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Continuous Constructive Fermionic Renormalization

M. Disertori and V. Rivasseau

Abstract.We build the two dimensional Gross-Neveu model by a new method which
requires neither cluster expansion nor discretization of phase-space. It simply reor-
ganizes the perturbative series in terms of trees. With this method we can define
non perturbatively the renormalization group differential equations of the model
and at the same time construct explicitly their solution.

I Introduction

The popular versions of renormalization and the renormalization group in field
theory are based on differential equations (among which the most famous one
is the Callan-Symanzik equation). However no non-perturbative version of these
differential equations has been given until now.

On the other hand the renormalization group in statistical mechanics, for
instance for spin systems after the works of Kadanoff and Wilson, relies on closely
related but discretized equations. When block spinning or other discretization of
momentum space is used, the result is a discretized evolution of the effective action
step by step. This point of view, in contrast with the first one, has led to rigor-
ous non perturbative constructions for various models which have renormalizable
power counting. In particular the two dimensional Gross Neveu model has been
built by two groups [FMRS][GK]; also the infrared limit of the φ4

4, a bosonic theory,
has been controlled (see [R] and references therein). In all these cases the methods
always involved some discretization of phase space and the outcome is a discrete
(not differential) flow equation. Furthermore, the rigorous discretization of phase
space came with a price, namely the use of some technical tools such as cluster
or Mayer expansions which are neither popular among theoretical physicists nor
among mathematicians.

The proposal of Manfred Salmhofer to build a continuous version of the
renormalization group for Fermionic theories [S] is therefore very interesting and
welcome. Indeed Fermionic series with cutoffs are convergent (in contrast with
Bosonic ones, which are Borel summable at best), and the continuous version
of renormalization group which works so well at the perturbative level should
therefore apply to them1.

In this paper we realize the Salmhofer proposal on the particular example
of the two-dimensional Gross-Neveu model. We rearrange Fermionic perturbation

1The continuous limit of the discretized non perturbative RG equations has been also studied
for a certain many fermion system in 1+1 dimension in reference [C].
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theory according to trees, an idea first developed in [AR2], perform subtractions
only when necessary according to the relative scales of the subgraphs, and obtain
(to our own surprise, quite easily) an explicit convergent representation of the
model without any discretization or cluster or Mayer expansion. To prove the
convergence requires only some well-known perturbative techniques of parametric
representations (“Hepp’s sectors”), Gram’s bound on determinants and a crucial
but rather natural concatenation of some intervals of integration for loop lines.

Therefore we can now consider that constructive theory for Fermions has
been “reduced” to perturbation theory. Remark also that since the representation
we use is an “effective” representation in the sense of [R], hence with subtractions
performed only when necessary according to the relative scales of the subgraphs,
we never meet the so-called problem of “overlapping divergences” or classification
of Zimmermann’s forests. In this sense constructive renormalization is easier than
ordinary perturbative renormalization (which, from the constructive point of view,
is flawed anyway because it generates renormalons; these renormalons are the
reason for which the ordinary renormalized perturbation theory of this model is
only Borel summable [FMRS], as stated in Theorem 1).

Having an explicit convergent representation of the theory with a continu-
ously moving cutoff, it is trivial both to define the continuous renormalization
group equations which correspond to the variation of this cutoff and, at the same
time, to check that our explicit representation is a solution of these equations.

Remark however we have not yet found the way to short-circuit our repre-
sentation and to prove that the equations and their solutions exist by a purely
inductive argument à la Polchinski [P] which would avoid an explicit formula for
the solution. This is presumably possible but this question as well as the extension
to other models, in particular to interacting Fermions models of condensed matter
physics, is left for future investigation. It is also important to recall that we do
not see at the moment how to extend this method to Bosons, since there are no
determinant and Gram’s bound for them.

II Model and main result

We consider the massive Gross-Neveu model GN2, which describes N types of
Fermions. These Fermions interact through a quartic term. Actually, the GN2
action also requires a quadratic mass counterterm and a wave function counterterm
in order for the ultraviolet limit to be finite. Therefore the bare action in a finite
volume V is (using the notations of [FMRS]):

SV =
λ

N

∫
V

d2x [
∑
a

ψ̄a(x)ψa(x)]2 (II.1)

+δm
∫
V

d2x [
∑
a

ψ̄a(x)ψa(x)] + δζ

∫
V

d2x [
∑
a

ψ̄a(x)i 6∂ψa(x)]
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where λ is the bare coupling constant, δm and δζ are the bare mass and wave
function counterterms, and a is the color index: a = 1, . . . , N . The action (II.1) and
the power counting of the GN2 model are like the ones for the Bosonic φ4

4 theory,
except that, unlike the latter, the GN2 theory is asymptotically free for N ≥ 2, a
condition which we assume from now on. The free covariance in momentum space
is

Cγδab (p) = δa,b

(
1

− 6p+m

)
γ,δ

= δa,b

(
6p+m

p2 +m2

)
γ,δ

(II.2)

where γ, δ are the spin indices, and a, b are the color indices. Most of the time we
skip the inessential spin indices to simplify notation. The mass m is the renormal-
ized mass. To avoid divergences, according to the notations of [KKS] we introduce
an ultraviolet cut-off Λ0 and (for later study of the renormalization group flow) a
scale parameter Λ which plays the role of an infrared cutoff:

CΛ0
Λ (p) = C(p)

[
η

(
(p2+m2)

Λ2
0

)
− η

(
(p2+m2)

Λ2

)]
. (II.3)

The cutoff function η might be any function which satisfies η(0) = 1, which is
smooth, monotone and rapidly decreasing at infinity (this means faster than any
fixed power). For simplicity in this paper we restrict ourselves to the most standard
case η(x) = e−x. In this case both CΛ0

Λ and its Fourier transform have explicit so-
called parametric representations:

CΛ0
Λ (p) =

∫ Λ−2

Λ−2
0

(6p+m) e−α(p2+m2)dα

CΛ0
Λ (x− y) = π

∫ Λ−2

Λ−2
0

(
i
(6x− 6y)

2α2 +
m

α

)
e−αm

2−|x−y|2/4αdα (II.4)

We define now the connected truncated Green functions, also called vertex
functions, which are the coefficients of the effective action. The partition function
with external fields ξ, ξ̄ is

ZΛΛ0
V (ξ, ξ̄) =

∫
dµ

C
Λ0
Λ

(ψ, ψ̄)e−SV (ψ,ψ̄)+<ψ,ξ>+<ξ,ψ>

< ψ, ξ > :=
∫
V

d2x ψ̄(x)ξ(x). (II.5)

The vertex function with 2p external points is:

ΓΛΛ0
2p ({y}, {z}) : = ΓΛΛ0

2p (y1, . . . , yp, z1, . . . , zp) (II.6)

= lim
V→∞

δ2p

δξ(z1)...δξ(zp)δξ̄(y1)...δξ̄(yp)

(
(lnZΛΛ0

V − F )(CΛ0
Λ )−1(ξ)

)∣∣∣
ξ=0

where F (ξ) =< ξ,CΛ0
Λ ξ > is the propagator, and color indices are implicit. Please

do not confuse these vertex functions, which are connected, with the one-particle
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irreducible functions, since the latter are usually also called Γ in the literature.
These functions (in fact distributions) form the coefficients of the effective action
(expanded in powers of the external fields) at energy Λ with UV cutoff Λ0. De-
veloping the exponential in Z and attributing prime and double prime indices
respectively to the mass and wave function counterterms we have:

ZΛΛ0
V (ξ)=

∞∑
p=0

1
p!2

∞∑
n,n′,n′′=0

(−1)n+n′+n′′

n!n′!n′′!

∑
aibicidi

(
λ
N

)n(δm)n
′
(δζ)n

′′
(II.7)

∫
V

d2y1 ...d
2ypd

2z1 ...d
2zpd

2x1 ...d
2xnd

2x′1 ...d
2x′n′d

2x′′1 ...d
2x′′n′′

p∏
i=1

ξdi(zi)ξ̄ci(yi){
y1,c1 ... yp,cp x1,a1 x1,b1 ... xn,an xn,bn x′1,a′1

... x′′n′′,a′′
n′′

z1,d1 ... zp,dp x1,a1 x1,b1 ... xn,an xn,bn x′1,b′1
... x′′n′′,b′′

n′′

}
where we used Cayley’s notation for the determinants:{

ui,a
vj,b

}
= det(Dab(ui − vj)) (II.8)

and ai, bi, a
′
i, b
′
i, a
′′
i , b
′′
i , ci, di are the color indices. By convention

Dab(ui − vj) := Cab(ui − vj) (II.9)

except when the second index is the one of a ψ field hooked to a δζ vertex. In this
particular case the vertex has a so-called derivative coupling, and therefore the
propagator D bears a derivation, namely Dab′′(ui − vj) := i 6∂vjCab′′(ui − vj):=
C ′ab′′(ui − vj). This derived propagator is explicitly

C
′ Λ0
Λ (x−y) = π

∫ Λ−2

Λ−2
0

(
|x− y|2

4α3 +
im(6x− 6y)

2α2 − 1
α2

)
e−αm

2−|x−y|2/4αdα (II.10)

Expanding the determinant in (II) one obtains the usual perturbation theory in
terms of Feynman graphs with the three types of vertices corresponding to the
three terms of the action (II.1), and the logarithm is simply the sum over con-
nected graphs. To see if a graph is connected, it is not necessary to know its whole
structure but only a tree in it. Based on this remark the logarithm of (II) was
computed in [AR2] using an expansion which is intermediate between the deter-
minant form (II) and the fully expanded Feynman graphs. This expansion is based
on a forest formula. Such formulas, discussed in [AR1], are Taylor expansions with
integral remainders. They test the coupling or links (here the propagators) be-
tween n ≥ 1 points (here the vertices) and stop as soon as the final connected
components are built. The result is therefore a sum over forests, which are simply
defined as union of disjoint trees. A forest is therefore a (pedantic, but poetic)
word for a Feynman graph without loops, and our point of view is that these are
the natural objects to express Fermionic perturbation theory.
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Here we use the most symmetric forest formula, the ordered Brydges-Kennedy
Taylor formula, which states [AR1] that for any smooth function H of the n(n−
1)/2 variables ul, l ∈ Pn = {(i, j)|i, j ∈ {1, . . . , n}, i 6= j},

H|ul=1 =
∑
o−F

(∫
0≤w1≤...≤wk≤1

k∏
q=1

dwq

)(
k∏
q=1

∂

∂ulq
H

)
(wFl (wq), l ∈ Pn) (II.11)

where o−F is any ordered forest, made of 0 ≤ k ≤ n− 1 links l1, . . . , lk over the
n points. To each link lq q = 1, . . . , k of F is associated the parameter wq, and
to each pair l = (i, j) is associated the weakening factor wFl (wq). These factors
replace the variables ul as arguments of the derived function

∏k
q=1

∂
∂ulq

H in (II.11).

These weakening factors wFl (w) are themselves functions of the parameters wq,
q = 1, . . . , k through the formulas

wFi,i(w) = 1

wFi,j(w) = inf
lq∈PFi,j

wq, if i and j are connected by F

where PFi,j is the unique path in the forest F connecting i to j

wFi,j(w) = 0 if i and j are not connected by F . (II.12)

We apply this formula to the determinant in (II), inserting the interpolation
parameter ul in the cut-off (but only between distinct vertices, so not for the
“tadpole” lines):

CΛ0
Λ (x, y, u) = δ(x− y)CΛ0

Λ (x, x) + [1− δ(x− y)]CΛ0
Λ (x, y, u)

:= C
Λ0(u)
Λ (x, y)

:= π

∫ Λ−2

Λ−2
0 (u)

(
i
(6x− 6y)

2α2 +
m

α

)
e−αm

2−|x−y|2/4αdα (II.13)

where
Λ−2

0 (u) = Λ−2 + u(Λ−2
0 − Λ−2). (II.14)

We use similar interpolation for the C ′ propagators. When u grows from 0 to 1,
the ultraviolet cut-off of the interpolated propagator (between distinct vertices)
grows therefore from Λ to Λ0.

We define

CΛ0,u
Λ (x, y) :=

∂

∂u
CΛ0

Λ (x, y, u) = π

(
i
(6x− 6y)Λ4

0(u)
2

+mΛ2
0(u)

)
· (Λ−2 − Λ−2

0 )e−m
2Λ−2

0 (u)−|x−y|2Λ2
0(u)/4 (II.15)

C
′ Λ0,u
Λ (x, y) :=

∂

∂u
C
′ Λ0
Λ (x, y, u) = π

(
|x− y|2Λ6

0(u)
4

+
im(6x− 6y)Λ4

0(u)
2

− Λ4
0(u)

)
(Λ−2 − Λ−2

0 )e−m
2Λ−2

0 (u)−|x−y|2Λ2
0(u)/4
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impulsions

Λ0

Λ

Λ0(w)

0
positions

Figure 1

The derivative of η fixes Cu at an energy near Λ0(u). We observe that for
any fixed ε′ we have the scaled decay:

|Cu(x, y)| ≤ KΛ3
0(u)(Λ−2 − Λ−2

0 )e−|x−y|(1−ε
′)Λm0 (u)−ε′m2Λ−2

0 (u)/2 (II.16)

|C ′ u(x, y)| ≤ KΛ4
0(u)(Λ−2 − Λ−2

0 )e−|x−y|(1−ε
′)Λm0 (u)−ε′m2Λ−2

0 (u)/2 (II.17)

where K is a constant depending only on ε′ and

Λm0 (u) := sup[m,Λ0(u)]. (II.18)

Applying this interpolation and the ordered forest formula (II.11) to the
propagators in the determinant of (II) we obtain

ZΛΛ0
V (ξ) =

∞∑
p=0

1
p!2

∞∑
n,n′,n′′=0

1
n!n′!n′′!

∑
o−F

∑
Col

∑
Ω

(
λ
N

)n (δm)n
′
(δζ)n

′′
ε(F ,Ω)

∫
V

d2y1 . . . d
2ypd

2z1 . . . d
2zpd

2x1 . . . d
2xn̄

p∏
r=1

ξdr(zr)ξ̄cr (yr)

∫
0≤w1≤...≤wk≤1

[ k∏
q=1

D
Λ0,wq
Λ (x̄lq , xlq )dwq

]
[det]left(wF (w)) (II.19)
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where for simplicity the position of any vertex is simply denoted by the letter x
and n̄ := n+ n′ + n′′. x̄lq and xlq are the ends of line lq. [det]left is the remaining
determinant. Its entries correspond to the remaining fields necessary to complete
each vertex of the forest into a quartic or quadratic vertex, according to its type
(interaction or counterterm). For this model, remark that the sum

∑
o−F is per-

formed only over the ordered forests that have, for each point xi coordination
number n(i) ≤ 4 or n(i) ≤ 2 depending of the type of the vertex (all other terms
being zero). The additional sums over Col and Ω correspond to coloring choices
at each vertex and “fields versus antifields” choices at each line and vertex [AR2].
The sign ε(F ,Ω) comes in from the antisymmetry of Fermions and is computed in
[AR2]: here we only need to know that it factorizes over the connected components
of F . To find the expression for lnZ we write Z as an exponential. In equation
(II), the determinant factorizes over the ordered trees T1 . . . Tj forming the for-
est. Indeed one can resum all orderings of the ordered forest F compatible with
fixed orderings of its connected components, the trees T1 . . . Tj . Furthermore the
“weakening factor” wF vanishes between vertices belonging to different connected
components. Hence:

ZΛΛ0
V (ξ)

=
∞∑
p=0

1
p!2

∞∑
n,n′,n′′=0

1
n!n′!n′′!

n∑
j=0

1
j!

