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1 Introduction

Processes featuring multiple jets play a crucial role at hadron colliders. Many important
new-physics signatures are characterised by multijet final states plus additional colourless
particles. The evaluation of the corresponding cross sections and kinematical distributions in
perturbative QCD requires the availability of the corresponding scattering amplitudes, and
efficient methods to handle and cancel the associated infrared (IR) singularities. The required
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scattering amplitudes at tree level and one-loop can nowadays be obtained with automated
tools, while two-loop amplitudes are available only for relatively simple processes (see e.g.
refs. [1, 2] and references therein). Several methods to handle and cancel IR singularities
have been developed and used to obtain perturbative QCD predictions at the next-to-next-
to-leading order (NNLO) for many benchmark processes (see e.g. ref. [3]). Despite this, the
availability and reproducibility of differential NNLO predictions by using public numerical
programs is still limited to relatively simple processes [4–9].

Non-local subtraction or slicing1 methods [14, 15] have provided very efficient ways to
obtain NNLO predictions for a number of benchmark hadron collider processes involving
colourless final states [16–37], possibly accompanied by one jet [38–41], and/or a heavy-quark
pair [7, 42–46]. For the simplest processes even next-to-next-to-next-to leading order (N3LO)
results have been obtained [47–52] with such methods.

Slicing methods are based on identifying a resolution variable to distinguish configurations
in which one or more additional QCD partons are resolved. The resolution variable is then
used to introduce a cut in the phase space: the contribution below the cut can be approximated
by exploiting the knowledge of the IR behaviour of the corresponding QCD matrix elements,
while the contribution above the cut necessarily involves at least one additional parton and
can be evaluated by performing a lower order computation. In the case of the production
of a colourless final state and/or heavy quarks a well established resolution variable is the
transverse momentum qT of the triggered final state. In the case of multijet production a
well-known resolution variable is N -jettiness [15], τN , which is defined on events containing at
least N hard jets. Requiring τN ≪ 1 effectively provides an inclusive way to veto additional
jets. Besides their applications as slicing variables, both qT and N -jettiness have also
been used as resolution variables in matching NNLO calculations to Monte Carlo parton
showers [53–57]. Further examples of resolution variables in hadron collisions are provided
by shape variables [58, 59], which are designed to measure the deviation from the leading
order (LO) energy flow.

The advantage of slicing methods is in the fact that the cross section above the cut can
be carried out in a simple way, and at NNLO it is obtained through well established local
NLO subtraction schemes [60–64]. The price to pay is that the approximation of the cross
section below the cut introduces a dependence on the slicing parameter. This dependence
leads to missing power suppressed contributions and the exact result can be recovered only
through a suitable extrapolation procedure.

There are several features that characterise a resolution variable. The process (in)de-
pendence, the factorisation properties in the IR limit (and the related possibility to carry
out all-order resummation), the absence of non-global logarithmic contributions [65], the
qualitative behaviour and the quantitative impact of the power suppressed contributions
are all important aspects to establish the extent to which a resolution variable can be
useful. These aspects are in turn relevant also when the variable is used in the matching of
fixed-order calculations to Monte Carlo parton showers. Therefore, the exploration of new
resolution variables is interesting by itself, both in the context of fixed-order calculations

1 The slicing method was introduced in the context of NLO calculations, first for e+e− annihilation [10–12]
and, later, for hadron collisions [13].
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and of Monte Carlo generators.
In this paper we consider a rather general class of processes: the hadronic production of

an arbitrary number of jets, possibly accompanied by a colourless system F . We start by
providing a general formulation of a slicing scheme for this class of processes, by identifying
the various contributions that need to be computed at NLO. These contributions correspond
to what in Soft Collinear Effective Field Theory (SCET) [66–70] are called parton level
beam, jet and soft functions. We then focus on two novel observables, the one-jet resolution
variable ∆Et and the n-jet resolution variable kness

T [71], and explicitly evaluate all the
contributions necessary to implement an NLO computation by using these variables. We
also present numerical results by contrasting the different power suppressed contributions
affecting the two variables.

The paper is organised as follows. In section 2 we discuss the general structure of the
NLO computation for an arbitrary resolution variable. In section 3 we consider two specific
examples: in 3.1 we focus on the one-jet resolution ∆Et variable for the F +jet process, while
in section 3.2 we move to the kness

T variable. Our numerical results are presented in section 3.3.
More details on the computations and analytical results are presented in the appendices.

2 Slicing at NLO for jet processes

2.1 Generalities

In this work we consider processes in which n hard jets are produced, possibly in association
with a colourless system F . At the Born level, the kinematics of this process is fully determined
by the momentum of the colourless system pF and the momenta p1, p2, p3, . . . , pn+2 of n + 2
hard QCD massless partons

a1(p1) + a2(p2) → a3(p3) + · · ·+ an+2(pn+2) + F (pF ) , (2.1)

where a1, a2,. . . , an+2 denote the parton flavours. Momentum conservation implies

p1 + p2 = p3 + . . . pn+2 + pF ≡ q. (2.2)

At NLO, we also have to consider real configurations with an additional unresolved parton
with momentum k. In our notation, momenta labeled with Greek indices α = 1, 2 . . . n + 2
refer to all coloured massless Born level partons, while momenta labeled with Latin indices
i = 3 . . . n + 2 are associated with final-state partons. Concerning the flavour of a given
QCD parton, we introduce a calligraphic capital letter A to define a multiindex describing
a certain Born channel. For instance A = {aα} = {a1, a2, {ai}} would refer to the channel
a1 + a2 → {ai} + F .

At NLO, a slicing method based on a resolution variable r (that we assume to be properly
normalised to make it dimensionless) is in general built by splitting the hadronic cross section
into a contribution above and a contribution below a small cut rcut

σNLO =
∫

n+1
dσR +

∫
n
(dσV + dσB)

=
∫

n+1
dσRΘ(r − rcut) +

(∫
n+1

dσRΘ(rcut − r) +
∫

n
(dσV + dσB)

)
, (2.3)
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where dσBand dσR are the Born and real emission contributions respectively, while dσV

contains the genuine loop-tree interference diagrams and the mass factorisation counterterms∫
n

dσV = V + CMS . (2.4)

The contribution above the cut is IR-finite in d = 4 dimensions and it can be integrated
numerically with a Monte Carlo method. The calculation of the contribution below the cut
can be carried out in an analytic fashion by approximating the phase space, the resolution
variable and the real matrix element in the relevant IR limits. The integration needs to be
performed in d = 4 − 2ϵ dimensions and the IR poles from the real integration cancel the
explicit poles from dσV . Throughout this paper we work in the conventional dimensional
regularisation (CDR) scheme, with two polarisations for massless (anti-)quarks and d − 2
polarisations for gluons. The strong coupling αS(µR) is renormalised in the MS-scheme and
related to the bare coupling αu

S via

αu
Sµ2ϵ

0 Sϵ = αS(µR)µ2ϵ
R

[
1− αS(µR)

π

β0
ϵ

+O(α2
S)
]

, (2.5)

where Sϵ = (4π)ϵe−γEϵ, β0 = 11CA/12− TRnf /3 and µR is the renormalisation scale. The
SU(Nc) QCD colour factors are CF = (N2

c − 1)/(2Nc), CA = Nc, TR = 1/2 and nf is the
number of massless flavours. In general we can write the contribution below the cut as∫

n+1
dσRΘ(rcut−r)+

∫
n
(dσV +dσB)

=
∑

A,{b1,b2}

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

fb1

(
x1
z1

,µF

)
fb2

(
x2
z2

,µF

)

×
∫

dΦB

2Q2 ⟨M(0)
A |
[
Σ00

Ab1b2(z1,z2)+
αS(µR)

π

( 2∑
k=0

Σ1k
Ab1b2(z1,z2) logk(rcut)+O(rp

cut)
)]

|M(0)
A ⟩ ,

(2.6)

where dΦB is the four-dimensional Born phase space, Q =
√

q2 is the invariant mass of the
Born event and |M(0)

A ⟩ is the Born matrix element (which can be evaluated here in d = 4
dimensions), with |·⟩ denoting a vector in colour space (see e.g. ref. [61]). In the above
formula, fa(x, µF ) is the parton distribution function (PDF) of parton a carrying a fraction
x of the proton momentum at the factorisation scale µF . Bold symbols denote operators
acting on colour space and we defined

Σ00
Ab1b2(z1, z2) = 1δa1b1δa2b2δ(1− z1)δ(1− z2) , (2.7)

where 1 is the identity operator in colour space. We anticipate that in eq. (2.6) the missing
power corrections in rcut can be logarithmically enhanced for some slicing variables.

The complicated part of the calculation is the integration of the real emission contribution
over the 1-particle radiation phase space subjected to the constraint r < rcut, retaining the
full dependence on the Born kinematics. Indeed, in this region, the integral is dominated
by configurations in which a parton is soft and/or is radiated collinearly to one of the n + 2
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external legs. In order to extract the leading power behaviour in rcut, our strategy is based
on approximating both the real matrix element squared, using the factorisation properties of
QCD tree-level amplitudes, and the observable r in the relevant IR limits. The treatment
of the phase space requires some care. Indeed, a naive approximation of the phase space
in the different limits may lead to integrals that are divergent in d dimensions. This is the
well-known problem of rapidity divergences [72–74] occurring in approaches based on the
method of regions [75, 76], such as SCET.

In the following we will detail the construction of suitable approximations to obtain
the analytic expression, at leading power, for the real emission contribution below the
cut. To achieve this result, it is natural to organise the calculation by separating the IR
singular regions as ∫

n+1
dσRΘ(rcut − r) = Ic + Fc + Swa , (2.8)

i.e. as a sum of initial-state collinear contributions, Ic, final-state collinear contributions, Fc,
and a soft one, Swa. These three quantities must be properly defined to avoid the double
counting in the soft-collinear regions. In our approach, we retain the relevant soft-collinear
configurations in Ic and Fc and include the left-over soft wide-angle emissions in Swa, thus
avoiding double counting. The resulting ingredients lead to the definition of perturbative
beam, jet and soft functions, following the nomenclature used in the SCET literature.2

2.2 Initial-state collinear limit

In this section we outline the computation of the initial-state collinear contribution in the
region below the cut, r < rcut,

Ic ≡ Ic
1 + Ic

2 =
∫

n+1

(
dσIc

1
Θ(rcut − rI

c
1) + dσIc

2
Θ(rcut − rI

c
2)
)

, (2.9)

where rI
c
1 and rI

c
2 are approximations of the resolution variable in the limit where the

radiated parton with momentum k becomes collinear to the initial-state parton p1 and p2,
respectively. The differential cross section dσIc

i
includes the real phase space dΠR({pj}, k),

the real matrix element in the collinear limit k ·pi → 0 and the convolution with the PDFs. In
the following, we will provide a proper parametrisation for the real phase space dΠR({pj}, k)
in the initial-state collinear limit.

Without loss of generality, we focus on the collinear limit k · p1 → 0. We start from the
expression of the real-emission phase space in d = 4 − 2ϵ dimensions

dΠR({pj}, k) = [dk]
n+2∏
i=3

[dpi] [dpF ] (2π)dδ(d)
(

p1 + p2 − k −
n+2∑
i=3

pi − pF

)
, (2.10)

where we have used the short hand notation [dp] for the 1-particle phase space element

[dp] ≡ ddp

(2π)d−1 δ+(p2 − m2) . (2.11)

2 Notice that our definitions may differ from those customarily used in SCET. See appendix D for further
details on the comparison between the SCET jet function and the one defined in this work.
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We introduce the four-momentum qµ = pµ
1 +pµ

2 −kµ = pµ
F +

∑n+2
i=3 pµ

i of all final-state particles
but the radiated parton, and we rewrite dΠR({pj}, k) as

dΠR({pj}, k) = [dk] ddq δ(d)(p1 + p2 − k − q)
n+2∏
i=3

[dpi] [dpF ] (2π)dδ(d)
(

q −
n+2∑
i=3

pi − pF

)
= ddq [dk] δ(d)(p1 + p2 − k − q)dΠd

n(q; pF , {pi}) , (2.12)

where dΠd
n(q; pF , {pi}) is the d-dimensional Lorentz-invariant phase space for a particle of

four-momentum q splitting into n partons {pi}i=3,...,n+2 plus a colourless system pF . It is
worth mentioning that the four-momentum q has a non-zero transverse component with
respect to the direction of the colliding protons.

The radiation phase space [dk] can be parametrised as

[dk] = 1
4(2π)3−2ϵ

(k2
t )−ϵdk2

t

d cos θ

1− cos2 θ
dΩ2−2ϵ , (2.13)

where θ is the polar angle with respect to the beam axis in the partonic centre-of-mass
(CM) frame, kt = k0 sin θ is the transverse momentum of the radiation and dΩ2−2ϵ spans the
directions in the (2 − 2ϵ)-dimensional transverse space. Performing a change of variables,
we can write the radiation phase space as

[dk] = 1
4(k

2
t )−ϵ dk2

t

dz√
(1− z)2 − 4zk2

t /Q2

dΩ2−2ϵ

(2π)3−2ϵ
, (2.14)

where we defined Q =
√

q2 and the energy fraction z = Q2

ŝ , at fixed ŝ = (p1 + p2)2.
Since we are interested in the radiation collinear to p1, we can approximate k with (1−z)p1

in the argument of the delta-function in eq. (2.12), dropping power suppressed contributions
in kt. The final expression for the real-emission phase space valid at leading power is

dΠR({pj}, k) = (4π2)ϵ

32π3 dΩ2−2ϵ
dk2

t

(kt)2ϵ

dz√
(1− z)2 − 4zk2

t /Q2
dΠd

n(q; pF , {pi}n+2
i=3 ) . (2.15)

The matrix element squared for the real emission process b1 + b2 → b + {ai}+ F is denoted
as |Mb1b2;b{ai}|2, and in the collinear limit it assumes the well-known form

|Mb1b2;b{ai}|
2 ≈ 8παu

Sµ2ϵ
0

zp1 · k
P̂ ss′

a1b1(z, k̂t; ϵ)T ss′

a1b2;{ai}. (2.16)

In eq. (2.16) the squared matrix element is implicitly assumed to be averaged (summed) over
the colours and polarisations of the initial (final) state partons. Unless stated otherwise, we
shall use the same convention for all the squared matrix elements appearing in the paper. The
ϵ dependence of the matrix elements is always understood. For a given Born matrix element

Mc1,c2,...;s1,s2,...
A (p1, p2, . . .) , (2.17)

where {c1, c2, . . .} and {s1, s2, . . .} denote colour and spin indices respectively, we defined
the spin polarisation tensor

T sαs′α
A (p1, . . . , pα, . . .)

