,...,n, are periodic with period (at most)

T =Tn! , T =2r/0. (1.3)

This conjecture was proven in Ref. [1] (on the basis of previous findings [3]) for
cases (i) and (), by solving the corresponding equations of motion: z;(t) are
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given by (in case (i); in case (iii), they are closely related to) the n (complex)
zeros of a (monic) polynomial of degree n in z whose n coefficients are explicitly
known functions of time, all periodic with period T'. The availability of this method
of solution suggests calling these two models “solvable” [2].

The main contribution of this paper is to also solve, rather explicitly, the
equations of motion (1) for all the other cases listed above, except case (vi): the
validity of the conjecture [1] is thereby validated for these cases. The technique of
solution is based on the possibility to put these equations of motion in “Lax pair”
form [4,1] (for this reason these systems are called “integrable” [2]): the solutions
z;(t) are then given by (or are closely related to) the n eigenvalues of an (explicitly
known) (nx n)-matrix which is periodic in time with period T

Of course the solutions z;(t) of (1.1) move in the complex plane; and indeed
all the constants appearing in (1.2), namely 7, a and b, as well as the constants
w and ' implicit in the definition of the Weierstrass function P(z) = P(z|w, w’),
might be complex. Note that in case (i) it is justified to identify the complex plane
with the physical plane, obtaining thereby a (real) rotation-invariant model which
describes the motion of particles in the plane, and which is in fact the special case
of a more general solvable model of this type [5]. More generally, a reinterpretation
of the complex model (1.1) as a real rotation-invariant model describing motions
in the real (“physical”) plane is also possible for any choice of the function f(z) [6].

In the following Section IT we describe a simple trick [2], namely a change of
the dependent variable (“time”), which allows to relate equations of type (1.1) to
analogous equations of motion, but with 2 = 0.

In Section ITI we prove our main result for case (v), and then by specialization
for cases (i)—(iv) as well: these are indeed all special subcases of case (v), see below
(while case (v)is itself a subcase of case (vi)). We also discuss tersely the connection
between “solvable” and “integrable” [2] models and the corresponding techniques
of solution, for the solvable cases (i) and (%ii).

In Section IV we analize the possible usefulness of “fake Lax pairs” [1], which
exist for systems of type(1.1) for arbitrary odd f(z), to solve the corresponding
equations of motion (which are all Hamiltonian [1]).

The results reported herein draw heavily on previous findings; indeed the
techniques of solution we employ are not new, neither for solvable [3] nor for
integrable [7] systems, although they had not been previously applied to solve
the equations of motion (1.1) (but they have been certainly applied to analogous
systems, indeed we like to record explicitly, for the integrable cases, the pioneering
work by S.N.M. Ruijsenaars and his school [8]).

The elliptic system (namely, case (vi)) requires a separate treatment. Indeed,
even in the simpler (“nonrelativistic”) context (namely, for the so-called Calogero-
Moser (CM) systems [7]), no finite-dimensional framework is available to solve
the elliptic case: the only method known so far is due to .M. Krichever and it
is based on the study of solutions of the Kadomtsev-Petviashvili (KP) nonlinear
partial differential equation in 2+1 dimensions [9]. Similar techniques were re-
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cently developed by I.M. Krichever and A.V. Zabrodin for RS systems [10]. Also,
an infinite-dimensional Hamiltonian reduction scheme was recently introduced for
the elliptic CM system [11, 12]. In the present paper we have restricted our inves-
tigation to the most general RS system which can be treated by finite-dimensional
techniques, including its integrable deformation characterized by the remarkable
property to feature only completely periodic trajectories (namely, case (v) as de-
fined above, see (1.1) with (1.2e)).