∑
n1,...nj

n1+···+nj=n

∑
n′1,...n

′
j

n′1+···+n′j=n′

∑
n′′1 ,...n

′′
j

n′′1 +···+n′′j =n′′∑
p1,...pj,p

′

p1+···+pj+p′=p

n!n′!n′′!
n1! . . . nj !n′1! . . . n′j !n

′′
1 ! . . . n′′j !

p!2

p1!2 . . . pj !2p′!2
p′!

(ξ, CΛ0
Λ ξ)p

′
j∏
i=1

[(
λ
N

)ni (δm)n
′
i (δζ)n

′′
i A(ni, n′i, n

′′
i , pi)

]
(II.20)

where

A(ni, n′i, n
′′
i , pi)

=
∑
Ti

∑
Coli,Ωi

ε(Ti,Ωi)
∫
d2y1 . . . d

2ypid
2z1 . . . d

2zpid
2x1 . . . d

2xn̄i

p∏
r=1

ξdr (zr)ξ̄cr (yr)
∫

0≤w1≤...≤wn̄i−1≤1

[n̄i−1∏
q=1

D
Λ0,wq
Λ (x̄lq , xlq )dwq

]
[det]left,i(w

Ti(w)) (II.21)

where n̄i is the number of vertices in the ordered tree Ti, which has therefore n̄i−1
lines, pi is the number of external fields of type y (and z) attached to the Ti, and
p′ is the number of free external propagators (not connected to any vertex) in the
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forest. This can be written as an exponential, hence

lnZΛΛ0
V (ξ)

= (ξ, CΛ0
Λ ξ) +

∞∑
p=0

1
p!2

∞∑
n,n′,n′′=0

1
n!n′!n′′!

(
λ
N

)n (δm)n
′
(δζ)n

′′

∑
o−T

∑
Col,Ω

ε(T ,Ω)
∫
V

d2y1 . . . d
2ypd

2z1 . . . d
2zpd

2x1 . . . d
2xn̄

p∏
r=1

ξdr(zr)ξ̄cr (yr)

∫
0≤w1≤...≤wn̄−1≤1

[n̄−1∏
q=1

D
Λ0,wq
Λ (x̄lq , xlq )dwq

]
[det]left(wT (w))

(II.22)

where T is an ordered tree over n̄ points, and the external points are all connected
to the tree. Now, applying the definition (II.6), we obtain the vertex functions, for
which the limit V →∞ can be performed (because the external points hooked to
the tree ensure convergence). The set

E = {(i1, . . . ip, j1, . . . , jp)|i1, . . . ip, j1, . . . jp ∈ {1, . . . , n̄}} (II.23)

fixes the internal points to which the 2p external lines hook.
We recall the well-known fact that the vertex functions in x-space are in fact

distributions. For instance it is easy to see that when some of the external points
ik, jk in the previous sum coincide, one has to factor out the product of the cor-
responding delta functions of the external arguments to obtain smooth functions.
This little difficulty can be treated either by considering the vertex functions in
momentum space (they are then ordinary functions of external momenta, after
factorization of global momentum conservation), or by smearing the vertex func-
tions with test functions. Here we adopt this last point of view. The quantity
under study is then ΓΛΛ0

2p smeared with smooth test functions φ1(y1), . . . , φp(yp),
φp+1(z1), . . . , φ2p(zp):

ΓΛΛ0
2p (φ1, . . . φ2p)

=
∫
d2y1 . . . d

2ypd
2z1 . . . d

2zp

ΓΛΛ0
2p (y1, . . . , yp, z1, . . . , zp)φ1(y1) . . . φp(yp)φp+1(z1) . . . φ2p(zp).

(II.24)

where we asked the test functions to have compact support: φ ∈ D(R2).
Remark that when some external antifield hooks to a δζ vertex, the ampu-

tation by C instead of C ′ leaves a δ′ distribution, which means a derivative acting
on the corresponding test function.



Vol. 1, 2000 Continuous Constructive Fermionic Renormalization 9

We obtain the formula:

ΓΛΛ0
2p (φ1, . . . φ2p) =

∞∑
n,n′,n′′=0

(
λ
N

)n (δm)n
′
(δζ)n

′′ 1
n!n′!n′′!

(II.25)

∑
o−T

∑
E

∑
Col,Ω

ε(T ,Ω)
∫
d2x1 . . . d

2xn̄φ1(xi1) . . . φ2p(xjp)

∫
0≤w1≤···≤wn̄−1≤1

[n̄−1∏
q=1

D
Λ0,wq
Λ (x̄lq , xlq )dwq

]
[det]left(wT (w), E)

where the propagator D is now C or C ′ according to the discussion above.

When renormalization is introduced, it will be convenient to use the BPHZ
subtraction prescription at 0 external momenta, which corresponds to integrate
the vertex functions over all arguments except one. In this prescription one defines
the renormalized coupling constant as the 4-vertex function of the full theory at
zero external momenta:

λren
N

:= Γ̂ΛΛ0
4 (0, 0, 0, 0) =

∫
d2x2d

2x3d
2x4 ΓΛΛ0

4 (0, x2, x3, x4) (II.26)

Moreover we want the renormalized mass and wave function constant to be re-
spectively m and 1. This means that we impose the additional renormalization
conditions:

δmren := Γ̂ΛΛ0
2 (0, 0) =

∫
d2x2ΓΛΛ0

2 (0, x2) = 0 (II.27)

δζren :=6∂Γ̂ΛΛ0
2 (0, 0) =

∫
d2x2i 6x2ΓΛΛ0

2 (0, x2) = 0 (II.28)

With these conditions the whole theory (at fixed renormalized mass m) be-
comes parametrized only by λren, hence not only λ but also δm and δζ in (II.1)
become functions of λren. This of course has a precise meaning only if we can
construct the theory and solve the renormalization group flows, which is precisely
what we are going to do. We can express the main result of this paper as a the-
orem on the existence of the ultraviolet limit of the vertex functions and of the
renormalization group flows. Recall that the theory is not directly the sum but
the Borel sum of the renormalized perturbation theory. In summary

Theorem 1 The limit Λ0 →∞ of ΓΛΛ0
2p (φ1, . . . φ2p) exists and is Borel summable

in the renormalized coupling constant λren, uniformly in N (where N is the number
of colors). Since the parameter Λ varies continuously, the continuous renormaliza-
tion group equations and in particular the β function are also well defined in the
limit Λ0 →∞.

The first part of the theorem is similar to [FMRS], but the second part (the
existence of the continuous renormalization group equations) is new. The rest of
the paper is devoted to the proof of this theorem.
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The precise bounds on the smeared vertex functions are given in Theorem 3
below. They are uniform in N (and in fact proportional to N1−p). Let us discuss
also briefly the dependence in m, the renormalized mass. For m 6= 0 fixed, we can
define the physical scale of the system by putting m = 1. The theorem is then
uniform in the infrared cutoff Λ, including the point Λ = 0. In the case m = 0
our method requires a nonzero infrared cutoff Λ 6= 0. Since this cutoff is the only
scale of the problem, we can then put it to 1: Λ = 1. In this last case, improperly
called the “massless theory”, we know that there should be a non-perturbative
mass generation [GN]. This mass generation has been proved rigorously for the
model with fixed ultraviolet cutoff and large number N of components in [KMR],
using the Matthews-Salam formalism of an intermediate Bosonic field and a cluster
expansion with a small/large field expansion. Our result in the massless casem = 0
with a finite infrared cutoff Λ should therefore glue with the method and results
of [KMR] to obtain at large N the mass generation of the full model without
ultra-violet cutoff.

III The expansion

III.1 The continuous band structure

Remark that in (II.25)

w1 ≤ w2 ≤ · · · ≤ wn̄−1 =⇒ Λ0(w1) ≤ Λ0(w2) · · · ≤ Λ0(wn̄−1). (III.1)

This naturally cuts the space of momenta into n̄ bands B = {1, . . . , n̄} (see Fig-
ure 2).

Looking at equation (II.4), we see that the covariance can be written as a
sum of propagators restricted to single bands:

CΛ0
Λ (p) =

n̄∑
k=1

C
Λ0(wk)
Λ0(wk−1)(p) =

n̄∑
k=1

∫ Λ−2
0 (wk−1)

Λ−2
0 (wk)

(6p+m)e−α(p2+m2)dα = C(p)
n̄∑
k=1

ηk

(III.2)
where we defined

ηk := e−Λ−2
0 (wk)(p2+m2) − e−Λ−2

0 (wk−1)(p2+m2) (III.3)

and we adopted the convention

w0 = 0⇒ Λ−2
0 (w0) = Λ−2 wn̄ = 1⇒ Λ−2

0 (wn̄) = Λ−2
0 . (III.4)

Similar formulas hold for C ′ but with an additional 6p.
To cure the ultraviolet divergences we have to combine the divergent local

parts of some subgraphs with counterterms and reexpress the series for G as an
effective series in the sense of [R]. For that purpose we use the band structure
to distinguish the divergent subgraphs from the convergent ones and hence de-
cide where renormalization is necessary. Please recall that in contrast with usual
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Λ0

0
positions

momenta

Λ0(wn̄−1)

Λ0(wn̄−2)

Λ

Λ
0(w1)

links of the tree

n̄

n̄− 1

1

Figure 2

perturbation theory we never develop explicitly the loop lines of these subgraphs.
Contrary to naive expectation, one does not need to know the particular loop
structure to perform renormalization!

III.2 Notations

Now we fix some notations. It is convenient to give indices to the fields variables
or the half-lines which correspond to these fields after Grassmann integration. We
observe that there are several types of such variables, the half-lines which form
the lines of the tree, the external variables (which correspond to amputated lines)
and the entries (rows or columns) in the determinant detleft. These entries will be
called “loop fields” or “loop half-lines” since they form the usual loop lines of the
Feynman graphs if one expands the determinant. We define E and L as the set of
all external and loop half-lines. For each level i there is a tree-line li with two ends
corresponding to two half-lines called fi and gi (to fix ideas let’s say that fi is the
end corresponding to the field and gi the end corresponding to the anti-field, as
decided by the index Ω in (II)). The loop fields ψ(xg) and ψ̄(xf ) are called hf and
hg, and (when expanded) the loop line ψ̄(xf )ψ(xg) is called lfg (it corresponds to
a particular coefficient in the determinant detleft). Each tree half-line fi or gi, each
loop field hf or hg is hooked to a vertex called vfi or vgi or vf or vg. We need also
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to care about the set S of special fields (or antifields) which are hooked to the δζ
vertices and correspond to propagators C ′ which have different “power counting”
than C. Finally the index of the highest tree-line hooked to a vertex v is called iv.

Now [det]left is the determinant of a matrix (n + 1 − p) × (n + 1 − p). The
corresponding loop fields can be labeled by an index a = 1, . . . , 2n + 2 − 2p. The
matrix elements are D(xf , xg, wTvf ,vg(w)). Therefore in terms of bands the line lfg
is restricted by the weakening factor wTvf ,vg(w) to belong to the bands from 1 to
the lowest index in the path PTf,g (this path PTf,g is defined in equation (II.12)).
We call iTf,g this index:

iTf,g = inf {q | lq ∈ PTf,g} (III.5)

D(xf , xg, wTvf ,vg(w)) = D(p)
iTf,g∑
k=1

ηk(p) (III.6)

By multilinearity one can expand the determinant in (II.25) according to the
different bands in the sum (III.6) for each row and column.

[det]left(wT (w), E) =
∑
µ

detM(µ) (III.7)

where we define the attribution µ as a collection of band indices for each loop field
a:

µ = {µ(f1), . . . µ(fn+1−p), µ(g1), . . . µ(gn+1−p)} , µ(a) ∈ B for a = 1 . . . 2n+2−2p.
(III.8)

Now, for each attribution µ we need to exploit power counting. This requires
notations for the various types of fields or half-lines which form the analogs of the
quasi local subgraphs of [R] in our formalism. We define:

Tk = {l ∈ T | ivl ≥ k}
ITk = {fi, gi ∈ T | i ≥ k}
ILk = {a ∈ L| µ(a) ≥ k}
EEk = {f, g ∈ E|ivf , ivg ≥ k}
ETk = {fi|ivfi ≥ k, i < k} ∪ {gi|ivgi ≥ k, i < k}
ELk = {a ∈ L|iva ≥ k, µ(a) < k}
Nk = {v of type λ |iv ≥ k}
N ′k = {v of type δm |iv ≥ k}
N ′′k = {v of type δζ |iv ≥ k}
N̄k = Nk ∪N ′k ∪N ′′k
Gk = ITk ∪ ILk
Ek = EEk ∪ ETk ∪ELk
E′′k = Ek ∩ S , Tk = {li| i ≥ k}

(III.9)
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where we recall that S in the last definition is the set of those fields hooked to a
vertex of type δζ which bear a derivation. We note |A| the number of elements
in the set A. For instance the reader can check that |IT1| = 2n̄ − 2 and that
|T1| = n̄− 1. Each Gk has c(k) connected components Gjk, j = 1, . . . , c(k).

To help the reader understand better these technical definitions, let’s say that:

• T stands for “tree”
• IT stands for the set of “internal tree half lines” of a subgraph;
• IL stands for the set of “internal loop half lines” of a subgraph. Together
ITk and ILk form the full subgraph Gk;
• EE stands for the set of “half lines which are external both for the subgraph

and for the whole graph”;
• ET stands for the set of “half lines which are external for the subgraph but

not for the whole graph, and which belong to the tree”;
• EL stands for the set of “half lines which are external for the subgraph but

not for the whole graph, and which are loop lines in the full graph”;
• N N ′ and N ′′ are used for the different types of vertices in a subgraph.

All the definitions in (III.9) can be restricted to each connected component. Ap-
plying power counting, the convergence degree for the subgraph Gki is

ω(Gki ) =
1
2

(|Eki |+ 2|N ′ki | − 4) (III.10)

where we assumed that no external half-line hooked to a vertex of type δζ bears
a i 6∂. To assure this for any Gki , we apply, for each vertex v′′, the operator i 6∂
(or −i 6∂) to the highest tree half-line hooked to v′′ (there is always at least one).
In this way for all k |E′′k | = 0, and no loop line bears a gradient. Then M(µ) is a
matrix whose coefficients are

Mfg(µ)(xf , xg) = δµ(f),µ(g)

∫
d2p

(2π)2 e
−ip(xf−xg)C(p) ηµ(f)(p)Wµ(f)

vf ,vg
(III.11)

where

W k
v,v′ = 1 if v and v′ are connected by Tk

= 0 otherwise (III.12)

since we always have D = C in the matrix M(µ).
From (III.10) we see that there are three types of divergent subgraphs:

• for |Eki | = 4, |N ′ki | = 0 we have logarithmic divergence (ω(Gki ) = 0);
• for |Eki | = 2, |N ′ki | = 0 we have linear divergence (ω(Gki ) = −1);
• for |Eki | = 2, |N ′ki | = 1 we have logarithmic divergence (ω(Gki ) = 0).

