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Abstract: I provide a new idea based on geometric analysis to obtain a positive mass
gap in pure non-abelian renormalizable Yang-Mills theory. The orbit space, that is the
space of connections of Yang-Mills theory modulo gauge transformations, is equipped with
a Riemannian metric that naturally arises from the kinetic part of reduced classical action
and admits a positive definite sectional curvature. The corresponding regularized Bakry-
Émery Ricci curvature (if positive) is shown to produce a mass gap for 2+1 and 3+1
dimensional Yang-Mills theory assuming the existence of a quantized Yang-Mills theory on
(R1+2,η) and (R1+3,η), respectively. My result on the gap calculation, described at least as
a heuristic one, applies to non-abelian Yang-Mills theory with any compact semi-simple Lie
group in the aforementioned dimensions. In 2+1 dimensions, the square of the Yang-Mils
coupling constant g2

Y M has the dimension of mass, and therefore the spectral gap of the
Hamiltonian is essentially proportional to g2

Y M with proportionality constant being purely
numerical as expected. Due to the dimensional restriction on 3+1 dimensional Yang-Mills
theory, it seems one ought to introduce a length scale to obtain an energy scale. It turns out
that a certain ‘trace’ operation on the infinite-dimensional geometry naturally introduces
a length scale that has to be fixed by measuring the energy of the lowest glu-ball state.
However, this remains to be understood in a rigorous way.
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1 Introduction

One of the most important questions in contemporary mathematical physics is to prove
that the Hamiltonian or Schrödinger operator of non-abelian Yang-Mills fields admits a
spectral gap. The importance of Yang-Mills theory needs no explanation since the standard
model is built upon it. Although it is commonly believed that the non-abelian gauge
theories in any dimensions less than or equal to four are confining and possess a mass gap,
proof on the theoretical ground with complete generality is missing. The prime interest
is the 3+1 dimensional Yang-Mills theory for obvious reasons, however, I will consider
both the 2+1 and 3+1 dimensional cases. While the most physically relevant model is
the 3+1 dimensional QCD, pure Yang-Mills theory in 2+1 dimensions deserves attention
since it is intermediate in complexity between the 3+1 dimensional and nearly trivial 1+1
dimensional theories yet possesses most of the characteristic features of 3+1 dimensional
theory. There are enough theoretical and numerical evidence that both 3+1 and 2+1
theories confine [14, 33–36, 39–42]. There are of course several fundamental differences
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between these two theories as well. In 2+1 dimensions, the square of the bare coupling
constant has a dimension of mass leading to super-renormalizability while 3+1 dimensional
theory is borderline renormalizable. As we shall see, this will turn out to be a crucial feature
of the result that we derive in section 6.

At the level of perturbative quantum field theory, two fundamental breakthroughs in
the context of Yang-Mills theory (in dimensions n+1,n≤ 3) are its renormalizability [1]
and asymptotic freedom [2]. While the former can be interpreted in terms of suitable
Sobolev embedding theorems (in the case of 3+1 dimensions, such embedding turns out
to be borderline as it fails to be compact, and for this reason, it is considered to be
borderline renormalizable), the latter indicates approaching a free theory at a high energy
limit. At low energies where the Yang-Mills coupling is strong, the non-linearities are not
small (in a suitable function space setting) and in such a regime of large data problems, a
range of complicated processes are expected to occur that should fundamentally separate
the behavior of non-abelian gauge theories from that of abelian theories such as pure
QED. One such attribute of Yang-Mills theory associated with strong field processes is the
expected existence of a gap in the spectrum of the Hamiltonian [18]. Such a gap, if it
exists, could represent the energy difference between the actual vacuum state and that of
the lowest energy ‘glueball’ states and confirm the expectation that massless gluons cannot
propagate freely as photons do. Keeping aside the perturbative treatment, little is known
about the rigorous non-perturbative quantization of almost any interacting quantum field
theory in 3+1 dimensions. In 2+1 and 1+1 dimensions, the construction of quantum
field theories with nonlinear interactions was made possible by the breakthrough work of
Jaffe and Glimm [3, 4] among others. In 4 dimensions, through a re-normalization group
argument, [23] proved the Gaussianity hence triviality of φ4 theory.

The classical Yang-Mills theory on R1+n is described by the extremum of the action
functional SY M :=−1

4
∫
R1+n⟨F,F ⟩, where F is the curvature associated with a principal

bundle (P,G,R1+n) written in terms of the gauge covariant exterior derivative of a con-
nection. The resulting Yang-Mills equations can be cast into a hyperbolic system (or a
coupled elliptic-hyperbolic one) in a suitable choice of gauge and as such a solution can
be thought of as a curve t 7→ (A(t),E(t)) in the reduced phase space T ∗(A/Ĝ) (A is the
space of spatial connections belonging to an appropriate function space and Ĝ is the group
of automorphisms of the bundle P after modding out the set of covariantly constant el-
ements; note that E is the momentum variable associated with the connection A∈A/Ĝ).
Since the reduced orbit space A/Ĝ is an infinite dimensional manifold, one could interpret
a classical solution as a particle moving in this infinite-dimensional configuration space
with prescribed initial position A(t=0) and momentum E(t=0). With this interpretation,
a naive thought of writing down the Hamiltonian operator (a formal covariant Laplace-
Beltrami operator defined on the configuration space A/Ĝ together with a potential term)
of the system and obtaining its spectrum becomes natural. Firstly, however, such a covari-
ant Laplace-Beltrami operator generates infinities while acting even on smooth functionals
and therefore a suitable regularization is necessary to make sense of this operator. Even
after one makes sense of this operator, a canonical quantization proves to be monumentally
difficult. Nevertheless, there has been some progress using the Microlocal technique devel-
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oped by [6, 7]. On the other hand, due to the equivalence between the Schroendinger and
path integral quantization, one may invoke the stochastic quantization scheme of Parisi
and Wu [48]. In this later scheme, an Euclidean quantum field theory is obtainable as a
stationary limit of the Langevin dynamics associated with the classical action. [46, 47] is
able to employ Parisi-Wu stochastic quantization to 3-dimensional Yang-Mills-Higgs the-
ory while the 4-dimensional case remains a daunting task. I wish to point out that the 2
dimensional Euclidean quantum Yang-Mills theory is made completely rigorous by several
researchers [15–17]

Leaving aside the question of a rigorous quantization, if one simply assumes such to
be true then the following question arises: what is the source of mass gap? Unlike the
Abelian gauge theory, the orbit space for the non-abelian one is geometrically rich. I.M
Singer [11] computed several geometric entities including the Riemann curvature of the
orbit space. The sectional curvature is positive definite and the Ricci curvature is formally
positive definite. Upon such observation, one immediately attempts to use the theorem
on the eigenvalue estimate of the Laplace-Beltrami operator due to Lichnerowicz [30, 31].
However, the estimation of the spectral gap in an infinite dimensional setting is techni-
cally challenging due to the lack of compactness. For example, on a finite-dimensional
compact manifold, one may utilize a direct Lichnerowicz [30, 31] estimate to obtain the
spectral gap of Laplacian (see [63–65] for estimates on the spectrum of a Schrodinger oper-
ator). In fact, in finite dimensions, Bonet-Meyers theorem [49] guarantees that manifolds
with positive definite Ricci curvature (uniform lower bound) are compact. Therefore, the
positive definiteness of the Ricci curvature is sufficient to obtain a spectral gap in finite
dimensions. However, in infinite dimensions, this luxury is lost since even a bounded
ball in an infinite dimensional manifold is not compact in general. To get around this
problem, let us recall that I assume the existence of a quantum Yang-Mills theory. This,
by the basic axioms of a quantum field theory (see [66] for example) (for gauge theory
there may be additional axioms), produces a normalizable ground state wave functional
Ψ[A] :=Nℏe

−S[A]/ℏ, Nℏ ∈C−0. The normalizability condition
∫
A/Ĝ |Nℏ|2e−2S[A]/ℏµG=1,

(where G is a Riemannian metric on the space A/Ĝ induced by the kinetic part of the
classical action and µG is the associated ‘infinite’ volume element) automatically equips
the orbit space A/Ĝ with a measure |Nℏ|2e−2S[A]/ℏµG that can be utilized to estimate the
spectral gap. But, this geometric contribution that arises from the curvature is purely
kinetic. Therefore one obvious issue that arises is the role played by the potential energy.
Note that the Yang-Mills potential energy 1

4
∫
Rn Fij ·F ij contain terms that are quartic in

the connection since F = dA+[A,A]. Such a potential might rise rapidly enough to confine
the wave functional e−S[A]/ℏ. In other words, the influence of the potential is felt at the
level of the functional S[A] :=−ℏ

2 ln(|Nℏ|−2|Ψ[A]|2) that aids to normalize e−S[A]/ℏ. At the
level of the mass gap, this effect of potential is precisely felt through a term the Hessian
of the functional S[A] that is added to the Ricci curvature of the orbit space. The fol-
lowing theorem is the main result of this article regarding the estimation of the mass gap
of the Yang-Mills theory under the assumption that a quantum theory exists. For this,
we introduce a few notations which will be described in detail later in the section 2. Let
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(R1+n,η) be the n+1, n=2,3 dimensional Minkowski space with its metric η in usual
rectangular coordinates (t,xi)n

i=1. We consider a principle G bundle P over (R1+n,η) with
the structure group being a compact semi-simple Lie group G. The Lie algebra g associ-
ated with G has an adjoint invariant positive definite inner product that we denote here
by ‘·’. The connection of this bundle is denoted by A :=Aα

µTαdxµ, Tα denotes a basis of
g. We sometimes ignore the lie algebra indices and write Aµ for the connection (whenever
it is done, it should be understood that a Lie-algebra index is present). Since we will
primarily utilize a Hamiltonian formalism, it is convenient to work with spatial connection
i.e., components of A parallel to a t= constant hypersurface Rn. Let S be the space of
Schwartz connections on Rn modulo gauge transformations (i.e., the spatial connections
verify (1+|x|)k|∂lA| ≤ constant ∀k, l∈Z). In other words, by S, we denote the connections
on the orbit space A/Ĝ that decay rapidly towards the infinity of Rn. Under the assump-
tion of the existence of quantum Yang-Mills theory, the Hilbert space of the theory can
be identified with L2(S(Rn),e−2S[A]/ℏµG). Let us denote the gauge covariant derivative
associated with a connection A by ∇̂ and the corresponding exterior derivative by d∇̂.