Under this limitation, we also provide below, in Section V, a Hamiltonian
reduction scheme analogous to the Kazhdan-Kostant-Sternberg (KKS) [13] con-
struction for CM systems. Such a scheme was used by one of us (JPF) to demon-
strate the existence of a symplectic action of the torus associated with the rational
CM system with an external quadratic potential [14] (see also [15], where the KKS
framework was used to demonstrate the complete integrability of the rational CM
system with an external quartic potential). More recently this approach has fea-
tured in several papers. While the quick pace of development in this area entails
that we cannot provide an exhaustive list of contributions, we would like to men-
tion that this Hamiltonian reduction has been discussed by H.-W. Braden and R.
Sasaki for case (iv) (with £2 = 0) [16]. To the best of our knowledge, it was not yet
considered for case (v) (even for £2 = 0); and of course the treatment given here,
of the case {2 # 0 featuring completely periodic orbits, is new.

The Hamiltonian reduction framework provides the tools to demonstrate the
existence of a symplectic action of the torus which leaves the system invariant.
We provide this proof for the rational case in Section VI. Hamiltonians which
are invariant under a symplectic action of the torus feature specially interesting
properties; in particular, contributions by M. Atiyah, Y. Colin de Verdiere, V.
Guillemin and S. Sternberg [17] are then available to investigate the quantized
systems. Hence the findings reported in Sections V and VI provide the foundations
for an analytic approach, which we plan to provide in a subsequent paper, to the
quantized systems corresponding to (1.1) with (1.2).

We do not consider here the R-matrix approach, which provides an alternative
route to deal with quantization. For this approach we refer to several recent papers
[18-23], none of which however considers the completely periodic case introduced
in [1], on whose treatment the present paper is instead focussed.

IT A simple trick

In this section we report a simple trick [2] that relates the solutions of (1.1) to the
solutions of the same equations of motion, but with 2 = 0.
Consider the (more general) equations of motion

n

5t) - o)) = > Hl)im®) firmlzt), i =1,...,n, (2.1)

k,m=1
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where of course z is the n-vector of components z;. Now set

zj(t) = G(7), 7 = 7(t). (2.2)

Then clearly

G @)+ FOIPFE) — a@®F )G = D GG () firmb(r)], 5 =1,....n.

(2.3)
Hence the choice of a function 7(¢) which satisfies the (linear) equation

7(t) = a(t)7(t), (2.4)

transforms the equations of motion (2.1) for z;(¢) into the same equations of motion
for (j(7) (of course with %;(t) replaced by (i(t) = d(;(r)/dr, and so on), but
without the second term in the left-hand side. Note that this conclusion holds for

arbitrary fjrm(z).
In particular the position

7(t) = (i/2)[exp(—i2t) — 1] (2.5)

transforms (1.1) into

n

G = Y GEOGEIGE) = G@i=1...,n. (2.6)

k=1,k#j

Hereafter we will therefore firstly solve (1.1) with {2 = 0, since the solution of
(1.1) with £ # 0 can then be recovered by replacing ¢ with 7, see (2.5). Note that
the finding described in this section reinforces the plausibility of the conjecture
proffered in [1], but does not quite prove its validity.

IIT Solution of the equations of motion

In this section we obtain the (rather explicit) solution of the equations of motion

n

= > Haflz—a), j=1,...,n, (3.1)
k=1,k#j

with f(z) given by (1.2e) (“case (v)”). The solution of (1.1) with f(z) given by
(1.2a,b,c,d,e) is then obtained by using the trick of the preceding Section II and
by appropriate specialization of the constants, as we indicate below.

The starting point of the analysis is the observation [4,1] that (3.1) with
(1.2¢) is equivalent to the following “Lax-type” (nXn)-matrix equation:

L=[L,M]_, (3.2)
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with
Lji =612 + (1- 6jk)(z'j2k)1/2a(zj - 2k), (3.3)
Mjp =6k > 2mBlz—2m) + (1= 80) (2) Yz — ), (34)

m=1,m#j

and
a(z) = sinh(ap)/ sinh[a(z + p)], (3.5a)
B(z) = —acotgh(ayu)/[1 + 2 sinh?(az)], (3.5b)
v(z) = —acotgh(az)a(z), (3.5¢)

where

sinh(ap) = i/r. (3.5d)

We then introduce the diagonal matrix

E(t) = diag{exp[2az;(t)]}, (3.6)

and we note that there holds the matrix formula

E:[E7M]*+G[E7L]+a (37)

whose validity can be very easily verified by explicit computation using (only!)
(3.6), (3.3) and (3.4) with (3.5¢). Above and throughout of course [A,B]_ =
AB — BA and [A, B]; = AB + BA.