≡ 1
S

∑
spins ̸=sα,s′α

∑
colours

Mc1,c2,...;s1,...sα...
A (p1, p2, . . .)

[
Mc1,c2,...;s1,...s′α...

A (p1, p2, . . .)
]†

, (2.18)
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where
∑

indicates an average (sum) over the spins and colours of initial (final) state partons.
The spin of the parton with momentum pα is not summed over. However, we include a
factor 1/S, where S corresponds to the number of polarisations of the parton α if it is an
initial-state parton and S = 1 otherwise. The fermion spin indices are sα = ±1 while it is
convenient to label the gluon spin sα with the corresponding Lorentz index µ = 1, . . . , d.
In eq. (2.16) P̂ ss′

a1b1
is the unregularised Altarelli-Parisi splitting function for a splitting

b1(p1) → a1(zp1) + b((1− z)p1) defined in appendix B. The spin indices in the polarisation
tensor defined in eq. (2.18) are those of the parton a1 (i.e. the one that undergoes the
collinear splitting).

We notice that the change of variable cos θ → z is not invertible for cos θ ∈ [−1, 1], and,
therefore, the integrand has to be evaluated separately for positive (forward) and negative
(backward) values of cos θ. The radiation phase space element is the same in the two θ-
integration regions since it is an even function of cos θ. Furthermore, in the collinear limit,
we can always choose an approximation of the resolution variable that is forward-backward
symmetric. Thus, the only contribution sensitive to the forward/backward direction is the
collinear matrix element, and, more precisely, such a dependence is entirely due to the term

1
p1·k . Therefore, we can replace the latter term by the symmetric combination

1
p0

1k0

( 1
1− cos θ

+ 1
1 + cos θ

)
= 2(1− z)

k2
t

, (2.19)

and consider only the integral in the interval cos θ ∈ [0, 1]. By combining the phase space
parametrisation and the collinear approximation of the real matrix element for both initial-
state collinear regions and summing over the Born channels, we derive the leading power
contribution due to the initial-state collinear splittings as

Ic =
∑
A

∑
{b1,b2}

∫ 1

0
dx1

∫ 1

0
dx2

∫
dΠd

n(q; pF , {pi}n+2
i=3 )

2Q2

×
∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

Ib1b2
a1a2(z1, z2)fb1(x1/z1, µF )fb2(x2/z2, µF ) , (2.20)

where

Ib1b2
a1a2(z1, z2) = T ss′

a1b2;{ai}B
ss′
a1b1(z1, rcut)δ(1− z2) + T ss′

b1a2;{ai}δ(1− z1)Bss′
a2b2(z2, rcut) (2.21)

is written in terms of the cumulant NLO beam function

Bss′
ab (z, rcut) =

(
µ2

R

Q2

)ϵ
eγEϵ

Γ(1− ϵ)
αS(µR)

π

×
∫ ∞

0

dx2

(x2)1+ϵ

∫
dΩd−2
Ωd−2

P̂ ss′
ab (z, k̂t; ϵ)

Θ(1− 2x − z)√
1− 4x2/(1− z)2Θ(rcut − rI

c) .

(2.22)

In the above formulæ we identified Q2 = x1x2s and we introduced the dimensionless vari-
able x2 = k2

t /Q2. In eq. (2.22), the upper limit in the integral over z, encoded in the
theta function, comes from the small x expansion of the physical solution of the equation

– 7 –
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1− 4zx2/(1− z)2 ∼ 1− 4x2/(1− z)2 = 0, associated with a vanishing argument of the square
root appearing in the denominator, and it sets a kinematical endpoint z < 1 for soft emissions.
We stress that, in a strict power counting in the pure collinear limit x → 0, the square
root factor appearing in eq. (2.22) could be approximated with 1 and, correspondingly, the
upper limit in the z integration extended to 1. However, this procedure may lead to the
appearance of rapidity divergences, depending on the specific observable under considera-
tion. In particular, rapidity divergences appear for observables that behave as a transverse
momentum in the collinear limit.3 We observe that retaining this term is consistent with
a power counting valid both in the soft and collinear limits, according to the homogeneous
scaling x ∼ λ and 1 − z ∼ λ for a small parameter λ.

We can further manipulate eq. (2.22) under the assumption that, at fixed kt, rI
c is

a regular function of z in the soft limit z → 1, which is valid for observables that scale
as a transverse momentum in the initial-state collinear limit.4 Then, for such observables
we safely approximate

Θ(1− 2x − z)√
1− 4x2/(1− z)2 P̂ ss′

ab (z, k̂t; ϵ) = P ss′
ab (z, k̂t; ϵ) + dss′

a δabδ(1−z)
(
−γa−Ca log(x)

)
+O(x) ,

(2.23)

where

dss′
a =

δss′ a = q, q̄

−gµν a = g
(2.24)

and P ss′
ab are the regularised splitting kernels reported in appendix B. We use

Ca =

CF a = q, q̄

CA a = g
(2.25)

and we define the coefficients

γq = 3
4CF , γg = β0 = 11

12CA − 1
3TRnf . (2.26)

2.3 Final-state collinear limit

In this section we outline the computation of the final-state collinear contribution in the
region below the cut, r < rcut,

Fc ≡
n+2∑
i=3

Fc
i =

n+2∑
i=3

∫
n+1

dσFc
i
Θ(rcut − rF

c
i ) , (2.27)

where rF
c
i refers to an approximation of the resolution variable in the limit where the radiated

parton with momentum k becomes collinear to the final-state parton pi. In eq. (2.27), the
differential cross section dσFc

i
includes the real phase space dΠR({pj}, k), the real matrix

3 In SCET, the distinction is between SCETI, which do not need a rapidity regulator, and SCETII observables,
which do need it.

4 Notice that this is not the case for observables like N -jettiness that scales as k2
t /(Q2(1 − z)).
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element in the collinear limit k · pi → 0 and the convolution with the PDFs. For the sake
of concreteness, we will focus on the region where k becomes collinear to the final-state
coloured parton with momentum pi. In the following, we parallel the discussion carried out
for initial-state radiation. We start from a suitable approximation of the real phase space in
the relevant collinear limit. We consider eq. (2.10) and we recast the phase space elements
associated with the two collinear partons as

[dpi][dk] = dd−1p⃗i

(2π)d−12p0
i

dd−1k⃗

(2π)d−12k0 = dd−1⃗̃pi

(2π)d−12p̃0
i

p̃0
i

p0
i

dd−1k⃗

(2π)d−12k0 = [dp̃i]
p̃0

i

p0
i

[dk] (2.28)

with p̃µ
i = (p̃0

i , ⃗̃pi) = (p0
i + k0, p⃗i + k⃗), from which it follows that the real phase space can

be written as

dΠR({pj}, k) = dΠd
n(q; pF , {p3, . . . , p̃i, . . . , pn+2})

p̃0
i

p0
i

[dk] , (2.29)

where q = p1 + p2. We parametrise the radiation phase space in spherical coordinates as

[dk] = 1
2(2π)3−2ϵ

(k0)1−2ϵ sin1−2ϵ θdk0dθdΩ2−2ϵ , (2.30)

where θ is the angle between k⃗ and ⃗̃pi. We reparametrise the phase space in terms of the
energy fraction ξ = k0/p̃0

i and the invariant mass s̃i = p̃2
i . Performing an expansion in small

s̃i we obtain the following expression valid at leading power in the collinear limit

p̃0
i

p0
i

[dk] = 1
4(2π)3−2ϵ

dξξ−ϵ(1− ξ)−ϵ ds̃is̃
−ϵ
i

(
1− s̃i(1− 2ξ)2

4(p̃0
i )2ξ(1− ξ)

)−ϵ

dΩ2−2ϵ . (2.31)

This result agrees with standard collinear parametrisations, see for example ref. [77], apart
from the last factor in parenthesis. As discussed in the previous section, this factor allows
us to retain some terms which contribute beyond the strict collinear limit but make the
integral finite without the need of introducing additional regulators. In particular, we count
s̃i/

[
(p̃0

i )2ξ
]
∼ 1 (s̃i/

[
(p̃0

i )2(1− ξ)
]
∼ 1), where ξ → 0 (ξ → 1) corresponds to parton k (pi)

becoming soft. Note that we can further approximate

s̃i(1− 2ξ)2

4(p̃0
i )2ξ(1− ξ)

∼ s̃i

4(p̃0
i )2ξ(1− ξ)

, (2.32)

which is valid in both limits ξ → 0 and ξ → 1. The matrix element squared for the corre-
sponding splitting process ai(p̃i) → a(k) + b(pi) can be approximated in the collinear limit as

|Ma1a2;...a,b...|2 ≈ 8παu
Sµ2ϵ

0
k · pi

P̂ ss′
ai→ab(ξ, k̂⊥; ϵ)T ss′

a1a2;...ai... (2.33)

where P̂ ss′
ai→ab is the Altarelli-Parisi splitting function defined in appendix B and the spin-

polarisation tensor T ss′
A is defined in eq. (2.18). In this case, the spin indices s, s′ in the

polarisation tensor are those of the parton ai and k̂⊥ refers to the transverse momentum
with respect to the direction of p̃i. The full contribution Fc

i , associated with the collinear

– 9 –



J
H
E
P
1
2
(
2
0
2
3
)
1
9
3

limit k · pi → 0, is obtained by summing over all Born channels A = {a1, a2, {ai}} and over
all possible splittings ai → (∗) of the parton ai. Thus, we find that

Fc
i =

∑
A

∫ 1

0
dx1fa1(x1, µF )

∫ 1

0
dx2fa2(x2, µF )

∫
dΠd

n(q; pF , {p3, . . . , p̃i, . . . , pn+2})
T ss′

a1a2;...ai...

2Q2

×

(4πµ2
0

Q2

)ϵ

Γ(1− ϵ)
αu

S
π

∑
(∗)

∫
dΩd−2
Ωd−2

∫ 1

0
dξξ−ϵ(1− ξ)−ϵ

×
∫ 4(p̃0

i )2/Q2ξ(1−ξ)

0
dx̃ix̃

−1−ϵ
i

(
1− Q2

4(p̃0
i )2

x̃i

ξ(1− ξ)

)−ϵ

P̂ ss′

ai→(∗)(ξ, k̂⊥; ϵ)Θ(rcut − rF
c
i ) ,

(2.34)

where we have introduced Q =
√

q2 and x̃i = s̃i/Q2. Notice that, at leading power, we can
safely neglect the invariant mass s̃i in the phase space element dΠd

n, which, thus, reduces to
the Born-like phase space element for n final-state massless partons and a colourless system F .
With abuse of notation, we replace p̃i with pi everywhere so that the collection (pF , {pj}n+2

j=2 )
stands for a set of Born momenta. Finally, the full final-state collinear contribution Fc is
obtained by summing over all collinear limits

Fc =
∑
A

n+2∑
i=3

∫ 1

0
dx1fa1(x1, µF )

∫ 1

0
dx2fa2(x2, µF )

∫
dΠd

n(q; pF , {pj})
2Q2 Ia1a2;ai , (2.35)

where we introduced

Ia1a2;ai = T ss′
a1a2;...ai...J

ss′
ai

(rcut) . (2.36)

In the previous formula

J ss′
ai

(rcut)=
(

µ2
R

Q2

)ϵ
eγEϵ

Γ(1−ϵ)
αS(µR)

π

∑
(∗)

∫
dΩd−2
Ωd−2

∫ 1

0
dξ ξ−ϵ(1−ξ)−ϵ

×
∫ 4(p0

i )2/Q2ξ(1−ξ)

0
dxix

−1−ϵ
i

(
1− Q2

4(p0
i )2

xi

ξ(1−ξ)

)−ϵ

P̂ ss′

ai→(∗)(ξ, k̂⊥;ϵ)Θ(rcut−rF
c
i )

(2.37)

is the cumulant NLO jet function. In appendix D we outline a different approach, based
on the method of regions, to define jet functions.