Theorem 1.1 Let F = d∇̂A be the curvature of the principle G−bundle P over R1+n, n=
2,3 and the associated Yang-Mills theory is defined by the action IY M :=−1

4
∫
R1+n Fµν ·

F µνdn+1x.1 Let us assume that the corresponding quantum theory exists that has a nor-
malizable ground state Ψ[A] :=Nℏe

−S[A]/ℏ,Nℏ ∈C−{0}. Then the associated Hamiltonian
operator Ĥ verifies the mass gap

∆E ≥ ℏ2∆
2 (1.1)

if the regularized and renormalized Bakry-Emery Ricci curvature RB.E of the orbit space
A/Ĝ admits the following uniform bound after the removal of the regulator

RB.E(α[A],α[A])≥∆G(α[A],α[A]), (1.2)

where ∆> 0 being a constant and RB.E is defined as follows

RB.E(α[A],α[A]) :=
∫

x,x′y,y′

GAM
k (y′ )AL

k (y)RAM
k

(y′ )AN
n (x′ )AL

k
(y)AP

i (x)α
N
n (x′)αP

i (x)︸ ︷︷ ︸
I

+ 2
ℏ
GAP

I (x)AQ
J (x′ )GAM

K (y)AN
L (y′ ) D

DAP
I (x)

DS[A]
DAM

K (y)
αQ

I (x
′)αN

L (y′)︸ ︷︷ ︸
II


and α[A]∈TA(A/Ĝ).

Remark 1 Note that the functional S[A] is not to be confused with the Yang-Mills action
functional. Since Ψ[A] :=Nℏe

−S[A]/ℏ verifies the functional Schrodinger equation, S[A]
verifies a functional Ricatti type equation.

1Usually, the Yang-Mills action is defined as − 1
4g2

Y M

∫
R1+n Fµν ·F µνdn+1x, where gY M is the coupling

constant. In my convention, I absorb it in the definition of F and the coupling only appears through the
commutation relation.
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Let us try to understand the theorem and compare it with previous studies. Notice
that the term I corresponds to a pure geometric contribution (this term actually blows
up without proper regularization). First, let us focus on the inequalities 1.1 and 1.2 and
consider the 2+1 dimensional case. ∆E is contributed by the spectral gap in the covariant
Laplacian defined on the orbit space A/Ĝ. The Laplacian involves repeated functional
derivatives at the same point and therefore singular. Therefore, one defines a regularized
version through the introduction of a cut-off scale χ and χ→∞ reproduces the original
Laplacian. In the 2+1 dimensional case, this entity diverges logarithmically with the cut-
off scale χ. Now ∆ in the right-hand side of the inequality 1.1 is the spectral gap of the
Bakry-Emery Ricci curvature of the orbit space A/Ĝ. This is logarithmically singular in
the cut-off parameter χ and the singular term is exactly the same as that of ∆E. Therefore,
the singular parts of ∆E and ∆ vary uniformly as one changes the cut-off parameter χ.
We will discuss this in more detail in section 4.

The metric is induced by the kinetic term of the action, the term I in the gap theo-
rem 1.1 is essentially a kinetic contribution while the term II is a contribution from the
potential. Due to Lorentz covariance, the kinetic and potential contributions are not com-
pletely independent as we shall see in section 3.1, S[A] is governed by both the metric and
the potential. Later in section 6, I shall perform an explicit calculation for the term I and
show that it has a uniform positive lower bound. In a series of works, [14, 39–42] handled
2+1 dimensional Yang-Mills theory using the Hamiltonian approach and a gauge invariant
matrix parametrization of gauge fields. They have computed the invariant volume element
of the orbit space A/Ĝ corresponding to a metric arising from the kinetic part of the action
in terms of WZW action (in fact they proved in this 2+1 dimensional setting that the
volume of the orbit space is finite). Using this construction they have obtained a mass
gap associated with the kinetic operator and the potential contribution is considered in an
improved perturbation series. At a heuristic level, the mass in the propagator of a gauge
invariant definition of gluon verifies ∼ g2

Y M cA

2π +O(k2) (cA is the Casimir of adjoint repre-
sentation of g), where g2

Y M cA

2π is the kinetic contribution while O(k2) term appears due to
the potential that does not contribute by a strictly positive number since it can be made
to be arbitrarily small by choosing large wavelengths. This gauge-invariant gluon mass
ultimately leads to a positive gap in the spectra of the Hamiltonian or a ‘mass gap’. Our
approach seems quite similar to this approach in spirit. Note again that the term I is a
pure kinetic contribution that provides a strictly positive gap and the term II encodes the
potential contribution that is expected to be non-negative for rapidly rising potentials such
as Yang-Mills potentials wherever the latter does not admit flat directions. We shall sketch
rather heuristic evidence towards non-negative definiteness of the term II in section 6. It
is almost tempting to state that in our analysis I is a fixed positive number while II is
O(k2). However, we shall observe that for Lorentz covariant field theories, this is not quite
the case. Many years ago, Feynman [45] presented a qualitative argument in supporting a
strictly positive mass gap based on the geometry of the orbit space. The argument goes
as follows. The ground state wave functional is essentially node-less and it can be taken
as a real positive since the potential is only a functional of field configurations, not their
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time derivatives. The first excited state is orthogonal to the ground state and is positive
in some regions of the orbit space and negative in others. The kinetic energy is essentially
a gradient energy on the orbit space and scales with the inverse of the square distance
between two regions where the first excited state is positive and negative. Feynman argued
that this distance can not be arbitrarily large leading to a strictly positive lower bound on
the kinetic energy that is supposed to be the mass gap of the theory. On finite-dimensional
Riemannian manifolds, this is essentially equivalent to finding the spectral gap of the
Laplace-Beltrami operator. As mentioned in the previous paragraph, lack of compactness
causes a serious issue in infinite dimensions if one tries to carry out a procedure such as that
of Lichnerowicz [30, 31]. However, instead of performing a Lichnerowicz-type estimate, one
can perform a weighted estimate where the effect of potential is taken into consideration
through a suitable weight. In fact, this article was motivated in part by the desire to
adapt the geometric arguments of Feynman and that of Karabali and Nair [39]–[42] (note
that [39]–[42] obtained a measure on the orbit space of 2+1 dimensional Yang-Mills theory
and this result was not available when Singer studied the geometry of the orbit space). I
should mention that [32] presented some results on the orbit space geometry and a proposal
for the mass gap. In addition to these geometric arguments, I wish to point out that there
are recent studies by [33, 34] on the mass gap estimates based on a direct approach of
integrating the Schwinger-Dyson equations in both 2+1 and 3+1 dimensions. Substantial
progress is made in the context of lattice gauge theory as well [35, 36].

In the context of the weighted manifolds introduced by Lichnerowicz [30, 31], Bakry-
Emery curvature (terms I and II together in the gap theorem) naturally appears (see [26]
for geometric properties of the Bakry-Emery Ricci tensor, on finite-dimensional weighted
manifolds). It also appears in the context of scalar-tensor gravitational theories, including
Brans-Dicke theory [24], theories with Kaluza-Klein dimensional reduction [25] apart from
the celebrated study by [27]. Studies by [28, 29] provide examples of the appearance of
this modified Ricci curvature in the context of Lorentzian geometry. In a finite-dimensional
setting with potential satisfying suitable convexity conditions, then a spectral gap estimate
for the Hamiltonian operator is given by the bound on the Bakry-Emery Ricci curvature [8].
For example, for a harmonic oscillator on a flat space, the Bakry-Emery Ricci tensor pro-
duces the exact gap that is presented in every quantum mechanics textbook. Even though
in such a case the ordinary Ricci curvature vanishes, the Hessian of the negative Logarithm
of the ground state wave function contributes in a strictly positive manner to produce the
exact gap [8]. The spectral gap in the Hamiltonian of the Yang-Mills theory is absent in the
perturbation theory. Recall in the perturbation theory, one splits the full gauge-invariant
Lagrangian into an exactly soluble part and interactions. This procedure, however, corre-
sponds to the breaking of the original gauge-invariance in the sense that the original gauge
group SU(N) undergoes a splitting SU(N)→U(1)×U(1)×U(1)×U(1)×····U(1)︸ ︷︷ ︸

N2−1

. In fact,

if one investigates our main theorem 1.1 closely, it then becomes clear that the result is
fully non-perturbative in nature since one requires a uniform bound on the Bakry-Emery
Ricci curvature over the entire orbit space not just a neighborhood of the flat connection.
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One subtle issue that arises in the context of 3+1 Yang-Mills theory is that the physical
constants can not produce a mass scale purely based on dimensional analysis and one has
to introduce a length scale that is to be fixed by measuring the mass of the lowest glu-ball
state (dimensional transmutation). In our context, this scale is introduced through the reg-
ularization of the trace of the Riemann curvature of the infinite-dimensional configuration
space of the gauge theory. This seems to be a geometrically natural operation based on the
observation that the Riemann curvature is not of trace class. Therefore, to make sense of
the Ricci curvature, one requires suitable regularization. For purely dimensional reasons,
it seems necessary to introduce a length scale in 3+1 dimensions to regularize the Ricci
curvature. It would be very interesting to study this issue of introducing length/ energy
scale in 3+1 dimensions from the perspective of the renormalization group flow (see [37]
for the aspects of renormalization group flow in lattice gauge theory). I wish to investigate
this in the future.

2 Geometry of the orbit space A/Ĝ

We denote by P a C∞ principal bundle with base an n+1 dimensional Lorentzian man-
ifold M and a Lie group G. We assume that G is compact (for physical purposes) and
therefore admits a positive definite non-degenerate bi-invariant metric. Its Lie algebra g by
construction admits an adjoint invariant, positive definite scalar product denoted by ⟨ , ⟩
which enjoys the property: for A,B,C ∈ g,

⟨[A,B],C⟩= ⟨A, [B,C]⟩. (2.1)

as a consequence of adjoint invariance. A Yang-Mills connection is defined as a 1−form ω

on P with values in g endowed with compatible properties. It’s representative in a local
trivialization of P over U ⊂M

φ : p 7→ (x,a), p∈P, x∈U, a∈G (2.2)

is the 1−form s∗ω on U , where s is the local section of P corresponding canonically to the
local trivialization s(x)=φ−1(x,e), called a gauge. Let A1 and A2 be representatives of ω

in gauges s1 and s2 over U1 ⊂M and U2 ∈M . In U1∩U2, one has

A1 =Ad(u−1
12 )A2+u12ΘMC , (2.3)

where ΘMC is the Maurer-Cartan form on G, (or A1 7→u−1
12 A1u12+u12du−1

12 ) and u12 :
U1∩U2 →G generates the transformation between the two local trivializations:

s1 =Ru12s2, (2.4)

Ru12 is the right translation on P by u12. Given the principal bundle P→M , a Yang-Mills
potential A on M is a section of the fibered tensor product T ∗M⊗M PAffine,g where PAffine,g

is the affine bundle with base M and typical fiber g associated to P via relation (2.3) (in
other words, the connection does not transform as a tensor under a gauge transformation).