One can now use a technique introduced, in the CM context, by M.A. Ol-
shanetsky and A.M. Perelomov [7]. Set

L=ULU'\ M =UMU ' E=UEU!, (3.8)

and note that the last of these equations, together with (3.6), entails that the

quantities exp[2az;(t)] are the n eigenvalues of the matriz E(t).
Define now the (nxn)-matrix U(¢) via the equations

U(O) = I, Ujk(O) = (Sjk 5 (3.9&)
Ut) = MOU®), M) =U®)[UE)]. (3.9b)

These two equations define U(t) uniquely; the fact that we do not know how to
compute this matrix, since we neither know the matrix M (t) nor how to solve
(3.9b), is immaterial. Indeed (3.9b), together with (3.8) and with (3.2) and (3.7),
clearly entail the equations

L(t) =0, (3.10a)
E(t) = alE(t), L(t)]4. (3.10b)
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Hence, from (3.10a) and (3.9a),

L(t) = L(0) = L(0), (3.11)
and, from (3.10b), (3.11) and (3.9a),
E(t) = exp[aL(0)t] E(0) explaL(0)t]. (3.12)

The matrices E(0) and L(0) are explicitly given, in terms of the initial data
2j(0),%;(0),5 = 1,...,n, by (3.6) and (3.3) with (3.5a). Hence the matrix E(t)
is rather explicitly given by this formula, (3.12), and its eigenvalues provide the
quantities exp[2az;(t)] (see the remark after equation (3.8)).

Replacement of ¢t by 7, see (2.5), in the right-hand side of (3.12) entails
that the matrix E(t) becomes periodic in ¢ with period T, see (1.3); hence its
eigenvalues exp[2az;(t)] are also periodic in time, with period (at most) T”, see
(1.3). And the periodicity of the quantities exp[2az;(t)] entails periodicity, with
the same period, of the quantities z;(¢). [From the explicit time-evolution (3.12)
of E (t) it is clear that its determinant does not vanish over time: hence none of
its eigenvalues vanishes, and their logarithms are uniquely defined by continuity.]

We have thereby proved the conjecture of Ref.[1] for case (v), namely for the
equations of motion (1.1) with (1.2e). It is easily seen that this proof holds equally
for the 4 cases (i)—(iv), which are in fact all subcases of case (v). Indeed cases (iv)
respectively (iii) obtain from case (v) by setting > = 1 (and changing a into a/2)
respectively r = 0 (no change in a); case (i) obtains by replacing r with r/a and
then letting a — 0, which entails the replacement of (3.12) by the formula

Z(t) = Z(0) + L(0)¢t (3.13)

with
Z = diag(z;), (3.14)
Ljk = 6% + (1= 66) (238) 2 /[ + ir (25 — 2], (3.15)

and of course the property that the n quantities z;(t) are the n eigenvalues of the
matriz Z(t).

Finally, case (i) is merely the special case of the results we just detailed for
case (ii), corresponding to r = 0 (see (3.15)). Two remarks are appropriate in this
connection (somewhat analogous observations apply to case (ii); we leave their
elaboration as a task for the diligent reader; but see also the treatment given in
the following Section IV).

Firstly we observe that, in the r = 0 case, the matrix L, see (3.15), is highly
degenerate (separable of rank 1); this corresponds to the fact that this case is not
only “integrable” but also “solvable” [2]. Indeed the quantities z;(t), being the
eigenvalues of the matrix Z (t), are the roots of the following polynomial of degree
n in z:

det[2] — Z(t)] = H z—zj(t)) = 2"+ Z em(t (3.16)
j=1 =1
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This polynomial is linear in ¢ (see below), hence
b)) =0, m=1,....,n (3.17)

But this last equation, together with the nonlinear one-to-one mapping between
the z;’s and the ¢;,’s entailed by the second relation (3.16), is precisely the basis
of the technique of solution of case (i) [3].