2.4 Soft limit

The last singular region we need to consider is the soft one. We observe that our construction
leads unavoidably to overlaps among the different soft and collinear approximations. We
take care of removing any double counting in the soft contribution Swa by defining a
“subtracted” soft current J2

sub from which the soft limits of all initial- and final-state collinear
approximations have been subtracted. A similar strategy has been used in refs. [78–80]. More
precisely, we write the ensuing contribution below the cut as

Swa ≡ αS(µR)
π

∑
A

∫ 1

0
dx1fa1(x1, µF )

∫ 1

0
dx2fa2(x2, µF )

∫
dΠd

n(q; pF , {pj})
2Q2 ⟨M(0)

A |S |M(0)
A ⟩

(2.38)
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in terms of the NLO soft function

S = 2µ2ϵ
R

eγEϵ

Γ(1− ϵ)

∫
ddk

Ωd−2
δ+(k2)J2

sub . (2.39)

In the above equation, the soft subtracted current is defined as

J2
sub =

(
−T1 · T2ω12 −

∑
i

(T1 · Tiω1i + (1 ↔ 2))−
∑
i>j

Ti · Tjωij

)
Θ(rcut − rS)

−
(

T2
1ω1

2Θ(rcut − rC1,S) + (1 ↔ 2)
)
−
∑

i

T2
i ωCi,SΘ(rcut − rCi,S) , (2.40)

in terms of the eikonal kernels ωαβ and ωα
β given by

ωαβ ≡ pα · pβ

(k · pα)(k · pβ)
= ωα

β + ωβ
α , ωα

β ≡ pα · pβ

(k · pα)(k · (pα + pβ))
∀α, β = 1, . . . , n + 2

(2.41)
and of the soft limit of the final-state splitting kernels ωCi,S given by

ωCi,S ≡ pi · (p1 + p2)
(k · pi)(k · (p1 + p2))

∀i = 3, . . . , n + 2 . (2.42)

In eq. (2.40), rS is the soft limit of the slicing variable, whereas rCα,S refers to the soft limit
of the respective α-collinear approximation of r.

We observe that the first line in eq. (2.40) corresponds to the standard eikonal contribution
J2 = −

∑
Tα · Tβωαβ , while the second line corresponds to the collinear singular contributions

that are explicitly subtracted in order to obtain the purely soft wide-angle remainder. The
resulting soft function is a well-defined quantity in d dimensions. This is to be contrasted
with soft functions defined in SCET, which may require the introduction of suitable rapidity
regulators, see e.g. the calculation of one-loop soft functions for N -jet processes at hadron
colliders discussed in ref. [81]. Note that the kernels ωα

β and ωCi,S , corresponding to the
soft limit of the Altarelli-Parisi splitting functions, take the explicit form given in eq. (2.41)
and (2.42) as a consequence of our use of the energy fractions z and ξ in the initial-state
and final-state collinear regions, respectively.

2.5 Virtual contribution

The virtual diagrams always contribute to the region below the slicing cut, rcut, since,
by definition, a proper slicing variable vanishes on a Born-like kinematic configuration.
The MS renormalised on-shell scattering amplitude |MA(µ2

R, {pα})⟩ can be perturbatively
expanded as5

|MA(µ2
R, {pα})⟩ = |M(0)

A ({pα})⟩+
αS(µR)

π
|M(1)

A (µ2
R, {pα})⟩+O(α2

S) . (2.43)

It is related to the IR-finite amplitude |Mfin
A (µ2

R, {pα})⟩ via

|Mfin
A (µ2

R, {pα})⟩ =
[
1− I(ϵ, µ2

R, {pα})
]
|MA(µ2

R, {pα})⟩ , (2.44)
5 The overall dependence on αS(µR) entering at Born level is understood.

– 11 –



J
H
E
P
1
2
(
2
0
2
3
)
1
9
3

where I(ϵ, µ2
R, {pα}) is the IR subtraction operator that admits the perturbative expansion

I(ϵ, µ2
R, {pα}) =

αS(µR)
π

I(1)(ϵ, µ2
R, {pα}) +O(α2

S) . (2.45)

In particular, we are interested in the one-loop finite remainder

|M(1),fin
A (µ2

R, {pα})⟩ = |M(1)
A (µ2

R, {pα})⟩ − I(1)(ϵ, µ2
R, {pα}) |M(0)

A ({pα})⟩ , (2.46)

where I(1) embodies the IR singular structure of the one-loop amplitude [12, 61, 82]. The
explicit expression of I(1)(ϵ, µ2

R, {pα}) is

I(1)(ϵ,µ2
R,{pα})=(

µ2
R

Q2

)ϵ
eγEϵ

Γ(1−ϵ)
1
4

{∑
α∈A

(
−Cα

ϵ2 − 2
ϵ

γα

)
− 2

ϵ
iπT1 ·T2

+2
ϵ

∑
i

Ti ·
[
T1 log

(
Q2

2p1 ·pi

)
+T2 log

(
Q2

2p2 ·pi

)]
+1

ϵ

∑
i ̸=j

Ti ·Tj

[
log
(

Q2

2pi ·pj

)
−iπ

]}
,

(2.47)

where the coefficients γq and γg are defined in eq. (2.26). It is useful to introduce the
hard function

H(αS(Q)) = 1 + αS(Q)
π

H(1) +O(α2
S) , (2.48)

where the O(αS) contribution is

H(1) ≡ ⟨M(0)
A ({pα}) |M(1),fin

A (µ2
R = Q2, {pα})⟩+ c.c.

|M(0)
A ({pα})|2

, (2.49)

which is evaluated in d = 4 dimensions. The one-loop contribution to the NLO cross section is

V ≡ αS(µR)
π

∑
A

∫ 1

0
dx1fa1(x1, µF )

∫ 1

0
dx2fa2(x2, µF )

×
∫

dΠd
n(q; pF , {pj})

2Q2

(
⟨M(0)

A ({pα}) |M(1)
A (µ2

R, {pα})⟩+ c.c.
)

, (2.50)

where A = {a1, a2, {ai}} and

⟨M(0)
A ({pα}) |M(1)

A (µ2
R, {pα})⟩+ c.c. =

(
⟨M(0)

A ({pα})| I(1)(ϵ, µ2
R, {pα}) |M(0)

A ({pα})⟩

+ ⟨M(0)
A ({pα}) |M(1),fin

A (µ2
R, {pα})⟩

)
+ c.c. .

(2.51)

The manifest ϵ-poles in the one-loop contribution cancel against those generated by the
integration of the real contribution over the radiation phase space, which are explicitly
contained in the beam, jet and soft functions. The remaining singularities are of pure
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initial-state collinear origin and are cancelled by the MS counterterm associated with the
renormalisation of the PDFs, which reads

CMS ≡
∑
A

∑
{b1,b2}

∫ 1

0
dx1

∫ 1

0
dx2

∫
dΠd

n(q;pF ,{pj})
2Q2

(
µ2

R

µ2
F

)ϵ eγEϵ

Γ(1−ϵ)
αS(µR)

π
|M(0)

A |2 1
ϵ

×
∫ 1

x1

dz1
z1

∫ 1

x2

dz2
z2

(
Pa1b1(z1;ϵ=0)δa2b2δ(1−z2)+(1↔ 2)

)
fb1

(
x1
z1

,µF

)
fb2

(
x2
z2

,µF

)
.

(2.52)

3 Applications

In this section we apply the general formalism discussed in section 2 to two candidate
variables for jet hadroproduction processes, the one-jet resolution variable ∆Et and the n-jet
resolution variable kness

T . We start by presenting explicit analytic results for both observables
in section 3.1 and 3.2, respectively. Finally, in section 3.3 we present NLO numerical results
for specific processes obtained using both slicing variables.

3.1 ∆Et slicing

We start by considering a variable relevant for the class of processes in which a colourless
system F is produced in association with a hard jet of momentum pJ . For these processes a
possible resolution variable can be defined as follows. Considering an event in which F is
accompanied by m QCD partons with momenta p3, . . . , pm+2, we define

∆Et =
m+2∑
i=3

|p⃗i,t| − |p⃗F,t| . (3.1)

At LO we have m = 1, implying that ∆Et = 0 for the Born and one-loop contributions,
while for real-emission diagrams we have m = 2. Momentum conservation and the triangle
inequality imply that ∆Et is non-negative and it vanishes only when all p⃗i,t are either zero
or antiparallel to p⃗F,t. As a consequence, at NLO, real-emission diagrams lead to ∆Et = 0
in the soft and/or collinear limits.

Thus, we can define the dimensionless slicing variable

r = ∆Et

Q
(3.2)

where Q2 = (pF + pJ)2 is the squared invariant mass of the Born-like system.6 The variable
∆Et defined above is not expected to feature non-global logarithmic contributions [65] and
can be evaluated without relying on a jet algorithm. Therefore, it can be potentially useful
to deal with the class of processes in which a colourless system F is produced in association
with a hard jet. We will show in the following that this variable presents a richer structure
compared to the one associated with qT or 1-jettiness. In view of these interesting features, the
necessary ingredients to construct a slicing method turn out to be more difficult to evaluate.

6 pJ can be determined with an arbitrary exclusive (always giving us exactly one jet) IR-safe jet-clustering
algorithm. The choice of the algorithm will only affect the power corrections in rcut.
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In particular, ∆Et features a non-trivial azimuthal dependence which is responsible for the
presence of non-vanishing spin correlations, already at NLO, and of additional initial-state
collinear contributions with respect to those appearing in qT -subtraction.

3.1.1 Initial-state collinear limit

In the limit in which the radiated parton of momentum k is collinear to the beams (kt → 0),
we can write the transverse momentum of the final-state hard parton p3 as

|p⃗3,t| = |p⃗F,t + k⃗t| =
√
|p⃗F,t|2 + |⃗kt|2 + 2|p⃗F,t||⃗kt| cosϕ ≈ |p⃗F,t|

(
1 + |⃗kt|

|p⃗F,t|
cosϕ

)
(3.3)

by neglecting quadratic terms in kt. From this approximation, the normalised slicing pa-
rameter is

rI
c = rI

c
1 = rI

c
2 ≡ ∆EIc

t

Q
≈ |p⃗F,t|

Q

(
1+ |⃗kt|

|p⃗F,t|
cosϕ

)
+ |⃗kt|−|p⃗F,t|=

kt

Q
(1+cosϕ) . (3.4)

For the sake of comparison, we introduce a simple power counting in terms of the energy of
the emitted parton E and of the angle θ it forms with the relevant collinear direction. In this
region, we notice that the variable scales as ∆EIc

t ∼ Eθ, which is the same scaling as qT .
By exploiting the parametrisation outlined in section 2.2, the initial-state collinear

contribution in eq. (2.20) can be evaluated. The function Ib1b2
a1a2(z1, z2) in eq. (2.21) reduces to

Ib1b2
a1a2(z1, z2) =

(
µ2

R

Q2

)ϵ eγEϵ

Γ(1− ϵ)
αS(µR)

π
|M(0)

A |2

×
{[( 1

2ϵ2 − log2(2rcut)−
π2

3

)
Ca1δa1b1δa2b2δ(1− z1)δ(1− z2)

+
(
−1

ϵ
+ 2 log(2rcut)

)(
−γa1δa1b1δ(1− z1) + Pa1b1(z1; ϵ = 0)

)
δa2b2δ(1− z2)

+ Ca1b1(z1)δa2b2δ(1− z2) + (1 ↔ 2)
]

+
[
Ga1b1(z1)δa1gδa2b2δ(1− z2)

( |M(0),ϵ1
A |2

|M(0)
A |2

− |M(0),ϵ2
A |2

|M(0)
A |2

)
+ (1 ↔ 2)

]}
,

(3.5)

where Cab(z), Gab(z) and the regularised Altarelli-Parisi splitting kernels Pab(z) are defined
in appendix B. The spin-polarised matrix element, |M(0),ϵi

A |2, is given by

|M(0),ϵi

A |2 = T µν
A ϵi,µϵi,ν , (3.6)

where the gluon a1 is polarised along ϵµ
i , with i ∈ {1, 2}. Here, ϵµ

1 is the transverse polarisation
of the gluon along the transverse momentum of the colourless system with respect to the
beam (i.e. pF,t) and ϵµ

2 is the transverse polarisation orthogonal to ϵµ
1 . More details on the

spin-polarised matrix elements |M(0),ϵi

A |2 are provided in appendix A.
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The corresponding cumulant beam function in eq. (2.22) reads

Bss′
ab (z, rcut) =

(
µ2

R

Q2

)ϵ eγEϵ

Γ(1− ϵ)
αS(µR)

π

{
dss′

a

[( 1
2ϵ2 − log2(2rcut)−

π2

3

)
Caδabδ(1− z)

+
(
−1

ϵ
+ 2 log(2rcut)

)(
−γaδabδ(1− z) + Pab(z; ϵ = 0)

)
+ Cab(z)

]
+ Gab(z)δagAss′

}
, (3.7)

where dss′
a is given in eq. (2.24) and the asymmetry tensor Ass′ is defined in appendix A. We

see that ∆Et features a non-trivial azimuthal dependence which is responsible for the presence
of non-vanishing spin-correlations, driven by Ass′ (see eq. (A.12)), already at this perturbative
order. Such contributions are new with respect to those appearing in qT -subtraction. This
feature is analogous to what happens for the variable considered in ref. [83].