In fact the divergent graphs are only those for which the algebraic structure of the
external legs is of one of the three types in (II.1). For instance not all four-point
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subgraphs are divergent, but only those for which the flow of spin indices follows
the flow of color indices [GK][FMRS]. Using the invariance of L under parity and
charge conjugation one finds that all counterterms which are not of the three types
in (II.1) are zero (this means that the corresponding subgraphs have 0 local part).
Then renormalizing these subgraphs we improve power counting without generat-
ing new counterterms. In what follows, for simplicity, “divergent subgraph” always
means subgraph with two or four external legs (this means we will renormalize
some subgraph which does not need it but this does not affect the convergence
of the series). Also for simplicity we change the definition of convergence degree
(III.10) in

ω′(Gki ) =
1
2

(|Eki | − 4) . (III.13)

To cure divergences, we apply to the amplitude of each divergent subgraph g
the operator (1−τg)+τg. In the momentum space τg is the Taylor expansion at or-
der −ω(g) of the amplitude ĝ(p) at p = 0. The operator 1−τg makes the amplitude
convergent when the UV cut-off is sent to infinity. The remaining term τg ĝ gives
a local counterterm for the coupling constant that depends on the energy of the
external lines of g. At each vertex v, we can resum the series of all counterterms
obtained applying τg to all divergent subgraphs (for different attributions µ) that
have the same set of external lines as v itself. In this way we obtain an effective
coupling constant which depends on the energy Λ0(wiv) of the highest tree line
hooked to the vertex v. This is true because after applying the 1−τg operators, for
each graph with nonzero amplitude the highest index at each vertex coincides with
the highest tree index iv at each vertex! Indeed at vertices v for which this is not
true, there are loop fields with attribution µ higher than iv. By (III.12) they must
contract together forming tadpoles, which are set to zero by the 1− τg operators.
The corresponding graphs therefore disappear from the expansion.

For each attribution µ we define the set of divergent subgraphs as

Dµ := { Gki |ω′(Gki ) ≤ 0}. (III.14)

The action of τg is

τg ĝ(p1, . . . , pk) =
−ω′(g)∑
j=0

1
j!
dj

dtj
ĝ(tp1, . . . tpk)|p=0 k = 2, 4. (III.15)

With this definition the effective constants λw, δmw, δζw turn out to be the vertex
functions Γ4, Γ2 and 6∂Γ2 for an effective theory with infrared parameter Λ =
Λ0(w):
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III.3 Effective constants

In the space of positions, the operator τg is computed by partial integration on
the product of external propagators a(x1, . . . xve), as in [R]:

τ∗g (ve)a(x1, . . . xve) =
−ω′(g)∑
j=0

1
j!
dj

dtj
a(x1(t), . . . , xve(t))|t=0 (III.16)

where xi(t) = xve+t(xi−xve), and ve is an external vertex of g chosen as ‘reference
vertex’. This formula means that τ∗g for each divergent tree subgraph g moves all
external half-lines to a single reference vertex in the subgraph, hence computes a
local couterterm. The choice of this reference vertex is given in Section IV.3.1. As
announced we find the three possible counterterms of (II.1). For |Ei| = 4 we have

τ∗(x1)
4∏
i=1

C(xi, yi) =
4∏
i=1

C(x1, yi), (III.17)

so the counterterm is∫
d2x1

4∏
i=1

Caiaiαiα′i
(x1, yi)

∫
d2x2d

2x3d
2x4 g(0, x2, x3, x4)a1a2a3a4

α1α2α3α4

=
∫
d2x1

4∏
i=1

Caiaiαiα′i
(x1, yi) ĝ(0, . . . , 0) (III.18)

This gives a coupling constant counterterm. For |Ei| = 2 we have

τ∗(x1)[C(x1, y1)C(x2, y2)] = C(x1, y1)
[
C(x1, y2) + (x2 − x1)µ

∂

∂xµ1
C(x1, y2)

]
.

(III.19)
Integrating over internal points, we obtain a mass counterterm from the first

term in the sum: ∫
d2x1

2∏
i=1

Caiaiαiα′i
(x1, yi)

∫
d2x2 g

a1a2
α1α2

(0, x2)

=
∫
d2x1

2∏
i=1

Caiaiαiα′i
(x1, yi) ĝα1α2(0)δa1,a2

=
∫
d2x1

2∏
i=1

Caiaiαiα′i
(x1, yi) δa1,a2 f1(0) (III.20)

where we applied the development

ĝ(p) = f1(p2) + γ5f2(p2)+ 6pf3(p2) + γ5 6pf4(p2) (III.21)
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and we adopted for the gamma matrices the conventions in [FMRS]. By invariance
under charge conjugation and parity f2(0) = f4(0) = 0. For the second term in
the sum we obtain a wave function counterterm:∫

d2x1C
a1a1
α1α′1

(x1, y1)
∂

∂xµ1
Ca2a2
α2α′2

(x1, y2)
∫
d2x2(x2 − x1)µga1a2

α1α2
(x1 − x2) =

=
∫
d2x1C

a1a1
α1α′1

(x1, y1)
∂

∂xµ1
Ca2a2
α2α′2

(x1, y2)i
∂

∂pµ
ĝ(p)|p=0δa1a2

=
∫
d2x1C

a1a1
α1α′1

(x1, y1)i 6∂Ca1a1
α2α′2

(x1, y2)f3(0). (III.22)

Theorem 2 If we apply to each divergent subgraph g ∈ Dµ, for any attribution µ,
the operator (1− τg) + τg = Rg + τg, the function (II.25) can be written as

ΓΛΛ0
2p (φ1, . . . φ2p) =

∞∑
n,n′,n′′=0

1
n!n′!n′′!

∑
o−T

∑
E,µ

∑
Col,Ω

ε(T ,Ω)
∫
d2x1 . . . d

2xn̄

∫
0≤w1≤···≤wn̄−1≤1

n̄−1∏
q=1

dwq

[∏
v

(
λw(v)

N

)][∏
v′

δmw(v′)

][∏
v′′

δζw(v′′)

]
∏

Gki ∈Dµ

RGki

[ n̄−1∏
q=1

D
Λ0,wq
Λ (x̄lq , xlq ) detM(µ)φ1(xi1) . . . φ2p(xjp)

]
(III.23)

where the constants λw, δmw, δζw are the ‘effective constants’, defined as:

λw
N

= Γ̂Λ0(w),Λ0
4 (0, 0, 0, 0) =

∫
d2x2d

2x3d
2x4 ΓΛ0(w),Λ0

4 (0, x2, x3, x4)

δmw = Γ̂Λ0(w),Λ0
2 (0, 0) =

∫
d2x2 ΓΛ0(w),Λ0

2 (0, x2)

δζw = 6∂Γ̂Λ0(w),Λ0
2 (p)|p=0 =

∫
d2x2 i 6x2ΓΛ0(w),Λ0

2 (0, x2) (III.24)

The effective constants are the vertex functions Γ4, Γ2 and 6 ∂Γ2 for an effective
theory with infrared parameter Λ0(w), and the renormalized constants correspond
to the effective ones at the energy Λ. (For the massive theory recall that we can
use Λ = 0.)

λw=0 = λr

δmw=0 = δmr = 0
δζw=0 = δζr = 0 (III.25)

The reshuffling of perturbation theory performed by Theorem II can be proved
by standard combinatorial arguments as in [R] (the only difficulty was discussed
above, when we remarked that the parameter w of the effective constants always
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corresponds to the highest tree line of the vertex. Otherwise the effective vertex
generates a tadpole graph whose later renormalization gives 0). This reshuffling is
similar to the reorganization of renormalized perturbation theory according to the
formalism of Gallavotti and coworkers [GN].

IV Convergence of the series

Theorem 3 Let ε > 0 be fixed. Suppose Λm (defined below) belongs to some fixed
compact X of ]0,+∞). The series (III.23) is absolutely convergent for |λw|, |δmw|,
|δζw| ≤ c, c small enough. This convergence is uniform in Λ0 and N (actually Γ2p

is proportional to N1−p). The ultraviolet limit ΓΛ
2p = limΛ0→∞ ΓΛΛ0

2p exists and
satisfies the bound:

|ΓΛ
2p(φ1, . . . φ2p)| ≤ (p!)5/2[K(c, ε,X)]p (Λm)2−p N1−p (IV.1)

||φ1||1
2p∏
i=2

||φi||∞,2 e−(1−ε)ΛmdT (Ω1,...Ω2p)

where
Λm := sup [Λ,m] , (IV.2)

||φi||∞,2 :=
(
||φi||∞ + ||φ′i||∞ + ||φ′′i ||∞

)
, (IV.3)

Ωi is the compact support of φi, K(c, ε,X) is some function of c ε and X, which
tends to zero when c tends to 0, ||φi||∞ = supx∈Ωi |φi(x)|, ||φ1||1 =

∫
d2x|φ1(x)|,

and

dT (Ω1, . . .Ω2p) := inf
xi∈Ωi

dT (x1, . . . x2p)

dT (x1, . . . x2p) := inf
u−T

∑
l∈T
|x̄l − xl|. (IV.4)

where in the definition of dT (x1, . . . x2p), called the “tree distance of x1, . . . x2p”,
the infimum over u − T is taken over all unordered trees (with any number of
internal vertices) connecting x1, . . . x2p.

This bound means that one can construct in a non perturbative sense the ultravi-
olet limit of either the massive theory with any infrared cutoff Λ including Λ = 0,
or the weakly coupled massless theory with nonzero infrared cutoff Λ. To complete
Theorem 1 from Theorem 3, one needs only to check Borel summability by ex-
panding explicitly at finite order n in λren and controlling the Taylor remainder.
This additional expansion generates a finite number of Taylor operators τg for a
finite number of non quasi-local subgraphs, which are responsible for the n! of
Borel summability [R]. Since this is rather standard we will not include this addi-
tional argument here. Finally the renormalization group equations are discussed
in Section V. The rest of the section is devoted to the proof of this theorem.
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IV.1 Plan of the proof

To prove the theorem we show that the absolute value of the term (n, n′, n′′) in the
sum (excluding the effective constants) is bounded by Kn̄. The strategy for the
proof consists in moving the absolute value inside all sums and integrals, bounding
the product of effective constants,[∏

v

∣∣λw(v)
∣∣] [∏

v′

|δmw(v′)|
][∏

v′′

|δζw(v′′)|
]
≤ cn̄ , (IV.1)

then taking c < K−1.
The loop determinant will be bounded by a Gram inequality, and we shall

use the tree lines decay to bound the spatial integrals. Actually, we cannot move
the absolute value directly inside the sum over attributions because #{µ} ' n̄!.
In other words fixing the band index for each single half-line develops too much
the determinant. The way to overcome this difficulty is to remark that the at-
tributions contain much more information than necessary. We can in fact group
the attributions into packets to reduce the number of determinants to bound. We
observe that, if for the level i a connected component Gki has |EEki |+ |ET ki | ≥ 5,
the subgraph is convergent and we do not need to know the band indices for the
loop lines in that connected component. So for each convergent Gki :

• if |EEki |+ |ET ki | ≥ 5, we do not want to know anything on loop lines;

• if |EEki |+ |ET ki | < 5, we just want to fix 5− |EEki | − |ET ki | half-lines with
energy lower than i, but we are not interested in knowing the band index ('
energy) of the other half-lines because we need to know whether a subgraph
is convergent or not (i.e. has more than 4 external half lines or not), but
we do not care about its exact number of external half lines; whether it has
10 or 25 does not matter, and it is in fact precisely the extraction of this
information that could be dangerous for convergence of the expansion.

Instead of expanding the loop determinant over lines and columns as a sum over
all attributions

detM =
∑
µ

detM(µ,E) (IV.2)

we write it as a sum over a smaller set P (called the set of packets). These packets
are defined by means of the function

φ : {µ} −→ P
µ 7→ C = φ(µ) (IV.3)

but this function must respect some constraints related to the future use of Gram’s
inequality. This motivates the following definition:
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Definition 1 The pair (P, φ) is called a “Gram-compatible pair” if

∀ C ∈ P,∀a, ∃ Ja(C) ⊂ B (IV.4)

with the property φ−1(C) = {µ|µ(a) ∈ Ja(C) ∀ a}.

This definition means that for any packet C the attributions in the packet
exactly correspond to a particular set of band indices allowed for each loop line.
It ensures that there exists a matrix M′ such that∑

µ∈φ−1(C)
detM(µ) = detM′(C) (IV.5)

because each loop line a is a matrix entry. This in turn ensures that Gram’s
inequality can be applied to detM′(C), as shown in Lemma 4.

IV.2 Construction of P

We build first the partition P of the set of attributions into packets. These packets
should contain the informations we need over |Ejk|. In contrast with attributions
there should be few of them; more precisely they should satisfy #P ≤ Kn̄. Finally,
together with the function φ, they should form a Gram-compatible pair. To define
P we introduce some preliminary definitions and notations.

To each ordered tree o−T we can associate a rooted tree RT , which pictures
the inclusion relation of the Gjk [R]. We can picture this tree with two types of
vertices: crosses and dots. We recall that the leaves of a rooted tree are the vertices
of the rooted tree with coordination number one. The leaves in our case are the
dot-vertices and correspond exactly to the vertices v, v′ or v′′ of the initial ordered
tree T . The other vertices of RT are crosses. Each cross i corresponds to a line li
of the initial ordered tree T , and has coordination number three, except the root
which has coordination number two. To build RT we take the lowest line in T , l1,
as root 1.

T ′ T ′′

l1
l1

b1
Λ

Figure 3
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This line l1, or root, separates T into two connected components T ′ and T ′′
possibly reduced to a single vertex. When T ′ or T ′′ is a single vertex, it gives a
dot connected to 1. Otherwise it gives a cross, which is the lowest line of T in it.
This procedure is repeated at each cross-vertex obtained, and generates RT .

T ′ T ′′

l1

b1
Λ

l2

v

1

2

Figure 4

Finally to complete the picture to each dot of RT we hook all loop half-lines
hooked to the corresponding vertex (there could be none). We define the ancestor
of i A(i) as the cross-vertex just under i in RT and we call va, the dot-vertex
to which the half-line a is hooked and ia the cross-vertex connected to va (which
represents a line of the initial tree!). For each cross-vertex i we define

ti := {lj ∈ T |j ≥ i, lj connected to li by Ti} (IV.6)

This is the spanning tree in the connected component of Gi containing the line li.

a

ia

va

i

iA( )

Figure 5

An example of a tree with its associated RT is given in Figure 6:
For each tree line (cross-vertex) i and each connected component Gki , no new

line connects to ti in the interval between i and A(i). Hence ω′(Gk
′

i′ ) ≥ ω′(Gk
′′

A(i)+1)

∀i ≥ i′ > A(i) and T k
′

i′ ⊂ Gk
′

i′ ⊂ Gki . Therefore we can neglect what happens in
this interval and generalize the definitions of (III.9) for the internal lines of a
subgraph Gki .
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=
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We define:

gi := ti ∪ {a ∈ L|ia ≥ i, va ∈ ti, µ(a) ≥ A(i) + 1}
egi := eti ∪ eei ∪ eli
eti := {fi′ |ivf ≥ i, vf ∈ ti, i′ < i} ∪ {gi′ |ivg ≥ i, vg ∈ ti, i′ < i}
eei := {f, g ∈ E|ivf , ivg ≥ i, vf , vg ∈ ti}
eli := {a ∈ L|ia ≥ i, va ∈ ti, µ(a) ≤ A(i)}

(IV.7)

This set of definitions (IV.7) concerns the connected component gi above line
i. Remark that we defined as loop internal lines of gi, all loop lines higher than
A(i). We also need some additional definitions concerning the other connected
components:

i(k) := inf
{j≥i,vj∈Tki }

j

gki := gi(k)

egki := etki ∪ eeki ∪ elki
etki := eti(k) eeki := eei(k) elki := eli(k)

(IV.8)

This second set of definitions is used only much later in the bounds when all
connected components are considered at once.