To complete this argument there remains to show that the polynomial (3.16)
is linear in ¢. This is a consequence of the special structure of the matrix L in this
case,

Lji = (2) /2 (3.18)

(see (3.15) with » = 0). Indeed (see (3.13) and (3.14))

n

det[z = [] v, {diag[z — 2 (0)] — L(0)t}v(™), (3.19)

m=1

where the n-vectors v("™) constitute an (arbitrary) orthonormal vector basis. Now
choose a t-independent basis such that

n

oY = 15O/ O, Vo)=Y 4, (3:202)

j=1
(assuming for simplicity the quantity V' (0) does not vanish), so that
v vy =6, m=1,...,n, (3.20b)
hence (see (3.18) and (3.20), (3.21))
LOO)v™ =6, VO™, m=1,...,n, (3.21)

hence (see (3.19))

det[z] — Z(t)] = [(v(V, diag[z — z; (0)]v(V)) = V(0)¢] H (v(™) | diag[z — z;(0)]v(™).
m=2
(3.22)
This completes the argument, except for the special case in which V' (0) vanishes
(“center of mass at rest”). We leave the analysis of this exceptional case as an
exercise for the diligent reader, who will also note the special behavior of the
system in this case, as discussed in Section 4.F of Ref.[5].

The second remark notes that, in the » = 0 case, the matrix L, see (3.15),
corresponds to a “fake Lax pair” [1], yet the technique of solution we have just
exhibited works in this case as well (it does yield the solution to the equations of
motion). This fact is sufficiently intriguing to justify a detailed discussion in the
following Section IV.
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But before ending this section, let us return to the dynamical system (3.1)
with (1.2e) (case (v)), to report the following

Remark. The explicit expressions (3.3) with (3.5a) of L, and (3.6) of E, entail that
the matrix

S = cosh(ap)[E, L]- + sinh(ap)[E, L]+ (3.23)

is symmetrical and has rank 1:
Sjk = 8;Sk (3.24)

s; = [2sinh(ap) 2;]"/? exp(az;). (3.25)

This suggests an alternative route to treat this dynamical system. One starts
from the evolution equations (3.10a,b) for the two (nxn)-matrices L(t) and E(t),
which of course entail (3.11) and (3.12). Then one introduces the matrix U(t) as
the one that diagonalizes E(t) (see the third equation (3.8), and (3.6)), and then
the matrix L(t) via the first of the 3 equations (3.8). Then one imposes the validity
of (3.23) and (3.24) (subject to a final consistency check). It is then easily seen
that the explicit expressions of s;, see (3.25), and of L, see (3.3) and (3.5a), can be
derived, as well as the equations of motion (3.1) with (1.2e). [This can be achieved
via the following steps: introduce M via (3.9b) and then M via the second of the
(3.8); then (3.10 a,b) entail (3.7) and (3.2); then the diagonal part of (3.7), together
with (3.6), yield the diagonal part of L, see (3.3); then equate the right-hand sides
of (3.23) and (3.24), and thereby get firstly (3.25) (from the diagonal part, using
(3.6) and the already evaluated diagonal part of L), and then the off-diagonal part
of L (from the off-diagonal part); then, from the off-diagonal part of (3.7), evaluate
the off-diagonal part of M (using (3.6) and the now known off-diagonal part of L);
and finally, from the diagonal part of (3.2), get the equations of motion (3.1) with
(1.2e) (using the now known off diagonal parts of L and M)].

This method of obtaining the equations of motion (3.1) with (1.2e), as well as
their Lax-pair structure and their solution, might appear tortuous. But it shows
that one can obtain this dynamical system starting from the extremely simple
(nxn)-matrix evolution equations (3.10a,b), and supplementing them with the (a
posteriori compatible) constraint (3.23) with (3.24) (with E and L defined via
(3.8) and (3.6)). This provides the framework for a reduction procedure which is
discussed in some detail in Sections V and VI.