3.1.2 Final-state collinear limit

In the following, frame-dependent quantities are specified in the partonic CM frame. By
using the parametrisation outlined in section 2.3, we find that the slicing variable can be
approximated as

rF
c = ∆EFc

t

Q
= Q

2pJ,t
x3 sin2 φ (3.8)

in the final-state collinear limit, where the angle between p3 and k goes to 0. Here, cosφ =
p⃗1,⊥ ·⃗k⊥
p1,⊥k⊥

, where v⃗⊥ is obtained by projecting the spatial part of a four-vector v onto the
transverse plane of p⃗J , and pJ,t is the transverse momentum of the jet pJ with respect to the
beam direction. We notice that in this region the variable scales as ∆EFc

t ∼ Eθ2, which is
the same scaling as N -jettiness in any collinear limit. Thus, the variable scales differently in
the initial- and final-state collinear regions. Finally, the final-state collinear contribution in
eq. (2.35) can be evaluated. The function Ia1a2;a in eq. (2.36) is found to be

Ia1a2;a =
(

µ2
R

Q2

)ϵ eγEϵ

Γ(1− ϵ)
αS(µR)

π
|M(0)

A |2
{1
6

(
CA

2 − TRnf

)( |M(0),ε1
A |2

|M(0)
A |2

− |M(0),ε2
A |2

|M(0)
A |2

)
δag

− γa

(
−1

ϵ
+ log(8rcut) +

1
2 log

p2
J,t

Q2

)
+ χa

+ Ca

[ 1
2ϵ2 − 1

2 log2(8rcut)−
1
2 log 4E2

J

Q2

(1
ϵ
− 2 log(8rcut)

)
− 1

2 log
p2

J,t

Q2 log(8rcut)

+ 1
8 log2 p2

J,t

Q2 − 1
4

(
log

p2
J,t

Q2 − log 4E2
J

Q2

)2 ]}
, (3.9)

where EJ = pJ ·(p1+p2)
Q is the jet energy and we defined the constants

χq = CF

(7
4 − 5

12π2
)

, χg =
(67
36 − 5

12π2
)

CA − 5
9TRnf . (3.10)
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|M(0),εi

A |2 is the spin-polarised matrix element

|M(0),εi

A |2 = T µν
A εi,µεi,ν , (3.11)

where the gluon a is polarised along εµ
i with i ∈ {1, 2}. Here, εµ

1 is the transverse polarisation
of the gluon along the transverse momentum of the beam with respect to the jet (i.e. p1,⊥)
and εµ

2 is the transverse polarisation orthogonal to εµ
1 . More details on the spin polarised

matrix elements |M(0),εi

A |2 are provided in appendix A.
The corresponding cumulant jet function in eq. (2.37) reads

J ss′
a (rcut) =

(
µ2

R

Q2

)ϵ eγEϵ

Γ(1− ϵ)
αS(µR)

π

{
1
6

(
CA

2 − TRnf

)
Ass′δag

+ dss′
a

[
− γa

(
−1

ϵ
+ log(8rcut) +

1
2 log

p2
J,t

Q2

)
+ χa

+ Ca

(
1
2ϵ2 − 1

2 log2(8rcut)−
1
2 log 4E2

J

Q2

(1
ϵ
− 2 log(8rcut)

)
− 1

2 log
p2

J,t

Q2 log(8rcut)

+ 1
8 log2 p2

J,t

Q2 − 1
4

(
log

p2
J,t

Q2 − log 4E2
J

Q2

)2)]}
, (3.12)

where dss′
a is given in eq. (2.24) and the asymmetry tensor Ass′ is defined in appendix A.

We see that the non-trivial azimuthal dependence of ∆Et is responsible for non-vanishing
spin-correlations also in this contribution. As for the case of the initial-state collinear limit,
this feature is analogous to what happens for the variable considered in ref. [83].

3.1.3 Soft limit

In the soft limit, ∆Et assumes the same expression (and, therefore, the same scaling in the
soft-collinear limit) as the one derived in the initial-state collinear region, i.e. rS = rC1,S =
rC2,S = kt

Q (1 + cosϕ). We also need to specify the soft limit of the approximation we used
in the final-state collinear region, which is given by rC3,S = k·p3

pJ,t

sin2 φ
Q .

By exploiting the results of section 2.4, the soft-subtracted contribution below the slicing
cut, rcut, can be written as

Swa = −αS(µR)
π

∑
A

∫ 1

0
dx1fa1(x1, µF )

∫ 1

0
dx2fa2(x2, µF )×

×
∫

dΠd
1(p1 + p2; pF , pJ)

2Q2 ⟨M(0)
A | [T1 · T3 S13 + T2 · T3 S23] |M(0)

A ⟩

(3.13)

where A = {a1, a2, a} labels the different Born channels a1 + a2 → a + F . The soft integral
S13 is defined as

S13 = 2µ2ϵ
R

eγEϵ

Γ(1− ϵ)

∫
ddk

Ωd−2
δ+(k2)

{(
p1 · pJ

k · p1k · pJ
− p1 · p2

k · p1k · (p1 + p2)

)
Θ(rcut − rS)

− (p1 + p2) · pJ

k · (p1 + p2)k · pJ
Θ(rcut − rC3,S)

}
, (3.14)

and S23 = S13(p1 ↔ p2).
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After performing the integration over the radiation phase space, we obtain

S13 =
(

µ2
R

Q2

)ϵ
eγEϵ

Γ(1− ϵ)

{(1
ϵ
− 2 log(8rcut)

)(
ηJ − 1

2 log
p2

J,t

Q2 + 1
2 log 4E2

J

Q2

)

+ π2

12 + 4 log 2 (ηJ + log 2) + 1
4

(
log

p2
J,t

Q2 − log 4E2
J

Q2

)2}
, (3.15)

where the jet rapidity is

ηJ = 1
2 log

(
p2 · pJ

p1 · pJ

)
. (3.16)

3.1.4 Subtraction coefficients for ∆Et slicing

By adding all contributions we computed in the previous sections, we manage to cancel the
IR singular poles and we can now extract the expression for the Σ1k functions introduced
in section 2.1:

Σ12
Ab1b2(z1, z2) = δa1b1δa2b2δ(1− z1)δ(1− z2)

{
−Ca1 − Ca2 −

Ca

2

}
1 (3.17)

Σ11
Ab1b2(z1, z2) = 2

(
Pa1b1(z1; ϵ = 0)δa2b2δ(1− z2) + (1 ↔ 2)

)
1

+ δa1b1δa2b2δ(1− z1)δ(1− z2)
{
−(2γa1 + 2γa2 + γa) +

Ca

2 log
p2

J,t

Q2

− 2(CA − CF )(δa1g − δa2g)ηJ − (2Ca1 + 2Ca2 + 3Ca) log 2
}

1 (3.18)

Σ10
Ab1b2(z1, z2) =

[
log

(
Q2

µ2
F

)
+ 2 log 2

](
Pa1b1(z1; ϵ = 0)δa2b2δ(1− z2) + (1 ↔ 2)

)
1

+
(

Ca1b1(z1)δa2b2δ(1− z2) + (1 ↔ 2)
)

1

+
(

Ga1b1(z1)δa1gδa2b2δ(1− z2)
( |M(0),ϵ1

A |2

|M(0)
A |2

− |M(0),ϵ2
A |2

|M(0)
A |2

)
+ (1 ↔ 2)

)
1

+ δa1b1δa2b2δ(1− z1)δ(1− z2)
{

H(1) − pBβ0 log
(

Q2

µ2
R

)

−
(

Ca1 + Ca2 +
Ca

2

)
log2 2

+
(
−(2γa1 + 2γa2 + 3γa) + 2(CF − CA)(δa1g − δa2g)ηJ + 3

2Ca log
p2

J,t

Q2

)
log 2

+ Ca

8 log2 p2
J,t

Q2 − γa

2 log
p2

J,t

Q2 + χa −
(

Ca1 + Ca2 −
Ca

4

)
π2

3

+ 1
6

(
CA

2 − TRnf

)
δag

( |M(0),ε1
A |2

|M(0)
A |2

− |M(0),ε2
A |2

|M(0)
A |2

)}
1 , (3.19)

where pB denotes the power of αS(µR) that appears in the LO cross section.
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We note that, for a final-state emitter l, the contribution to the double logarithm in rcut is
proportional to the Casimir (Cl) associated with the respective leg and it corresponds to half
of the contribution from an initial-state leg. This can be traced back to the different scaling
behaviour of the slicing variable in the soft collinear limits. If the variable scales as Ealθbl in
the limit in which the single emission is soft and collinear to leg l, this singular limit contributes
to the coefficient of the double logarithm with a factor − Cl

albl
. In the specific case of ∆Et, it

turns out that al = bl = 1 for initial-state radiation and al = 1, bl = 2 for final-state radiation.

3.2 kness
T slicing

We now consider a more general class of processes in which an arbitrary number n of hard jets
is produced, possibly in association with a colourless system F . Prominent examples among
such processes are di-jet and tri-jet production, or the production of a colourless system
in association with one or more hard jets. The kness

T variable, introduced in ref. [71], takes
its name from the kT -clustering algorithm [84, 85] and it represents an effective transverse
momentum, describing the limit in which the additional jet is unresolved. If the unresolved
radiation is close to the colliding beams or the event has no jets at Born level, kness

T reduces
to the transverse momentum (qT ) of the hard system. On the other hand, if the unresolved
radiation is emitted close to one of the final-state jets, kness

T describes the relative transverse
momentum of the radiation with respect to the jet direction.

As already mentioned, the definition of kness
T is based on the exclusive kT -clustering

algorithm, which is applied until n + 1 final-state jets remain. If we are performing an
NkLO computation, the role of kness

T is to discriminate between the fully unresolved region
(kness

T = 0) and the region where at least one additional parton is resolved (kness
T > 0). In

the latter region, the IR-singularity structure can be at most of Nk−1LO-type. If we limit
ourselves to NLO, the full clustering algorithm is not necessary and the definition of kness

T

directly coincides with the minimum among the usual distances dij = min(pi,t , pj,t)∆Rij/D

between two particles and the particle-beam distances diB = pi,t. Here D is a parameter of
order unity and ∆Rij is the customary ij distance in rapidity and azimuth. For a complete
discussion of the recursive definition in the general case, we refer the reader to ref. [71], where
more details about the features of kness

T are also provided. In particular, besides being global,
kness

T turns out to be very stable with respect to hadronisation and multiparton interactions.
We can now define the dimensionless slicing variable

r = kness
T

Q
(3.20)

where Q is the invariant mass of the hard system consisting of n jets plus the colourless
system. We point out that Q must be an IR-safe quantity, and can for instance be determined
by running the same IR-safe exclusive clustering algorithm exploited in the definition of
kness

T , until exactly n jets remain.

3.2.1 Initial-state collinear limit

When the unresolved radiation is collinear to an initial-state parton, kness
T reduces to the

usual transverse momentum of the Born-like system with respect to the beam, and, thus, it
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scales as ∼ Eθ. It follows that the normalised slicing parameter can be approximated as

rI
c = rI

c
1 = rI

c
2 ≡ kt

Q
. (3.21)

By exploiting the parametrisation outlined in section 2.2, the initial-state collinear contribution
in eq. (2.20) can be evaluated. The function Ib1b2

a1a2(z1, z2) in eq. (2.21) reduces to

Ib1b2
a1a2(z1, z2) =

(
µ2

R

Q2

)ϵ eγEϵ

Γ(1− ϵ)
αS(µR)

π
|M(0)

A |2

×
{[( 1

2ϵ2 − log2(rcut)
)

Ca1δa1b1δa2b2δ(1− z1)δ(1− z2)

+
(
−1

ϵ
+ 2 log(rcut)

)(
−γa1δa1b1δ(1− z1) + Pa1b1(z1; ϵ = 0)

)
δa2b2δ(1− z2)

+ Ca1b1(z1)δa2b2δ(1− z2) + (1 ↔ 2)
]}

, (3.22)

where Cab(z) and the regularised Altarelli-Parisi splitting kernels Pab(z) are defined in
appendix B. The cumulant beam function in eq. (2.22) reads

Bss′
ab (z, rcut) = dss′

a

(
µ2

R

Q2

)ϵ eγEϵ

Γ(1− ϵ)
αS(µR)

π

{[( 1
2ϵ2 − log2(rcut)

)
Caδabδ(1− z)

+
(
−1

ϵ
+ 2 log(rcut)

)(
−γaδabδ(1− z) + Pab(z; ϵ = 0)

)
+ Cab(z)

]}
, (3.23)

where the tensor dss′
a is defined in eq. (2.24). The result in eq. (3.23) corresponds to the

well-known transverse-momentum beam function, which appears in the production of a
colourless system [86].

3.2.2 Final-state collinear limit

In the following, frame-dependent quantities are specified in the partonic CM frame. By
using the parametrisation outlined in section 2.3, we find that the slicing variable can be
approximated as (

rF
c
i

)2
= min(ξ2, (1− ξ)2) xi

ξ(1− ξ)D2 (3.24)

in the final-state collinear limit, where the angle between pi and k goes to 0. Here, D is
the parameter entering the definition of kness

T . We notice that in this limit the variable
scales as ∼ Eθ, as expected from its definition as an effective transverse momentum with
respect to any collinear direction. Thus, kness

T features a uniform scaling in all initial-state
and final-state collinear regions.