Definition 2 A chain Ca,i is the unique path in RT from the half-line a to the
cross-vertex i with ia ≥T i:

Cai := {i′|i ≤T i′ ≤T ia} ∪ {a} (IV.9)

In the following, we write ia ≥T i to specify that va and vi are connected
by ti.

Definition 3 A class C is a set of chains over RT with the properties:

∀Cai ∈ C, ∀Ca′i′ ∈ C one has a 6= a′

∀ i ci ≤ max[0; 5− |eei| − |eti| − c′i] (IV.10)
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a
va

Cai

i

Figure 7

where we defined:

ci = #{Cai ∈ C| i fixed}
c′i = #{Ca′i′ ∈ C| ia′ ≥T i, i′ < i} (IV.11)

So ci is the total number of chains arriving at i and c′i is the total number
of chains passing through i and continuing further below. This definition ensures
therefore that there are at most five chains passing through each cross i.

Definition 4 The partition P is the set of all possible classes C over RT .

To verify that this is a good definition, we have to prove three lemmas.

Lemma 1 The cardinal of P is bounded by Kn̄.

Proof. We prove that P ⊆ P ′ and #P ′ ≤ Kn̄. We define P ′ as the set of all sets of
chains D, that are unions of five subsets (possibly empty) Yj , where Yj is a set of
completely disjoint chains (this means they have no cross and no dot in common).

P ′ := {D} D := ∪5
j=1Yj . (IV.12)

To build a set of disjoint chains Yj , we have at most three possible choices for
each vertex: at each cross-vertex we can have no chain passing, a chain going right
or left; at each dot-vertex touched by a chain, we have to choose among three (at
most) loop half-lines. Putting all this together we have:

#P ′ ≤ (35)n̄−1(35)2n+2−2p ≤ Kn̄ (IV.13)

where the number 5 comes because each element of C is made of five sets Yj .
Figure 8 shows an example of disjoint sets built in this way.
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Now we prove that P ⊆ P ′ by induction on i. For each C ∈ P we define C(i)
as the subset of C that contains only chains ending in some point (cross-vertex) of
the unique path connecting i to the root.

C(i) := {Cai′ ∈ C| i′ ≤T i} (IV.14)

This set satisfies the following induction law: if, for A(i) there are five sets (even-
tually empty) of disjoint chains Y1(A(i)). . .Y5(A(i)) with

C(A(i)) = ∪5
j=1Yj(A(i)), (IV.15)

then there are five sets Y1(i),. . . ,Y5(i) with C(i) = ∪jYj(i). This can be seen
observing that C(i) can be written as

C(i) = C(A(i)) ∪ {Cai′ ∈ C|i′ = i}. (IV.16)

Among the five sets Yj forming C(A(i)) there are c′i ones containing chains
passing through i: Y1(A(i)),. . . , Yc′i(A(i)). If c′i + |eei| + |eti| ≥ 5, there are no
chains ending at i so C(i) = C(A(i)) ⊂ P ′. If c′i + |eei| + |eti| < 5 there are ci
chains ending at i Ca1,i, . . . Caci ,i, with ci ≤ 5− c′i, so we can define

Yj(i) = Yj(A(i)) for j ≤ c′i,
Yc′i+j(i) = Yc′i+j(A(i)) ∪ {Caji} j = 1, . . . , ci, (IV.17)
Yj(i) = Yj(A(i)) for j > c′i + ci.

With these definitions we have

C(i) = ∪5
j=1Yj ⊂ P ′ (IV.18)

Now, the hypothesis (IV.15) is true for the root r. In fact, by construction, we
have at most five chains ending at r: Ca1,r, . . . Ca5,r. If we define:

Y1(r) = {Ca1r}, . . . , Y5(r) = {Ca5r} (IV.19)

we have C(r) = Y1 ∪ · · · ∪ Y5 ⊂ P ′. Working the induction up to the leaves of RT
completes the proof of the lemma. �
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Lemma 2 There exists a function φ : {µ} −→ P which associates to each attribu-
tion µ = (µ(1), µ(2), . . .) a class C in P.

To define φ we fix an order over the half-lines and the lines of RT . We do it
turning around RT clockwise and we call n(a) the index of a in the ordering and
si the index of the line in RT connecting i to A(i).

1

2
3

4
5

6

7

8 9

10

11
12

1
2

3 4
5

6
7

8

Figure 9

We build the class φ(µ) as a union of chains by induction, defining first the
chains in φ(µ) ending at the root, then the ones ending at the cross connected to
the root by the line 1, and so on, following the ordering si. Therefore for each i
we consider the set Ai = {a ∈ eli| 6 ∃Cai′ ∈ φ(µ) with i′ < i} which is the set of
loop half-lines that are external lines for gi and are not connected to a chain in
φ(µ) ending lower than i.

• If [5−|eei|−|eti|−c′i] > 0 and #Ai < [5−|eei|−|eti|−c′i] we have a divergent
subgraph, and we add to the part already built of φ(µ) all the chains starting
at an element of Ai and ending at i, so

ci = #Ai. (IV.20)

• If #Ai ≥ max[0, 5− |eei| − |eti| − c′i], we have a convergent subgraph, so we
put

ci = max[0, 5− |eei| − |eti| − c′i] (IV.21)

and we add to the part already built of φ(µ) the ci chains Ca′,i, with a′ =
aji , j = 1 . . . , ci, which start at the ci elements in Ai that have the lowest
values of n(a), and end at i.

In this way we obtain a set of chains with the two properties (IV.10). For each
µ, φ(µ) is an element of P and {φ−1(C)}C∈P is a partition of the set of attributions.

�
We call Bi the set of half-lines in Ai which are the starting points of chains

in φ(µ) ending at i (see Figure 10). Therefore in the divergent case Bi = Ai and
in the convergent case Bi = {aji , j = 1 . . . , ci}. We also define

egi(C) := eti ∪ eei ∪ {a|ia ≥T i and a ∈ Bi′ for some i′ ≤T i} (IV.22)
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With this definition we have |egi(C)| = ci + c′i + |eti| + |eei|. Remark that
in the divergent case |egi| ≤ 4, one has |egi| = |egi(C)|, and in the convergent
case one has |egi| ≥ |egi(C)| ≥ 5. The next lemma describes the structure of the
classes C.

Lemma 3 For each class C ∈ P and each half-line a = 1, . . . , 2n + 2 − 2p there
exists a subset of band indices Ja(C) ⊆ B such that

φ−1(C) = {µ|µ(a) ∈ Ja(C) ∀ a}. (IV.23)

Proof. The existence of the ci chains Cai for a ∈ Bi ending at i implies a certain
set of constraints on attributions. We distinguish two situations.

1) If |egi(C)| ≤ 4 (divergent case)
• ∀a ∈ Bi, µ(a) ≤ A(i);
• ∀ a 6∈ Bi with ia ≥T i, µ(a) > A(i).

2) If |egi(C)| ≥ 5 (convergent case)
• ∀a ∈ Bi, µ(a) ≤ A(i);
• ∀a 6∈ Bi with ia ≥T i, and n(a) < maxa′∈Bi′ n(a′), µ(a) > A(i).

In any other case, there is no particular constraint. We observe that the
underlined constraints for µ(a) are therefore determined by the chain structure
and the ordering, but the crucial point is that they are independent from each
other. Hence Ja(C) is an interval in terms of band indices. Remark that if some
chain in C starts from a, it must end at some unique i, called i′a. In this case we
define M(a, C) = A(i′a). Otherwise we define M(a, C) = ia. Moreover for each i′

such that a 6∈ Bi′ we have two different lower bounds on µ(a), depending whether
gi′ is divergent or convergent. So the constraints in cases 1 and 2 simply mean
m(a, C) ≤ µ(a) ≤M(a, C), where

M(a, C) = A(i′a) if a ∈ Bi′a , M(a, C) = ia otherwise
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m(a, C) = sup
i′∈I(a,C)

[A(i′) + 1]

m(a, C) = 1 if I(a, C) = ∅ (IV.24)

and

I(a, C) := {i′ |ia ≥T i′, a 6∈ Bi′ , and, if |egi′(C)| ≥ 5, n(a) < max
a′∈Bi′

n(a′)}
(IV.25)

In summary the constraints are expressed by

φ−1(C) = {µ| µ(a) ∈ Ja(C) ∀ a}
Ja(C) = [m(a, C),M(a, C)] (IV.26)

�

Example. As the definition of the interval Ja(C) = [m(a, C),M(a, C)] is certainly
hard to grasp, let us give an example. In Figure 11 we pictured a class C made of
two chains Ca1,i1 and Ca2,i2 with a1 ≤ a2 in the clockwise ordering. The allowed
interval for a1 has maximum M(a1, C) = M1, the cross just below i1, since the
presence of the chain forces the half line a1 to be an external leg strictly below i1.
The minimum is m(a1, C) = m1, the cross where the second chain ends. Indeed,
since a2 ≥ a1, the attribution for a1 cannot go below m1, otherwise a longer chain
Ca1,j1 with j1 ≤ m1 would have been chosen earlier, lower in the tree.

Finally suppose a3 is a loop line with index bigger than a2 in the clockwise
ordering, and suppose that the cross m1 corresponds to a divergent subgraph G1,
for which the number of external legs is fixed. Then m(a3, C) = m1, since the leg
a3 cannot go below m1; this would add a forbidden external leg to the divergent
subgraph G1. We invite the reader to check his understanding on further examples.

a1

i1

M1 a2

a3

i2 = m1

M2

Figure 11

We observe that, after packing the attributions into classes, the sets Ti, ti,
eei, eti are still well defined, but we can no longer define gi and eli. We already
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defined egi(C) in (IV.22). We add further definitions

gi(C) := ti ∪ ili(C)
ili(C) := {a ∈ L|ia ≥T i,M(a, C) ≥ A(i) + 1}
eli(C) := {a ∈ L|ia ≥T i,M(a, C) ≤ A(i)} (IV.27)

which generalize the notions of internal and external loop lines. Remark that
egi(C) = eti ∪ eei ∪ eli(C), and |eli(C)| = ci + c′i. In the same way we extend
these definitions to the other connected components

gki (C) := gi(k)(C) , ilki (C) := ili(k)(C) , elki (C) := eli(k)(C) (IV.28)

Furthermore the generalized definitions for the convergence degree and the
set of divergent subgraphs after packing the attributions into classes become:

ω(gi(C)) := (|egi(C)| − 4)/2.
DC := {gi(C) | ω(gi(C)) ≤ 0}. (IV.29)

We return now to the loop determinant in (III.23). Lemma 3 ensures that∑
µ∈φ−1(C)

detM(µ) = detM′(C) (IV.30)

and that for each loop half-line a there exists a characteristic function

χa(C) : k ∈ B → {0, 1} χka(C) =
{

0 if k 6∈ Ja(C)
1 if k ∈ Ja(C) . (IV.31)

Therefore the matrix elements forM′(C) can be written

M′fg(xf , xg) =
∫

d2p

(2π)2 e
−ip(xf−xg)C(p)

∑
k∈B

χka(f)χ
k
a(g)η

k(p)W k
vf ,vg

=
∫

d2p

(2π)2 F
∗
f (p)Gg(p)

∑
k

χka(f)χ
k
a(g)η

k(p)W k
vf ,vg

where we omit for simplicity to write the dependence in C, and we defined:

Ff (p) = eixfp
1

(p2 +m2)
1
4

Gg(p) = eixgp
(− 6p+m)
(p2 +m2)

3
4
. (IV.32)

va is the vertex to which the half-line a is hooked and ηk is the cutoff restricted
to the band k (see equation (III.3)). Finally W k is the n̄ × n̄ matrix defined in
equation (III.12). Our next lemma is crucial since it bounds the loop determinant
without generating any factorial.
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Lemma 4 The matrix M′(C) satisfies the following Gram inequality:

|detM′(C)| ≤
∏
f

[∫
d2p

(2π)2 η
f
C(p)|Ff (p)|2

] 1
2 ∏

g

[∫
d2p

(2π)2 η
g
C(p)|Gg(p)|2

] 1
2

(IV.33)
where the cutoff functions ηfC(p) and ηgC(p) corresponding to fields f and g are
defined in equation (IV.44) below.

Proof. The Gram inequality states:
If M is a n× n matrix with elements Mij =< fi, gj > and fi, gj are vectors in a
Hilbert space, we have |detM | ≤

∏n
i=1 ||fi||

∏n
j=1 ||gj ||.

