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Abstract. A special case of Mahler's conjecture on the volume-product of symmetric 
convex bodies in n-dimensional Euclidean space is treated here. This is the case of polytopes 
with at most 2n + 2 vertices (or facets). Mahler's conjecture is proved in this case for n < 8 
and the minimal bodies are characterized. 

1. Introduction and Statement of the Results 

A well-known problem in the theory of convex sets is the one of finding an exact lower 
bound for the product of n-dimensional volumes 

volprod(K) = voln (K) VOln (K*) 

(the "volume-product" of K), where K is a convex body (i.e., a compact, convex set 
with nonempty interior) in R n, which is centrally symmetric about the origin, and K* 
is the polar body of K with respect to the origin (another variant of the problem asks a 
similar question without the assumption of central symmetry, we do not consider that 
variant here). An old conjecture of Mahler (who proved it for n ----- 2) [10], [1 1] is 

n 

volprod(K) > - - .  (1.1) 
n! 
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The volume-product of  K is clearly invariant under linear transformation acting on 
K. We note that an n-dimensional cube and its polar body- - the  cross-polytope--give 
equality in (i. 1), but for every n > 4 there exist examples of symmetric convex bodies 
for which equality in (1.1) is obtained, which are not affinely isomorphic to a cube or 
to a cross-polytope. The general result in the direction of  (1.1) currently known is the 
theorem of Bourgain and Milman [6] which states that (l.1) is valid, up to a factor c" 
where c is a constant. The inequality (1.1) has been proved in the case that K is a zonoid, 
in that case equality is obtained only for cubes and their affinely isomorphic associates, 
the parallelotopes (Reisner [15], see also [9]). Another case where (1.1) is known to 
be true is when there exists an affinely isomorphic associate of  K which is symmetric 
about the coordinate hyperplanes in IR" (Saint-Raymond [ 17], with characterization of  
the equality cases by Meyer [ 13] and by Reisner [ 16]). We also mention the upper bound, 
known as the Blaschke-Santal6 inequality: 

volprod(K) < X~, 

where X, is the volume of  the n-dimensional Euclidean unit ball. 
In this paper we treat a special case of  Mahler's conjecture, this case has recently been 

raised as a separate problem by Ball ([2], where some implications to other areas are 
discussed). We consider here the problem whether (1.1) is true if K is an n-dimensional 
polytope which is centrally symmetric about the origin and has at most 2n + 2 vertices 
(or, equivalently since the problem is self-dual, at most 2n + 2 facets). Notice that 2n + 2 
is the minimal number of  vertices of  such polytopes if they are not affinely isomorphic 
to the cross-polytope. 

By reducing the problem to a search over a finite set of  polytopes for each fixed 
dimension, we managed, with the help of  computer calculations, to prove (1.1) for n < 8 
and to characterize the cases of  equality in (1.1) in this restricted problem and for these 
dimensions (Theorems 1.1 and 1.2). It is probable that further investigation into the 
method may lead to a proof of  (!.1) in this restricted case, for every n. An estimate 
which we bring in what follows shows that the amount of computing time which is 
needed to carry out the process in dimensions higher than 8 is enormous. At this stage 
we did not treat higher dimensions. 

We now introduce some notations: A convex body in N n is called here symmetric if it 
is centrally symmetric about the origin. The polar body K* of a symmetric convex body 
K is defined as 

K* = {x e IR"; l(x, y)l _< 1 for all y �9 K}, 

where (x, y) = Y~.i"=l x(i)y(i) is the standard scalar product in It{". OK is the boundary 
of  K and a facet is an (n - l)-dimensional face of  K, the vertices of K are its extreme 
points. 

For a set A C IR" we denote A ~. = {x �9 IR"; (x, y) = 0 for all y �9 A}, if A = {u} 
is a singleton, we write A • = u• in this case (if u r 0) Pu denotes the orthogonal 
projection onto u • 

If K is a symmetric convex body in ]R" we denote by II �9 II K the norm induced in R" 
by K: [Ixllr = inf{p > 0; p- tx  �9 K}. (N", I[ " IlK) is a Banach space and (N", II " IIx-) 
is its dual Banach space (duality defined via the scalar product). In the other direction, 
if X = (IR", II - II) is a Banach space, then the unit ball of X, K = B(X) is a symmetric 
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convex body and II �9 IlK = II " II, we allow an abuse of  notation and in the last example 
write also I1" IlK = I1" IIx. 

The  n o r m s  II �9 lip (1 _< p _< oo)  on  ~ are def ined  by 

Ilxllp = Ix( i ) l  p (maxl<i<n  Ix(i) l  i f p  = o~).  