Finally, the final-state collinear contribution in eq. (2.35) can be evaluated. The function
Ia1a2;ai in eq. (2.36) is found to be

Ia1a2;ai =
(

µ2
R

Q2

)ϵ eγEϵ

Γ(1− ϵ)
αS(µR)

π
|M(0)

A |2
{
−γai

(
−1

ϵ
+ 2 log(Drcut) + 2 log(2)

)
+ κai

+ Cai

[ 1
2ϵ2 − 1

2ϵ
log

4E2
Ji

Q2 − log2(Drcut) + log
4E2

Ji

Q2 log(Drcut)
]}

, (3.25)
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where the coefficients γai are defined in eq. (2.26), EJi =
pi·(p1+p2)

Q is the energy of the i-th
jet and we introduced the constants

κq = CF

(
7
4 − π2

4

)
, κg =

(131
72 − π2

4

)
CA − 17

36TRnf . (3.26)

The corresponding cumulant jet function in eq. (2.37) reads

J ss′
ai

(rcut) = dss′
ai

(
µ2

R

Q2

)ϵ eγEϵ

Γ(1− ϵ)
αS(µR)

π

{
−γai

(
−1

ϵ
+ 2 log(Drcut) + 2 log(2)

)
+ κai

+ Cai

[ 1
2ϵ2 − 1

2ϵ
log

4E2
Ji

Q2 − log2(Drcut) + log
4E2

Ji

Q2 log(Drcut)
]}

. (3.27)

3.2.3 Soft limit

In the following, frame-dependent quantities are specified in the partonic CM frame. In
the soft limit, kness

T assumes the expression

rS =
kness

T,S

Q
= min(1, {∆Ri(k)}/D)kt

Q
, (3.28)

where ∆Ri(k) is the distance between the soft parton with momentum k and the hard parton
i, and i = 3, . . . , n + 2 runs over the final-state Born jets. We also need to specify the soft
limit of the approximation we used in the singular region where the radiation is collinear to
an initial-state parton, i.e rC1,S = rC2,S = rI

c , and in the singular region where the radiation
is collinear to the final-state parton i, i.e.

(rCi,S)
2 =

(kness
T,CiS

)2

Q2 = k0

p0
i

2pi · k

Q2D2 , (3.29)

where pi is the four-momentum of the Born-level jet i.
By exploiting the parametrisation outlined in section 2.4, the soft-subtracted contribution

in eq. (2.38) can be written in terms of the soft function in eq. (2.39). The soft subtracted
current J2

sub in eq. (2.40) becomes

J2
sub =

(
−T1 · T2ω12 −

∑
i

(T1 · Tiω1i + (1 ↔ 2))−
∑
i>j

Ti · Tjωij

)
Θ(rcut − rS)

−
(

T2
1ω1

2 + (1 ↔ 2)
)
Θ(rcut − rI

c)−
∑

i

T2
i ωCi,SΘ(rcut − rCi,S) . (3.30)

An analytical closed form for S is hard to obtain in this case. However, we can analytically
extract the ϵ-poles and logarithms of rcut. In order to achieve this goal, we reorganise the
subtracted current as follows

J2
sub = J2

sing + (J2
sub − J2

sing) ≡ J2
sing + J2

fin (3.31)

where J2
sing is still singular in the soft wide-angle limit, whereas

Sfin ≡ 2µ2ϵ
R

eγEϵ

Γ(1− ϵ)

∫
ddk

Ωd−2
δ+(k2)J2

fin (3.32)

is finite in d = 4 dimensions and can be computed numerically.

– 20 –



J
H
E
P
1
2
(
2
0
2
3
)
1
9
3

The soft-singular term J2
sing can be defined as

J2
sing =

∑
i

T1 · Ti

(
(ω1

2 − ω1
i )Θ(rcut − kt/Q) + (ωCi,S − ωi

1)Θ(Drcut − ki⊥/Q)
)
+ (1 ↔ 2)

+
∑
i ̸=j

Ti · Tj(ωCi,S − ωi
j)Θ(Drcut − ki⊥/Q) (3.33)

where the sum runs over the labels of the final-state partons and ki⊥ is the transverse
momentum of k with respect to the i-jet direction, in the partonic CM frame, (see appendix C
for more details). Note that we split the eikonal terms according to ωαβ = ωα

β +ωβ
α in order to

obtain terms which are separately free of collinear divergences. The integral of the singular part

Ssing ≡ 2µ2ϵ
R

eγEϵ

Γ(1− ϵ)

∫
ddk

Ωd−2
δ+(k2)J2

sing (3.34)

can be related to integrals that are already known from qT -resummation for heavy-quark
production (see appendix C). The final result can be written as

Ssing =
(

µ2
R

Q2

)ϵ
eγEϵ

Γ(1− ϵ)
r−2ϵ

cut
ϵ

{∑
i

Cai log
(2EJi

Q

)
+ 1

2
∑
α ̸=β

log
(2pα · pβ

Q2

)
Tα · Tβ

}

− 1
2

{
2 log(D)

∑
α ̸=β

Tα · Tβ log
(2pα · pβ

Q2

)
+ 2

∑
i

Cai log
(2EJi

Q

)
+
∑

i

[
T1 · Ti

(
Li2
(
−2p2 · pi

Q2

)
+ Li2

(
−p2 · pi

2E2
Ji

))
+ (1 ↔ 2)

]

+
∑
i ̸=j

Ti · TjLi2
(
−

E2
Jj

2(pi · pj)
sin2 θij

)}
, (3.35)

where we recall that

cos θij = 1− pi · pj

EJiEJj

, EJi =
pi · (p1 + p2)

Q
. (3.36)

We point out that the logarithmic dependence on the jet energies EJi cancels against the
respective terms in the jet functions.

3.2.4 Subtraction coefficients for kness
T slicing

By adding all contributions we computed in the previous sections, and including the factori-
sation counterterm in eq. (2.52), the IR singular poles cancel out and we can extract the
expression for the Σ1k functions introduced in eq. (2.6):

Σ12
Ab1b2(z1, z2) = − δa1b1δa2b2δ(1− z1)δ(1− z2)

(
Ca1 + Ca2 +

∑
a∈{ai}

Ca

)
1 (3.37)

Σ11
Ab1b2(z1, z2) = 2

(
Pa1b1(z1; ϵ = 0)δa2b2δ(1− z2) + (1 ↔ 2)

)
1

+ δa1b1δa2b2δ(1− z1)δ(1− z2)
{
−2
(

γa1 + γa2 +
∑

a∈{ai}
γa

)
1

− 2 log(D)
∑

a∈{ai}
Ca1 −

∑
α ̸=β

log
(2pα · pβ

Q2

)
Tα · Tβ

}
(3.38)
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Σ10
Ab1b2(z1, z2) = log

(
Q2

µ2
F

)(
Pa1b1(z1; ϵ = 0)δa2b2δ(1− z2) + (1 ↔ 2)

)
1

+
(

Ca1b1(z1)δa2b2δ(1− z2) + (1 ↔ 2)
)

1

+ δa1b1δa2b2δ(1− z1)δ(1− z2)
{(

H(1) − pBβ0 log
(

Q2

µ2
R

))
1

+
∑

a∈{ai}

(
−Ca log2D − 2γa log(2D) + κa

)
1

− log(D)
∑
α ̸=β

Tα · Tβ log
(2pα · pβ

Q2

)

− 1
2
∑

i

[
T1 · Ti

(
Li2
(
−2p2 · pi

Q2

)
+ Li2

(
−p2 · pi

2E2
Ji

))
+ (1 ↔ 2)

]

− 1
2
∑
i ̸=j

Ti · TjLi2
(
−

E2
Jj

2(pi · pj)
sin2 θij

)
+ Sfin

}
, (3.39)

where pB denotes the power of αS(µR) that appears in the LO cross section. Contrary to
what happens for ∆Et, the coefficient of the double logarithm in rcut is the same for both
initial-state and final-state emitters, because kness

T scales as ∼ Eθ in all soft-collinear limits.

3.3 Numerical results

In this section we present some numerical results obtained using ∆Et and kness
T as slicing

variables. We start by considering Higgs (H) boson production through gluon fusion in
association with a jet at the LHC with a CM energy of 13 TeV. We use the PDF4LHC15_nnlo_30
PDFs [87] with αS(mZ) = 0.118 through the Lhapdf interface [88]. We define jets via the
anti-kT clustering algorithm [89] with R = 0.4 and pj

T > 30GeV. The factorisation (µF ) and
renormalisation (µR) scales are set to the Higgs boson mass mH = 125GeV.

We compute the corresponding cross section (in the infinite top-mass limit) using both
∆Et and kness

T as resolution variables. The kness
T calculation is carried out within the Matrix

framework [5], using tree-level and one-loop amplitudes evaluated with OpenLoops [90–92].
The ∆Et calculation is implemented in a dedicated code, which uses amplitudes computed
with Recola [93–95]. To compare the results obtained with a ∆Et cut against those obtained
with kness

T , we define the minimum rcut on the dimensionless variable r = ∆Et/
√

m2
H + (pj

T )2

and r = kness
T /

√
m2

H + (pj
T )2 respectively.7 In figure 1 we study the behaviour of the NLO

correction ∆σ as a function of rcut for the ∆Et and kness
T calculations, normalised to the result

obtained with Catani-Seymour (CS) dipole subtraction [60, 61] (which is independent of rcut)
by using Matrix. Both calculations nicely converge to the expected result as rcut → 0, but
the rcut dependence is very different for the two calculations. The rcut dependence in the
case of ∆Et is rather strong and consistent with a logarithmically enhanced linear behaviour.

7 In comparing resolution variables having different scalings in the soft-collinear limits, it is possible to
assign an exponent pX ̸= 1 to the definition of the dimensionless variable rX = (X/Q)pX associated with the
resolution variable X [9]. In the case of ∆Et the choice of pX would be non-trivial as this observable scales
differently in the initial- and final-state regions.
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Figure 1. The NLO correction ∆σ to the H+ jet cross section computed with ∆Et (red curve)
and kness

T (blue curves) as function of rcut compared to the rcut-independent result obtained with CS
subtraction using Matrix (orange). In the case of kness

T , predictions for two different values of the
parameter D, D = 1 (dark-blue curve) and D = 0.1 (light-blue curve), are shown.

By contrast, in the case of kness
T the dependence is rather mild and linear for both values

of D. We observe that kness
T slicing reaches 1% accuracy at rcut = 0.6% (rcut = 0.5%) for

D = 0.1 (D = 1) while ∆Et slicing reaches the same accuracy at rcut = 0.01%.
In figure 2 we show three relevant differential distributions, namely the invariant mass of

the H + 1 jet system, mHj (left), the Higgs transverse momentum, pT,H (centre) and the
rapidity of the leading jet, yj1 (right). Each plot consists of three panels: in the upper panel
we display the NLO differential cross section obtained with ∆Et, kness

T and CS subtraction;
in the central panel we show the ratio between the NLO correction obtained with a slicing
method (∆Et in red, kness

T in blue) and the NLO correction computed with CS subtraction
(orange); in the lower panel we plot the NLO K-factor KNLO, defined as the ratio of the NLO
to the LO distribution. From the central panels we can observe a nice agreement between
the results obtained with a slicing method and those computed with CS subtraction. For the
mHj and pT,H distributions the relative differences are around 1% in the bulk region and
below 2.5% in the tails where the statistics is much lower and we still experience numerical
fluctuations. Concerning the yj1 distribution we observe an excellent control over the full
rapidity range with differences smaller than 1%.

We also notice that the Higgs pT distribution displays a perturbative instability at
pT,H = 30GeV which corresponds to the cut on the leading jet pT . This behaviour is not
physical but it is expected from a fixed-order computation: even if the observable is IR
safe, an integrable divergence arises at a critical point inside the physical region where the
distribution is not smooth. This divergence is associated with configurations where the Higgs
boson is produced back-to-back to the leading jet in the transverse plane and the additional
radiation can only be collinear to the beams or soft. The physical behaviour is restored when
the all-order resummation of soft gluons is performed [96].

The kness
T variable can be also used to evaluate multijet cross sections at NLO accuracy.

Results for Z + 2 jet processes were presented in ref. [71]. Here we consider trijet production
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Figure 2. LO and NLO predictions for the invariant mass distribution of the H + 1 jet system (left),
the pT distribution of the Higgs boson (centre) and the rapidity distribution of the leading jet (right).
The NLO correction is computed with ∆Et, kness

T and CS subtraction. In the case of ∆Et, the results
are obtained at a fixed rcut = 0.001%, while, in the case of kness

T , they are obtained by performing a
linear extrapolation to rcut → 0. For each distribution, absolute predictions are shown in the upper
panel, ratios of the NLO correction computed with slicing approaches to the one computed with CS
subtraction in the middle panel, and NLO K-factors in the lower panel.

at the LHC with a CM energy of 13 TeV. We use the NNPDF31_nnlo_as_0118 PDFs [97] and
we require three jets in the final state with pj

T > 30GeV and |η|j < 4.5. The factorisation
and renormalisation scales are set to the Z-boson mass mZ = 91.1876GeV. We compute
the corresponding cross section using kness

T as resolution variable (with D = 0.8) and we
define the minimum rcut on the dimensionless variable r = kness

T /mjjj where mjjj is the
invariant mass of the trijet system.

In figure 3 we study the behaviour of the NLO correction ∆σ as a function of rcut for
the kness

T calculation, normalised to the result obtained with CS dipole subtraction (which is
independent of rcut). We can clearly notice that the kness

T slicing method nicely converges to
the expected result and the rcut dependence is purely linear. Compared to the case of H+jet
production, the missing power corrections in rcut are much more pronounced (roughly a factor
30 larger) and at rcut = 0.2% we are still about 15% away from the exact result. We note
however that, since the processes belong to different classes and involve different partonic
channels at the Born level, it is not immediate to draw conclusions about the behaviour of
the power corrections with respect to the number of jets. Moreover, the hard scale used to
normalise kness

T in figure 1 is not the same as the one in figure 3 and the NLO K-factor for
H+jet is roughly a factor four larger than the one for trijet production. If we had used the
invariant mass of the Born-like system to define the dimensionless variable r for H+jet, as
we do in trijet production, and normalised the missing power corrections to the respective
LO cross sections, the slope of the linear power corrections would only have differed by a
factor four. In general, the quantitative impact of the linear power corrections may depend
both on the hard scale appearing in the definition of the dimensionless variable r and on
the parameter D in the kness

T definition. In the case of H+jet production we have seen
in figure 1 that reducing the parameter D from D = 1 to D = 0.1 reduces the impact of
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Figure 3. The NLO correction ∆σ to the trijet cross section computed with kness
T (blue curve) as func-

tion of rcut compared to the rcut-independent result obtained with dipole subtraction (orange curve).

power corrections in a significant way. In the case of trijet production we find instead that
a reduction of D from D = 0.8 to D = 0.1 leads to a marginal increase of the effect. More
detailed studies on these issues are left for future work.