– 7 –
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If Â is another Yang-Mills potential on M , then A−Â is a section of the tensor product of
vector bundles T ∗M⊗M PAd,g, where PAd,g :=P×Adg is the vector bundle associated to P

by the adjoint representation of G on g (the difference of two connections does transform
as a tensor under a gauge transformation). There is an inner product in the fibers of PAd,g,
deduced from that on g. The curvature Ω of the connection ω considered as a 1− form on
P is a g-valued 2−form on P. Its representative in a gauge where ω is represented by A is
given by

F := dA+[A,A], (2.5)

and the relation between two representatives F1 and F2 on U1∩U2 is F1 =Ad(u−1
12 )F2 and

therefore F is a section of the vector bundle Λ2T ∗M⊗M PAd,g. For a section O of the
vector bundle ⊗kT ∗M⊗M PAd,g, a natural covariant derivative is defined as follows

∇̂O :=∇O+[A,O], (2.6)

where ∇ is the usual covariant derivative induced by the Lorentzian structure of M and
by construction ∇̂O is a section of the vector bundle ⊗k+1T ∗M⊗M PAd,g. The associated
exterior derivative is denoted by d∇̂. The Yang-Mills coupling constant gY M is kept hidden
within the structure constants of the commutators.

The classical Yang-Mills equations (in the absence of sources) correspond to setting
the natural (spacetime and gauge as defined in 3.11) covariant divergence of this curvature
two-form F to zero. By virtue of its definition in terms of the connection, this curvature
also satisfies the Bianchi identity that asserts the vanishing of its gauge covariant exte-
rior derivative. Taken together these equations provide a geometrically natural nonlinear
generalization of Maxwell’s equations (when the latter are written in terms of a ‘vector
potential’) and of course, play a fundamental role in modern elementary particle physics.
If nontrivial bundles are considered or nontrivial spacetime topologies are involved, then
the foregoing so-called ‘local trivializations’ of the bundles in question must be patched to-
gether to give global descriptions but, by the covariance of the formalism, there is a natural
way of carrying out this patching procedure at least over those regions of spacetime where
the connections are well-defined. From now on, we set M =R1+n, n=2,3 equipped with
the Minkowski metric η. In addition, in a chosen Lie algebra basis we write the commu-
tation [ , ] on g explicitly in terms of the structure constants i.e., [Ai,Aj ]P = fP QRAQ

i AR
j

and absorb the Yang-Mills coupling constant gY M in the structure constants fP QR. We
denote the space of connections in Schwartz class by A. The following lemma yields a local
expression for the metric on the orbit space A/G (note that [11, 12] also obtained metrics
on the orbit space). We provide an explicit expression for the metric for the convenience
of forthcoming calculations.

Lemma 2.1 Let F = d∇̂A be the curvature of the principle G−bundle P over R1+n. The
associated Yang-Mills action functional is defined as IY M =−1

4
∫
R1+n⟨F αβ ,F αβ⟩. The

metric induced by the action functional I on the orbit space A/G verifies the following
expression in the local Coulomb coordinates (i.e., connection verifies ∇̂i(Ai−0)= ∂iAi+
[Ai,Ai] = ∂iAi =0 in a small enough open neighborhood of the flat connection Ai =0) in a
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distributional sense

G[A]
AP

i (x)AQ
j (x′ ) = δijδP Qδ(x−x

′)+fP RV AV
i (x)∆−1

A (x,x
′)fRUQAU

j (x
′),

where fP QR are the structure constants defined via [Ai,Aj ]P = fP QRAQ
i AR

j in a chosen
Lie algebra basis. Here G is the group of automorphisms of the bundle P i.e., the group of
gauge transformations (under a gauge transformation φ(x), a connection A∈A transforms
as A 7→φAφ−1+φdφ−1).

Remark 2 Note that the space A/G is in general not a manifold since the group action
G on A is not free due to the potential presence of gauge symmetry i.e., the gauge trans-
formations that leave a connection A invariant or equivalently solutions of the equation
φAφ−1+φdφ−1 =A or dφ−1+[A,φ−1] = 0 i.e., the elements of the bundle automorphism
group that are covariantly constant. However, we can work with the space of irreducible
connections i.e., A/Ĝ where Ĝ is obtained by modding out the covariantly constant ele-
ments of G. A/Ĝ is an infinite dimensional manifold. This property is important as we
shall see in the later sections. From now on A/Ĝ is to be understood as the space of con-
nections belonging to Schwartz space S(Rn). In fact φ is constant due to d|φ−1|2 =0, where
|φ−1|2 := tr(φ−1φ−1).

Proof. The Gauss Law constraint
∇̂νF 0ν =0 (2.7)

yields
∇̂i∇̂iA0 =∇i∂0Ai+[Ai,∂0Ai] (2.8)

which after an application of the Coulomb coordinate condition ∂iAi =0 yields

∇̂i∇̂iA0 = [Ai,∂0Ai] (2.9)

and therefore A0 may be obtained by formally inverting the elliptic operator ∇̂i∇̂i =∆A

A0 =∆−1
A ([Ai,∂tAi]). (2.10)

Now write the usual commutation for the elements of the Lie algebra g

[χi,χj ]P = fABCχB
i χC

j i.e., [Ai,∂tAi]P = fABCAB
i ∂tA

C
i . (2.11)

We may obtain AP
0 by formally inverting ∆A

AP
0 =∆−1

A (fP QRAQ
i ∂tA

R
i ). (2.12)

In the Coulomb coordinate, the action functional IY M =
∫
R1,n

(
1
2F P

0iF
P

0i− 1
4F P

ijF P
ij

)
dn+1x takes the following form

IY M =
∫
R1,n

(1
2∂tA

P
i ∂tA

P
i −∂tA

P
i ∂iA

P
0 +1

2∂iA
P
0 ∂iA

P
0 +∂tA

P
i [A0,Ai]P (2.13)

−∂iA
P
0 [A0,AT

i ]P +1
2[A0,Ai]P [A0,Ai]P − 1

4F P
ijF P

ij

)
dn+1x

=
∫
R1,n

(1
2∂tA

P
i ∂tA

P
i − 1

2AP
0 ∆AP

0 +∂tA
P
i [A0,Ai]P −∂iA

P
0 [A0,Ai]P+

1
2[A0,Ai]P [A0,Ai]P − 1

4F P
ijF P

ij

)
dn+1x−

∫
∂R1,n

(
∂tA

P
i AP

0 − 1
2AP

0 ∂iA
P
0

)
.
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Notice that there are problematic terms such as
∫
R1,n ∂iA

P
0 [A0,AT

i ]P . However, this term
is canceled in a point-wise manner after expanding ∆AP

0 using equation (2.9)

−1
2AP

0 ∆AP
0 −∂iA

P
0 [A0,Ai]P =AP

0 [Ai,∂iA0]P +1
2AP

0 [Ai, [Ai,A0]]P

−1
2AP

0 [Ai,∂tAi]P −∂iA
P
0 [A0,Ai]P .

Now AP
0 [Ai,∂iA0]P −∂iA

P
0 [A0,Ai]P vanishes due to the property (2.1). Therefore ignoring

the boundary terms (assuming fields belong to the Schwartz space), the action reads

IY M =
∫
Rn+1

(1
2∂tA

P
i ∂tA

P
i +1

2AP
0 [Ai,∂tAi]P − 1

4F P
ijF P

ij

)
dn+1x.

Now after an explicit calculation using the Lie-algebra commutation relation, one writes the
Lagrangian in the usual form, that is, as the difference between the kinetic and potential
terms (through solving the Gauss-law constraint i.e., A0 =∆−1

A ([Ai,∂tAi]))

L =
∫

(Rn)2

(1
2∂tA

P
i (x)∂tA

P
i (x

′)δ(x−x
′) (2.14)

+1
2fP QRAQ

i (x)∂tA
R
i (x)∆−1

A (x,x
′)fP UV AU

k (x
′)∂tA

V
k (x

′)
)

−1
4

∫
Rn

FP
ijFP

ij

=
∫
Rn×Rn

1
2G[A]

AP
i (x)AQ

j (x′ )∂tA
P
i (x)∂tA

Q
j (x

′)− 1
4

∫
Rn

FP
ijFP

ij ,

where

G[A]
AP

i (x)AQ
j (x′ ) = δijδP Qδ(x−x

′)+fP RV AV
i (x)∆−1

A (x,x
′)fRUQAU

j (x
′).

This concludes the proof of the lemma. Note that ∆−1(x,x
′) := 1

4π
−1

|x−x′ | for n=3 and
∆−1(x,x

′) := 1
2 ln(|x−x

′ |/a) for n=2, a some fixed constant with dimension of length.
This metric was obtained by [11, 12] by a different method (mention that). Essentially,
G[A]

AP
i (x)AQ

j (x′ ) is a distribution. □

Proposition 2.1 G is a Riemannian metric.

Proof. Follows from the positive definiteness of the Kinetic energy (a consequence of the
compactness of the gauge group). □

The Riemannian metric induced by the action functional on the configuration space A/Ĝ
is in general curved. As such one may compute the Riemann curvature of this metric G[A]
at any point Â of A/Ĝ by explicit calculations or by expanding it in the normal coordinate
around Â. We compute the Riemann curvature at Â=0 in the following lemma. Note
that [11, 12] performed similar calculations as well.
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We define the formal single trace operation on sections of suitable bundles on the
infinite-dimensional manifold A/Ĝ as follows

(trΦ)
A

P1
I1

(x1)AP2
I2

(x2)AP3
I3

(x3)····ÂPi
Ii

(xi)····Â
Pj
Ij

(xJ )··APn
In

(xn)
(2.15)

:=
∫

xi,xj

G
A

Pi
Ii

(xi)A
Pj
Ij

(xJ )Φ
A

P1
I1

(x1)AP2
I2

(x2)AP3
I3

(x3)····APi
Ii

(xi)····A
Pj
Ij

(xJ )··APn
In

(xn)
,

where the hat symbol implies the deletion of the respective indices. For example, if we
consider Riemann curvature i.e., Φ :=R

A
P1
I1

(x1)AP2
I2

(x2)AP3
I3

(x3)AP4
I4

(x4), then the formal Ricci
curvature would be defined as follows

Ric
A

P2
I2

(x2)AP4
I4

(x4) :=
∫

x1,x3
G

A
P1
I1

(x1)AP3
I3

(x3)R
A

P1
I1

(x1)AP2
I2

(x2)AP3
I3

(x3)AP4
I4

(x4). (2.16)

Here G
A

P1
I1

(x1)AP3
I3

(x3) := (G−1)A
P1
I1

(x1)AP3
I3

(x3) (notice the Hamiltonian reads

1
2

∫
Rn×Rn

(G−1)AP
I (x)AQ

J (y)(πT )P
I (x)(πT )Q

J (y)+potential,

where (πT )P
I is the transverse momentum conjugate to AP

I ∈A/Ĝ). The following lemma
provides an explicit expression of the inverse metric that is obtained through a Legendre
transformation.