The Banach space (R n, II �9 lip) is denoted be s and its unit ball by Bp. In particular, B~  
is the n-dimensional cube, B~' is the cross-polytope, and B~' is the Euclidean ball, the 
Euclidean sphere is S ~-I . If  X = (I~ ~, II �9 IIx) and Y = (I~", 11 " lit) are Banach spaces, 
then X (gp Y is the Banach space X (9 Y with the norm It (x,  y)II x~p r = II (II x II x ,  II Y tl ~)II p. 

Finally, the closed convex hull of  a set A C ~n is denoted by conv(A) and the unit 
coordinate vectors in ~ are denoted by ei (1 < i < n). 

Theorem 1.1. Let 2 < n < 8 be an integer and let K be a symmetric convex body in 
~n,  which is a polytope with at most 2n + 2 vertices (or at most 2n + 2facets) .  Then 

4 ~ 
x'oln(K) voln(K*) > n! 

Theorem 1.2. Let 2 < n < 8 be an integer and let K be a symmetric convex body in 
~n,  which is a polytope with at most 2n + 2facets ,  the equality 

4 n 
voln (K) voln (K*) = - -  

n! 

holds i f  and only i f  K satisfies the following: 

I f  n = 2, K is a parallelogram. 

I f  n = 3, K is either a parallelotope or is affinely isomorphic to the cross-polytope 

I f 4  < n < 8, K is either a parallelotope or is affinely isomorphic to the unit ball o f  
the Banach space ~ (900 s 

The proofs of  the two theorems are structured along the following lines: In Sections 2 
and 3 we reduce the problem to a search for the polytope which minimizes volprod(K), 
among a subset of the set of  polytopes satisfying the right conditions, and this subset 
is finite for every fixed n. In this step the dimension is not restricted by 8. In Section 4 
we present the results of  the computations for the dimensions 2 < n < 8. These results 
establish the truth of  Theorem 1.1 for these dimensions. Some further observations are 
also presented in Section 4. In Section 5 we prove Theorem 1.2. We conjecture that 
Theorem 1.2 is true for all n > 2. 

2. Transforming the Problem into a Finite Search 

It is well known (see, e.g., [2]) that the problem of finding the minimum of 

volprod(K) : VOln (K) voln (K*), 
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where K ranges over all n-dimensional centrally symmetric convex bodies in lt~ n with 
at most 2n + 2 vertices, is equivalent to that of  finding 

min voln( Pu(BT+l)) vol,,(u • f) B~+l), (2.1) 

where u ranges over all nonzero vectors in II~ "+~ . 
Let E = (~, ,+l ,  II �9 Ite) be the (n + l ) -dimensional  Banach space whose unit ball is 

the polar body of  the projection body of  B'l '+j (see, e.g., [8]). That is, for 0 5~ v 6 R 'z+l , 

1 
IIvlIE = 110112 vol,,(Po(B'l '+l)) = 2n! Z I(v, s}l. (2.2) 

sE{-I . I}  "+1 

Let F = (/I~ "+1, II - IIF) be the (n + 1)-dimensional Banach space whose unit ball is 
the intersection body of  B ~  +l . That is, for 0 # v ~ R "+1, 

110112 
11PlIF = (2.3) 

voln(v • f3 B~+l) ' 

(It is well known that (2.2) and (2.3) define norms on ]1~ "+1. In fact, for (2.2) this is 
obvious, while for (2.3) this is a consequence of  a result of Busemann [7] (see [8])). 

Using these notations we may write the minimum (2. l)  as 

Ilvlle 1 1 
min = - (2.4) 

IIVlIF max(llvtlF/llvllD Ill : E --+ El l '  

where in both minimum and maximum in the above expression, 0 ranges over all nonzero 
vectors in ~n+l ;  II I:  E --+ F II is the operator-norm of  the identity on IR "+j acting from 
E into F .  

Since a linear operator on a finite-dimensional Banach space E attains its norm at an 
extreme point of  the unit ball of  E we get: 

C la im 2.1. The minimum in (2. I ) is attained at an extreme point u of the polar of the 
projection body of B'l '+l . 

The minimum in (2.1) is independent of  [lull2, hence we can replace the polar of 
the projection body of  B'l '+t in Claim 2.1 by the symmetric convex body C = n! B(E) 
which is the unit ball of  the norm 

Ilvllc = ~ I(0, s)l ,  (2.5) 

where s = {s = ( e ( l )  . . . . .  e(n + 1)) E { - ! ,  1 }"+l; s(1) = 1}. A use of  the embedding 

of ~,,+l in ~2,' together with (2.5) enables us to consider C as the intersection of an 
2 n 

(n + l)-dimensional  subspace M of ~2" with the e~-unit ball B l . Under this embed- 
ding, an extreme point of  C is an intersection point of M with a (2" - (n + 1 ))-dimensional  
face of  B~". We index the coordinates of  R 2" in the above embedding by s 6 s thus, 
using an obvious characterization of  the faces of B~", the above observation can be 
formulated as: 
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Claim 2.2. I f  a vector  v ~ R "+j is an extreme po in t  o f  C, then 

~--~ I(o, e)l = 1 
eEs 

and there exist el . . . . .  e,  ~ g (el ~ ej i f  i ~ j )  such that 

(v, el) = 0 

f o r i  = 1 . . . . .  n. 