4 Summary

Slicing methods have provided very efficient ways to obtain higher order QCD predictions for
a number of benchmark hadron collider processes. These methods are based on identifying a
resolution variable to distinguish configurations in which at least one additional QCD parton
is resolved. The exploration of new resolution variables can have interesting implications,
both in the context of fixed-order calculations, resummed computations and in Monte Carlo
event generators.

In this paper we have considered a general class of hadron collider processes: the
production of an arbitrary number of jets, possibly accompanied by a colourless system. We
have provided a general formulation of a slicing scheme for this class of processes, by identifying
the various contributions that need to be computed at NLO. Following the nomenclature
customarily used in SCET, these contributions are the parton level beam, jet and soft
functions describing initial-state collinear, final-state collinear, and soft wide-angle radiation.

We then focused on two new observables, the one-jet resolution variable ∆Et and the
n-jet resolution variable kness

T [71], and we have explicitly computed all the perturbative
contributions needed to carry out NLO calculations by using these variables. We have shown
that the ∆Et variable, though potentially interesting for one-jet processes, has a non-trivial
structure of azimuthal correlations that lead to complications in the evaluation of the beam
and jet functions already at NLO. We have presented numerical results for H+jet production
using ∆Et and kness

T , showing the different power suppressed contributions affecting the two
variables. While power corrections for kness

T are purely linear, in the case of ∆Et they are
logarithmically enhanced. We have also shown results for differential distributions obtained
with the two slicing methods, and we have presented new results for three jet production
obtained with kness

T . Work on the extension of the kness
T formalism to NNLO is ongoing,

and will be reported elsewhere.
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In a series of appendices we provide extensive details of our calculations. We also
computed the jet function for ∆Et and kness

T by using alternative SCET-like definitions, which
might be more suitable for an extension to NNLO.

Acknowledgments

This work is supported in part by the Swiss National Science Foundation (SNSF) under
contracts 200020_188464 and PZ00P2_201878 and by the UZH Forschungskredit Grant
FK-22-099. We would like to thank Stefano Catani for helpful discussions. We are grateful to
Stefan Kallweit for his support in the implementation of kness

T in Matrix and for comments
on the manuscript.

A Azimuthal integrals for ∆Et

When we consider ∆Et as a resolution variable, both initial- and final-state collinear limits
feature a non-trivial dependence on the azimuthal angle in the plane transverse to the
collinear direction. In this appendix we will explain related complications that appear in
the calculation of the I∗-functions defined in eqs. (2.21) and (2.36) for initial-state and
final-state collinear limits, respectively.

In order to treat both collinear limits at the same time, we introduce the notation

Φ≡


ϕ

φ
x≡


z

ξ
kT ≡


kt

k⊥

Pµν
(∗) ≡


P µν

(∗)(z, k̂t;ϵ) for ISC

P̂ µν
(∗)(ξ, k̂⊥;ϵ) for FSC

, (A.1)

where (∗) stands for an arbitrary splitting. In the initial-state collinear limit (ISC) where
a parton splits into a gluon entering the hard process, the corresponding splitting kernel
contains a spin-dependent term k̂µ

T k̂ν
T which is a function of the azimuthal angle Φ. A

similar situation occurs in the final-state collinear limit (FSC) when a gluon splits into two
collinear partons. If the resolution variable is independent of the azimuthal angle, one can
straightforwardly perform the azimuthal integrals in eqs. (2.22) and (2.37)∫

dΩd−2
Ωd−2

Pµν
(∗)(x, k̂T ; ϵ) = P(∗)(x; ϵ)(−gµν) . (A.2)

This corresponds to replacing the spin-polarised splitting kernel Pµν
(∗)(x, k̂T ; ϵ) with the averaged

one P(∗)(x; ϵ) in the approximation of the matrix element and using the fact that

−gµνT µν
A = |M(0)

A |2 , (A.3)

where A is the multi-index labelling a Born channel.
In the general case, the splitting kernel can be decomposed as the sum of a spin-averaged

part P(∗) and a contribution proportional to G(∗) that averages to zero when the slicing
variable has a trivial dependence on the azimuthal angle, namely

Pµν
(∗)(x, k̂T ; ϵ) = P(∗)(x; ϵ)(−gµν)− G(∗)(x)

(
−gµν − 2(1− ϵ)k̂µ

T k̂ν
T

)
, (A.4)
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where k̂µ
T = kµ

T

|⃗kT |
is the normalised transverse four-momentum. All P(∗) and G(∗) functions are

listed in appendix B. If we plug eq. (A.4) in the expression of the I∗ integrals in eqs. (2.21)
and (2.36), we end up with two contributions for the spin-averaged and spin-dependent
parts, respectively. The azimuthal dependence of the slicing variable does not significantly
increase the complexity of the spin-averaged integral, thus we will focus on the spin dependent
part in the following.

We can first perform the integration over all radiation variables except the angular
dependence in the transverse plane dΩd−2. By dropping power corrections in the slicing
parameter, rcut, we arrive at integrals of type

Iµν
Φ =

∫
dΩd−3
Ωd−2

∫ π

0
dΦ(sinΦ)−2ϵ g(Φ)

(
−gµν − 2(1− ϵ)k̂µ

T k̂ν
T

)
(A.5)

to be contracted with the spin-polarised tensor T µν
A . The function g(Φ) embodies the

remaining dependence on Φ after the integration over the transverse momentum: in the
initial-state collinear limit we find g(ϕ) = (1 + cosϕ)2ϵ, while in the final-state collinear limit
we have g(φ) = (sinφ)2ϵ. In order to perform the integral of k̂µ

T k̂ν
T , we remind the reader

that cosϕ = p⃗F,t ·⃗kt

pF,tkt
for the initial-state collinear limit and cosφ = p⃗1,⊥ ·⃗k⊥

p1,⊥k⊥
for the final-state

collinear limit. Then, we can write the transverse unit vector as

k̂µ
T = cosΦ Eµ

1 + sinΦ Eµ
2 (Ωd−3) , (A.6)

where we defined

Eµ
1 =

ϵµ
1 = pµ

F,t

|p⃗F,t| for ISC

εµ
1 = pµ

1,⊥
|p⃗1,⊥| for FSC ,

(A.7)

while Eµ
2 (Ωd−3) lives on the unit sphere of the (d−3)-dimensional space orthogonal to Eµ

1 . The
four-vectors Eµ

1 and Eµ
2 satisfy the conditions E2

1 = E2
2 = −1 and E1 · E2 = 0. It follows that

−2(1−ϵ)
∫

dΩd−2

Ωd−2
g(Φ) k̂µ

T k̂ν
T =−2(1−ϵ)

Ωd−2

∫ π

0
dΦ(sinΦ)−2ϵ g(Φ)

∫
dΩd−3

×
(
cos2ΦE1

µE1
ν+sinΦcosΦ(E1

µE2
ν+E2

µE1
ν)+sin2ΦE2

µE2
ν) .

(A.8)

The integral of sin Φ cosΦ (E1
µE2

ν+E2
µE1

ν) vanishes because the integrand is anti-symmetric
in the (d−3)-dimensional subspace. The only non-trivial contribution to the dΩd−3-integral is∫

dΩd−3E2
µE2

ν ∼ Ωd−3
d − 3 (−gµν − Eµ

1 E
ν
1 ) , (A.9)

where ∼ means that we are dropping terms which are vanishing when contracted with the
T µν
A tensor, due to gauge invariance. Taking into account the previous considerations, we

can rewrite Iµν
Φ as

Iµν
Φ = Ωd−3

Ωd−2

∫ π

0
dΦ(sinΦ)−2ϵg(Φ)

(
−gµν− 2(1− ϵ) cos2Φ E1

µE1
ν− 2− 2ϵ

1− 2ϵ
sin2Φ (−gµν−Eµ

1 E
ν
1 )
)

= Ωd−3
Ωd−2

∫ π

0
dΦ(sinΦ)−2ϵ g(Φ)

(
cos2Φ− sin2Φ

1− 2ϵ

)(
(−gµν +Aµν)ϵ −Aµν

)
(A.10)
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where we introduced the asymmetry tensor Aµν = 2Eµ
1 Eν

1 + gµν . It is worth noticing that, if
g(Φ) is constant, the integral Iµν

Φ is identically zero to all orders in ϵ.
In the full computation of the initial- and final-state collinear contributions, Iµν

Φ multiplies
a single 1/ϵ pole and, thus, we need the result up to O(ϵ2), namely

Iµν
Φ =


−
∫ π

0
dϕ
π

(
1+cos ϕ

sin ϕ

)2ϵ (
cos2 ϕ − sin2 ϕ

1−2ϵ

)
Aµν +O(ϵ2) = ϵAµν +O(ϵ2) for ISC

−
∫ π

0
dφ
π

(
cos2 φ − sin2 φ

1−2ϵ

)
Aµν +O(ϵ2) = ϵAµν +O(ϵ2) for FSC

.

(A.11)

In conclusion, it turns out that the spin-dependent part of the I∗ integrals is proportional to
the contraction AµνTA,µν . This quantity can be directly evaluated in d = 4 dimensions as

AµνTA,µν = |M(0),E1
A |2 − |M(0),E2

A |2 (A.12)

where we defined the polarised Born matrix elements as |M(0),Ei

A |2 = TA,µνEµ
i Eν

i , i = 1, 2.
Having these results in mind, we can derive the formulæ in eqs. (3.5) and (3.9).

B Splitting kernels

In the initial-state collinear limit, we use the regularised and spin-polarised splitting kernels

P ss′
qq (z, k̂t; ϵ) = Pqq(z; ϵ) δss′

P ss′
qg (z, k̂t; ϵ) = Pqg(z; ϵ) δss′

P µν
gg (z, k̂t; ϵ) = Pgg(z; ϵ)(−gµν)− Ggg(z)

(
−gµν − 2(1− ϵ)k̂µ

t k̂ν
t

)
P µν

gq (z, k̂t; ϵ) = Pgq(z; ϵ)(−gµν)− Ggq(z)
(
−gµν − 2(1− ϵ)k̂µ

t k̂ν
t

)
(B.1)

where the spin-averaged splitting kernels are

Pqq(z; ϵ) =
CF

2

(
z2 + 1
(1− z)+

− ϵ(1− z)
)
+ 3

4CF δ(1− z)

Pqg(z; ϵ) =
TR

2

(
1− 2z(1− z)

1− ϵ

)
Pgg(z; ϵ) = CA

(
z

(1− z)+
+ 1− z

z
+ z(1− z)

)
+ β0δ(1− z)

Pgq(z; ϵ) =
CF

2

(
(1− z)2 + 1

z
− ϵz

)
. (B.2)

One can obtain the unregularised splitting kernels P̂ by simply replacing (1− z)+ → (1− z)
and dropping terms proportional to δ(1 − z). The functions Gab(z) are [98]

Ggg(z) = CA
1− z

z
Ggq(z) = CF

1− z

z
(B.3)
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and the functions Cab(z) read [86]

Cgq(z) =
CF

2 z Cqq(z) =
CF

2 (1− z) Cqg(z) = TRz(1− z) . (B.4)

In the final-state collinear limit, we use the unregularised and spin-polarised splitting kernels

P̂ ss′
q→qg(ξ, k̂⊥; ϵ) = P̂q→qg(ξ; ϵ) δss′ = P̂ ss′

q→gq(1− ξ, k⊥; ϵ)

P̂ µν
g→gg(ξ, k̂⊥; ϵ) = P̂g→gg(ξ; ϵ)(−gµν)− Gg→gg(ξ, ϵ)

(
−gµν − 2(1− ϵ)k̂µ

⊥k̂ν
⊥

)
P̂ µν′

g→qq̄(ξ, k̂⊥; ϵ) = P̂g→qq̄(ξ; ϵ)(−gµν)− Gg→qq̄(ξ, ϵ)
(
−gµν − 2(1− ϵ)k̂µ

⊥k̂ν
⊥

)
(B.5)

where the spin-averaged splitting kernels and the functions Gg→gg(ξ, ϵ) and Gg→qq̄(ξ, ϵ) read

P̂q→qg(ξ; ϵ) =
CF

2

(
ξ2 + 1
1− ξ

− ϵ(1− ξ)
)

= P̂q→gq(1− ξ; ϵ)

P̂g→gg(ξ; ϵ) =
CA

2

(
ξ

1− ξ
+ 1− ξ

ξ
+ ξ(1− ξ)

)
P̂g→qq̄(ξ; ϵ) =

TR

2

(
1− 2ξ(1− ξ)

1− ϵ

)
Gg→gg(ξ, ϵ) = CA

2 ξ(1− ξ)

Gg→qq̄(ξ, ϵ) = − TR

1− ϵ
ξ(1− ξ) . (B.6)

Note that we already include a symmetry factor 1/2 for the identical gluons in the final-state
g → gg splitting kernels and G functions, i.e., there are no symmetry factors in the phase space.