Lemma 2.2 The inverse metric G−1 induced by the kinetic part of the Yang-Mills La-
grangian on the orbit space A/Ĝ in local Coulomb chart around A=0 reads

(G−1)AP
i (x)AQ

j (y) = δ(x−y)δP Qδij−fP V U AU
i (x)∆−1

A (x,y)fV RQAR
j (y) (2.17)

Proof. Recall the momentum conjugate to AP
i

πP
i = δL

δ(∂tAP
i )

=F P
0i (2.18)

and the definition of the classical Hamiltonian

H =
∫
Rn

πP
i ∂tA

P
i −L=

∫
Rn

(1
2πP

i πP
i −AP

0 (∂iπ
P
i +[Ai,πi]P )+

1
4F P

ij F P
ij

)
. (2.19)

Now A∈A/Ĝ verifies ∂iA
P
i =0 in the local Coulomb chart around A=0. Therefore the

conjugate momentum πP
i is decomposed into the transverse and longitudinal parts

πP
i =(πT )P

i +(πL)P
i (2.20)

that verify
∂i(πT )P

i =0, ∂i(πL)P
i +[Ai,(πL)i]P =−[Ai,π

T
i ]P . (2.21)
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Writing πL
i =∂iκ

P +[Ai,κ]P =∇̂iκ
P yields κP =−∆−1

A [Aj ,πT
j ]P and πL

i =−∇̂i(∆−1
A [Aj ,πT

j ]P ).
After substituting πL in the Hamiltonian, it is a functional on the co-tangent bundle of the
orbit space A/Ĝ reads

H =
∫
Rn

(1
2(π

T )P
i (πT )P

i +(πT )P
i (πL)P

i +1
2(π

L)P
i (πL)P

i +1
4F P

ij F P
ij

)
=
∫
Rn

(1
2(π

T )P
i (πT )P

i +(πT )P
i ∇̂iκ

P +1
2∇̂iκ

P ∇̂iκ
P +1

4F P
ij F P

ij

)
=
∫
Rn

(1
2(π

T )P
i (πT )P

i −∇̂i(πT )P
i κP − 1

2κP∆AκP +1
4F P

ij F P
ij

)
+
∫

∂Rn
(κP (πT )P

i +κP ∇̂iκ
P )n̂i

=
∫
Rn

(1
2(π

T )P
i (πT )P

i +1
2[Ai,π

T
i ]P κP +1

4F P
ij F P

ij +
∫

∂Rn
(κP (πT )P

i +κP ∇̂iκ
P )n̂i

)
=
∫
Rn

(1
2(π

T )P
i (πT )P

i − 1
2[Ai,π

T
i ]P∆−1

A [Aj ,πT
j ]P +1

4F P
ij F P

ij

)
+
∫

∂Rn
(κP (πT )P

i +κP ∇̂iκ
P )n̂i

=
∫
Rn×Rn

1
2(G

−1)AP
i (x)AQ

j (y)(πT )P
i (x)(πT )Q

j (y)+
∫
Rn

1
4F P

ij F P
ij +

∫
∂Rn

(κP (πT )P
i +κP ∇̂iκ

P )n̂i,

where n̂ is a unit normal vector to the boundary sphere S2
∞ := ∂Rn and the inverse metric

(G−1)AP
i (x)AQ

j (y) reads in local coordinate

(G−1)AP
i (x)AQ

j (y) = δ(x−y)δP Qδij−fP V U AU
i (x)∆−1

A (x,y)fV RQAR
j (y). (2.22)

This completes the proof. □

Remark 3 Observe
∫
Rn(G−1)AP

i (x)AR
k (z)G

AR
k

(z)AQ
j (y)d

nz = δP
Qδi

jδ(x−y).

A vital point worth mentioning is that the metric expressions obtained in lemma 2.1
and 2.2 are valid only in a chart (Coulomb) centered at the flat connection A=0. One
can not extend this definition to the whole orbit space due to the Gribov phenomenon.
The orbit space A/Ĝ is topologically non-trivial and one requires more than one chart to
cover the entire orbit space. For example, suppose one chooses a Coulomb chart around
another reference connection Â. In that case, one may perform similar calculations by
choosing the coordinate condition ηij∇̂Â

i (A−Â)j =0 (generalized Coulomb coordinate).
However, by the covariance of the formulation, all the charts can be glued together in a
compatible way to yield a global description (note that even in ordinary finite-dimensional
Riemannian geometry, one is required to work with multiple charts for topologically non-
trivial manifolds). In the end, computation of the gauge-invariant entities (‘diffeomorphism
invariant’ in the context of Riemannian geometry) does not depend on the local charts.

Lemma 2.3 The formal Ricci curvature of the metric G in local Coulomb coordinates at
A=0 satisfies

Ric(X,Y )= 3(fV P RXR
i (x)tr∆−1(x,x

′)fV P U Y U
i (x′)). (2.23)

where ∆−1 :L2(Rn)→H2(Rn) is the inverse of the Laplacian ∆ := ηij∇i∇j and tr denotes
the formal trace operation defined by multiplication of δP Q and the distribution δ(x−x

′) to
yield the coincident limit at A=0.
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Proof. First recall the definition of the Covariant derivative D

2G(Z,DXY )=X ·G(Z,Y )+Y ·G(Z,X)−Z ·G(X,Y ), (2.24)

and that of the Riemann curvature

R(X,Y )Z :=DXDY Z−DY DXZ−D[X,Y ]Z, (2.25)

for X,Y,Z,W ∈HA. Using the expression, one may explicitly compute at A=0

R(W,Z,X,Y )=−2⟨[Yj ,Wj ],∆−1[Xi,Zi]⟩−⟨[Zj ,Wj ],∆−1[Xi,Yi]⟩+⟨[Xj ,Wj ],∆−1[Zi,Yi]⟩.

The quadratic form associated with the Ricci curvature may be computed by taking the
formal trace (infinite dimensional) of the Riemann curvature

Ric(X,Y )= 3tr(⟨[X, ·],∆−1[Y, ·]⟩) (2.26)

Expanding the bracket in terms of structure constants yields the result.
Notice the following point of view that is different from direct calculations. Remark-

ably, the Coulomb coordinate chart based at A=0 is naturally a geodesic normal chart
(based at A=0) since G

ȦP
i (x)ȦQ

j (x′ )|A=0 = δijδP Qδ(x−x
′) and the connections ΓAP

i

AQ
j AR

k

|A=0 =

0 since δG
δA |A=0 =0 due to the non-constant terms in the metric being at least quadratic in

A. Now recall the expression of the metric derived in the previous lemma and compare it
with the expression of the metric in a normal neighborhood based at the flat connection
A=0

G
ȦP

i (x)ȦQ
j (x′ ) = δijδP Qδ(x−x

′)− 1
3RAP

i (x)AR
k

(x1)AQ
j (x2)AU

l
(x′ )A

R
k (x1)AU

l (x2)+O(|A|3)
(2.27)

to yield

R
AP

i (x)AR
k

(x1)AQ
j (x′ )AU

l
(x2)A

R
k (x1)AU

l (x2)= 3fV P RAR
i (x)∆−1(x,x

′)fV QU AU
j (x

′). (2.28)

The invariant quadratic form for the Ricci tensor is then obtained by taking formal trace
of the Riemann tensor i.e.,

Ric(X,Y )= 3(fV P RXR
i (x)tr∆−1(x,x

′)fV P U Y U
i (x′)). (2.29)

This concludes the lemma. □

Remark 4 It is not difficult to see that at an arbitrary point Â∈A/G, the formal Ricci
quadratic form is simply Ric(X,Y )= 3tr(fV P RXR

i (x)∆−1
Â

(x,x
′)fV QU Y U

j (x′)), where ∆
Â
:=

ηij∇̂Â
i ∇̂Â

j is the gauge covariant Laplacian. The sectional curvature KX,Y := ⟨R(X,Y )Y,X⟩
of a 2−plane spanned by the orthonormal vectors X,Y ∈HA is then

KX,Y =3⟨[X,Y ],∆−1
Â

[X,Y ]⟩. (2.30)

This can be achieved by choosing the generalized Coulomb coordinate chart based at Â

defined by ηij∇̂Â
i (A−Â)j =0 and obtaining an expression of the metric G in this chart.

HA is tangent at A to the horizontal subspace of the bundle A→A/Ĝ.
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3 Estimate of the spectra of the Hamiltonian operator

In the finite-dimensional setting, a lower bound on the Ricci curvature and compactness
yields a lower bound on the first eigenvalue of the Laplace-Beltrami operator due to Lich-
nerowicz [13]. In the presence of a potential, a Bakry-Emery correction to the ordinary
Ricci curvature is required to estimate a precise gap in the spectrum (there are several
studies on estimating the gap of a Schrodinger operator in finite dimensions using direct
analysis [63–65]). In an infinite dimensional setting, a straightforward generalization does
not work. Note in particular that the Riemann tensor of A/Ĝ is not of trace class. Recall
the definition of the trace. At the flat connection A=0, the trace would correspond to
contraction with respect to the flat metric and therefore to setting P =Q and x=x

′ in
the expression (2.29). This would correspond to the evaluation of the coincidence limit
of ∆−1(x,x

′). However in 2 dimensions ∆−1(x,x
′)= 1

2 ln |x−x
′ | and in 3+1 dimensions,

∆−1(x,x
′)=− 1

4π
1

|x−x′ | , whose coincident limits of course do not exist (or in the QFT ter-
minology, one has occurrence of ultraviolet divergences). In order to make sense of the
Ricci tensor, one needs to invoke a regularization scheme. In the regularization scheme
that we adopt, we split the points by approximating Dirac’s distribution and taking a suit-
able limit. From now on, we will write the inverse metric (G−1)AP

i (x)AQ
j (y) by GAP

i (x)AQ
j (y)

for simplicity.

Definition 1 Let us endow the local coordinates {xi} of a smooth n−manifold with
the dimension of length while the metric (co-variant) coefficients are left dimensionless.
The point-splitting of Dirac’s distribution associated with the usual Dirac’s distribution
δ(x,x0)= δ(x−x0)

µg(x) =
∏n

i=1 δ(xi−xi
0)

µg(x) on a Riemannian n-manifold (M,g), x,x0 ∈M , is defined
as follows

δχ(x,x0) :=
∏n

i=1
χ
π e−(xi−xi

0)2χ2

µg(x)
. (3.1)

The usual distribution is recovered after letting χ→∞ i.e.,
∫

x f(x)δχ(x,x0)→ f(x0) as
χ→∞ for a rapidly decaying smooth f (let us say a Schwartz function).