(2.6) 

(2.7) 

In fact, v E ~,,+1 (]I~n+l being identified with M C ]1~2") is an extreme point of C if 
and only i f  (2.6) is satisfied and there are el . . . . .  e,, 6 g satisfying (2.7), such that v 
is, up to multiplication by a scalar, the only nonzero intersection point of  M with the 
(2" - n)-dimensional subspace N of  ~z '  given by 

N ~- {x E ~ 2 " ; x ( E i )  --- O, i = 1 . . . . .  n}. 

This additional condition means that (2.7), considered as a system ofn  homogeneous 
linear equations in n + 1 unknowns has a one-dimensional solution space. We conclude: 

Proposition 2.3. A vector v ~ II~ "+l is an extreme poin t  o f  C i f  and only if (2.6) is 
satisfied and there exist  linearly independent vectors  el . . . . .  e, E 8 f o r  which (2.7) 
holds. 

Proposition 2.3 reduces the search for a minimum in (2.1) to a finite search. In fact, 
by Claim 2.1 and the remarks following it, we may consider in (2.1) only the vectors u 
which are direction vectors of extreme points of  C, i.e., nontrivial solutions of  systems of  
homogeneous linear equations of  the form (2.7) with et . . . . .  e, ~ s linearly independent. 

Formally, a finite algorithm could be formulated as follows: 

(a) Find all the subsets {el . . . . .  e, } C s which are linearly independent. 
(b) For each subset found in (a), find a nontrivial solution u E R n+l for the system 

of equations 

{u, ei) = 0 ,  i = 1 . . . . .  n. 

(c) For every u found in (b), evaluate 

voln (P,  (BT+l)) VOI,, (U J- fq B "+l) 

and take the minimum of these values. 

This algorithm, especially step (a), is however quite costly. In the next section we 
describe the actual algorithm which we used. 

3. The Finite-Search Algorithm 

For the sake of  completeness, we begin with the case n = 2, even though the truth 
of  Mahler's conjecture in this case was proved by Mahler [!0] (see [17] and [9] for 
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alternative proofs), with characterization of  the case of  equality given in [15] (see also 
[9]). 

It is easy to check that, up to a multiplication by a scalar, the only nonzero vectors 
v which are solutions of a system of linear homogeneous equations of the form (2.7) 
with ei = (1, 4-1, 4-1), i : 1, 2, el, e2 linearly independent, are v = (1, 1, 0) and all 
the vectors obtained from it by permutations and sign-changes of  the coordinates: The 
central sections of  B 3 orthogonal to all these vectors v are congruent to one another and 
all are rectangles whose vertices are vertices of  the cube B 3 .  Hence for all of  them we 
get the volume-product 42/2! = 8. Which proves the result for dimension 2. 

We now investigate the case of  arbitrary n > 2. The search is reduced using the 
following claim and two lemmas. 

Claim 3.1. Invariance of B~ +1 and B~ +l under sign-changes and permutations of 
the coordinates implies that it is sufficient to search only for vectors v E ~+1 with 
nonnegative entries and such that their entries form a nonincreasing sequence. 

We call a vector 0 -r v E ]R ~+l which satisfies (2.7) for linearly independent 
e i . . . . .  en ~ E and is of  the form specified in Claim 3.1 a candidate. 

L e m m a  3.2. If the inequality (1.1) has been proven for all dimensions < (n - 1), then 
for dimension n we have to check only candidates with strictly positive entries. 

Proof Letv  = (v(1) . . . . .  v(n+l))beacandidatewi thv(k+2)  . . . . .  v ( n + l )  = 0. 
Let ~ = (v(1) . . . .  , v ( k +  1)) E lI~ k+l .Then  v • = ~• x R "-k and v • f 3 B ~  +1 = 

n - k  (~• (3 _~Rk+t~, x B~  . 
That is, if fi• N B k+l is considered to be a unit ball of a k-dimensional Banach space 

- - O O  

X, then the n-dimensional Banach space with unit ball v • N B~ +l is isometric to the 
n - k  e~-sum x ~ e~ -k and its dual space is, via the same isometry, X* ~ l  s �9 

It is well known and not hard to show (see, e.g., [17]) that the volume-product of  the 
unit balls of  the above two spaces is 

( ~ ) - 1  4 n 
volprod(B(X)) volprod(B(gn-k)) = 4n-kk! n! volprod(B(X)) > n! (3.1) 

by the induction hypotheses. [] 

In view of  Lemma 3.2 we give the name a strong candidate to a candidate with strictly 
positive entries. 