To apply Gram’s inequality, the matrix elements must be written as scalar
products. We introduce the q × q matrix 1q which is not the identity, but the
matrix with all coefficients equal to 1. It is obviously a non-negative symmetric
matrix. We observe that the matrix W k

v,v′ is block diagonal with diagonal blocks
of type 1qj , and

∑
qj = n̄. Each block corresponds to all the vertices in a given

connected component of Tk. Therefore W itself is non-negative symmetric. We can
define the symmetric matrix (2n+ 2− 2p)× (2n+ 2− 2p):

Rkab := χkaχ
k
b (IV.34)

where a and b are the indices for the loop half-lines. By a permutation of field
indices, we can list first the q half-lines for which χka(C) = 1. In this way the
matrix R becomes 2× 2 block diagonal non-negative of the type(

1q 0
0 0

)
. (IV.35)

Now we can group W and R in a unique matrix (tensor product)

Wk
v,a;v′,b := χkaχ

k
bW

k
v,v′ (IV.36)

that is still non-negative as we can diagonalize separately W and R. Hence the
matrix ∑

k

ηkWk
v,a;v′,b = Tv,a;v′,b (IV.37)

is non-negative symmetric, as it is a linear combination (with positive coefficients
ηk) of non-negative symmetric matrices; therefore we can take its square root
(which is also non-negative symmetric):

Tv,a;v′,b =
∑
w,c

Uv,a;w,cUw,c;v′,b. (IV.38)
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Now, we can write M′fg as

M′fg =
∫

d2p

(2π)2 F
∗
f (p)Gg(p)Tvf ,a(f);vg,a(g)

=
∫

d2p

(2π)2 F
∗
f (p)Gg(p)

∑
v′s

Uvf ,a(f);v′,sUv′,s;vg,a(g)

(IV.39)

If we introduce the vectors

Ffv′s(p) = Ff (p)Uv′,s;v(f),a(f) Ggv′s(p) = Gg(p)Uv′,s;v(g),a(g) (IV.40)

we can write M′fg as

M′fg =
∫

d2p

(2π)2

∑
v′,s

Ff∗v′s G
g
v′s =< ~Ff , ~Gg > . (IV.41)

Now we can apply Gram’s inequality:

|detM′fg| ≤
n+1−p∏
f=1

|| ~Ff ||
n+1−p∏
g=1

||~Gg|| (IV.42)

where

|| ~Ff ||2 =
∫

d2p

(2π)2

∑
v′,s

(Ffv′s)t(F
f
v′s)

=
∫

d2p

(2π)2

∑
v′s

Uv(f),a(f);v′,sUv′,s;v(f),a(f)|Ff |2

=
∫

d2p

(2π)2 Tv(f),a(f);v(f),a(f)|Ff |2 =
∫

d2p

(2π)2

∑
k

χka(f)χ
k
a(f)W

k
v(f),v(f)η

k|Ff |2

=
∫

d2p

(2π)2 (
∑
k

ηk(p)χka(f))|Ff (p)|2 =
∫

d2p

(2π)2 η
a(f)(p) |Ff (p)|2 (IV.43)

as (χka(f))
2 = χka(f), and, as the bands in χa are adjacents, the cut-offs sum up

(using equations (III.2–III.3) to give

ηaC(p) :=
[
η

(
p2 +m2

Λ0(wM(a,C))

)
− η

(
p2 +m2

Λ0(wm(a,C)−1)

)]
(IV.44)

We can treat in the same way G and this achieves the proof of (IV.33). �
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IV.3 Bound on the series

We are now in the position to bound the series (III.23). After packing the attribu-
tions into packets we can put the absolute value inside the integrals and the sums
and bound the product of effective constants by cn̄. Moreover, we observe that the
two sums

∑
Col,Ω in (III.23) are bounded by taking the supremum over Col and Ω

and multiplying by the number of elements. We have

#{Ω} ≤ 22n+n′+n′′−p < 4n̄2−p

#{Col} ≤ Nn+1−p (IV.45)

Indeed to estimate #{Col} remark that, once T and Ω are known, the circulation
of color indices is determined. If there are no external color indices fixed (vacuum
graph), the attribution of color indices costs N2 at the first four-point vertex
(taken as root) and climbing inductively into the tree layer by layer a factor N for
each of the remaining four-point vertices of the tree (see [AR2]). The two-point
vertices do not contribute as color is conserved at them. When we have fixed the p
independent external colors for the 2p external fields only Nn+1−p choices remain.

We introduce some notations. Recalling the definitions (IV.27) and (IV.29)
we say that a divergent subgraph gi(C) ∈ DC is ‘D1PR’ (‘dangerous one particle
reducible’) if, by cutting a single tree line, we can cut it into two subgraphs gj(C)
and gj′(C), one of them, say gj(C), being a two legged subgraph. The line to cut is
then the tree line lA(j). In Figure 12 we show some examples of D1PR subgraphs,
where tree lines are solid lines and loop half-lines are wavy.

gjgj gj′gj′

lA(j)=A(j′) lA(j)=A(j′)

Figure 12

All subgraphs that cannot be cut in this way are called D1PI (‘dangerous
one particle irreducible’). We say that a four-point D1PI subgraph gi(C) is ‘open’
(as in [R]) if there exists a two-point subgraph gj(C) ∈ DC (called its closure)
with j ≤T i (then gi(C) ⊂ gj(C)) and they have two external lines in common (see
Figure 13).

A four-point subgraph is called ‘closed’ if it is D1PI but not open. A two-point
D1PI subgraph is always closed by definition. This classification of subgraphs is
useful, as only closed subgraphs contribute in the product

∏
g∈DC (1−τ

∗
g ). Applying

the definition of τg in the momentum space one can see that:
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gi

gj

Figure 13

• if gi(C) is D1PR and gj(C) is the corresponding divergent subgraph, then

τgi(C)(1− τgj(C)) = 0 (IV.46)

so the renormalization of gi(C) is ensured by that of gj(C);
• if gi(C) is four-point and open, and gj(C) is the associated two-point subgraph

containing it, then
(1− τgj(C))(τgi(C)) = 0. (IV.47)

For any gi(C) ∈ DC we know exactly which loop half-lines are external lines,
therefore we can still apply the operator 1− τ∗g = R∗g to the external propagators,
and distinguish closed subgraphs. Hence we define

Dc
C := {gi(C) ∈ DC |gi(C) closed} (IV.48)

and we apply R∗g only to g ∈ Dc
C . By the relation of partial order in RT we see

that for each pair gi(C),gi′(C) ∈ Dc
C we can only have that gi(C) ∩ gi′(C) = ∅,

or gi(C) ⊆ gi′(C) (if i′ ≤ i). Hence Dc
C has a forest structure. Following [R] we

define the ‘ancestor’ of gi(C) ∈ Dc
C, called B(gi(C)), as the smallest subgraph in

Dc
C containing gi(C):

B(gi(C)) := gi′(C), i′ = max
gi′′(C)∈DcC, gi(C)⊆gi′′(C)

i′′. (IV.49)

With all these bounds and definitions, the sum (III.23) becomes:

|ΓΛΛ0
2p (φ1, . . . , φ2p)| ≤

∞∑
n,n′,n′′=0

N1−p (cK)n̄
1

n!n′!n′′!

∑
o−T

∑
E,C

(IV.50)

∫
d2x1 . . . d

2xn̄

∫
0≤w1≤...≤wn̄−1≤1

n̄−1∏
q=1

dwq∣∣∣∣∣∣
∏
g∈DcC

R∗g

[ n̄−1∏
q=1

D
Λ0,wq
Λ (x̄lq , xlq ) detM′(C) φ1(xi1) . . . φ2p(xjp)

]∣∣∣∣∣∣
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Before performing any bound we must study the action of
∏
g∈DcC

R∗g on the
tree propagators, the loop determinant and the external test functions. As the
external half-lines for any subgraph cannot be of type C ′ we will write C instead
of D in the formulas. We distinguish two situations.

1) If |eg(C)| = 4 then ω(gi(C)) = 0 and the action of R∗g is:

R∗g(x1)
4∏
i=1

C(xi, yi) :=
4∑
i=2

R0
gi(x1)[

4∏
i=1

C(xi, yi)] (IV.51)

= C(x1, y1)

 4∑
i=2

∏
2≤j<i

C(xj , yj)[C(xi, yi)− C(x1, yi)]
∏
i<j≤4

C(x1, yj)


= C(x1, y1)

 4∑
i=2

∏
2≤j<i

C(xj , yj)[δ0C(xi, x1, yi)]
∏
i<j≤4

C(x1, yj)


where we took as reference vertex x1 and we defined R0

gi as the operator
that moves the external line with i on the reference vertex x1, and applies a
difference δ0C(xi, x1, yi) between two covariances on the line i.

2) If |egi(C)| = 2 then ω(gi(C)) = −1 and the action of R∗g is:

R∗g(x1)C(x1, y1)C(x2, y2) := R1
g(x1)C(x1, y1)C(x2, y2)

= C(x1, y1)
[
C(x2, y2)− C(x1, y2)− (x2 − x1)µ

∂

∂xµ1
C(x1, y2)

]
= C(x1, y1) [δ1C(x2, x1, y2)] (IV.52)

where we took as reference vertex x1.

IV.3.1 Choice of the reference vertex

Now, for each gi ∈ Dc
C we call the reference vertex ve(gi(C)). In this paper the

choice of this vertex is adapted to the tree T , and is different from previous rules
such as [R], chap.II. We adopt the following rule. We call the first external vertex
of the graph, the one with position xi1 the root of the tree. We define D0c

C and
D1c
C as the subsets of four-point and two-point subgraphs in Dc

C.
For every subgraph g ∈ D0c

C and any vertex of g there is a single path in
T joining this vertex to the root. This path must contain a single well defined
external line of g. The vertex to which this external line hooks is by definition our
reference vertex for g (see Figure 14).

This rule leaves us free of choosing in a different way the reference vertex
for any two-point D1PI subgraph D1c

C . The rule must ensure that open subgraphs
and D1PR subgraphs are automatically renormalized by renormalization of their
closure or proper parts. We decide to take as border vertex of any subgraph g ∈ D1c

C
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root
root root

ve(g) = ve(g′) ve(g)

ve(g)

ve(g′) ve(g′)

g g

gg′

g′
g′

a) b) c)

Figure 14

the one to which the highest of the two external half-lines of g hooks. Remark that
this external half-line is always a tree half-line in T , so we know its scale. This
rule, shown in Figure 15, fulfills the desired requirement, as will be shown below.

ve

g

Figure 15

Finally we add a rule which is not strictly speaking necessary but simplifies
the discussion: to compute the action of the renormalization operator we perform
first all operations corresponding to two point subgraphs, then all operations cor-
responding to four point subgraphs, starting from the smallest graphs towards the
largest. This rule ensures that any external half-line of a subgraph g bearing one
or two gradients because of the action of the Taylor operator for g, cannot bear
additional gradients from the later action of another Taylor operator for a different
subgraph g′.

IV.3.2 Processes

Returning to equations (IV.51) and (IV.52), we start the renormalization for the
two point subgraphs from the leaves of RT (hence from the smallest subgraphs at
highest energy) and go down. Then we perform the renormalization of four point
subgraphs. Some of them may be already convergent due to renormalization of
two point subgraphs. Also, even after fixing the reference vertex for each closed
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subgraph, there remains an arbitrary ordering of the other external lines for each
four-point graph and a sum over three possible terms as shown in IV.51. Again
some of these terms may themselves renormalize some lower four point subgraphs,
so the outcome of the renormalization is difficult to capture in a single formula.
We index the terms finally obtained by an index P , called the process, which
summarize all these choices made for the four point subgraphs. Hence∏

g∈DcC

(Rg) =
(∑

P

∏
g∈D0c

C (P )

[Rg(P )]
) ∏
g∈D1c

C

R1
g (IV.53)

where D0c
C (P ) is the subset of D0c

C made of the subgraphs for which R∗g(C) 6= 1,
hence for which there is a non-trivial renormalization.

Rg(P ) = R0
g i(P ), i(P ) ∈ {2, 3, 4} if g ∈ D0c

C (P ) (IV.54)

Hence in equation (IV.50), the absolute value inside the integrals can be
bounded by:∣∣∣∣∣∣

∏
g∈DcC

Rg

[ n̄−1∏
q=1

D
Λ0,wq
Λ (x̄lq , xlq ) detM′(C) φ1(xi1) . . . φ2p(xjp)

]∣∣∣∣∣∣ (IV.55)

≤
∑
P

n̄−1∏
q=1

|Dr,Λ0,wq
Λ (x̄lq , xlq )||detM′r(C)| |φr1(xi1) . . . φr2p(xjp)|

where we defined Dr, M′r, φr as the functions obtained after the application
of
∏
g∈DcC(P )Rg(P ). Again we bound the sum over processes P by the supremum

times the number of possible processes. This number is bounded by 3n−1. Indeed we
recall that for any forest F of closed four-point subgraphs, we have f(F) ≤ n− 1,
where f(F) is the number of four-point subgraphs in F [CR, Lemma C1]; this
maximal number is not changed by adding n′ + n′′ two point vertices because of
one particle irreducibility of the closed subgraphs.

From now on we work therefore with a fixed process P . We introduce some
notations. We define L0(P ) and L1 as the set of loop half-lines which bear some
single or double gradient respectively by some R0

gi(P ) or R1
g operator, Lr0(P ) as

the set of loop half-lines moved to the reference vertex by some R0
gi(P ) and Lu(P )

the loop half-lines left unchanged. In the same way we define the sets T 0(P ), T 1,
T r0(P ) and Tu(P ) for the tree half-lines, and E0(P ), E1, Er0(P ) and Eu(P ) for
the external half-lines. To avoid confusion, from now on we call fi and f̄i the two
half-lines forming the tree-line li.

IV.3.3 Interpolations of the lines

For a four-point subgraph the difference δ0C is expressed by

δ0C(x, xv, y) =
∫ 1

0
dt
d

dt
C(x(t), y) (IV.56)
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For a two-point subgraph δ1C is expressed by

δ1C(x, xv, y) =
∫ 1

0
dt(1− t) d

2

dt2
C(x(t), y) (IV.57)

This means that the external line hooked to x has been hooked to the point
x(t) on any piecewise differentiable path joining x to xv and has now a propagator
(see Figure 16)
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R0
g4 R0

g3 R0
g2

Figure 16

C0(x(t), y) :=
d

dt
C(x(t), y) (IV.58)

or (see Figure 17)

C1(x(t), y) := (1− t) d
2

dt2
C(x(t), y). (IV.59)

g

x1

y1

x2

y2

x1

y1

x2

y2

R1

x2(t)

=

Figure 17

In previous perturbative or constructive works, this path x(t) is always de-
fined to be the linear segment connecting x to xv hence is parametrized by

x(t) := xv + t(x− xv) x(0) = xv x(1) = x (IV.60)
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But with the continuous band structure this obvious choice when applied
to tree half-lines leads to difficulties. It is therefore more convenient to treat dif-
ferently the loop, tree and external half-lines. Loop lines and external half-lines
(except the root) do not affect spatial integration (recall that this spatial integra-
tion is performed using the decay of the tree lines). So for them we can choose the
obvious linear interpolation that makes easier to factorize the matrix elements of
M′ as scalar products and to apply Gram’s inequality. For the tree lines it will be
convenient to exploit the existence of T to choose a different path.

IV.3.2.A: Loop lines Now for each ha ∈ L0(P ) ∪ L1 we define

xa(t) := xve + t(xa − xve) (IV.61)

which is the obvious linear path.
The propagator for the line bearing the difference becomes respectively for a

four-point and a two-point subgraph

C0(xa(t), y) :=
d

dt
C(xa(t), y) = (xa − xv)µ

∂

∂xµ
C(xa(t), y) (IV.62)

C1(xa(t), y) := (1− t) d
2

dt2
C(xa(t), y) = (xa − xv)µ(xa − xv)ν

∂

∂xµ
∂

∂xν
C(xa(t), y).

(IV.63)
If the second end of the line y is also moved we just apply the same formulas

to C0(xa(t), y) and C1(xa(t), y), interpolating y. Introducing these formulas into
the matrix element M′rfg we can factorize it as the scalar product of F rf and Grg
where

F rf = Ff for hf 6∈ L0(P ) ∪ L1 (IV.64)

F rf =
∫
dt(xf − xv)µ

∂

∂xµ
Ff (xf (t)) for hf ∈ L0(P )

F rf =
∫
dt(1− t)(xf − xv)µ(xf − xv)ν

∂

∂xν
∂

∂xµ
Ff (xf (t)) for hf ∈ L1

where Ff , Gg are defined in (IV.32). The same definitions hold for Grg. With these
definitions the determinant is bounded by

|detM′r(C)| ≤
∏
f

||F rf ||
∏
g

||Grg|| (IV.65)

Now we can bound the norms using the following lemma.