IV Natural ansatz for finding the “angle” equation

Complete integration of a Hamiltonian system needs finding a Lax matrix (which
provides the conserved quantities) and an extra-equation (cf. 3.7) which may be
called the “Angle” equation (in reference to the classical terminology of the Action-
Angles coordinates here adopted in its broad sense). It seems quite interesting to
note that in the examples we consider here, the Lax equation may be “fake” (in the
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sense that it does not provide the expected number of conserved quantities) and
nevertheless it may be implemented with an extra-equation (the “Angle” equation)
which still allows the full integration of the system. In this sense, even a “fake”
Lax pair may be useful. We provide here a complete discussion of the ansatz for
finding the “Angle” equation. We derive the system (1.2e) as only solution. This
shows clearly that the elliptic system (1.2f) cannot be reached with our techniques
and that a separated study for finding the “Angle” equation should be developed
(perhaps based on the ideas of [9] and [1 ]).
It is easy to verify that the equations of motion

n

5= #Haflzi—a) ,j=1,...,n, (4.1)
k=1

correspond to the (nxn)-matrix “Lax equation”

L=[L,M]_, (4.2a)
with [1]
Ljk = 8z + (1= 650) (2:56)"% = (52)"%, (4.2b)
1 ..

M, = 5(856 — 1)(2520) "2 fin(z — ze)- (4.2¢)

2
Note that the only condition required for the equivalence of (4.1) and (4.2)
is that the matrix-valued function fj;(z) be “odd,” in the following sense:

frj(=2) = =[5 (2). (4.3)

Incidentally, this condition is also sufficient to guarantee that the equations of
motion (4.1) are Hamiltonian [1]; indeed a Hamiltonian whose equations of motion,

qj' = 8H/6pj, pj = 78H/8qj y (44&)
yield (4.1) (with z; = ¢;) reads as follows:

n
H= Zhj(spj,q) , s = arbitrary nonvanishing constant, (4.4b)

j=1
hi(pj, ) =exp{p;+ Y Filgy —a)}, (4.4¢)

k=1,k#j

firla) = Frj(—a) — Fji(q) - (4.4d)

Note that the last equation entails (4.3).
Moreover, the condition (4.3) is clearly also sufficient to guarantee that the
velocity of the center of mass, V/n,

V=> %, (4.5a)
j=1
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is a constant of motion,

V=0. (4.5b)

The “Lax pair” (4.2b,c) is a “fake Lax pair:” indeed the time-independence
of the eigenvalues of L implied by (4.2a) only entails (4.5b), due to the highly
degenerate character of the matrix L, see (4.2b), which is clearly separable of
rank 1.

But in the preceding Section III we have seen that a Lax pair of this kind
may be instrumental to solve the corresponding equations of motion. It is therefore
natural to investigate whether the technique of solution described in the preceding
section is more generally applicable to a system of type (4.1).

Two ingredients play a crucial role in the technique of solution described in
the preceding section. One is the Lax equation, see (3.2); we now have an analogous
formula, see (4.2). The other is the matrix equation (3.7). Let us therefore see
whether we can now manufacture an equation analogous to (3.7). To this end we
introduce the matrix

G = diaglg ()], (4.6)

with ¢g(z) a function to be determined, and we require that it satisfy the equation

G =[G, M]_ +alG, L]y +bL,G]_ +cG+dL+h (4.7)

with a, b, ¢, d and h five arbitrary (scalar) constants (the justification for this ansatz
for the right-hand side of (4.7) is that, as it can be easily seen, it allows to per-
form all subsequent steps in the technique of solution described in the preceding
Section III).

The compatibility of (4.7) with (4.6) and (4.2b,c) is easily seen to imply the
following results: firstly, from the diagonal part of (4.7),

c=h=0, (4.8a)

g9(z) = Cexp(2az) — d/(2a),C arbitrary, (4.8b)

and then, from the off-diagonal part of (4.7) (note the disappearance of C and d,
as well as of the indices j and k, in the right-hand side)

fix(2) = 2a cotgh(az) + 2b . (4.8¢)
But the condition (4.3) then entails
b=0. (4.8d)

Hence we have merely reobtained the “solvable” [1,3] case (iii), see (1.2¢);
and of course, via the limit a — 0, case (i) can be reobtained as well, see (3.13).