L e m m a  3.3. Let v ~ ~n+l be a strong candidate. Then v is parallel to a strong 
candidate w E R n+l, w = (w(l )  . . . . .  w(n + 1)), such that w( i ) is an integer for all i 
and 

nn/2 
1 < w ( i )  < 2n----- ~ ,  i = 1 . . . . .  n + 1. ( 3 . 2 )  
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Proof Let el . . . . .  en E C be linearly independent and such that (v, ei) = 0 for i = 
1 . . . . .  n. We may assume without loss of  generali ty that v(1) = 1 and 

e l (2)  - "  e l ( n + l ) )  

DI = d e t [  i " ' .  " 5 0. 

\ e . ( 2 )  . . .  e . ( n + l )  

Since 

ei(2)v2 + . . .  + ei(n + 1)vn+l = - 1  

we get, by Cramer 's  rule, 

for i = 1 . . . .  , n ,  (3.3) 

or vj=-~l, j = 2  . . . . .  n + l ,  

where, for j = 2 . . . . .  n + 1 (with obvious modifications for j = 2 or n + 1), 

e l (2)  . - .  el( j  - 1) - 1  el ( j  + !) . . .  el(n + 1)'~ 

D r = det " ' . .  " " " ".. " J . 

\ en (2 )  " "  e . ( j - l )  --1 e . ( j + l )  . . .  e . ( n + l )  

So the vector u = (Dl . . . . .  D , + l )  has no zero entries and is parallel to v. By 
Hadamard 's  inequality we have 

IOrl _< n n/2. 

Also, 2 ~-l  is a common divisor of D r, j = 1 . . . . .  n + 1. This can be seen by performing 
one step of  the Gaussian elimination process on the matrix defining D r, obtaining a 
matrix of  the form 

A = (0 
1 4-1 . . .  -4-1) 

Y]22 " " " /']2n 

r/~2 . ."  r/n~] 

in which rli j = 4-2 o r 0  fo r2  < i, j < n. Clearly, Dj = det(A) is divisible by 2 n - l .  As u 
is parallel  to v, it has entries with equal signs, whose absolute values form a nonincreasing 
sequence. By changing signs of  the entries of  u if  necessary, and dividing them by 2 ~-I ,  
we obtain a vector w as stated. [] 

It follows from Lemma 3.3 that we have to search only for strong candidates with 
entries which are integers between 1 and [n'V2/2n-lJ. 

The following algorithm creates, for any n, a set SC of all the strong candidates 
satisfying the conditions on w in Lemma 3.3, excluding cases of  parallel candidates. 
Once the full set SC has been created, it is left to evaluate 

vol.  (Pv• (B~ +l )) vol.  (v • fq B ~  +t ) 
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for all v �9 SC and verify that this value is always > 4n/n!. The algorithm begins with 
SC = O. 

(a) Create all nonincreasing sequences w = (w(1) . . . . .  w(n + 1)) of  integers with 
1 <_ w(i) < Lnnl2/2"-IJ. 

(b) In (a), for each w, if w ( 1 ) +  . . .  + w(n + 1) -- l (mod 2), then drop this w. 
(c) In (a), for each w, if the greatest common divisor of  the entries of  w is bigger 

than 1, then drop this w. 
(d) In (a), if w has not been dropped in (b) or (c), Jet U be the matrix with n + 1 

columns, whose rows are all the vectors s �9 s such that (w, e) = O. If  rank(U) = 
n, then join w to SC, else, drop w (clearly, rank(U) _< n). 

R e m a r k .  The condition w ( 1 ) - F - - - + w ( n + l )  ------ 0(mod 2) is necessary for (w, s) = 0, 
even for one s �9 g. 

4. The  Computa t ions  

The Cauchy formula gives the volume of a projection of B~+1: 

1 
v~176 -- 2nV ~ I(e, v)l (4.1) 

110112 �9 e e ( -  1,1 },,+l 

(see, e.g., [2]). 
.L n + l  A formula for the n-dimensional volume o fv  f-IB~ , where v = (v(1), . . . ,  v(n+ 1)) 

satisfies v(i) > 0 for i = 1 . . . . .  n + 1, can be derived as follows. It is known (see, e.g., 
[14] or [3]) that, for t > 0, 

vol,+l({X �9 [0, 1]~+1; (x, o) < t}) 

= 1 ~ ( - 1 )  III t - Z v ( j ) )  J (4.2) 
(n + 1)! l - I i~+l ] v(i) toil ...... +t} jel  + 

(I 11 denotes the cardinality of  I) .  
Normalizing v, differentiating with respect to t, and then rescaling, we get 

vol,,(v • n Rn+l~ -- llvlh ~ ( - 1 )  lit v(i) - Z v(i) . (4.3) 
-oo - n !  RT__q-i I v(i) - IC{ I,...,n+ 1} iEI  + 