C Soft integrals for kness
T

In this appendix we discuss the integration, over the radiation phase space, of the soft
singular term J2

sing defined in eq. (3.33). We start by noticing that the result is the sum
of integrals of the type

2µ2ϵ
R

eγEϵ

Γ(1− ϵ)

∫
ddk

Ωd−2
δ+(k2)Θ

(
rcut −

kT

Q

)
J(k, p; v1, v2), (C.1)

where the function J(k, p; v1, v2) = 1
p·k

(
p·v1
v1·k − p·v2

v2·k

)
is integrated over the radiation phase

space ddk and depends on two massive four-vectors vi (i = 1, 2) and a massless four-vector p.
Indeed, we can consider eq. (3.33) and easily identify three families of integrals of the type
in eq. (C.1) according to the choice of p, v1 and v2. The first contribution is

ω1
2 − ω1

i = 1
p1 · k

(
p1 · (p1 + p2)
k · (p1 + p2)

− p1 · (p1 + pi)
k · (p1 + pi)

)
= J(k, p1; p1 + p2, p1 + pi) , (C.2)

where p1 and p2 are initial-state momenta and pi is the momentum of a final-state parton.
The second contribution is of type

ωCi,S − ωi
1 = 1

pi · k

(
pi · (p1 + p2)
k · (p1 + p2)

− pi · (pi + p1)
k · (pi + p1)

)
= J(k, pi; p1 + p2, pi + p1) , (C.3)
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while the last contribution is of type

ωCi,S − ωi
j = 1

pi · k

(
pi · (p1 + p2)
k · (p1 + p2)

− pi · (pi + pj)
k · (pi + pj)

)
= J(k, pi; p1 + p2, pi + pj). (C.4)

The b-space transformation for the function J(k, p; v1, v2) is known from qT -resummation
of heavy-quark pair production and it is given by [80]

⟨I (⃗b)⟩ =
〈∫

ddkδ+
(
k2
)

eik⃗T ·⃗b J(k, p; v1, v2)
〉

= 1
4Ωd−2Γ2(1− ϵ)

(
b2

4

)ϵ
−2

ϵ
ln

p · v1
√

v2
2

p · v2
√

v2
1

+Li2

(
−

v2
1,T

v2
1

)
−Li2

(
−

v2
2,T

v2
2

)
+O(ϵ)

 ,

(C.5)
where b2 ≡ (⃗b)2, v2

i,T ≡ (v⃗i,T )2 and ⟨· · · ⟩ stands for the (d− 2)-dimensional azimuthal average
over the direction of the impact parameter b⃗.

The integral in eq. (C.1) can be related to eq. (C.5) via

2µ2ϵ
R

eγEϵ

Γ(1− ϵ)

∫
ddk

Ωd−2
δ+(k2)Θ

(
rcut −

kT

Q

)
J(k, p; v1, v2) =

=
(

µ2
R

Q2

)ϵ

r−2ϵ
cut

eγEϵ

Γ(1− ϵ)
2⟨I (⃗b)⟩

Ωd−2Γ2(1− ϵ)
(

b2

4

)ϵ , (C.6)

where Q =
√
(p1 + p2)2 is the invariant mass of the system. The previous relation can be

derived by writing the Θ-function in Fourier space as

Θ
(

rcut −
kT

Q

)
=
∫ rcutQ

0
dd−2k′

T δ(d−2)(k⃗T − k⃗′
T ) =

∫ rcutQ

0
dd−2k′

T

∫
dd−2b

(2π)d−2 ei(k⃗T −k⃗′
T )·⃗b

(C.7)
and then performing the integral over the (d − 2)-dimensional azimuthal space around the
direction of the impact parameter. The final result for the integral in eq. (C.1) depends
on the transverse momenta vi,T with respect to the massless four-vector p. The transverse
component vT of a generic four-vector v can be defined uniquely by introducing a generic
reference vector N and by considering the following decomposition:

vT = v −
v ·
(
N − p N2

N ·p

)
N · p

p − v · p

N · p
N , (C.8)

which satisfies the conditions p·vT = N ·vT = 0. In this paper we implicitly choose N = p1+p2
such that v⃗T ≡ v⃗t coincides with the transverse momentum with respect to the beam direction
if p is an initial-state parton, while v⃗T ≡ v⃗⊥ lives in the plane orthogonal to p⃗ in the Born
CM frame (note that in this frame p⃗1 + p⃗2 = 0⃗).

Finally, we obtain

2µ2ϵ
R

eγEϵ

Γ(1− ϵ)

∫
ddk

Ωd−2
δ+(k2)Θ

(
rcut −

kt

Q

)
J(k, p1; p1 + p2, p1 + pi)

= 1
2

(
µ2

R

Q2

)ϵ

r−2ϵ
cut

eγEϵ

Γ(1− ϵ)

{
−1

ϵ
ln
(

p1 · p2
p1 · pi

)
+ Li2

(
−

p2
i,t

2p1 · pi

)}
+O(ϵ), (C.9)
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2µ2ϵ
R

eγEϵ

Γ(1− ϵ)

∫
ddk

Ωd−2
δ+(k2)Θ

(
rcut −

k⊥
Q

)
J(k, pi; p1 + p2, pi + p1)

= 1
2

(
µ2

R

Q2

)ϵ

r−2ϵ
cut

eγEϵ

Γ(1− ϵ)

{
−2

ϵ
ln
(

pi · (p1 + p2)
√
2pi · p1

pi · p1
√
2p1 · p2

)
+ Li2

(
−

p2
1,⊥

2p1 · pi

)}
+O(ϵ)

= 1
2

(
µ2

R

Q2

)ϵ

r−2ϵ
cut

eγEϵ

Γ(1− ϵ)

{
−1

ϵ
ln
(

2E2
Ji

pi · p1

)
+ Li2

(
−

p2
1,⊥

2p1 · pi

)}
+O(ϵ), (C.10)

2µ2ϵ
R

eγEϵ

Γ(1− ϵ)

∫
ddk

Ωd−2
δ+(k2)Θ

(
rcut −

k⊥
Q

)
J(k, pi; p1 + p2, pi + pj)

= 1
2

(
µ2

R

Q2

)ϵ

r−2ϵ
cut

eγEϵ

Γ(1− ϵ)

{
−2

ϵ
ln
(

pi · (p1 + p2)
√
2pi · pj

pi · pj
√
2p1 · p2

)
+ Li2

(
−

p2
j,⊥

2pj · pi

)}
+O(ϵ)

= 1
2

(
µ2

R

Q2

)ϵ

r−2ϵ
cut

eγEϵ

Γ(1− ϵ)

{
−1

ϵ
ln
(

2E2
Ji

pi · pj

)
+ Li2

(
−

p2
j,⊥

2pj · pi

)}
+O(ϵ) , (C.11)

for the three families of integrals introduced above.

D SCET-like definition of the NLO jet function

In Section (2.3) we obtained the contribution from the final-state collinear radiation by
starting from an exact parametrization of the phase space. Then, we expanded the matrix
element and parts of the phase space in the limit where the angle between the two collinear
partons becomes small. The advantage of this method is that it yields jet and soft functions
with a very clear physical origin. The jet function always contains the collinear singularity
as well as the soft-collinear contribution; its definition does not depend on the scaling of
the slicing variable in the respective region and, in particular, it is agnostic to whether the
slicing variable belongs to the class of SCETI or SCETII problems. The (subtracted) soft
function is then only related to soft wide-angle radiation.

On the other hand the method outlined in Section (2.3) has the disadvantage that it
does not achieve a full separation of scales between the collinear and the soft regions, even in
cases where such a separation is possible. To see this, consider the result of eq. (3.9) for the
final-state collinear region in the case of ∆Et-slicing. The result depends non-trivially on
the jet energy EJ and on the jet transverse momentum pJ,t. However, when the final-state
collinear region is combined with the soft one in Section (3.1.4), the dependence on EJ drops
out, suggesting that it is unphysical and frame dependent. To make the separation of scales
more apparent, we can follow a strategy similar to the one exploited in SCET or, in other
words, we can exploit the method of regions to give a definition of the jet and soft functions.

In order to identify the different regions, we need to introduce collinear and anti-collinear
reference vectors for each (Born level) jet. We find it useful to set up the reference vectors
in such a way that the transverse components of the momenta are purely spatial in the
partonic CM frame. To this purpose, we introduce a massive reference vector N = p1 + p2,
where p1 and p2 are the momenta of the initial-state partons. Having this in mind, for
a given (massless) Born level jet with four-momentum p, we can define the collinear and
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anti-collinear reference vectors

n =
√

N2

p · N
p , n̄ = 2√

N2
N − n (D.1)

satisfying n2 = n̄2 = 0 and n · n̄ = 2. Then, we can decompose every four-vector k as

k = k−n + k+n̄ + k⊥ , (D.2)

where k− = k·n̄
2 and k+ = k·n

2 , and k⊥ is the purely spatial transverse component with
k⊥ · n = k⊥ · n̄ = 0. We also introduce the collinear momentum fraction z = k·n̄

p·n̄ = k−
p−

.
We consider the splitting ai(p̃i) → a(k) + b(pi). For a generic resolution variable r, we

can define the differential NLO jet function as

ȷ̃ ss′
ai→ab(r) =

µ2ϵ
R

Ω2−2ϵ

eϵγE

Γ(1− ϵ)
αS(µR)

π

∫
dzk

zk

∫
dzpi

zpi

∫
dd−2k⊥

∫
dd−2p⊥,i

P̂ ss′
ai→ab({k})

k · pi

× δ(zk + zpi − 1)δd−2(k⊥ + p⊥,i)δ(r − rCi({p3, . . . , p̃i, . . . , pn+2}))

= µ2ϵ
R

eϵγE

Γ(1− ϵ)
αS(µR)

π

∫
dΩ2−2ϵ

Ω2−2ϵ

∫ 1

0
dz

∫
dk2

⊥
(k2

⊥)1+ϵ
P̂ ss′

ai→ab(z, k̂⊥; ϵ)δ(r − rCi(z, k⊥))

=
(

µ2
R

Q2

)ϵ
eϵγE

Γ(1− ϵ)
αS(µR)

π

∫
dΩ2−2ϵ

Ω2−2ϵ

∫ 1

0
dzz−ϵ(1− z)−ϵ

×
∫

dxx−1−ϵP̂ ss′
ai→ab(z, k̂⊥; ϵ)δ(r − rCi(z, x)) , (D.3)

where P̂ ss′
ai→ab is the unregularised and spin-polarised splitting kernel (appendix B), rCi is

the approximation of the slicing variable in the collinear region defined above and Q2 is
the squared CM energy. In the last step we have performed the change of variables to the
dimensionless invariant mass x = 2k · pi/Q2 = k2

⊥/(Q2z(1 − z)) at fixed z. The cumulant
version of the NLO jet function is obtained by integrating the differential jet function up
to rcut and summing over all possible splittings of parton ai

J̃ ss′
ai

(rcut) =
∑
(∗)

∫ rcut

0
dr ȷ̃ ss′

ai→(∗)(r) , (D.4)

where (∗) labels an arbitrary splitting.
Thus, the final-state collinear contribution associated with the limit k · pi → 0 is given by

F̃c
i =

∑
A

∫ 1

0
dx1fa1(x1, µF )

∫ 1

0
dx2fa2(x2, µF )

∫
dΠd

n(q; pF , {pj}n+2
j=3 )

T ss′
a1a2;...ai...

2Q2 J̃ ss′
ai

(rcut),

(D.5)

where q = p1 + p2 and we summed over the possible Born configurations A = {a1, a2, {ai}}.
By inspecting eq. (D.3), the new definition of the NLO jet function differs from the one

in eq. (2.37) by the absence of the phase space factor beyond the strictly collinear limit
given in eq. (2.32). Even though it seems that the soft endpoints z → 0 and z → 1 are
regulated by the factors z−ϵ and (1 − z)−ϵ respectively, the integral over the variable x

can generate additional z-dependent terms that spoil this regularisation. Therefore, the
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SCET-like definition leads to the possible appearance of rapidity divergences as expected when
applying the method of regions. One way to treat these rapidity divergences is to consistently
introduce rapidity regulators [99–105] in the jet, beam and soft functions associated with
each singular region. To make contact with the definition given in section 2.3, we consider
here a different method inspired by ref. [106].