3.1 Regularization of the functional Hamiltonian

A rigorous quantum Yang-Mills theory if it exists should consist of a separable Hilbert
space H, a unitary representation of the Poincaré group in H, an operator-valued gauged
distribution A on S(Rn) and a dense subspace D⊂H such that appropriate axioms of
quantum gauge theory hold. As we have mentioned in the introduction this is a monumental
task even for non-gauge interacting field theories. Putting aside these issues we assume a
rigorous quantum field theory exists. In other words, we dodge the hardest question and
study its consequences for the mass gap. The functional Hamiltonian operator defined on
the orbit space A/Ĝ needs regularization since even while acting on a smooth functional,
it generates infinities. The formal Schrödinger operator for a Yang-Mills field in n+1
dimensions, of the type that we shall consider, is given by

Ĥ =
∫
Rn

(
−ℏ2

2

∫
Rn

GAP
I (x)AQ

J (y) D

DAP
I (x)

D

DAQ
J (y)

+ 1
4FIJ ·FIJ

)
dnx, (3.2)
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where D
DAP

I

is the covariant derivative on the Riemannian manifold (A/Ĝ,G).2 The delta
distribution in G is replaced by the point-split distribution defined in (3.1). Note that
contrary to the Laplacian, the Hessian D

DAP
I (x)

D

DAQ
J (y)

is well-defined on a smooth functional.
The flat part of the covariant functional Laplacian is ill defined. Utilizing the point-splitting
of Dirac’s distribution introduced previously in (3.1) we define the regularization of the flat
Laplacian as follows∫

x

δ

δAP
I (x)

δ

δAP
I (x)

7→
∫

x,y
δχ(x,y) δ

δAP
I (x)

ΘP Q(x,y) δ

δAQ
I (y)

, (3.3)

where ΘAB(x,y) is a parallel propagator between x and y and defined as a solution of
the parallel propagation equation, ΘP Q(x,y) := (Pe

−
∫ x

y
Aidzi

)P Q, P denotes the path or-
dering of the exponential. This is inserted in order to preserve the gauge invariance (note
ΘAB(x,y) transforms under a gauge transformation φ∈G as ΘP Q(x,y) 7→
(φ(x)Θ(x,y)φ−1(y))P Q). The result would not depend on the choice of the path from
x to y in the limit χ→∞, which we are interested in after subtracting possible infinities.
Naturally, this regularization descends to the orbit space A/Ĝ due to its gauge invari-
ance.3 We will proceed with this regularization scheme. Therefore we write the regularized
Hamiltonian that we shall work with as follows

Ĥ :=−ℏ2

2

∫
Rn×Rn

(G−1
δχ

)AP
I (x)AQ

J (y) D

DAP
I (x)

ΘP Q(x,y) D

DAQ
I (y)

+
∫
Rn

1
4FIJ ·FIJdnx, (3.6)

where we have point-split the Dirac’s distribution appearing in the metric G4 i.e.,

(G−1
χ )AP

i (x)AQ
j (y) = δχ(x,y)δP Qδij−fP V U AU

i (x)∆−1
A (x,y)fV RQAR

j (y). (3.7)

In order to estimate the gap in the spectrum of the Hamiltonian, we must perform a
Bochner-type analysis on the gauge covariant Hamiltonian acting on wave functionals.
Under the assumption of the existence of a quantum Yang-Mills theory, let us write the
normalizable ground state wave functional as follows

Ψ[A] =Nℏe
−S[A]/ℏ, Nℏ ∈C−{0}, A∈A/Ĝ. (3.8)

2Notice that the potential is gauge invariant and therefore naturally descends to the quotient i.e., the
orbit space.

3In addition, the parallel propagator is chosen to be such that it is symmetric under the transformation
A→B, x→ y (see [14, 41, 42, 51] for detail). Since∫

x,y

δχ(x,y)
(

δ

δAP
I (x)

ΘP B(x,y)
)

δ

δAB
I (y)

= 0, (3.4)

we may write the regularization (see [14, 41, 42, 51] for 2+1 dimensions and [43, 52, 53] (also see the
thesis [50]) for 3+1 dimensions) as∫

x

δ

δAA
I (x)

δ

δAA
I (x)

7→
∫

x,y

δχ(x,y)ΘAB(x,y) δ

δAA
I (x)

δ

δAB
I (y)

, (3.5)

where note that we recover the usual flat functional Laplacian in the limit χ→∞.
4Notice that the second term in the metric is simply the sectional curvature and it does not involve a

coincident limit.
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The question arises is how to obtain the ground state Ψ[A]. I mention two potential
rigorous ways. Martin Hairer [46, 47] initiated the program of stochastic quantization
where a path integral measure of the Euclidean quantum field theory can be constructed
by means of studying Langevin dynamics. Once the Euclidean measure is constructed, one
may analytically continue the solution to the Lorentz signature. Substantial progress is
made in 2 and 3-dimensional Euclidean field theory whereas 4 dimensional case still remains
open. Another approach that seems promising is the Euclidean signature semi-classical
(ESSC) introduced by Moncrief [6–8] for renormalizable interacting Bosonic field theories
(borderline Sobolev embedding for 3+1 dimensional Yang-Mills theory). This technique is
in a similar spirit to the microlocal method (see [10] for a comprehensive review) used for
the analysis of Schrödinger eigenvalue problems even though the latter has not previously
been applicable to field theoretic problems due to technical reasons. In this approach, one
substitutes the following node-less formal expression for the semi-classical expansion of the
logarithm of the ground state wave functional i.e.,5

S[A] ≃ S0[A]+ℏS1[A]+ ℏ2

2! S2[A]+···· ℏ
k

k! Sk[A]+····, (3.9)

E0 ≃ ℏ
(
E0+ℏE1+ℏ2E2+····ℏkEk+····

)
(3.10)

into the Schrödinger equation
ĤΨ[A] =E0Ψ[A] (3.11)

and impose equality order by order in the Planck constant to conclude that S0 satisfies the
following functional Hamilton-Jacobi equation∫

Rn×Rn

1
2G

AP
i (x1)AQ

j (x2) δS0
δAP

i (x1)
δS0

δAQ
j (x2)

−
∫
Rn

1
4Fjk ·Fjk =0. (3.12)

Now notice that δS0
δA(x) is well defined (no need for regularization at this tree level) and S0

can be obtained as Hamilton’s principal function for the Euclidean signature Yang-Mills
action functional i.e.,

S0 := inf
A∈H1(Rn+1)

Ies[A], (3.13)

where Ies[A] := 1
2
∫
R−×Rn

(∑n
µ,ν=0F [A]IµνF [A]Iµν

)
dn+1x. The minimization procedure may

be described as follows. Given A as the boundary condition for A on {0}×Rn in the respec-
tive Sobolev trace space, one wants to minimize the Euclidean signature action functional
in R−×Rn with A approaching the flat connection on {−∞}×Rn. This minimization
procedure is essentially solving a semi-linear elliptic equation with a prescribed Dirichlet
boundary value in a suitable choice of gauge (generalized Coulomb or Hodge gauge is one
such choice). However, the non-linearity is critical for n+1=4 dimensions in the sense that
the Sobolev embedding H1(R4) ↪→L4(R4) is continuous but just fails to be compact and
therefore a straightforward application of variational techniques on Ies[A] having proved

5Contrary to the microlocal approach, if one assumes a WKB ansatz, then the tree level processes are
governed by a Lorentz signature Hamilton-Jacobi equation that yields finite time blow up even in finite-
dimensional problems due to the presence of caustics in the configuration space.
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its convexity, coercivity, and lower semi-continuity does not work. This can be handled by
means of refined elliptic estimates. Another vital problem that appears is the presence
of self-dual solutions that are absolute minimizers of the Euclidean signature Yang-Mills
action functional in 4 dimensions and constitute a finite-dimensional moduli space (if the
action functional is same in the upper and lower half-spaces for two different self-dual solu-
tions, then the minimization is no longer unique causing trouble). These could in turn prove
to be an obstruction to the uniqueness of the minimizer S0 leading to its not everywhere
differentiability property. This, however, does not seem to cause a substantial problem at
the tree level (semi-classical) but rather causes complications when one attempts to com-
pute the quantum loop corrections to the S0 functional and obtain the Sℏ[A] functional
which is what one ultimately wants. This is due to the fact that in order to compute the
quantum loop corrections to the S0 functional, one ought to solve a sequence of transport
equations that are sourced by the differentiated S0 functional that is obtained by the min-
imization procedure. For example, at the level of 1 loop (i.e., O(ℏ)), S1 is obtained by
solving the following transport equation

−
∫
Rn×Rn

GAP
i (x)AQ

j (x′ ) δS0
δAP

i (x)
δS1

δAQ
j (x

′)
+ 1
2

∫
Rn×Rn

GAP
i (x)AQ

j (x′ ) D

DAP
i (x)

δS0

δAQ
j (x

′)
=E0

(3.14)
But, since S0 appears in a differentiated manner, the transport equation does not seem to
make sense at all if S0 is not differentiable at least almost everywhere in the orbit space.
Secondly, the S0 functional appearing as a source term for the transport equation is acted
on by the functional covariant Laplacian. This problem can however be circumvented by
employing the gauge-invariant point-splitting regularization procedure mentioned in (3.5).
One could proceed to compute all the tree-level processes and obtain the associated for-
mal series (almost surely diverges). This complete task, however, can be handled in the
Euclidean signature semi-classical or micro-local approach by means of the analysis of the
zero energy Hamilton-Jacobi equation (3.12). In fact, as we have mentioned previously,
tree-level processes should be obtainable in a rigorous way through this technique. How-
ever, it is not clear at the moment if this series solution would be able to produce the
physical ground state even after renormalization and regularization. In addition, it is also
unclear if a mass gap is detectable at the semiclassical level. Therefore, from now on we
will not consider the split form (3.9) of the functional S[A], rather assume the quantum
Yang-Mills theory exists and S[A] makes sense all by itself.

Remark 5 My analysis only works in renormalizable cases i.e., the cases where H1 ↪→L4

holds (roughly the quartic term in connection in yang-mills potential is controllable by
the gradient term). In higher dimensions i.e., on R1+n, n≥ 4, this embedding fails and
therefore I can not make sense of the S[A] functional even formally (fails even at the level
of S0 according to the previous paragraph)

An important point worth mentioning is that I am working on the orbit space A/Ĝ.
In other words, I descended to the orbit space first and then defined the quantization oper-
ation. However, there is another way to proceed in the context of canonical quantization.
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Instead of working directly on the orbit space, one could use the temporal gauge A0 =0,
impose the canonical quantization condition, solve for the functional Schrodinger’s equa-
tion, and then descend to the orbit space by imposing the Gauss law constraint on the
wave functional as a functional equation. Explicitly, on the co-tangent bundle T ∗A, one
promotes the connection A and its conjugate momentum E to operator-valued distributions
in the Hilbert space H(A) of the theory and applies the equal time commutation relation
(let us denote this canonical quantization operation by Q)

[Aa
i (x),Eb

i (y)] =−
√
−1δabδijδ(x−y) (3.15)

in the temporal gauge A0 =0. This operation, however, forces the Gauss-law constraint as
an operator equation on the wave functional Ψ[A]. By virtue of satisfying the Gauss law
constraint, the resulting wave functional is gauge invariant. An advantage of working up
in the bundle the full space of connection A and then descending to the orbit space is that
the Hamiltonian in this picture takes a simpler form6

H :=−ℏ2

2

∫
Rn

δ2

δAa
i (x)δAa

i (x)
+ 1
4

∫
Rn

F a
ijF a

ij (3.16)

This is the usual canonical quantization scheme for Yang-Mills theory (see [59] for a detail).
In my approach, one only needs to solve the Schrodinger equation (3.11), where Ĥ is given
by the following (or the regularized one in 3.6)

Ĥ =
∫
Rn

(
−ℏ2

2

∫
Rn

GAP
I (x)AQ

J (y) D

DAP
I (x)

D

DAQ
J (y)

+ 1
4FIJ ·FIJ

)
dnx. (3.17)

Here on the cotangent bundle T ∗(A/Ĝ) one promotes the connection A (essentially equiva-
lence class of connections since I have descended down to the orbit space) and the conjugate
momentum E to operator-valued distributions in the Hilbert space H(A/Ĝ) and applies the
following equal time commutation relation (I denote this quantization operation by Q∗)

[Aa
i (x),Eb

j (y)] =−
√
−1δab(δij−(∇x)i(∆−1(x,y)(∇y)j)δ(x−y). (3.18)

These two approaches of quantization are equivalent or the diagram 3.1 below commutes.