Combining (4.1) and (4.3) together, we obtain the formula 

volprod(Po(B~ +1)) 

1 ( ) ( ( # , v ) +  ( ~ e ( j ) ) ( s , v ) + ) .  (4.4) 
(n!) 2 Vl~+l v(i) ~ ~ , ,  i 2i=1 1 1i=1 # e { - l , l }  "+1 \ e e { - l , 1 }  + 

We have used (4.4) to compute the volume-product associated with a strong 
candidate v. 
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In all the cases which we have checked, i.e., the dimensions n = 3 . . . . .  8, the 
minimal volume-product associated with strong candidates has been obtained for the 
strong candidate 

U 0 ~--- O~) + 1  = ( n  - -  2, 1 . . . . .  1) 

(of length n + 1). v~ +l is, in fact, a strong candidate for any dimension n: it satisfies 
(v~ +1,el) = 0 w h e r e e i  (i = 1 . . . . .  n) are the vectors ei = ( 1 , - 1  . . . . .  - 1 , + 1 ,  
- 1  . . . . .  - I )  ( +  1 in the (i + l)-coordinate), which are clearly linearly independent. 

In fact, the n-dimensional convex body (v~+T) • fq B~  +x has a nice description: it is 
affinely isomorphic to the convex body B in ~n which is obtained from the cube B~  by 
truncating its "comer," the simplex 

S = cony({(1, 1 . . . . .  1), ( - 1 ,  1 . . . . .  l) ,  ( 1 , - 1  . . . . .  1) . . .})  

and its opposite "corner," - S .  The volume-product of  this body can be computed ex- 
plicitly and we get 

2 " (  4 ) ( 2 )  
volprod((v0) • f) B n+l) = vol , (B)  voln(B*) = ~.. 2 n + - -  1 - (4.5) 

n 

For n = 3 (then v0 = (1, 1, 1, 1)), B is affinely isomorphic to B~ and indeed (4.5) 
gives in this case 

32 43 
v~176176177 fq B 4 )  -- 3 -- 3! (4.6) 

However, for n > 4, examination of (4.5) shows that 

n 

volprod((v~+l) • O B~  +1) > 

volprod((v~+l) • A B ~  +1) ) 
but ,linaoo 4 " / n !  = 1 . 

Hence, the truth of  the following conjecture would imply the truth of  the result of this 
paper for any n: 

Conjecture .  The minimum o f  

volprod(Po (B~+l)) 

f o r  strong candidates v, is obtained f o r  v = v~ + I. 

It is worthwhile remarking that, for odd n, the vector v] '+l = (1 . . . . .  1) ((n + 1)- 
entries) is always a strong candidate. However, for n > 5, volprod(Po,,,+,(B~+J)) is 
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Table 1. Partial results of the algorithm of Section 3. 

n Lnnl2/2 n- l ] Number of precandidates Number of strong candidates Computing time 

3 1 1 1 Negligible 
4 2 6 1 Negligible 
5 3 28 4 10 mseconds 
6 6 792 14 330 mseconds 
7 14 203,490 122 129 seconds 
8 32 273,438,880 3287 53.12 hours 
9 76 3,129,162,672,636 - -  > 155 years 

l0 195 5t2,362,040,342,757,150 - -  >25 x 106 years 

always bigger than 4n/n! and, in fact, 

vo lprod(P~ ( B~k) ) 
lim = - -  = 1.1026 . . . .  

k--,oo 4(2k-l) / (2k--  1)! yr 

this can be shown using the integral formula for voln (v • f3 B n )  (which is found, e.g., 
in [11). 

The algorithm of Section 3 was implemented in C + +  and run on a Sun Sparc 20 
workstation. In order to guarantee the accuracy of  the results all operations were done 
using only integer arithmetic. Furthermore, computing the volume-product of  candidates 
in dimensions higher than 6 requires dealing with integers larger than those supported 
by the hardware (a Sun Sparc long integer uses 32 bits). Therefore, all volume-product 
calculations (and only those) were done using the extended integer class available in the 
LEDA package [ 12]. Volume-products were stored and compared as rational numbers 
(ratios of  LEDA integers). These products were converted to floating-point values only 
when producing the final output for the sake of  presentation. 

The results of  the algorithm for different values of  n are summarized in Tables 1 and 
2. These results complete the proof of  Theorem 1.1. The term precandidates in Table I 
refers to the vectors v -- (v( l )  . . . . .  o(n + 1)) with positive nonincreasing entries and 
with v(1) _< [n~/:/2 ~- I j. The running time for dimension 9 was estimated by sampling 
with 109 precandidates and that for dimension 10 by extrapolating from dimension 9. 
Clearly, due to its time complexity, it is not practical to run this algorithm for n > 8. 
The interested reader can obtain the software and the full program output by contacting 
one of  the authors. 