Lemma 5 The norms of Ff and Gg satisfy the bounds

||Ff ||2C ≤ K [Λ0(wM(f,C))− Λ0(wm(f,C)−1)]

||Gg||2C ≤ K [Λ0(wM(g,C))− Λ0(wm(g,C)−1)] (IV.66)
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Proof. Applying the definition (IV.44), ||Ff ||2C is written

||Ff ||2C =
∫

d2p

(2π)2

1
(p2 +m2)

1
2

[
η

(
p2 +m2

Λ2
0(wM(f,C))

)
− η

(
p2 +m2

Λ2
0(wm(f,C)−1)

)]
=

∫
d2p

(2π)2 (p2 +m2)
1
2

∫ Λ−2
0 (wm(f,C)−1)

Λ−2
0 (wM(f,C))

dα
(
−η′[(p2 +m2) α]

)
≤

∫ Λ−2
0 (wm(f,C)−1)

Λ−2
0 (wM(f,C))

dα π α−
3
2

∫ ∞
0

dv
√
v[−η′(v)]

≤ K [Λ0(wM(f,C))− Λ0(wm(f,C)−1)] (IV.67)

where, in the third line, we performed the change of variable v = α(p2 +m2). The
same result holds for ||Gg||2C. �

A similar argument can be performed for loop lines with some gradient ap-
plied. Each derivative adds a factor α−

1
2 in the integral. With these definitions the

determinant is bounded by∏
a∈Lu(P )∪Lr0(P )

[Λ0(wM(a,C))− Λ0(wm(a,C)−1)]
1
2

∏
a∈L0(P )

|xa − xv(a)|[Λ3
0(wM(a,C))− Λ3

0(wm(a,C)−1)]
1
2

∏
a∈L1

|xa − xv(a)|2[Λ5
0(wM(a,C))− Λ5

0(wm(a,C)−1)]
1
2 (IV.68)

IV.3.2.B: External lines. The only external line essential in spatial integration
is the root y1, then we can choose this point as reference vertex for the whole
graph so that it is never interpolated. For the other external lines we take again
the easiest formula, the linear one. All gradients generated by moving the external
lines in fact apply to the test functions. Therefore the product is bounded by∏

hie∈Eu(P )∪Er0(P ),ie 6=1

||φie ||∞
∏

hie∈E0(P )

|xie − xv|||φ′ie ||∞∏
hie∈E1

|xie − xv|2||φ′′ie ||∞ (IV.69)

IV.3.2.C: Tree lines. Now we consider tree lines.
We observe that the set of fi, f̄i ∈ T r0 modifies the tree T but does not

disconnect it in the sense that it simply changes the hooking vertices of some
line. On the other hand, interpolating each fi, f̄i ∈ T 0(P )∪T 1 with the linear rule
(equation (IV.60)) in an intuitive sense “disconnects” the tree, since the point x(t)
in general no longer hooks to some point on a segment corresponding to a tree
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line. This defect would lead to difficulties when integrating over spatial positions.
To avoid it we express the differences δ0C and δ1C using the connection between
external vertices of any subgraph which is provided by the tree T itself. But, as
the tree T is itself modified by renormalization, this process has to be inductive,
starting from the smallest two point subgraphs of D1c

C and proceeding towards
the biggest, then again from the smallest four point subgraphs of D0c

C (P ) and
proceeding towards the biggest.

Our induction creates progressively a new tree T (P, J). To describe it, we
number the subgraphs to renormalize in the order the operations are performed
as g1, . . . gr. At the stage 1 ≤ p ≤ r, before renormalization of gp, the tree is called
T (P, Jp−1) (we put T (P, J0) = T ). If the renormalization of gp as specified by the
process P does not act on a tree half-line external to gp, we neither modify Jp−1
nor T (P, Jp−1). If the renormalization of gp results in some half-tree line fi or f̄i
belonging to T r0(P ), as shown in Figure 18, case 1), we do not modify Jp−1, so we
put Jp = Jp−1, but we modify T (P, Jp−1), that is we define T (P, Jp) as T (P, Jp−1)
but with the half line now hooked to the reference vertex of gp.

Finally when the renormalization of gp interpolates a tree half-line fi or f̄i, we
modify both Jp−1 and T (P, Jp−1). There exists a unique path PT (P,Jp−1)

xf ,xv joining
the vertex xf where the half-line hooked to the fixed vertex of gp. This path is made
of q lines and goes through q + 1 vertices with positions x0 = xv, x1, . . . , xq = xf .
We interpolate the half line using this path instead of the linear path. This means
that we write, if gp is a four point subgraph,

δ0C(xf , xv, y) =
q∑
j=1

δ0C(xj , xj−1, y)

=
q∑
j=1

(xj − xj−1)µ
∫ 1

0
dt

∂

∂xj(t)µ
C(xj(t), y) (IV.70)

and if gp is a two point subgraph we write

δ1C(xf , xv, y) = δ0C(xf , xv, y)− (xf − xv)µ
∂

∂xµv
C(xv, y)

=
q∑
j=1

δ0C(xj , xj−1, y)−
q∑
j=1

(xj − xj−1)µ
[

∂

∂xµj−1
C(xj−1, y)−

−
[
j−1∑
k=1

∂

∂xµk
C(xk, y)− ∂

∂xµk−1
C(xk−1, y)

]]

=
∫ 1

0
dt

q∑
j=1

(1− t)(xj − xj−1)µ(xj − xj−1)ν
∂2

∂µ∂ν
C(xj(t), y)

+
∫ 1

0
dt

q∑
j=1

j−1∑
k=1

(xj − xj−1)µ(xk − xk−1)ν
∂2

∂µ∂ν
C(xk(t), y) (IV.71)
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where for each j (and k ≤ j) we defined

xj(t) := xj−1 + t(xj − xj−1) , xk(t) := xk−1 + t(xk − xk−1) . (IV.72)

Then we update J and T . In the first case, where g is a four point subgraph,
we define Jp = Jp−1 ∪ {j}, where j is the index of the line of T (P, Jp−1) chosen
in IV.70. In the second case, where g is a two point subgraph, we define Jp =
Jp−1 ∪ {j} ∪ {k}, where j and k are the indices of the lines of T (P, Jp−1) chosen
in IV.71. Finally we update the tree according to Figure 18, case 2 and 3.

xv
xvxv

fi
fi fi

xj xj

xj−1
xj−1

xf xf
xk

xk−1

Case 1 Case 2 Case 3

Figure 18

This means that, for gp a four point subgraph, in T (P, Jp) the external line
hooked to xf is now hooked to the point xj(t) on the tree segment [xj−1, xj ] and
has propagator

C0(xj(t), y) := (xj − xj−1)µ
∂

∂µ
C(xj(t), y). (IV.73)

For gp a two point subgraph, the external line previously hooked to xf is
now hooked to the point xk(t) on the tree segment [xk−1, xk] (with k ≤ j) and has
propagator

C1(xk(t), y) := (xj − xj−1)µ(xk − xk−1)ν
∂2

∂µ∂ν
C(xk(t), y) k 6= j

C1(xj(t), y) := (1− t)(xj − xj−1)µ(xj − xj−1)ν
∂2

∂µ∂ν
C(xj(t), y). (IV.74)

Remark that the new tree T (P, Jp) has therefore one additional vertex and
one line more than T (P, Jp−1). The final tree built inductively in this way, T (P, J)
is still a tree connecting all initial vertices, with at most n − 1 new vertices and
new lines (as n− 1 is the maximal number of closed divergent subgraphs).

The treatment of two or four point subgraphs and the rules for their fixed
vertex being different, we write J = J0∪J1, where J0 is the set of indices j for the
interpolations associated to the renormalization of four point graphs, and J1 is the
set of indices jg and kg for the interpolations associated to the renormalization of
two point graphs.
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IV.3.4 Bound on the sum over J1 and on the associated distance factors

Now, before going on, in order to reproduce the spatial decay between supports
of Theorem 3, we take out a fraction (1− ε) of the exponential decay of each tree
line in (II.16) and (II.17): this factor is bounded by

n̄−1∏
i=1

e−(1−ε)|x̄i−xi|Λm0 (wi) ≤ e−Λm(1−ε)dT (Ω1,...Ω2p) (IV.75)

and we keep the remaining decay e−(ε/2)|x̄i−xi|Λm0 (wi) (adjusting ε′ = ε/2) for two
purposes: a fraction of this decay is used to perform spatial integration and the
other to bound the sum over J0 and the distance factors generated by equations
(IV.62)–(IV.63) and (IV.73)–(IV.74). Therefore we have to bound, for a fixed
process P ∑

J1

∑
J0

∫
dx A(x, J, P, T ) B(x, J, P, T ) (IV.76)

where

A(x, J, P, T ) :=
∏

fi,f̄i∈T 1

|xj − xj−1||xk − xk−1|
∏

ha∈L1

|xa − xv|2

∏
hie∈E1

|xie − xv|2
∏

l∈T (P,J)

e−(ε/4)|x̄l−xl|Λm0 (wl) (IV.77)

B(x, J, P, T ) :=
∏

fi,f̄i∈T 0(P )

|xj − xj−1|
∏

ha∈L0(P )

|xa − xv|

∏
hie∈E0(P )

|xie − xv|
∏

l∈T (P,J)

e−(ε/4)|x̄l−xl|Λm0 (wl) (IV.78)

where J specifies in particular the distance factors |xj − xj−1| and |xk − xk−1|, as
explained above.

The strategy of the bound is to write∑
J1

∑
J0

∫
dx A(x, J, P, T ) B(x, J, P, T ) ≤

∑
J1

∑
J0

A(J, P, T )
∫
dx B(x, J, P, T )

(IV.79)
where A(J, P, T ) := supxA(x, J, P, T ).

For each divergent subgraph gi ∈ DcC we define t(i) as the index of the lowest
tree line in the path of T (P, J) joining xv(gi) to the interpolated half-line which
renormalize it. The next lemma proves that A(J, P, T ) is bounded by something
independent of J :

Lemma 6
A(J, P, T ) ≤ Kn

∏
gi∈Dc1C

[Λ0(wt(i))− Λ0(wA(i))]−2 (IV.80)

where K is some ε dependent constant.
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Proof. For each loop or external line the difference |x−xv| can be bounded, applying
several triangular inequalities, by the sum over the tree lines on the unique path
in T (P, J) connecting x to xv.

We observe that the same tree line lj can appear in several paths connecting
different pairs of points xv, x. Using the same fraction of its exponential decay
many times might generate some unwanted factorials since supx xn exp(−x) =
(n/e)n. To avoid this problem we define Dj as the set of subgraphs gi ∈ D1c

C ∪
D0c
C (P ) which use the tree distance |x̄lj − xlj | to bound the norm of |x− xv(gi)| or

its square and we apply the relation

e−
ε
4 |x̄lj−xlj |Λ

m
0 (wj) ≤ e

− ε4 |x̄lj−xlj |
∑
gi∈Dj

[Λ0(wt(i))−Λ0(wA(i))] (IV.81)

With this expression a different decay factor is used for each subgraph. Applying
this result and the inequalities xe−x ≤ 1, x2e−x ≤ 1 completes the proof of the
lemma. �

It is proved in the next section that the sum and spatial integral

∑
J0

∫
dx B(x, J, P, T )

is in fact independent of P and J1 (and of the interpolation parameters t that
we omitted). Therefore the sum over J1 will simply lead to the bound of the next
section multiplied by the cardinal of the set J1, that is by |J1|. This is done thanks
to the following lemma:

Lemma 7 We have |J1| ≤ e2n̄.

Proof. We consider the graphs g1, . . . gr1 of D1c
C in the order used for their renor-

malization in Subsection IV.3.2.C. We define, for each such two point subgraph
g ∈ D1c

C the set A(g) of maximal subgraphs g′, g′ ∈ D1c
C , g′ ⊂ g, and the reduced

graph g/D1c
C where each g′ ∈ A(g) has been reduced to a single point.

We also count the number Lg of lines on the unique path in the tree T ∩
g/D1c

C which joins the two external vertices of g. Remark that this number Lg is
independent of J and that

∑
g∈D1c

C
Lg ≤ n̄− 1. Finally we define the subset A′(g)

of A(g) made of those g′ in A(g) which appear as reduced points on this unique
path (see Figure 19).

By induction one can bound the number of choices in J1 by

|J1| ≤
∏

g∈D1c
C

Lg+
∑
g′∈A′(g) kg′∑
jg=1

jg∑
kg=1

1 (IV.82)
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g1 g1
∈ A

g2
g2∈ A′ g3

g3∈ A′

Figure 19

where this product is again ordered from the smallest to the largest graphs. Now
for any positive increasing function f we have

∑L
j=1 f(j) ≤

∫ 1+L
1 f(x)dx so that

|J1| ≤
∏
g∈D1c

C

∫ 1+Lg+
∑
g′∈A′(g) yg′

1
dxg

∫ 1+xg

1
dyg

≤
∏
g∈D1c

C

∫ 1+Lg+
∑
g′∈A′(g) yg′

0
dxg

∫ 1+xg

0
dyg ≤ e2r1

∏
g∈D1c

C

eLg ≤ e2n̄

(IV.83)

where in the last inequality, we bounded the last integral
∫ 1+xgr1

0 dygr1 by e1+xgr1

and then effectuate each integral exactly and bound each difference ex − 1 by ex.
Finally we used the fact that every subgraph g′ is in A′(g) for at most one g, and
the fact that 2r1 ≤ n̄− 1 (again [CR, Lemma C1]). �

Remark. This lemma does not apply to J0. For a counter-example, the reader can
look at the following graph and tree, for which J0 can be of order Kn(n/5)!.

graph tree

interpolated lines

Figure 20

IV.3.5 Bound on the sum over J0, on the associated distance factors,
and spatial integration of the vertices

It remains now to perform the sum over J0 and the integral over the position of
internal vertices, using the remaining tree decay

∏
l∈T (P,J) e

−(ε/4)|x̄l−xl|Λm0 (wl) in
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B, and to check that the result, as announced, is independent of P , J and of the
interpolation parameters t. We recall that Λm0 (w) was defined in (II.18).

Lemma 8∑
J0

∫
dx B(x, J, P, T ) ≤ Kn̄

∏
gi∈Dc0C (P )

[Λ0(wt(i))− Λ0(wA(i))]−1
n̄−1∏
q=1

(Λm0 (wq))−2

(IV.84)
where K is some ε dependent constant.

Proof. First we divide one half of our remaining tree decay as in IV.81. This half will
be used to bound each distance factor in

∏
ha∈L0(P ) |xa−xv|

∏
hie∈E0(P ) |xie−xv|

as in Lemma 6, the sum over J0 and the distance factors
∏
fi,f̄i∈T 0(P ) |xj − xj−1|.

As in Lemma 6, each distance factor in
∏
ha∈L0(P ) |xa−xv|

∏
hie∈E0(P ) |xie−

xv| leads to a bound K[Λ0(wt(i))− Λ0(wA(i))]−1.
Then we perform the spatial integrals from the leaves of the tree T (P, J)

towards the root x1, using the other half of the tree decay. In this inductive pro-
cess when we meet an interpolated line hooked at some interpolated point xj(t)
or xk(t) two different situations can occur, as pictured in Figure 21. The second
situation (interpolated point not towards the root) can occur only for interpola-
tions of two point subgraphs, hence associated to the J1 indices. The first situation
(interpolated point towards the root) must occur for all interpolations associated
to four point subgraphs plus possibly some interpolation associated to two point
subgraphs. This is the consequence of our rule for the preferred vertices of four
point subgraphs (the interpolations associated to four point subgraphs always
bring nearer to the root).