T ∗A H(A)

T ∗A/Ĝ H(A/Ĝ)

Q

Ĝ
∫
Rn ∇̂· δ

δA
(·)=0

Q∗

It suffices to verify that the wave functional Ψ[A] constructed by solving ĤΨ[A] =E0Ψ[A]
verifies the Gauss law constraint. This follows trivially. Let δA= dα+[A,α] be any smooth
infinitesimal gauge transformation generated by α (let’s assume α is an element of Schwartz

6Notice that the functional Φ[A] := e
− 1

2

∫
R3 Aa·(∇×Aa)+ gY M

3 Aa·[A,A]a exactly solves HΦ = 0 and also ver-
ifies the Gauss Law constraint and therefore gauge invariant in 3+1 dimensions. The problem is this
functional is not normalizable.
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space i.e., decays rapidly at infinity of Rn). By the definition of the orbit space, δA should
be L2-orthogonal to any vector tangent to the orbit space and in particular∫

x

DΨ[A]
DA

δA=0. (3.19)

Here we have suppressed the tensor and gauge indices for convenience. Now substitute
δA= dα+[A,α] and integrate by parts to yield∫

x
α∇̂·DΨ[A]

DA
=0 (3.20)

which holds for any smooth gauge transformation α that decays rapidly at infinity (i.e.,
the corresponding gauge group element gα := exp(

√
−1α) decays to identity). Therefore by

a density argument, I have

∇̂·DΨ[A]
DA

=0. (3.21)

Therefore Ψ[A] verifies the Gauss law constraint. Notice that I constructed the metric G

on the orbit space A/Ĝ in lemma 2.1 and 2.2 essentially using the Gauss law to eliminate
the gauge redundancy and descend to the orbit space. Therefore it is only natural that any
functional on the orbit space should verify the Gauss law constraint by construction. We
refer the reader to [44] for computation of the 2+1 dimensional Yang-Mills wave functional
in approximate forms.

3.2 Gap estimation of the regularized Yang-Mills Hamiltonian

Here we assume that there exists a rigorous quantization. In other words, appropriate
axioms of the quantum gauge theory are satisfied. In particular, a unique ground state
exists that is Póincare invariant and this state has zero energy. This ground state is an
element of a separable Hilbert space of the theory. Our goal is to present some geometrical
arguments that suggest if there is a rigorous quantization of the Yang-Mills fields, then the
associated Hamiltonian (suitably regularized) exhibits a positive mass gap. Under such a
bold assumption, the ground state wave functional is normalizable∫

A/Ĝ
Ψ[A]†gΨ[A]gµG= |Nℏ|2

∫
A/Ĝ

e−2S[A]/ℏµG=1 (3.22)

for Nℏ ∈C−{0} and with corresponding eigenvalue E0. Note that to respect the boost-
invariance E0 ≡ 0 (in fact the whole energy-momentum vector of the ground state must
vanish). The formal naive measure µG= [DA]

√
det(G) does not make sense, where [DA] :=∏

x dA(x). However, due to (3.22), we can use |Nℏ|2e−2S[A]/ℏµG as a measure on the orbit
space A/Ĝ (total measure is finite precisely due to the normalizibility of the ground state).
Once again, we stress the fact that all of these hold under the assumption that we have
a rigorous quantum Yang-Mills theory. The first excited state wave functional may be
written as

Ψ∗[A] =φ[A]e−S[A]/ℏ (3.23)

– 19 –



J
H
E
P
1
2
(
2
0
2
3
)
1
9
1

with φ :A/Ĝ →C and energy E∗. Notice that the first excited state is orthogonal to the
ground state and in fact not an eigenstate of the Hamiltonian due to the issue of non-
renormalizability. We discuss this when we perform the gap estimation. We are interested
in estimating E∗−E0. But first, we state the following integration by parts property on
the metric measure space (A/Ĝ,G, |Nℏ|2e−2S[A]/ℏµG)

Remark 6 Normalizability of the ground state yields a measure e−2S[A]/ℏµG on A/Ĝ. Hav-
ing constructed the complete S functional, ideally one should be able to prove an estimate
of the type S[A]≥ ||A||kHs(Rn) for an appropriate k ≥ 2, s≥ 1

2 and therefore a rapid decay
of e−2S[A]/ℏ at large norms of the connections on the orbit space A/Ĝ. In particular, with
respect to this measure, one could integrate the total divergence term to yield zero i.e.,

∫
A/Ĝ

∫
x1,x2

D

DAP
I (x1)

(GAP
I (x1)AQ

J (x2) D

DAQ
J (x2)

F[A]|Nℏ|2e−2S[A]/ℏ))µG=0. (3.24)

Moreover, note that since we are interested in the energy difference E∗−E0, we do not
need to normal order the Hamiltonian in an appropriate way.

4 Proof of the main theorem 1.1

The main idea behind the estimate is to obtain a Bochner-like formula on the metric
measure space (A/Ĝ,G,e−2S[A]/ℏ). The proof is similar to the finite-dimensional setting (see
e.g., [8] for finite-dimensional calculations) with a vital modification being the introduction
of a regulator that needs to be tracked carefully in each step. We present the main ideas
here and the detailed calculations concerning the commutation of covariant derivatives are
presented in the appendix. Since we are using regularized equations, the energy states
will be indexed by the regulator χ. We are primarily interested in obtaining the difference
between the ground state and the first excited state of the (regularized) Hamiltonian Ĥ.
This is formally equivalent to finding the lowest eigenvalue (bottom of the spectra in the
continuous case) of the following second-order operator

̂̂
H =−ℏ2

2

∫
Rn

∫
Rn

GAP
I (x)AQ

J (y) D

DAP
I (x)

D

DAQ
J (y)

− 2
ℏ
GAa(x)Ab(y) DS[A]

DAa(x)
D

DAb(y)︸ ︷︷ ︸
potential contribution

 . (4.1)

( ̂̂H is nothing but Ĥ−E0 i.e., (Ĥ−E0)φ[A] = (E∗−E0)φ[A]) Here note that the potential
contribution is manifested in terms of the derivative of the functional S[A]. Now we
regularize this operator using the same regularization scheme used for Ĥ. In addition, we
also renormalize this operator. Since the case of 3+1 dimensional Yang-Mills theory is
subtle, we focus on the 2+1 dimensional case (see section 6 for explicit calculations in 3+1
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dimensional case)

̂̂
Hχ :=

−ℏ2

2

∫
R2n

(
(G−1

δχ
)AP

I (x)AQ
J (y) D

DAP
I (x)

ΘP Q(x,y) D

DAQ
I (y)

− 2
ℏ
GAa(x)Ab(y) DS[A]

DAa(x)
D

DAb(y)

)

−3C2(G)g2
Y M lnχ|x0|
16π3 , (4.2)

where χ is the cut-off scale and x0 is the subtraction scale. In section 6.1, I discuss how to
fix a subtraction scale. Note that for every finite χ, ̂̂Hχ is bounded from below allowing
me to obtain χ dependent estimates. In the end, one ought to smoothly remove the cut-off
scale to yield the physical result.

Let us define the following entity

Q :=
∫
Rn×Rn

G
AP

i (x)AQ
j (x′ )

δχ
ΘP Q(x,x

′)

 Dφ[A]†

DAP
i (x)

Dφ[A]
DAQ

j (x
′)
|Nℏ|2e−2S[A]/ℏ

dnxdnx
′ (4.3)

and apply the regularized covariant functional Laplacian to yield (denote Rn×Rn by K) to
yield the following identity (see the appendix for a detailed derivation of this identity)∫

K
ΘLM (y,z)GAL

I (y)AM
J (z)

χ
D

DAL
I (y)

D

DAM
J (z)

Q (4.4)

= − 8
ℏ4

{
(Ĥ−E0

χ)(φe−S/ℏ)
}{

(Ĥ−E0
χ)(φ†e−S/ℏ)

}
+
∫
K
G

AL
k (y)AM

l (z)
δχ

ΘLM (y,z)
∫
K
G

AP
i (x)AQ

j (x′ )
δχ

ΘP Q(x,x
′)RAM

l
(z)AN

n (x′′ )AL
k

(y)AP
i (x)

Dφ†

DAN
n (x′′)

Dφ

DAQ
j (x

′)
e−2S/ℏ

+RAM
l

(z)AN
n (x′′ )AL

k
(y)AP

i (x)
Dφ

DAN
n (x′′)

Dφ†

DAQ
j (x

′)
e−2S/ℏ

+4
ℏ

D

DAP
i (x)

DS

DAM
k (z)

Dφ†

DAQ
j (x

′

Dφ

DAL
k (z)

e−2S/ℏ

 ,

where note that Ĥ−E0
χ can be written in terms of the renormalized operator ̂̂

Hχ in 4.2.
Now assuming the existence of the S[A] functional and the rapid decay of e−2S[A]/ℏ at
infinity, I may neglect the boundary terms while integrating over the reduced configuration
space A/Ĝ (remark 6). In field theories, one would expect the existence of a continuous
spectrum and in the current case, the spectrum would have a finite gap at the bottom.
The excited states are not eigenstates of the Hamiltonian. Strictly speaking, in the case
of continuous spectra, one needs to construct wave packets for excited states that are not
eigenstates of the Hamiltonian since the eigenstates are not normalizable (think of a free
particle in ordinary quantum mechanics). We denote the first excited state by φϵe

−S[A]/ℏ,
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where the appearance of ϵ is clear from the following definitions. The first excited state is
orthogonal to the ground state and it satisfies∫

A/Ĝ
φϵ[A]†e−S[A]/ℏ(Ĥ−E∗

χ)φϵ[A]e−S[A]/ℏµG≥ 0, (4.5)∫
A/Ĝ

{
(Ĥ−E∗

χ)φϵ[A]e−S[A]/ℏ
}†

(Ĥ−E∗
χ)φϵ[A]e−S[A]/ℏµG≤ ϵ2

∫
A/Ĝ

φ†
ϵφϵ[A]e−2S[A]/ℏµG,

(4.6)∫
A/Ĝ

φϵ[A]†e−2S[A]/ℏµG=0

for any ϵ > 0. Notice that the last condition is essential for the validity of the first condition.
Otherwise, one could take φϵ → 1 and yield a contradiction. Application of the Cauchy-
Schwartz with respect to the measure e−2S[A]/ℏµG, using the property (4.5), and expanding
Ĥ−E∗