5. The Cases of Equality 

For the proof of  Theorem 1.2 we need the following description of  the facial structure of  
the intersection body of an n-dimensional cube (n > 3). The Banach space F has been 
defined in (2.3) except that here we replace I~ n+l by R n. For discussion of  intersection 
bodies we refer the reader to [8]. 

Proposition 5.1. Let B(F) be the intersection body of B~ (n >_ 3), i.e., B(F) is the 
symmetric convex body whose radial function r is given by r(u) = voln-1 (u • N B~). 
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Table 2. Volume product of  the strong candidates found by the algorithm of Section 3. For 
n > 7 only the vector that produces the m in imum volume product is shown. 
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n 4 n/n ! Strong candidates Volume-product 

3 10.6667. . .  v~ = (1, 1, 1, 1) 

4 10.6667. . .  Vo 5 = (2, 1, 1, I, 1) 

5 8 .5333. . .  v0 = (3, 1, 1, 1, 1, 1) 
Vl = (1,1,  1,1,  1, I) 
02 = ( 2 , 2 , 1 , 1 , 1 , 1 )  
v3 = ( 3 , 2 , 2 , 1 , 1 , 1 )  

6 5 .6888. . .  v0 = ( 4 , 1 , 1 , 1 , 1 , 1 , 1 )  
Vl = ( 5 , 2 , 2 , 2 , 1 , 1 , 1 )  
v2 = ( 4 , 2 , 2 , 2 ,  1, 1, 1) 
03 = (2, 1, 1, 1, 1, 1, 1) 
v4 = (3,2,  t, 1, 1, 1, 1) 
v5 = (5,3,  3 ,2 ,  1, 1, 1) 
v6 = ( 2 , 2 , 2 , 1 , 1 , 1 , 1 )  
v7 = ( 4 , 3 , 2 , 2 , 1 , 1 , 1 )  
v8 = ( 3 , 2 , 2 , 2 ,  1, 1, 1) 
v9 = ( 3 , 3 , 2 , 1 , 1 , 1 , 1 )  
vt0 = ( 5 , 4 , 3 , 2 , 2 ,  1, 1) 
oil = ( 4 , 3 , 3 , 2 , 2 ,  1, 1) 
vl2 = ( 3 , 3 , 2 , 2 , 2 ,  1, 1) 
vt3 = (4, 3, 3, 1, 1, 1, I) 

7 3 .2507. . .  v0 = ( 5 , 1 , 1 , 1 , 1 , 1 , 1 , 1 )  
8 1.6254.. .  v0 = ( 6 , 1 , 1 , 1 , 1 , 1 , 1 , 1 , 1 )  

volprod(Pu(B4)) = 10 .6667 . . .  

volprod(Pv(B i)) = I 1 

volprod (Pro (B 
volprod(Pvt (B 
volprod ( Po2 ( B 
volprod (Pv3 (B 
volprod(Pv0 (B 
volprod(Pvt (B 
volprod(Po2 (B 
volprod(Pu3 (B 
volprod(Pv4 (B 
volprod(Pv5 (B 
volprod(Pv6 (B 
volprod(Po7 (B 
volprod(Pos (B 
volprod ( Pv9 ( B 

)) = 8 .7407 . . .  
)) = 8.8 
)) = 8 .9955 . . .  
)) = 9 .0651 . .  
)) = 5 .7617 . .  
)) = 5 .9164 . .  
)) = 5 .9629 . .  
)) = 5 .9654 . .  
)) = 5 .9843 . .  
)) = 6 .0632 . .  
)) = 6 .0633 . .  
)) = 6 .0698 . . .  
)) = 6 .0744 . . .  

~)) = 6.0911 . . .  
volprod(Pvlo(t,7))L = 6.1111 . . .  
volprod(PvN (B~)) = 6 .1249 . . .  
volprod(Pvl2 (B~)) = 6 . 1 3 3 4 . . .  
volprod(Pvl3 (BI~)) = 6 . 1 3 5 5 . . .  
volprod(Pv0 (B~)) = 3 . 2 6 9 8 . . .  
volprod(Pv0 (B~)) = 1 .6295 . . .  

IIVlIF = 

This shows that 

Then 

(a) The following sets Gi as well as - G i  (i = 1 . . . . .  n) are facets of B( F): 

Gi = 2 n - I  c o n v ( { e i  -4- ej ,  ei -- ej; j ~ i ,  j = 1 . . . . .  n } ) .  

(b)  I f  v E a B ( F ) \  Uin=l (4-Gi) ,  then B ( F )  is strictly convex at v. 