The sum over J0 is performed in pieces; the sum over each index jg in J0

is performed right after the spatial integration which has used the corresponding
interpolated line. By the remark above, each sum over jg in J0 occurs in the first
situation of Figure 21.

root root

xj−1xj−1

xj xj

xj(t)xj(t)
y

y
y

′y′

a) b)

Figure 21

The decay of any tree line li = [x, y] with both ends fi, f̄i ∈ Tu(P ) ∪ T r0(P )
gives, by translation invariance, a factor:∫

e−(ε/8)|x−y|Λm0 (wi)d2x = 128πε−2[Λm0 (wi)]−2 (IV.85)
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Surprisingly, the same result holds when one or both ends of the line have been
interpolated, as we explain now2.

• In the first situation of Figure 21, y, the other end of the interpolated line, is
connected to the root through the interpolated point (see Figure 21a). We can
integrate over y before integrating over xj and xj−1. We use translation invariance
to cancel the dependence from xj(t) in the interpolated covariance. The integral
over the variable t is bounded by 1. The spatial integral over y then gives the same
factor as in (IV.85). Then we perform the corresponding sum over j in J0 using

q∑
j=1

|xj − xj−1|e−
ε
8 [
∑q
j=1 |xj−xj−1|][Λ0(wt(i))−Λ0(wA(i))] ≤ K[Λ0(wt(i))− Λ0(wA(i))]−1

(IV.86)
•When the point x(t) is connected to the root through y (see Figure 21b) we have
to compute the integral

I =
∫ 1

0
dt

∫
d2xj d

2xj−1 e
−(ε/8)|xj−xj−1|Λm0 (wj)e−(ε/8)|xj(t)−y|Λm0 (wk) (IV.87)

where xj(t) = xj−1 + t(xj − xj−1). Performing, for t 6= 0 the change of variables

v1 = xj(t) = txj + (1− t)xj−1 v2 =
1
t
(xj−1 − xj(t)) = (xj−1 − xj) (IV.88)

the integral becomes

I =
∫ 1

0
dt

∫
d2v1 e

−(ε/8)|v1|Λm0 (wk)
∫
d2v2 e

−(ε/8)|v2|Λm0 (wj)

= [128πε−2]2[Λm0 (wj)]−2[Λm0 (wk)]−2 (IV.89)

This is again the same contribution as (IV.85), hence the same contribution as if
the line had not been interpolated!

Following the tree from the leaves to the root we can perform the integrals
over all positions in this way, except for xi1 . This last point is integrated using
the test function φ1, which gives a factor ||φ1||1. Hence, the result of all spatial
integrations is Kn

∏n̄−1
q=1 (Λm0 (wq))−2 and the sum over J0 has been performed at a

cost of Kn (although |J0| can be very large). This completes the proof of Lemma 8.
�

Since the result of Lemma 8 is independent of J1, as announced, we can apply
Lemma 7. Let us collect the result of Lemmas 6-8, together with the other factors
remaining after spatial integration. The product over tree lines propagators, is

2We thank V. Mastropietro for explaining to us that this surprising fact was known to him
and can be found in his work [BM]
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bounded by
Kn̄(Λ−2 − Λ−2

0 )n̄−1 e−(ε/4)m2Λ−2
0 (w1)

·
n̄−1∏
q=1

Λ3
0(wq)

∏
fq,f̄q∈T ′∪T 0(P )

Λ0(wq)
∏

fq,f̄q∈T 1

Λ2
0(wq) (IV.90)

where K is some ε dependent constant,and we included the scaling prefactors in
(II.16)–(II.17). These factors are

• a factor Λ0(w)3 for each tree line,
• a factor Λ0(w) for each half-line in T 0(P ),
• a factor Λ0(w)2 for each half-line in T 1,
• a factor Λ0(w) for each half-line in T ′, the set of half-lines hooked to a δζ

vertex which bears a derivative, hence has covariance C ′.

Remark that we kept for only one line, the lowest one, the massive decay
e−(ε/4)m2Λ−2

0 (w1) from bounds (II.16)–(II.17). It will be useful only to conclude the
bound in the massive case when Λ < m. In this case the n′ vertices of type δm
may create some infrared difficulties if we were to replace directly for them the
factor (Λm0 (wq))−2 by (Λ0(wq))−2. We introduce the set T ′ of the tree lines used
for integration of the δm vertices. There are n′ of them (or n′ − 1 if the root is of
type δm, a case we will exclude for simplicity). Recall that by (II.18) we have

(Λm0 (wq))−2 ≤ (Λ0(wq))−2 (IV.91)

(Λm0 (wq))−2 ≤ m−1(Λ0(wq))−1 (IV.92)
We use the bound (IV.92) only for the lines of T ′ when Λ < m. For all other cases
we use the bound (IV.91).

IV.3.6 Integration over the parameters wi

Now, putting everything together, we describe first the bound when Λ > m, hence
Λm = Λ. Equation (IV.50) is bounded by

|ΓΛ
2p(φ1, . . . φ2p)| ≤ ||φ1||1

2p∏
i=2

||φi||∞,2

N1−pe−(1−ε)ΛmdT (Ω1,...Ω2p)(Λ−2 − Λ−2
0 )n̄−1

∞∑
n,n′,n′′=0

(cK)n̄
1

n!n′!n′′!

∑
o−T

∑
E,C

∫
0≤w1≤...≤wn̄−1≤1

n̄−1∏
q=1

dwq

n̄−1∏
q=1

Λ0(wq)
∏

fq,f̄q∈T ′∪T 0(P )

Λ0(wq)
∏

fq,f̄q∈T 1

Λ2
0(wq)

∏
a∈Lu(P )∪Lr0(P )

Λ
1
2
0 (wM(a,C))

[
1−

Λ0(wm(a,C)−1)
Λ0(wM(a,C))

] 1
2
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∏
a∈L0(P )

Λ
3
2
0 (wM(a,C))

[
1−

Λ3
0(wm(a,C)−1)
Λ3

0(wM(a,C))

] 1
2

∏
a∈L1

Λ
5
2
0 (wM(a,C))

[
1−

Λ5
0(wm(a,C)−1)
Λ5

0(wM(a,C))

] 1
2

∏
gi∈D0c

C

Λ−1
0 (wt(i))

[
1−

Λ0(wA(i))
Λ0(wt(i))

]−1

∏
gi∈D1c

C

Λ−2
0 (wt(i))

[
1−

Λ0(wA(i))
Λ0(wt(i))

]−2

(IV.93)

The differences
[
1− Λ0(wA(i))/Λ0(wt(i))

]
are dangerous as they appear with

a negative exponent. They are the price to pay for implementing continuous renor-
malization group. Indeed, in this continuous formalism one has to perform renor-
malization even when the differences between internal and external energies of sub-
graphs are arbitrarily small. However, there is a natural solution to this problem:
each subgraph to renormalize has necessarily loop lines and these loop lines, when
evaluated in the continuous formalism by Gram’s inequality, give small factors
precisely when the differences between internal and external energies of subgraphs
become arbitrarily small.

In other words, we can cancel the dangerous differences with a negative ex-
ponent against the analogous differences with a positive exponent given by the
loop lines. This is the purpose of the next lemma.

Lemma 9 If gi ∈ Dc0C (P ) there is at least one loop line internal to gi which satisfies
Λ0(wM(a,C)) ≤ Λ0(wt(i)) and Λ0(wm(a,C)−1) ≥ Λ0(wA(i)). If gi ∈ Dc1C there are at
least two loop lines internal to gi and which satisfy Λ0(wM(a,C)) ≤ Λ0(wt(i)) and
Λ0(wm(a,C)−1) ≥ Λ0(wA(i)).

Assuming the lemma true, and using the relations
√

1−x3

1−x ≤
√

3 and
√

1−x5

1−x ≤
√

5,
one obtains∏

a∈Lu(P )∪Lr0(P )

[
1−

Λ0(wm(a,C)−1)
Λ0(wM(a,C))

] 1
2 ∏
a∈L0(P )

[
1−

Λ3
0(wm(a,C)−1)
Λ3

0(wM(a,C))

] 1
2

∏
a∈L1

[
1−

Λ5
0(wm(a,C)−1)
Λ5

0(wM(a,C))

] 1
2 ∏
gi∈D0c

C

[
1−

Λ0(wA(i))
Λ0(wt(i))

]−1

∏
gi∈D1c

C

[
1−

Λ0(wA(i))
Λ0(wt(i))

]−2

≤ 5n−1

(IV.94)

where we bounded by 1 the loop lines differences that were not used to compensate
some

[
1− Λ0(wA(i))/Λ0(wt(i))

]−1 factor.
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Proof of Lemma 9. We observe that the lowest tree line lt(i) in Ti(J, P ) joining the
interpolated line and the reference vertex is external line for the two subgraphs of
gi, gt(i)1 and gt(i)2. One of these two subgraphs has for external line the reference
external line of gi and the other has for external line the interpolated line moved
by the renormalization R∗gi . But gt(i)1 and gt(i)2 must both have at least some
additional external lines, otherwise gi would be D1PR. By parity gt(i)1 and gt(i)2
must both have at least two such additional external lines.

We distinguish two cases:

• If gi ∈ Dc0C (P ), since there are at most two additional external lines of gi,
we find that there must be at least two external half-lines of gt(i)1 ∪ gt(i)2
different from lt(i) which are internal in gi. If they are both loop half-lines
we are done. If some of them is a tree half-line, the other half is external line
for another subgraph of gi, g′. Repeating the argument for g′ (as |eg| = 1 is
forbidden) we finally must find an associated loop half-line (see Figure 12).
• If gi ∈ Dc1C , since there was no additional external line of gi, then both gt(i)1

and gt(i)2 must have at least two external half-lines different from lt(i) which
are internal in gi. Either these four half-lines are loop half-lines and we are
done, or some of them are tree lines, which we follow as above until we find
the corresponding loop half-lines. �

After applying the bound (IV.94) we can take the limit Λ0 →∞. Performing
the change of variable ui = 1− wi equation (IV.93) becomes:

|ΓΛ
2p(φ1, . . . φ2p)| ≤ ||φ1||1

2p∏
i=2

||φi||∞,2e−(1−ε)ΛmdT (Ω1,...Ω2p)

N1−p
∞∑

n,n′,n′′=0

Λ2−p−n′(cK)n̄
1

n!n′!n′′!

∑
o−T

∑
E,C

∫
0≤un̄−1≤···≤u1≤1

n̄−1∏
q=1

duq

[
n̄−1∏
q=1

1
√
uq

] ∏
fq,f̄q∈T ′∪T 0(P )

1
√
uq

 ∏
fq,f̄q∈T 1

1
uq


 ∏
a∈Lu(P )∪Lr0(P )

(uM(a,C))−
1
4

 ∏
a∈L0(P )

(uM(a,C))−
3
4

[ ∏
a∈L1

(uM(a,C))−
5
4

]
 ∏
gi∈D0c

C

(ut(i))
1
2

 ∏
gi∈D1c

C

(ut(i))

 (IV.95)

To factorize the integrals we perform the change of variable:

ui = βiui−1 βi ∈ [0, 1] (IV.96)
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where by convention u0 = 1. The Jacobian of this transformation is the determi-
nant of a triangular matrix hence it is given by:

J = β1(β1β2) . . . (β1β2 . . . βn̄−2) =
n̄−1∏
i=1

βn̄−1−i
i . (IV.97)

We absorb Λ−n
′

into the term Kn̄ since we recall that Λ > m hence that
Λ−n

′
= (Λm)−n

′
, and that in Theorem 3 Λm remains in the compact X, hence is

bounded away from 0. Then the integral (IV.95) becomes

|ΓΛ
2p(φ1, . . . φ2p)| ≤ ||φ1||1

2p∏
i=2

||φi||∞,2e−(1−ε)ΛmdT (Ω1,...Ω2p) (IV.98)

(Λm)2−p N1−p
∞∑

n,n′,n′′=0

(cK)n̄
1

n!n′!n′′!

∑
o−T

∑
E,C

∫ 1

0
. . .

∫ 1

0

n̄−1∏
i=1

dβi

n̄−1∏
i=1

β
−1+ 1

2 (n̄−i)− 1
2 |N

′′
i |

i

 ∏
fq,f̄q∈T 0(P )

1√
βq . . . β1

 ∏
fq,f̄q∈T 1

1
βq . . . β1


 ∏
a∈Lu(P )∪Lr0(P )

(βM(a,C) . . . β1)−
1
4

 ∏
a∈L0(P )

(βM(a,C) . . . β1)−
3
4 )


[ ∏
a∈L1

(βM(a,C) . . . β1)−
5
4

] ∏
gi∈D0c

C

(βt(i) . . . β1)
1
2

 ∏
gi∈D1c

C

(βt(i) . . . β1)


Each βi appears with the exponent −1 + xi.

xi =
1
2

[n̄− i]− 1
2
|N ′′i | −

1
4
|ILi(C)|

+
1
2

[|S0
i (C)| − |IT 0

i | − |IL0
i (C)|] + [|S1

i (C)| − |IT 1
i | − |IL1

i (C)|]

(IV.99)

where we defined

IT 0
i := {fj , f̄j ∈ T 0(P )|j ≥ i}

IT 1
i := {fj , f̄j ∈ T 1|j ≥ i}

ILi(C) := {a ∈ L|M(a, C) ≥ i}
IL0

i (C) := {a ∈ L0(P )|M(a, C) ≥ i}
IL1

i (C) := {a ∈ L1|M(a, C) ≥ i}
S0
i (C) := {gj ∈ D0c

C (P )|t(j) ≥ i}
S1
i (C) := {gj ∈ D1c

C |t(j) ≥ i}. (IV.100)
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c(i) is the number of connected components in Ti(P ). All these definitions can
be restricted to the connected components: IT 0k

i ,IT 1k
i , ILki (C), IL0k

i (C) IL1k
i (C),

S0k
i (C) and S1k

i (C). We observe that ILi(C) corresponds to the set of half-lines
that could have, in the class C, µ(a) ≥ i and it is the equivalent of ILi defined
in (III.9). IT 0

i (respectively IT 1
i ) and IL0

i (C) (respectively IL1
i (C)) are the set of

tree half-lines and loop half-lines at a level higher or equal to i, which are the
interpolated external lines for some divergent subgraph in D0c

C (P ) (respectively in
D1c
C ), S0

i (C) (respectively S1
i (C)) is the set of subgraphs in D0c

C (P ) (respectively
in D1c

C ) that have the internal tree line lt(j) of a level higher or equal to i. In the
same way, we can define the equivalent of ELi and Ei as

ELi(C) := ∪c(i)k=1el
k
i (C) (IV.101)

which is the set of loop half-lines that are forced to have µ(a) ≤ i, and

Ei(C) := ∪c(i)k=1eg
k
i (C). (IV.102)

The integral in the variable dβi can be performed only if the exponent of βi
is bigger than −1. Using the relations

n̄− i =
c(i)∑
k=1

[|Nk
i |+ |N

′k
i |+ |N ′′ki | − 1]

|Ei(C)| = |ELi(C)|+ |ETi|+ |EEi|
= 2|Ni|+ 2− |ILi(C)| , (IV.103)

the exponent of βi can be written as −1 +
∑c(i)
k=1 x

k
i , where

xki :=
1
2

[
1
2

(|Eki (C)|+ 2|N ′ki | − 4) (IV.104)

+[|S0k
i (C)| − |IT 0k

i | − |IL0k
i (C)|] + 2[|S1k

i (C)| − |IT 1k
i | − |IL1k

i (C)|]
]

Remark that for any level i we have

[|S0
i (C)| − |IT 0

i | − |IL0
i (C)|] ≥ 0 [|S1

i (C)| − |IT 1
i | − |IL1

i (C)|] ≥ 0 (IV.105)

as each half-line in IT 0
i (IT 1

i ) or IL0
i (C) (IL1

i (C)) is the external interpolated line
for a subgraph gj . This subgraph gj must have j > i hence have t(j) > i. Therefore
for each half-line in one of these sets there is always at least one corresponding
half-line in S0

i (C) (S1
i (C)).