[The diligent reader may repeat this calculation starting from the more gen-
eral ansatz for G that results from the replacement of g(z;) with g;(z;) in (4.6).
The more general result obtained in this manner corresponds merely to the free-
dom to perform, in the equations of motion (see (4.1) or (3.1)), the translations
zj — zj + wj, the n quantities w; being arbitrary constants|.
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V The Hamiltonian reduction procedure

The general idea of the “Hamiltonian reduction procedure” is to start with a
“large” initial phase space and a “simple” Hamiltonian possessing a symmetry
group. Factorizing the corresponding motion by this symmetry yields a nontrivial
dynamical system defined on a reduced phase space. Let us tersely outline how it
works here.

For the models treated in this paper, namelycases (i) to (v) (see (1.1) with
(1.2a,b,c,d,e)), one can use the cotangent bundle T*G over the Lie group G =
Gl(n,C). The space T*G is naturally isomorphic to G x G* where G* is dual to
the Lie algebra G = Mat(n,C). Let (£, L) be an element of T*G, where £ belongs
to the image of the exponential mapping: exp : G—G. The group G acts on itself
and this action gets lifted into a Hamiltonian action on T*G. Write

€ =exp(2a2), (5.1)

where Z belongs to an orbit of maximal dimension of the adjoint action of G on
G, and it is diagonalizable,

Z=WZIW™, (5.2a)
Z = diag(z;). (5.2b)

Note that one is now generalizing the Kazhdan-Kostant-Sternberg reduction
techniques [13], by replacing the lifted action of G to T*G by an action “weighted
on the left and on the right”, of the image of the exponential mapping: Write
U = exp(T) then

U.E =expl(a+ B)/2]TE exp[(—a + 8)/2]T, (5.3a)
so that the corresponding momentum map is
(&, L) — al€, L] + BIE, L] +. (5.3b)

Note that one is assuming here that G is not only a Lie algebra but also an
associative algebra; namely that not only the commutator [, L] = EL — LE is
defined but the anticommutator [£,L]; = EL + LE as well. The two complex
parameters « and ( are fixed and determine the weights of the action.

Let us remind the reader that for the case of rational and trigonometric CM
systems, the fiber of the momentum map corresponds to the specific rank-one
matrix ¢ ® cf, with ¢/ = (1,...,1) [13]. Here the analogous role is played by the
more general rank-one matrices

Y =o0®0d, (5.4)

where o and ¢’ are two (appropriately chosen, see below) complex n-vectors. The
manifold M on which the dynamics unfolds is the inverse image by the momentum
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map of the set of matrices Y. Of course, we factorize this inverse image by the
action of the subgroup that leaves this set invariant. Indeed, let us consider the
simple dynamical system defined on T*G by the differential equations

E=al L]y, (5.5a)

L=inc, (5.5b)

where a is a complex parameter and {2 is real. This differential matrix system can
be easily integrated:
L = L£(0)exp(if2t), (5.6a)

& = exp{(—ia/N2)[exp(if2t)—1]L(0)}£(0) exp{(—ia/$2)[exp(i2t)—1]L(0)}. (5.6b)
Note that if

al£(0), £(0)]- + B[£(0), L(0)]+ = o(0) ® o' (0), (5.7)
then (see (5.6a,b))
alE(t), L(1)]- + BIE(), L()]+ = o(t)@d (1), (5.8)
with
o(t) = exp(i2¢/2) exp{(—ia/2)[exp(i22¢t) — 1]L(0) }o(0), (5.9a)
o' (t) = 0’ (0) exp(i£2t/2) exp{(—ia/2)[exp(i2t) — 1]L(0)}. (5.9b)

Hence we see that the dynamics leaves globally invariant the manifold M defined
as the inverse image of the set of rank-one matrices X, see (5.4).