P r o o f  ( a )  N o t i c e  t h a t  

2n_l GI = v = (1, v(2)  . . . . .  v (n) ) ;  [v ( j ) l  < 1 . 
j=2  

Denote  KI = B ~  -1 • R = {x 6 ~ " ;  Ix(i)l  < 1 for i = 2 . . . . .  n}. It is not  hard to 

check that i f  v(1)  = 1, then v ~ ( 1 / 2 " - l ) G l  if  and only if  v • A B ~  = v • N KI.  So, i f  

v ~ ( 1 / 2 " - l ) G l ,  then 

Ilvllz 110112 1 
voln_l (v • (3 KI )  voln-l(Bn-I)/cos(v, e l )  2n - l "  

GI c {v ~ ]~n; x(1) = 2 n-l } f) B(F). (5.1) 
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However, the same calculation shows that if v ( l )  = 1 and v ~ ( I / 2 " - I ) G I ,  then 
I[VllF > 1/2 "-1. This shows that the inclusion (5.1) is in fact an equality and Gt is a 
facet of  B(F) .  

(b) Denote K = B~.  Assume that vl,  v2 ~ OB(F)  are such that the nondegenerate 
line segment [vt, v2] is contained in OB(F).  It may also be assumed that the angle 
between vl and v2 is acute. Let S be the (n - 2)-dimensional subspace S = {vl, vz} • 
and let ui c S "-1 f) S 1 n v ~ ,  i = 1,2, be chosen so that the angle between them is acute. 

The proof of  (b) is done by a close check of  the proof of  Busemann's  theorem [7]. To 
avoid rewriting this proof, we refer to its presentation (with some improvements upon 
the original proof) in [8], pp. 276-278. We refer to this presentation of the proof  as [7, 8], 
our above notation fits the notation of [7, 8]. 

Let u3 = (ul + u2)/llul + uzll2. We have 

r(u) = vo l , _ l (K  f) S,),  

where S, = v • is the (n - l)-dimensional subspace spanned by S and u. The fact that 
[vl, v2] C a B ( F )  implies that 

r(u3) -- ( r (u | )  - I  + r(u2)- l )  - l .  (5.2) 
Ilul + u2tl2 

We define increasing functions rj(s),  0 < s < 1, j = 1,2, 3, as in [7, 8]. It is shown 
in [7, 8] that for j~(x) = voln_z(K N (S "4- xu j ) ) ,  j "= 1,2, 3, one gets, for 0 < t < 1 
and 0 < s < 1, 

f3(r3(s)) 1/(''-2) >_ (1 - t ) f l  (rl (s)) I/( '-2) + tf2(r2(s)) 1/("-2) 

> f t  (rt (s)) (t-t)/(n-z)f2(r2(s))t/(n-2)- (5.3) 

The first inequality in (5.3) follows from the Brunn-Minkowski inequality and the second 
inequality from the arithmetic-geometric mean inequality. The inequalities (5.3) are 
intermediate in a sequence of inequalities whose beginning and end give the inequality 

r(u3) > (r(Ul) - !  + r ( u 2 ) - I )  -I  . 
Ilul +u2112 - 

Thus, the equality (5.2) implies equality in the two inequalities of (5.3), for every s 
(0, I) and for certain values of  t in (0, 1). 

By the equality case in Brunn-Minkowski we conclude from the first equality in 
(5.3), that, for every s, K N (S + rj (S)Uj), j = 1,2, are homothetic. The second equality 
in (5.3) then shows that they have equal (n - 2)-dimensional volumes, hence they are 
congruent. Further, another inequality in the above-mentioned chain of inequalities in 
[7, 8] is 

l------~(wlr(Ul))Wl/(w'+w2)(w2r(u2))w2/(w'+w2) > ( r (ul )  -I  + r ( u 2 ) - l )  -1,  (5.4) 
wl +WE 

where wj = rj(s)  - l ,  j = 1,2. Inequality (5.4) is another case of the arithmetic- 
geometric inequality. Since equality in (5.2) implies equality in (5.4) for all s, we get 
rt (s )r(ul)  = rz(s)r (u2), or 

r l (s)  r(uz)  
. . . .  Const. 
r2(s) r (u j )  
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We conclude that K n S,, and K G Su2 are "one-dimensional dilations" of  one another, 
which means that there exists a cylinder K = M x L, where M is an (n - l)-dimensional 
convex body andL is a line orthogonal to the affine span of  M, such that KNSu~ = kNS,~ 
a n d K n S u ~  = K N S ~  2. 

The above discussion shows also that, for all s, 

f3 (r3 (s))  = f2(r2  (s))  = f l  (r l  ( s ) ) ,  

so the same argument as above shows that K N Su 3 -- k N Su3. By iteration of  the process 
it now follows that for all v c [vl, re] we have 

K n v • = / ~  n v • (5.5) 

As K = B n ,  the only central wedges cut from K, which are cylindrical wedges (in 
the sense of  (5.5)), are cut from cylinders of  the form Ki = {x 6 JR"; Ix(j)l < 1, j = 
1 . . . . .  n, j r i}, i -- 1 . . . . .  n. Therefore (see the proof of  (a) above) it follows that 
[Vl, 02] C Gi or [Vl, v2] C -Gi for one of  the facets Gi of B(F).  [] 

Remarks .  (i) The proof of (b) provides a general criterion for non-strict-convexity: 
the existence of a line segment on the boundary of  the intersection body of  a symmetric 
convex body K in ~" (n > 3) is always equivalent to the existence of  a central double 
wedge cut from K, which is cylindrical in the sense of  (5.5). 