χ yields

0≤
∫
A/Ĝ

φϵ[A]†e−S[A]/ℏ(Ĥ−E∗
χ)φϵ[A]e−S[A]/ℏµG≤ ϵ

∫
A/Ĝ

φϵ[A]†φϵ[A]e−2S[A]/ℏµG. (4.7)

Similarly, I may write the following∫
A/Ĝ

{
(Ĥ−E0

χ)φϵ[A]e−S[A]/ℏ
}†

(Ĥ−E0
χ)φϵ[A]e−S[A]/ℏµG

=
∫
A/Ĝ

{
(Ĥ−E∗

χ)φϵ[A]e−S[A]/ℏ
}†

(Ĥ−E∗
χ)φϵ[A]e−S[A]/ℏµG

+
∫
A/Ĝ

(
(E∗

χ−E0
χ)2φ[A]∗ϵφ[A]ϵe−2S[A]/ℏ+2(E∗

χ−E0
χ)φ[A]†ϵe−S[A]/ℏ(Ĥ−E∗

χ)φ[A]ϵe−S[A]/ℏ
)

µG

≤ (E∗
χ−E0

χ+ϵ)2
∫
A/Ĝ

φ[A]†ϵφ[A]ϵe−2S[A]/ℏµG

where I have utilized (4.7) and (4.6). Now I utilize the identity (4.4) but replace φ with
φϵ to obtain

(E∗
χ−E0

χ+ϵ)2
∫
A/Ĝ

φ[A]†ϵφ[A]ϵe−2S[A]/ℏµG

≥
∫
A/Ĝ

{
(Ĥ−E∗

χ)φϵ[A]e−S[A]/ℏ
}†

(Ĥ−E∗
χ)φϵ[A]e−S[A]/ℏµG

≥ ℏ4

4

[∫
A/Ĝ

Ricci(αϵ[A],αϵ[A])µGe−2S/ℏ

+2
ℏ

∫
A/Ĝ

{∫
K

∫
K
G

AP
I (x)AQ

J (x′ )
δχ

G
AM

K (y)AN
L (y′ )

δχ

D

DAP
I (x)

DS

DAM
K (y)

Dφ†
ϵ

DAQ
I (x

′)
Dφϵ

DAN
L (y′)

}
µGe−2S/ℏ

]
,

where

Ricci(αϵ[A],αϵ[A])

:=
∫
K
ΘLM (y,z)

∫
K

(
G

AM
k (z)AL

k (y)
δχ

RAM
k

(z)AN
n (x′′ )AL

k
(y)AP

i (x)
Dφ†

ϵ

DAN
n (x′′)

Dφϵ

DAP
i (x)

)
.
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Now expanding Ĥ−E0, consider the following identity

2
ℏ2

∫
A/Ĝ

φϵ[A]†e−S/ℏ(Ĥ−E0
χ)φϵ[A]e−S/ℏ (4.8)

=
∫
A/Ĝ

∫
Rn×Rn

G
AP

i (x)AQ
j (y)

δχ

Dφϵ[A]†

DAP
i (x)

Dφϵ[A]
DAQ

j (y)

e−2S/ℏ

and assume that the regulated Bakry-Emery Ricci curvature verifies the point-wise bound
for a ∆χ > 0

Ricci(αϵ[A],αϵ[A])+ 2
ℏ

∫
K×K

GAP
I (x)AQ

J (x′ )GAM
K (y)AN

L (y′ ) D

DAP
I (x)

DS

DAM
K (y)

Dφ†
ϵ

DAQ
I (x

′)
Dφϵ

DAN
L (y′)

≥∆χ

∫
Rn×Rn

GAP
i (x)AQ

j (y)Dφϵ[A]†

DAP
i (x)

Dφϵ[A]
DAQ

j (y)
. (4.9)

Therefore I obtain

(E∗
χ−E0

χ+ϵ)2
∫
A/Ĝ

φ[A]†ϵφ[A]ϵe−2S[A]/ℏµG

≥ ℏ4

4 ∆χ

∫
A/Ĝ

∫
Rn×Rn

GAP
i (x)AQ

j (y)Dφϵ[A]†

DAP
i (x)

Dφϵ[A]
DAQ

j (y)

e−2S/ℏ

= ∆χ
ℏ2

2

∫
A/Ĝ

φϵ[A]†e−S/ℏ(Ĥ−E0
χ)φϵ[A]e−S/ℏ

= ∆χ
ℏ2

2

∫
A/Ĝ

φϵ[A]†e−S/ℏ(Ĥ−E∗
χ+E∗

χ−E0
χ)φϵ[A]e−S/ℏ

≥ (E∗
χ−E0

χ)
ℏ2

2 ∆χ

∫
A/Ĝ

φ[A]†ϵφ[A]ϵe−2S[A]/ℏµG

or
(E∗

χ−E0
χ)+

ϵ2

E∗
χ−E0

χ

+2ϵ≥ ℏ2∆χ

2 ∀ϵ > 0 (4.10)

yielding

E∗
χ−E0

χ ≥ ℏ2∆χ

2 . (4.11)

Notice that E∗
χ−E0

χ can not be zero since that would imply

ℏ4

4 ∆
∫
A/Ĝ

∫
Rn×Rn

GAP
i (x)AQ

j (y)Dφϵ[A]†

DAP
i (x)

Dφϵ[A]
DAQ

j (y)

e−2S/ℏ (4.12)

≤ ϵ2
∫
A/Ĝ

φ[A]†ϵφ[A]ϵe−2S[A]/ℏµG∀ϵ > 0

yielding a contradiction to the non-constancy of φ[A] (and hence its orthogonality to the
ground state). Now the vital question is how to smoothly take the limit χ→∞ in the
inequality 4.11. Does a strictly positive gap survive after such an operation is performed?
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First notice that the Hessian contribution to the Bakry-emery Ricci curvature is well de-
fined (if one assumes that a quantum Yang-Mills theory exists and ground state the wave
functional has a finite norm; this is the assumption we are making in the current context).
The problem occurs when defining the Ricci curvature of the orbit space. In 2+1 dimen-
sions, the term E∗

χ−E0
χ on the left-hand side of inequality 4.11 would have a Logarithmic

singularity arising from the Kinetic part (the electric part of the Hamiltonian is dimension-
less and therefore the singular term diverges logarithmically in the cut-off scale χ, see [14]
for an exact calculation regarding the appearance of this logarithmic term in the kinetic
energy). Since the regularization of the term ∆χ is induced by the same regularization
applied to the functional Laplacian on the orbit space through the Bochner-Lichnerowicz
type analysis, the singular term in ℏ2

2 ∆χ diverges logarithmically in the cut-off scale χ in
a similar fashion as that of E∗

χ−E0
χ. This is precisely seen from the renormalization of

the operator ̂̂H = Ĥ−E0 in 4.2. In other words, one would have through the renormaliza-
tion 4.2

E∗
χ−E0

χ = [∆E]independent of χ+
3C2(G)g2

Y M lnχ|x0|
16π3 (4.13)

and we shall see in section 6 that for 2+1 dimensional case considered here

ℏ2∆χ

2 = ℏ2[∆]independent of χ

2 +3C2(G)g2
Y M lnχ|x0|
16π3 . (4.14)

Therefore, one could make sense of the inequality 4.11 as χ→∞ as

[∆E]independent of χ ≥ ℏ2[∆]independent of χ

2 . (4.15)

This is what I meant by the appearance of the uniform logarithmic singularity at the both
sides of 4.11. For convenience, we can drop the subscripts to write

∆E ≥ ℏ2∆
2 . (4.16)

This concludes the proof of the theorem for the 2+1 dimensional case. The case of 3+1
dimensional Yang-Mills theory is complicated due to the fact that the coupling constant
g2

Y M runs with the energy scale. I discuss this in section 6.3. At present, I am not able to
give a solid basis for a proof of the 3+1 dimensional case but rather a heuristic argument
in section 6. I would like to investigate this 3+1 dimensional case in the future.

Remark 7 Note that the term
∫
KΘLM (y,z)

∫
K

(
G

AM
k (z)AL

k (y)
δχ

RAM
k

(z)AN
n (x′′ )AL

k
(y)AP

i (x)

Dφ†
ϵ

DAN
n (x′′ )

Dφϵ

DAP
i (x)

)
+ 2

ℏG
AP

I (x)AQ
J (x′ )GAM

K (y)AN
L (y′ ) D

DAP
I (x)

DS
DAM

K (y)
Dφ†

ϵ

DAQ
I (x′ )

Dφϵ

DAN
L (y′ ) is nothing but

the regularized Bakry-Emery Ricci curvature of the configuration space A/Ĝ.

Remark 8 Notice that Ricci curvature always requires regularization indicating its cer-
tain “quantum” nature. In the perturbation theory calculations, one can show that Ricci
curvature shows up in the expression of the loop amplitudes. In fact, a natural conjecture
would be that the re-normalization group flow of the metric on the moduli space is a type
of infinite dimensional Ricci flow.

– 24 –



J
H
E
P
1
2
(
2
0
2
3
)
1
9
1

Notice an important point: the regularized Ricci curvature together with the Hessian of
the functional S constitute the so-called functional Bakry-Emery Ricci tensor. In the finite-
dimensional setting, it appears as the ordinary Bakry-Emery Ricci tensor. I note studies
of this Ricci tensor that naturally appear in the study of weighted manifolds by [26]. Our
setting could formally be an infinite dimensional version of a weighted manifold of the type
(A/Ĝ,G,e−2S/ℏ). This micro-local or Euclidean signature semi-classical technique can be
used to study the quantum mechanical systems satisfying suitable conditions (see [5] for
the study of the nonlinear anharmonic oscillators).