Lemma 10 For any connected component in T ki we have xki ≥ 1/2.

Proof. We distinguish three situations.
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• If |Eki (C)| ≥ 5, in fact, by parity of the number of external half-lines of any
subgraph, |Eki (C)| ≥ 6 and then

xki ≥ (1/4)(|Eki (C)| − 4) ≥ 1/2. (IV.106)

• If |Eki (C)| = 4, then there must be a subgraph gj ∈ D0c
C (P ) with j ≥ i (j = i

only if li belongs to the connected component T ki (J, P )) and A(j) < i. Hence the
interpolated line for gj does not belong to IT 0k

i or IL0k
i (C), but the corresponding

internal line lt(j) belongs to S0k
i . Then

|S0k
i | − |IT 0k

i | − |IL0k
i (C)| ≥ 1 (IV.107)

and

xki =
1
2

[|N ′ki |+ [|S0k
i | − |IT 0k

i | − |IL0k
i (C)|] + 2[|S1k

i | − |IT 1k
i | − |IL1k

i (C)|] ≥ 1
2
.

(IV.108)
• Finally if |Eki (C)| = 2 one can see, by the same arguments, that

|S1k
i | − |IT 1k

i | − |IL1k
i (C)| ≥ 1 (IV.109)

and

xki =
1
2

[−1 + |N ′ki |+ [|S0k
i | − |IT 0k

i | − |IL0k
i (C)|] + 2[|S1k

i | − |IT 1k
i | − |IL1k

i (C|)

≥ [−1 + 2[|S1k
i | − |IT 1k

i | − |IL1k
i (C)|] ≥ 1/2. (IV.110)

�
Now we can perform the integrals in equation (IV.98) and we obtain

|ΓΛ
2p(φ1, . . . φ2p)| ≤ ||φ1||1

2p∏
i=2

||φi||∞,2e−(1−ε)ΛmdT (Ω1,...Ω2p) (IV.111)

(Λm)2−pN1−p
∞∑

n,n′,n′′=0

(cK)n̄
1

n!n′!n′′!

∑
u−T

∑
σ

∑
E,C

n̄−1∏
i=1

1∑c(i)
k=1 x

k
i

where we wrote the sum over ordered trees as sum over unordered trees and sum
over all possible orderings σ of the tree. The sum

∑
C is over a set whose cardinal is

bounded by Kn̄ so it’s sufficient to bound them with the supremum over this set,
as we are interested in a theorem at weak coupling λ. However the sum over E to
attribute the 2p external lines to particular vertices runs over a set of at most n̄2p

(this is an overestimate!). This will lead to the factorial in Theorem 3. We remark
however that a better bound on the behaviour of the vertex functions at large p
can presumably be obtained when the external points are sufficiently spread (not
too closely packed), but we leave this improved estimate to a future study.
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Moreover, we bound 1
(n̄)!

∑
u−T f(T ) by n̄n̄−2

n̄! supu−T |f(T )| using Cayley’s
theorem. Therefore, by Stirling’s formula, it’s enough to consider the unordered
tree T which gives the maxu−T |f(T )|. The sum that could still give some factorial
is
∑
σ. To bound it we use the product of fractions obtained after integration on

the βi.

• if |ET ki | ≥ 5 we have

(|ET ki |+ |EEki |+ |ELki (C)| − 4)/4 ≥ (|ET ki | − 4)/4 ≥ |ET
k
i |+ 1
24

(IV.112)

• if |ET ki | < 5 we have

xki ≥ 1/2 ≥ |ET
k
i |+ 1
24

(IV.113)

Now |ETi| depends on the (now unordered) tree T and on its ordering σ.
Therefore we call it from now on |ETσi |. Recall that it is the total number of
external tree half-lines of the subset T σi of T made of the n̄− i highest lines in the
permutation σ. Since

∑
k(|ET ki |+ 1) ≥ |ETσi |+ 1, equation (IV.111) becomes

|ΓΛ
2p(φ1, . . . φ2p)| ≤ ||φ1||1

2p∏
i=2

||φi||∞,2e−(1−ε)ΛmdT (Ω1,...Ω2p)

(Λm)2−pN1−p
∞∑

n,n′,n′′=0

n̄2p(cK)n+n′+n′′
∑
σ

n̄−1∏
i=1

1
|ETσi |+ 1

(IV.114)

At this point we can apply a result of [CR] (Lemma A,1, B.3, B.4) which
states that for any tree we have

∑
σ

n̄−1∏
i=1

1
|ETσi |+ 1

≤ 4n̄. (IV.115)

For completeness let us recall the proof of this result. For each tree T we can
define a mapping ξ of T on a chain-tree with the same number of vertices:

ξ : T → ξT (IV.116)

To define ξ, we turn around T starting from an arbitrary end line, and we number
the lines in the order we meet them for the first time. The lines of ξT are numbered
in the same way and ξT associates the lines with the same number.

Now we observe that the sum over the orders on T corresponds to the sum
over all permutations of the indices in ξ(T ). Moreover Lemma B.3 in [CR] proves
that for any connected or disconnected subgraph R of T , we have

ET (R) + 1 ≥ c(ξT (R)) (IV.117)
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Figure 22

where c(ξT (R)) is the number of connected components of the image of R ξT (R)
and ET (R) is the number of external half-lines of R in T . Finally we note that
ξ(Ti) is the set of lines with number j ≥ n̄− i so we can write

∑
σ

n̄−1∏
i=1

1
|ETσi |+ 1

=
∑
σ

n̄−1∏
i=1

1
c(Dσ

i )
:= ∆n̄ , (IV.118)

where Dσ
i is the set of lines in the chain-tree ξ(T ), that have σ(j) ≥ n̄ − i (after

the permutation σ). Now, applying Lemma B.4. in [CR], we obtain

∆n̄ ≤ 4n̄ (IV.119)

We recall that this can be proved by remarking that ∆n̄ satisfies the inductive
equation

∆n̄ =
n̄−1∑
k=1

∆p∆n̄−k , (IV.120)

so that equation (IV.114) becomes

|ΓΛ
2p(φ1, . . . φ2p)| ≤ ||φ1||1

2p∏
i=2

||φi||∞,2e−(1−ε)ΛmdT (Ω1,...Ω2p)

(Λm)2−pN1−p
∞∑

n,n′,n′′=0

n̄2p(4cK)n̄ (IV.121)
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where K depends only on ε. Taking c small enough completes the proof of the
theorem in the case Λ > m, since

∑
n̄ n̄

2pe−n̄ ≤ Kp(p!)2.
In the case Λ < m, we have a few changes to perform. Replacing the lines of T ′

in (IV.90) by the bound (IV.92), keeping the massive decay factor e−(ε/4)m2Λ−2
0 (w1)

in (IV.90) and passing to the limit Λ0 → ∞ we have the following changes: in
(IV.95) we add the factors

(Λ/m)n
′[ ∏
lq∈T ′

(uq)−1/2]e−(ε/4)u1m
2Λ−2

(IV.122)

The factor (Λ/m)n
′

exactly changes Λ2−p−n′ into Λ2−pm−n
′

= Λ2−p(Λm)−n
′
.

The factor (Λm)−n
′

is absorbed in Kn̄ since Λm in the hypothesis of Theorem 3
remains in the compact X. Passing to the variables βi, the factor

[∏
lq∈T ′(uq)

−1/2
]

is bounded by the factor
∏
i β
|N ′ki |
i in (IV.104), which was previously bounded by

1, hence not used at all. Finally the last integral over β1 becomes bounded, for
p > 2 by:

Λ2−p
∫ 1

0
β

(p−2)/2
1

dβ1

β1
e−(ε/4)m2β1Λ−2

(IV.123)

Changing to the variable v = (ε/4)m2β1Λ−2 we obtain for the final bound a
factor

(4/εm2)(p−2)/2
∫ εm2Λ−2/4

0
v(p−2)/2 dv

v
e−v ≤ (Λm)2−pKp

√
p! (IV.124)

The case p = 2 is easy and left to the reader. Hence Theorem 3 holds in every
case, by combining the factor

√
p! with the factor (p!)2 coming from the sum over

E. Remark that in the case m = 0 we have never Λ < m, hence the factor (p!)5/2

can be replaced by (p!)2.

V The renormalization group equations

In this section we establish the renormalization group equations obtained when
varying Λ and we check that for a fixed and small renormalized coupling constant,
the effective constants remain bounded and small as predicted by the well known
perturbative analysis of the model, which is asymptotically free in the ultraviolet
regime [MW].

The derivative ∂
∂ΛΓΛΛ0

2p (φ1, . . . φ2p) can be written, using the expression (III.23),
as:

∂

∂Λ
ΓΛΛ0

2p (φ1, . . . , φ2p) = TΓΛΛ0
2p (φ1, . . . , φ2p) + LΓΛΛ0

2p (φ1, . . . , φ2p). (V.125)
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The first term TΓΛΛ0
2p (φ1, . . . , φ2p) is the series obtained when the derivative falls

on a tree line propagator (see Figure 23a):

TΓΛΛ0
2p (φ1, . . . φ2p) =

∞∑
n,n′,n′′=0

1
n!n′!n′′!

∑
o−T

∑
E,µ

∑
Col,Ω

ε(T ,Ω)
∫
d2x1 . . . d

2xn̄

∫
0≤w1≤···≤wn̄−1≤1

n̄−1∏
q=1

dwq

[∏
v

(
λw(v)

N

)][∏
v′

δmw(v′)

][∏
v′′

δζw(v′′)

]
∏

Gki ∈Dµ

RGki

[ n̄−1∑
q′=1

∂

∂Λ
D

Λ0,wq
Λ (x̄lq′ , xlq′ )

∏
q 6=q′

D
Λ0,wq
Λ (x̄lq , xlq ) detM(µ) φ1(xi1) . . . φ2p(xjp)

]
(V.126)

a) b)

Figure 23

The second term LΓΛΛ0
2p (φ1, . . . , φ2p) is the series obtained when the deriva-

tive falls on a loop line in the determinant (see Figure 23b):

LΓΛΛ0
2p (φ1, . . . φ2p) =

∞∑
n,n′,n′′=0

1
n!n′!n′′!

∑
o−T

∑
E,µ

∑
Col,Ω

ε(T ,Ω)
∫
d2x1 . . . d

2xn̄

∫
0≤w1≤···≤wn̄−1≤1

n̄−1∏
q=1

dwq

[∏
v

(
λw(v)

N

)][∏
v′

δmw(v′)

][∏
v′′

δζw(v′′)

]
∏

Gki ∈Dµ

RGki

[ n̄−1∏
q=1

D
Λ0,wq
Λ (x̄lq , xlq )φ1(xi1) . . . φ2p(xjp)

∑
hf ,hg|µ(f)=µ(g)

(−1)ε(f,g)
∂

∂Λ
C

Λ0(wµ(f)−1)
Λ0(wµ(f))

(xf , xg)detleftM(µ)
]

(V.127)

where ε(f, g) is a sign coming from the development of the determinant. The
convergence proofs of course extend to both terms of equation (V.125). Indeed,
in the first one, the sum over the tree lines is bounded by a factor n̄, and in
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the second one the sum is over the set of loop half-lines which is bounded by a
factor n̄2. Therefore these sums cannot generate any factorial. Then we obtain the
same bound as in (IV.114), with an additional factor 1/Λ. This factor disappears
when, as usual, the renormalization group equations are written as derivatives
with respect to log Λ rather than Λ.

From these equations one can derive also equations for the flow of the effec-
tive constants defined in (III.24). For instance to obtain the flow of the effective
coupling constant λ which is the four-point vertex function at zero external mo-
menta, we can use equations (V.125)–(V.127) in which we let φ1 → δ(0), φ2, φ3,
φ4 → 1. This is compatible with our L1-L∞ bounds, so that everything remains
bounded. We obtain in this way the famous continuous flow equation which gives
the derivative of the coupling constant with respect to log Λ:

∂

∂log Λ
N Γ̂Λ

4 (0, 0, 0, 0) =
∂

∂log Λ
λΛ = β2λ

2
Λ +O(c3) + λ2

ΛO(Λ−α) (V.128)

where
β2 = −2(N − 1)/π (V.129)

is the first non trivial term corresponding to the four-point graph with one tree
line and one loop line, and the last term λ2

ΛO(Λ−α) is an infrared correction to
the asymptotic flow (see [FMRS]). The negative sign of β2 is responsible for the
asymptotic freedom of the model. Similar equations hold for the flow of δm and
δζ (which remain bounded). For these equations up to one loop, see [MW] [GN]
[GK] [FMRS]. For the computation up to two loops, we refer to [W].

From these renormalization group equations one can control the behavior
of the effective constants and check that they remained bounded (until now this
was assumed). The reader might be afraid that there is something circular in this
argument. In fact this is not the case. Let us discuss for simplicity the massless case
where the renormalized coupling Γ̂ΛΛ0

4 (0, 0, 0, 0) is only a function of Λ0/Λ and of
the bare coupling λ. We know that it is analytic at the origin as function of the
bare coupling λ [AR2]. Therefore from (V.125)–(V.128) it is for small bare λ and
Λ0/Λ a monotone increasing function of the ratio Λ0/Λ (although this function
might blow up in finite time).

Inverting the map from bare to renormalized couplings, one can prove that
conversely for small renormalized coupling Γ̂ΛΛ0

4 (0, 0, 0, 0) all the effective con-
stants λw remain bounded by the renormalized one. Therefore one can pass to
the ultraviolet limit Λ0 →∞, in analogy with the completeness of flows of vector
fields on compact manifolds. Furthermore one can compute the asymptotic behav-
ior of the bare coupling which tends to 0 as 1/(|β2| log(Λ0/Λ))). Similar arguments
hold for the mass and wave function effective constants and achieve the proof of
Theorem 1.

We recall for completeness that it is easy to build the Schwinger functions
from the vertex functions and that the Osterwalder-Schrader axioms of continuous
Euclidean Fermionic theories hold for the massive Gross-Neveu model at Λ = 0.
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The simplest proof is to remark that being the Borel sum of the renormalized
expansion, the Schwinger functions we build are unique. Building them as limits
of theories with different kinds of cutoffs prove the axioms since different sets of
cutoffs violate different axioms [FMRS].
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