We modify the jet function of eq. (D.3) by applying the replacement

z = k · n̄

p̃i · n̄
= k · n̄

(k + pi) · n̄
→ zN = k · N

(k + pi) · N
(D.6)

in the argument of the splitting kernel P̂ ss′
ai→ab(z, k̂⊥; ϵ). We refer to this procedure as the

“zN -prescription”. We observe that the fraction zN with the choice N = p1 +p2 coincides with
the energy fraction ξ defined in section 2.3. At fixed x, we can express z in terms of zN as

z ≃ zN

1− Q2x/4(p̃−i )2

(
1− Q2

4(p̃−i )2
x(1− zN )

zN

)
. (D.7)

Performing a change of variables from z to zN at fixed x, the NLO differential jet function
with the zN -prescription becomes

ȷ̃ ss′
ai→ab(r) =

(
µ2

R

Q2

)ϵ
eϵγE

Γ(1− ϵ)
αS(µR)

π

∫
dΩ2−2ϵ

Ω2−2ϵ

∫ 1

0
dzz−ϵ(1− z)−ϵ

×
∫

dxx−1−ϵP̂ ss′
ai→ab(zN , k̂⊥; ϵ)δ(r − rCi(z, x))

=
(

µ2
R

Q2

)ϵ
eϵγE

Γ(1− ϵ)
αS(µR)

π

∫
dΩ2−2ϵ

Ω2−2ϵ

∫ 1

0
dzN z−ϵ

N (1− zN )−ϵ

×
∫

dxx−1−ϵ

(
1− Q2

4(p̃−i )2
x

zN (1− zN )

)−ϵ

P̂ ss′
ai→ab(zN , k̂⊥; ϵ)δ(r − rCi

N (zN , x)),

(D.8)

where we have introduced the notation rCi
N (zN , x) := rCi(z(zN , x), x). In the final expression

of the above equation, we are allowed to identify p̃−i ≈ p̃0
i , where p̃0

i is the energy component
in the partonic CM frame. The effect of the zN -prescription is that of reinstating power
corrections beyond the strictly collinear limit. More precisely, it allows us to exactly recover
the additional phase space factor in eq. (2.34) starting from a careful expansion in the collinear
and soft limits. Therefore, the SCET-like jet function regularised with the zN -prescription
is equivalent to the one obtained in section 2.3 up to the precise expression used for the
approximation of the observable in the collinear limit, rCi

N . To be concrete, we consider the
case of kness

T and define
(
kness,Ci

T (z, x)
)2

= Q2zx/((1−z)D2), limiting ourselves, for simplicity,
to the case z < 1/2 (see eq. (3.24)). Then, applying the change of variables in eq. (D.7), we get

(
kness,Ci

T,N (zN , x)
)2

=
(
kness,Ci

T (zN , x)
)2 1− Q2

4(p̃−i )2
x(1−zN )

zN

1− Q2

4(p̃−i )2
xzN

1−zN

≈
(
kness,Ci

T (zN , x)
)2
(
1− Q2

4(p̃−i )2
x(1− 2zN )
zN (1− zN )

)

≈
(
kness,Ci

T (zN , x)
)2
(
1− Q2

4(p̃−i )2
x

zN (1− zN )

)
. (D.9)
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On the other hand, in section 3.2.2, we made the choice
(
kness,Ci

T,N (zN , x)
)2
=
(
kness,Ci

T (zN , x)
)2

,
see eq. (3.24). As we will show explicitly in the following, this does not change the coefficients
of the poles in d dimensions nor those of the logarithms of the observable. Only the constant
term can be affected. The difference is compensated by the corresponding change in the soft
function. Indeed, the modification of the observable in the collinear limit affects also the
related subtraction contribution in the definition of the subtracted current in eq. (2.40). More
precisely, the soft limit of the SCET-jet function regularised with the zN -prescription reads

lim
k0→0

ȷ̃ss′
ai→ab(r)=µ2ϵ

R

eϵγE

Γ(1−ϵ)
αS(µR)

π
Cai

∫
ddk

Ωd−2
δ+(k2) 2p̃i ·N

(k ·p̃i)(k ·N)δ(r−rCiS(k)) , (D.10)

where Cai is the colour Casimir of the parton ai and rCiS(k) is obtained by first taking the
collinear limit and then the limit where k becomes soft, i.e. taking the leading contribution
of rCi(z, x) for z → 0. In the case of kness

T , this translates into

(
kness,CiS

T

Q2

)2

= zx

D2 ≈ zN

(
1− Q2

4(p̃−i )2
x

zN

)
x

D2 ≈ k0

p̃0
i

2k · pi

Q2D2

(
1− k · pi

2p̃0
i k0

)
, (D.11)

to be compared with eq. (3.29).
To conclude, in this appendix we have seen that a SCET-like definition of the jet function

leads to a clean separation of the different scales. On the other hand, if rapidity divergences
are present, the jet function becomes dependent on the scheme chosen to regularise them.
Moreover, the regularisation procedure will spoil such a simple scale separation. The ensuing
scaling violations, however, are typically easy to extract, at least at NLO (see eq. (D.24)
below). In the following, we will compute the jet function in the SCET-like formulation
for the two resolution variables considered in this paper, namely ∆Et and kness

T . We will
also directly compare the jet functions obtained applying the zN -prescription with those
computed in section 3.1.2 and section 3.2.2, respectively.

D.1 ∆Et jet function

In the ∆Et case, no rapidity divergences arise, and there is in principle no need to use any
regularisation procedure. The SCET-like ∆Et jet function, at the differential level, is given by

ȷ̃ss′
ai→ab(∆Et/Q)=

(
µ2

R

Q2

)ϵ
eϵγE

Γ(1−ϵ)
αS(µR)

π

∫ 1

0
dzz−ϵ(1−z)−ϵ

∫
dxx−1−ϵ

×
∫

dΩ2−2ϵ

Ω2−2ϵ
P̂ ss′

ai→ab(z,k⊥;ϵ)δ

(
∆Et

Q
−Qxsin2 ϕ

2p̃i,t

)

=

(
µ2

R
2∆Etp̃i,t

)ϵ

∆Et/Q

eϵγE

Γ(1−ϵ)
αS(µR)

π

Ω1−2ϵ

Ω2−2ϵ

∫ 1

0
dzz−ϵ(1−z)−ϵ

∫ π

0
dϕP̂ ss′

ai→ab(z, k̂⊥;ϵ) ,

(D.12)

where p̃i,t is the transverse momentum with respect to the beam direction. In the case of a
quark-initiated splitting (ai = q), the corresponding kernel does not contain any dependence
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on the azimuthal angle ϕ and the quark jet function is

ȷ̃ ss′
q (∆Et/Q) = ȷ̃ ss′

q→qg(∆Et/Q)

= δss′

(
µ2

R
8∆Etp̃i,t

)ϵ

∆Et/Q

eϵγE

Γ(1− ϵ)
αS(µR)

π
CF

[
−1

ϵ
− 3

4 + ϵ

(
−7
4 + π2

3

)
+O(ϵ2)

]
(D.13)

at the differential level and

J̃ ss′
q (rcut) = δss′

(
µ2

R

Q2

)ϵ
eϵγE

Γ(1− ϵ)
αS(µR)

π

(
Q

8rcutp̃i,t

)ϵ

CF

[ 1
ϵ2 +

3
4ϵ

+7
4−

π2

3 +O(ϵ)
]

(D.14)

at the cumulant level. The gluon-initiated (ai = g) splitting kernel contains a residual
dependence on the azimuthal angle ϕ due to the polarisation of the parent gluon. By
exploiting the technique explained in the appendix A, we can perform the azimuthal integral
and obtain

ȷ̃µν
g (∆Et/Q)= ȷ̃µν

g→gg(∆Et/Q)+ȷ̃µν
g→qq̄(∆Et/Q)

=

(
µ2

R

2∆Etp̃i,t

)ϵ

∆Et/Q

eϵγE

Γ(1−ϵ)
αS(µR)

π

πΩ1−2ϵ

Ω2−2ϵ

∫ 1

0
dzz−ϵ(1−z)−ϵ

×
[
−gµν

(
P̂g→gg(z;ϵ)+nf P̂g→qq̄(z;ϵ)

)
−ϵAµν

(
Gg→gg(z)+nf Gg→qq̄(z)

)
+O(ϵ2)

]
.

(D.15)

Thus, the gluon jet function is

ȷ̃ µν
g (∆Et/Q) =

(
µ2

R
8∆Etp̃i,t

)ϵ

∆Et/Q

eϵγE

Γ(1− ϵ)
αS(µR)

π

{
gµν

[
CA

ϵ
+ β0 + CA

(67
36 − π2

3

)
ϵ − TRnf

5
9ϵ

]
− ϵAµν

[
CA

12 − TRnf

6

]
+O(ϵ2)

}
(D.16)

at the differential level and

J̃ µν
g (rcut) =

(
µ2

R

Q2

)ϵ
eϵγE

Γ(1− ϵ)
αS(µR)

π

(
Q

8rcutp̃i,t

)ϵ

×
{
−gµν

[
CA

ϵ2 + β0
ϵ

+ CA

(67
36 − π2

3

)
− TRnf

5
9

]
+Aµν

[
CA

12 − TRnf

6

]
+O(ϵ)

}
(D.17)

at the cumulant level.
We observe that the SCET-like jet function does not contain any dependence on the jet

energy EJi . Comparing with the result obtained in eq. (3.12) we find

J ss′
a (rcut)− J̃ ss′

a (rcut)

= dss′
a Ca

(
µ2

R

Q2

)ϵ
eϵγE

Γ(1− ϵ)
αS(µR)

π

(
Q

8rcutp̃i,t

)ϵ (2EJi

Q

)2ϵ [
− 1
2ϵ2 − π2

12 +O(ϵ)
]

. (D.18)
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We see that the two jet functions differ already in the pole structure: this is due to a different
partition of contributions of soft and collinear origin between the jet and the soft function.

Even if it is not strictly necessary, it is instructive to consider the result for the SCET-like
jet function when applying the zN -prescription. Following the previous discussion, we know
that this leads to the jet function in eq. (2.37) up to the definition of the observable in the
collinear limit. In this case, we have that

∆EC
t (z, x, ϕ) = Q2x sin2 ϕ

2p̃i,t
→

z→z(zN ,x)
= ∆EC

t,N (zN , x) = ∆EC
t (zN , x) , (D.19)

since ∆EC
t (z, x, ϕ) does not depend on z. Therefore, in this case the SCET-like jet function

regularised with the zN -prescription coincides exactly with the one defined in the main
text. Comparing with the pure SCET-like definition, we have the advantageous feature that
the pole structure is observable independent and predictable both in the collinear region
and in the pure soft region.8

D.2 kness
T jet function

Since kness
T behaves as a transverse momentum in every collinear limit, its SCET-like jet

function manifests a rapidity divergence, which we regularise with the zN -prescription. At
the differential level, we have

ȷ̃ ss′
ai→ab(kness

T /Q) =
(

µ2
R

Q2

)ϵ
eϵγE

Γ(1− ϵ)
αS(µR)

π

∫ 1

0
dzz−ϵ(1− z)−ϵ

∫
dxx−1−ϵ

×
∫

dΩ2−2ϵ

Ω2−2ϵ
P̂ ss′

ai→ab(zN , k̂⊥; ϵ) δ

(
kness

T

Q
−
√

z(1− z)x
max(z, 1− z)2D2

)

= dss′
ai

(
µ2

R

kness
T

2D2

)ϵ

kness
T /Q

eϵγE

Γ(1− ϵ)
αS(µR)

π
2
∫ 1

0
dz max(z, 1− z)−2ϵP̂ai→ab(zN ; ϵ) ,

(D.20)

where we used the fact that the slicing variable does not contain any azimuthal dependence
which allows us to replace the splitting kernel with its azimuthal average. Starting from
eq. (D.7), we express zN as

zN = z

1 + Q2x
4(p̃0

i )2

(
1 + Q2x

4(p̃0
i )2

1− z

z

)
≈ z

(
1 + kness

T
2D2

4(p̃0
i )2z2

)
, (D.21)

where the last approximation contains the leading behaviour in the collinear and soft region.
At the leading power, we have to perform integrals of the kind

IzN =
∫ 1

0
dz

f(z; ϵ)
zN

, (D.22)

8 A similar implication was noticed in ref. [107] when discussing the consequences of introducing a rapidity
regulator for SCETI problems.
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where f(z; ϵ) is finite in the limit z → 0. By performing the following manipulation

IzN =
∫ 1

0
dz

f(z)− f(0)
z

1

1 + kness
T

2D2

4(p̃0
i )2z2

+ f(0)
∫ 1

0
dz

1

1 + kness
T

2D2

4(p̃0
i )2z2

=
∫ 1

0
dz

f(z)− f(0)
z

− 1
2 log

(
kness

T
2D2

4(p̃0
i )2

)
f(0) +O

(
kness

T
2

(p̃0
i )2

)
(D.23)

we obtain that the net effect of the zN -prescription is captured by the replacement

1
zN

→
(1

z

)
+
− 1

2 log
(

kness
T

2D2

4(p̃0
i )2

)
δ(z) . (D.24)

By summing over all possible splittings ai → (∗), we find that the differential jet functions
in the zN -prescription are

ȷ̃ ss′
ai

(kness
T /Q) =

∑
(∗)

ȷ̃ ss′

ai→(∗)(k
ness
T /Q) = 2dss′

ai

(
µ2

R

kness
T

2D2

)ϵ

kness
T /Q

eϵγE

Γ(1− ϵ)
αS(µR)

π

×


−γq(1− 2ϵ log 2) + CF

[
−1

2 log
(

kness
T

2D2

4(p̃0
i )2

)
+ ϵ

(
π2

6 − 7
4

)]
+ O(ϵ2) ai = q

−γg(1− 2ϵ log 2) + CA

[
−1

2 log
(

kness
T

2D2

4(p̃0
i )2

)
+ ϵ

(
π2

6 − 131
72

)]
+ nf TRϵ17

36 + O(ϵ2) ai = g

(D.25)

and the cumulant jet functions are

J̃ ss′
ai

(rcut) =

dss′
ai

eϵγE

Γ(1− ϵ)

(
µ2

R

r2
cutD

2Q2

)ϵ
αS(µR)

π

×


CF
2ϵ2 +

γq+CF log
(

rcutDQ

2p̃0
i

)
ϵ − 2γq log 2 + CF

(
7
4 − π2

6

)
+ O(ϵ) ai = q

CA
2ϵ2 +

γg+CA log
(

rcutDQ

2p̃0
i

)
ϵ − 2γg log 2 + CA

(
131
72 − π2

6

)
+ nf TR

17
36 + O(ϵ) ai = g .

(D.26)

By comparing the SCET-like jet functions regularised with the zN -prescription with the
result in eq. (3.27), we find that, up to O(ϵ0), they differ only by the finite contribution

J ss′
ai

(rcut)− J̃ ss′
ai

(rcut) = −dss′
ai

Cai

αS(µR)
π

(
π2

12 + O(ϵ)
)

. (D.27)
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