We need finally to factorize the manifold M by the action of the group. We
describe a parametrization of the reduced space which yields precisely the Lax
matrix of Ref. [4]. To this end, we first diagonalize the matrix Z (see (5.2)) and
introduce (see (5.1))

E =W 'EW = diag[exp(2az;)]. (5.10)

The entries of the matrix X, see (5.4), are X}, = 0;0). For generic values of
o and o', there are a diagonal matrix D and a vector s such that

D™'YD = s®s. (5.11)

Indeed, if 0; # 0 for all j = 1,...,n, the elements of the diagonal matrix D are
dj = (ag/aj)lm, which yields s; = (O']‘U;)l/2. Then we can set

E = U'€U = diag[exp(2az;)], (5.12a)
with U = DW, and we also define
L=U"'LU. (5.12b)

From here on, one can proceed as described in Section III, see (3.23) and the
discussion following it; note that (3.23) and (5.6) entail the identification

a = cosh(ap), (5.13a)
B = sinh(ap). (5.13b)
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VI The associated Poisson action of the torus for the rational case

In this section we demonstrate, in the simpler case characterized by a rational
f(2), see (1.2a) and (1.2b), how one can introduce a Poisson action of the torus
which leaves the motion invariant, and thereby identify explicitly n constants of
the motion. We moreover show that, for {2 real and nonvanishing, all the flows of
the “particle coordinates” z;(t) induced by these constants (considered as Hamil-
tonians) are completely periodic with period (at most) 7”7, see (1.3).

Let us first of all obtain, via the a—0 limit, the equations relevant to the
rational case. They read, in place of (5.3),

Z=2C, (6.1a)

L =1L, (6.1b)
entailing ) )

Z=inZ. (6.2)

The equations (6.1) are susceptible of Hamiltonian interpretation, with the
matrix Z as canonical variable and the matrix P, defined by

L = exp(P), (6.3)

as conjugated canonical momentum. Here we are of course assuming that £ belongs
to the image of the exponential mapping, which is consistent with (5.6a) or (6.1b).
The corresponding Hamiltonian reads

H = trlexp(P) — i2Z], (6.4)
and the symplectic form is
w = tr[dZAdP] = tr[dZAL™1dL), (6.5a)
entailing
tr[ 2L YL — dZL7 L) = dH = tr[dL — i2dZ], (6.5b)
so that Hamilton’s equations read
ZLh =1, (6.6a)
LTIL =101, (6.6b)

namely they reproduce (6.1). Note that the Hamiltonian (6.3) coincides with that
considered in Ref.[1].

Before proceeding, let us review what was done in Ref.[14] for the rational
CM system with an external quadratic potential, characterized by the equations
of motion

Ty = yj, (673)

g; = =% + Z (zj — )2 (6.7b)
k=1,k#j
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This system was obtained as Hamiltonian reduction of the matrix “pure
harmonic oscillator” system

X =), (6.8a)
y=-02%y. (6.8b)

We may now compare this system with (6.1). Both systems obviously display
periodic solutions. One of the specific features of (6.1) is that, in contrast with
(6.8), it only makes sense for complex matrices Z and £, so that in fact the real
system associated with (6.8) is obtained by considering the time evolution of Re(Z)
and I'm(Z). Hamiltonian reductions of (6.8) yield systems of particles on the line
while Hamiltonian reductions of (6.1) correspond to systems of particles on the
plane [2, 6]. The quantization of the harmonic oscillator is completely classical in
the framework of geometric quantization theory. The quantization of (6.1) is less
standard and we plan to discuss it in a future paper.

Let us now pursue the analogy between the two systems. In Ref.[14] a new
matrix variable was introduced,

Ef=X—-1inY, (6.9b)
with the Hamiltonian
H =tr[E2E57], (6.10)

and the KKS [13] symplectic form
w=tr{—[i/(202)]d=EANd="}. (6.11)

It was then noted that not only is H a constant of the motion, but in fact the
whole matrix A = Z'5* is conserved by the flow (6.8). An analogous phenomenon
occurs for (6.1). Indeed, setting

B=L—-iNZ, (6.12)
one immediately sees that (6.1) entails
B =0. (6.13)

One of the main results obtained in Ref.[14] was that all the eigenvalues of
A, seen as functions of the matrix variables, generate via the symplectic form
(6.11) commuting Hamiltonian systems, all of which possess only completely peri-
odic orbits, with period T' = 27 /{2. This set of commuting Hamiltonians defines a
symplectic action of the torus, which leaves invariant the CM system with exter-
nal quadratic potential (and eventually explains why the corresponding quantum
spectrum coincides with its semi-classical approximation).