(ii) The equality case in Busemann's theorem is investigated in [4] and [5]. The fact 
that such equality implies that K NS~,, and K n Su2 are what we call here "one-dimensional 
dilations" of  each other, is proved there. For completeness we chose to include the above 
straightforward proof. 

(iii) The formula (4.3) shows that, for n > 4, OB(F) is twice differentiable at any 
point v E a B ( F )  with no zero coordinates. Does OB(F) have positive Gauss curvature 
at such a point if this point is not in Ui~l  +Gi ? 

Proposi t ion 5.2. Let B(E) be the polar projection body of  B~ (n > 3). The sets 

( n -  1)! 
Hi - -  _ _  2n--I conv({ei + ej, ei - ej; j # i, j = 1 . . . . .  n}), 

as well as the sets - H i  (i = 1 . . . . .  n), are facets of  B(E). 

Proof. As in the proof of  Proposition 5.1, for every v ~ R ~ with v(1) = 1, v 
( 2 n - l / ( n -  1)!)HI if and only if Po(el) c conv({Po(e2) . . . . .  Pv(e~)}). Thus, if v ~ Hi 
we have (using the notation B~ -I = Pe, (B]')) 

IIVlIE = I[vll2 vol,_l Pv(B'~) = Ilvll2 VOln-I Po(B~ -1) 

= Ilvth~ , el = 1. (5.6) 

Hence HI is contained in {x; x ( l )  = (n - 1)!/2 "-l} n B(E) which is thus a facet of  
B(E). From (5.6) and the remark preceding it, it is also clear that if v(1) = 1 but v r Hi, 
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then II v II E > 1. We get 

Hl = {x; x(1) - (n- l )! }  2~_--------- f -  f3 B(E). [] 

Proof of Theorem 1.2. In what follows B(F) denotes the intersection body of  B ~  +l 
and B(E) is the projection body of  B~ '+~ . The equality (2.4) means that, for v 6 R n+l, 
volprod(Pv(B~+l)) is minimal if and only if there exist t~ > 0 such that 

orB(E) C B(F) and v E aOB(E) f-I OB(F). (5.7) 

Denote Ji = conv({ei + ej , ei --  e j  ; j = 1 . . . . .  n + 1, j ~ i}). The facets G i and Hi 
of  B(F) and B(E) ,  respectively, satisfy G i  = 2 n J i ,  Hi  = (n!/2n)Ji. For n = 2 . . . . .  8 
we have, by Theorem 1.1, ot = 4n/n!. 

So for these dimensions orB(E) and B(F) have joint facets q-ctHi = -t-Gi.  For every 
v in such a joint facet, v • M B ~  +l is a parallelotope of  dimension n (see the proof 
of Proposition 5.1). Since B(E) is a polytope, the strict convexity of  B(F),  proved in 
Proposition 5.1, implies that a vector v which is not in any dzGi  c a n  satisfy (5.7) only if 
o is an extreme point of  c~B(E). 

The examination of  the extreme points of  B (E) which has been done in Sections 3 and 
4, shows that up to permutations and sign-changes of  the coordinates, the only directions 
of  extreme points of  B(E) for which volprod(v • M B ~  +l) is minimal are: (1, 1, 0 . . . . .  0), 
( l ,  1, 1, l) ( forn  ------ 3), and ( l ,  l, l, 1 ,0 . . . . .  0). 

The vector (1, l, 0 . . . . .  0) and its associates through permutations and sign-changes, 
are the directions of  the extreme points of  the facets -4-Gi. 

If  v0 = ( I ,  1, l, 1), then (see the remarks which include (4.5) and (4.6)) v~- M B 4 is 
affinely isomorphic to the cross-polytope B~. 

I f n  > 4 and v = (1, 1, I, 1, 0 . . . . .  0), then v • f3 B ~  +1 = (v~- ('1B 4 )  x B ~  -3, which 
is affinely isomorphic (see the proof of  Lemma 3.2) to the unit ball of  s ~ s [] 

Remark. We conjecture that for any n > 4 the only directions v of  extreme points 
of B(E) for which volprod(v • f-1 Bn~ +l) is minimal, are, up to permutations and sign 
changes, (1, 1,0 . . . . .  0) and (1, 1, 1, 1,0 . . . . .  0). If  this conjecture is true, then the 
above proof would show that Theorem 1.2 is true for every n. 
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