Vol. 1, 2000 Integrable Systems with Periodic Trajectories 187

We prove here the following analogous result: the set of eigenvalues 3, of the
matrix B, see (6.12), generate, via the symplectic form (6.5), commuting Hamil-
tonian flows for the matrix variables, all of which are completely periodic, with
period T = 2m/§2. The proof of this statement goes as follows. Let (3, be an
eigenvalue of the matrix B. Let ¥(™) be the corresponding eigenvector and let
N(™) be the projector on ¥(™) . The dynamical system associated with 3., is then
characterized by the matrix differential equations

Z=LNm), (6.14a)
L=iLN™, (6.14b)

Hence again, under all these flows, the matrix B, see (6.12), is constant:
B=1iRLN™ —iRLN™ = . (6.15)

This clearly entails that all the eigenvalues of B are constants of the motion under
all these flows; hence different eigenvalues Poisson commute pairwise, and define
commuting flows.

Finally, let us prove that all these matrix flows are in fact periodic with
period T, see (1.3). Let U be a (time-independent) matrix which diagonalizes the
(time-independent) matrix B, and let us define

L =ULU "2 =vzZU~',B =UBU~!,N'™ = yN(y-1, (6.16)
Here the matrix B’ is by definition diagonal, and clearly
NI = 8jmbtm. (6.17)
Then (4.16b) yields
L =i N'™), (6.18a)
which entails
L) = L£'(0) expitN'™). (6.18b)
Hence (6.14a) yields
Z'(t) = L'(0) exp(i2tN"™)N"(™), (6.19a)
which admits the solution:
Z'(t) = (i2)712/(0) L' (0) exp(i2t N (™)) N'(™) (6.19b)
entailing (see (6.17))
(2" )]k = [2"(0)]jn + (192) ™" exp(i628)[L7(0)] jm S, (6.20)

which displays the explicit time-evolution of the matrix Z’(t) under the flow gener-
ated by the m-th eigenvalue of B. Obviously this evolution is periodic, with period
T = 2m /2. The coordinates z;(t) are just the eigenvalues of this matrix Z’(t) (see
(6.16) and (5.2)), hence they are all periodic with period (at most) 7", see (1.3).
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VII Outlook

This is meant to be the first paper of a series. In subsequent papers we plan to treat
case (vi), to report analogous results for systems with “nearest neighbor” interac-
tions, to focus on formulations of these models that can be properly interpreted
as (real) many-body problems in the plane featuring only completely periodic tra-
jectories [6], and to discuss quantum versions of such many-body problems. The
quantization of the Hamiltonian system (6.4) is nontrivial even in the simplest
case n = 1. In this case, the system is defined via the complex coordinates (z,p)
or equivalently via the real ones:

(T,Y;pzspy) 1 2 =2+ iy, p = px —ipy (7.1).
The Hamiltonian H reads then:
H(z,p) = exp(p) — 12z = exp(y)[cos(py) — isin(p,)] — 12(z + iy) (7.2)

and this yields (see [6]) the 2-dimensional Hamiltonian system characterized by
the real Hamiltonian:

Hy(x,pz5y,py) = exp(y)cos(py) + 2y. (7.3)

All the trajectories of this dynamical system are completely periodic with
period T' = £2/27 as it is easily seen from the second order differential equation
associated with the Hamiltonian (7.2):

5 =i (7.4)

It is expected that the corresponding quantum model feature an equispaced
energy spectrum (to be properly defined). But the system (7.4) is not trivially
equivalent to a harmonic oscillator. Thus the usual schemes of geometric quanti-
zation shall have to be appropriately revisited.
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