5 Mass of Elementary bosonic particles through the spectrum of the
Bakry-Emery Ricci curvature of the weighted true configuration space:
explicit example

To motivate the use of Bakry-Emery Ricci curvature of the true configuration space of the
current case of Yang-Mills theory, let us first review some elementary examples. Recall
the Free mass-less and massive scalar field theory on the 3+1 dimensional Minkowski
space for which the exact ground state is available. The classical action reads I[ξ] =
−1

2
∫
R1+n ηµν(∂µξ∂νξ+m2ξ2), ξ :R1+3 →R which may be explicitly written as

I[ξ] =
∫
R

(1
2

∫
R3×R3

δ(x−y)∂tξ(x)∂tξ(y)−
1
2

∫
R3
(ηij∂iξ∂jξ+m2ξ2)

)
, (5.1)

m denoting the mass. If I denote the configuration space by Mξ, then the kinetic term
induces a flat Riemannian metric (in local coordinates ξ)

Mξ(x)ξ(y) = δ(x−y) (5.2)

on Mξ. The classical energy E(k) has the following expression in terms of the mass and
3−momentum k

E(k)=
√

k2+m2 (5.3)

i.e, E(k)≥m. In the quantum version, the mass appears as a parameter of the irreducible
representation of the Poincare group SO(1,3)⋉R1+3 the isometry group of the Minkowski
space R1+3. In quantum field theory, this representation defines a one-particle Hilbert
space Hm for a particular particle in the full spectrum of the particles. The full Hilbert
space has the direct sum structure

H=C⊕
(∑

I

⊕HmI

)
⊕m.p.s, (5.4)

where m.p.s denotes spaces of multi-particle states that are tensor products of one particle
spaces. C corresponds to the ground state (vacuum) and has zero energy. Then there is a
positive continuous spectrum starting from minI(mI)=m and extending to infinity of the
formal Hamiltonian (normal ordered and regularized) of the theory∫

R3

(
−
∫
R3

ℏ2

2
δ2

δξ(x)δξ(x)

)
+1
2

∫
R3

ηij∂iξ∂jξ+m2ξ2). (5.5)
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According to our calculations, the spectral gap i.e., the least mass m is supposed to be
obtainable from the Bakry-Emery Ricci curvature associated with the infinite-dimensional
weighted Riemannian manifold (Mξ,M,e−2S[ξ]/ℏ), where S[ξ] is explicitly given as

S[ξ] = 1
2

∫
k

ξ(k)
√

k2+m2ξ(−k)d3k. (5.6)

Now since the metric Mξ is flat, the Bakry-Emery curvature consists of only the Hessian
part of the S functional. An explicit calculation for the Bakry-Emery quadratic form in
this particular case yields

RicciB.E

(
Dφ†

ϵ

Dξ
,
Dφ†

ϵ

Dξ

)
(5.7)

:= Ricci(Dφ†
ϵ

Dξ
,
Dφ†

ϵ

Dξ
)+ 2

ℏ

∫
K×K

Mξ(x)ξ(x′ )Mξ(y)ξ(y′ ) D

Dξ(x)
DS[ξ]
Dξ(y)

Dφ†
ϵ

Dξ(x′)
Dφϵ

Dξ(y′)

= 0+ 2
ℏ

∫
K×K

Mξ(x)ξ(x′ )Mξ(y)ξ(y′ ) D

Dξ(x)
DS[ξ]
Dξ(y)

Dφ†
ϵ

Dξ(x′)
Dφϵ

Dξ(y′)

≥ 2m

ℏ

∫
Rn×Rn

Mξ(x)ξ(y)Dφϵ[ξ]†

Dξ(x)
Dφϵ[ξ]
Dξ(y) ,

or the energy gap E∗−E0 ≥mℏ. Notice that there is also a potential contribution in
terms of the 3− momentum k indicating a continuous spectrum starting from m (i.e.,
the potential factor does not add a positive contribution). Therefore, the lowest (positive
if exists) eigenvalue of the Bakry-Emery curvature of the weighted configuration space
(Mξ,M,e−2S[ξ]/ℏ) yields the mass gap or the lowest mass of the elementary particles. Since
the configuration space is flat with respect to the induced metric (by the kinetic term), the
mass gap is m which is exactly what is expected. For a mass-less field, one would of course
obtain a continuous spectrum starting from 0.

Now consider the Maxwell theory on 3+1 dimensional Minkowski space. This is of
course a special case of the Yang-Mills case when the structure constants vanish. Therefore
the configuration space metric is flat

SAI(x)AJ (y) = δ(x−y)δIJ (5.8)

and the vacuum wave functional is exactly calculable i.e., the S[A] functional reads

S[A] = 1
2

∫
k

1
|k|

(
−→
k ×

−→
A (

−→
k ))(

−→
k ×

−→
A (−

−→
k )). (5.9)

An explicit calculation yields

RicciB.E

(
Dφ†

ϵ

DAI
,
Dφ†

ϵ

DAJ

)
≥ 0. (5.10)

i.e., the mass gap E∗−E0 ≥ 0. Once again there is a 3−momentum factor that only
indicates a continuous spectrum starting from zero. In other words, the Bakry-Emery
correction term to the Ricci (i.e., the Hessian term) encodes the classical and potential
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contribution to the mass gap while pure Ricci is solely a quantum effect since it contains
divergence and needs to be regularized when non-zero.7 As it happens, in the non-abelian
pure Yang-Mills theory, the regularized Ricci curvature admits a positive lower bound yield-
ing a quantum mass gap while the potential contribution (classical mass contribution is
zero since the Yang-Mills action does not include a mass term classically and one such term
can not be introduced due to gauge invariance) is expected to contribute by a non-negative
continuous factor.

6 Explicit calculations for the gap in 2 and 3 dimensions for Yang-Mills
theory

Since the Ricci curvature appears in a regularized way, I can explicitly compute it and
later take the limit χ→∞. However, doing so would inevitably introduce infinities (an
ultraviolet divergence; since χ has a dimension of inverse length). The regular value of the
Ricci curvature is then obtained by subtracting these infinities as discussed in the proof
section of the main theorem 1.1. Recall at the level of perturbation theory, one would
remove the infinities starting at the level of the action by adding counter terms such that
those counter terms generate the exact infinities (at the loop level) with opposite signs and
therefore a cancellation occurs (in the process one obtains scaling differential equations for
the coupling constants). Renormalizibility of the Yang-Mills theory ([1]) suggests that one
only requires a finite number of counter terms to cancel out the infinities. I expect that
a similar procedure of adding counter terms is to be carried out in the current context.
However at this point the ideas of renormalization in the geometric settings is premature
and therefore I do not discuss this. Ideas from lattice gauge theory [37] may become useful
to this end.

Lemma 6.1 The formal Ricci curvature satisfies the following expression at the flat con-
nection Â=0 in terms of the cut-off parameter χ in 2 and 3 spatial dimensions

Ricχ(α,α) = − 3
4π

δBP fABCfAP Q
∫

x,x′
(γ+lnχ|x0|)αC(x)αQ(x′)d2xd2x

′

= 3C2(G)g2
Y M

16π3

∫
x,x′

(
γ

2 +lnχ|x0|
)

αP (x)αP (x′)d2xd2x
′
,n=2, (6.1)

Ricχ(α,α) = 3χC2(G)g2
Y M

2π3

∫
x,x′

αP (x)αP (x′)d3xd3x
′
, n=3, (6.2)

where C2(G) is the Casimir invariant for the adjoint representation of the compact gauge
group G=SU(N). Here |x0| is a reference constant with dimension of length.

Proof. At the flat connection Â=0, the operator ∆−1
Â

reduces to the ordinary inverse Lapla-

cian ∆−1 on Rn. Now recalling ∆−1(x,x
′)= 1

2 ln |
|x−x

′ |
|x0| | for n=2, ∆−1(x,x

′)=− 1
4π

1
|x−x′ |

7The quantum loop divergences are essentially arises due to the tracing of non-trace class operators.
As it happens, on the current context, Riemann curvature of the configuration space is one such operator
which is not of trace class.
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for n=3, I write the coincident limit by means of the point-splitting delta distribution δχ

as appears in the mass gap integral of lemma (3.1) to yield

Ricχ(α,α)= 3χ2

8π3 δBP fABCfAP Q
∫

x,x
′
αC(x)αQ(x′)

(∫ ∞

0
r ln(r/|x0|)e−χ2r2

dr

)
d2x, n=2

(6.3)

Ricχ(α,α)=−12χ3

π2 δBP fABCfAP Q
∫

x,x′
αC(x)αQ(x′)

(∫ ∞

0
re−χ2r2

dr

)
d3x, n=3.

(6.4)

Explicit integration and recalling fABCfABQ =−C2(G)g2
Y M δCQ (note that our definition of

the commutator is [X,Y ]A = fABCXBY C i.e., a factor i=
√
−1 is absorbed in the structure

constants and that gY M is the Yang-Mills coupling constant), I obtain the result. □

In the previous section, I observed that at the flat connection A=0, the regularized
Ricci tensor enjoys a positive definite property. In this particular case the elliptic operator
that appears is simply the inverse Laplacian which made the explicit calculations possible.
However, away from the flat connection A=0, one ought to regularize the trace of the
inverse gauge-covariant Laplacian ∆−1

Â
. While the spectrum is still positive, it is difficult

to perform explicit calculations. Nevertheless, I may still prove that the trace of the
regularized operator has a strictly positive lower bound. Recall the identity

λ−s = 1
Γ[s]

∫ ∞

0
ts−1e−tλdt, (6.5)

where Γ[s] is the gamma function
∫∞

0 ts−1e−tdt that has discrete poles for negative s. The
above formula is valid for any λ∈C with Re(λ)> 0. Now recall the definition of the heat
kernel associated with the positive elliptic operator ∆

Â

e
t∆

Â :=
∫

Spec(∆
Â

)
e−tλdEλ, (6.6)

where Eλ is the spectral resolution of ∆
Â
|H2 in L2. I have the following proposition for a L2

section of the bundle PAd,g (assuming that the kernel of the gauge-covariant derivative ∇̂
is trivial which is the case for irreducible connections; irreducible connections are generic).

Proposition 6.1 The heat kernel e
t∆

Â is smoothing on L2(Rn), more precisely

||et∆
Âf ||H2k(Rn) ≲ (1+t−k)||f ||L2(Rn) ∀k ∈Z+. (6.7)

Proof. For a section of the bundle PAD,g, the natural gauge invariant Sobolev norm of order
2k is defined by means of the positive operator (−∆

Â
)k i.e., for a compactly supported

section h of the bundle PAd,g,

||h||2Hk :=
k∑

I=0

∫
Rn

⟨h,(−∆
Â
)Ih⟩. (6.8)
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Now

||(−∆
Â
)Ie

t∆
Âf ||L2=

(∫ ∞

0
(λIe−tλ)2d||Eλf ||2L2

) 1
2
≤ sup

λ∈(0,∞)
(λIe−tλ)||f ||L2 ≤ (I/t)Ie−I ||f ||L2

and therefore

||et∆
Âf ||H2k ≤C

(
1+

k∑
I=0

(I

t
)Ie−I

)
||f ||L2 ≲ (1+t−k)||f ||L2 . (6.9)

□

Using this heat kernel, I may therefore formally write the following

(−∆
Â
)−s(x,x

′)f(x′) :=
∫

Spec(∆
Â

)
λ−sdEλf(x)= 1

Γ[s]

∫
Spec(∆

Â
)

∫ ∞

0
ts−1e−tλdtdEλf(x)

(6.10)

= 1
Γ[s]

∫ ∞

0
ts−1

(∫
Spec(−∆

Â
)
e−tλdEλf(x)

)
dt= 1

Γ[s]

∫ ∞

0
ts−1

(
e

t∆
Â(x,x

′)f(x′)
)

dt

where I have used the boundedness of the inner integral
∫∞

0 ts−1e−tλdt for λ > 0 to inter-
change the order of the integrals. This integral can have the problem of producing infinities
near t=0 and t=∞. The later happens if the Spec(−∆

Â
) contains zero or negative num-

bers. This is the so called infrared divergence issue while divergence at t=0 is essentially
the ultraviolet divergence issue. Denoting e

t∆
Â(x,y) as KÂ(t;x,y) the previous expression

may also be expressed as follows

(−∆
Â
)−s(x,x

′)f(x′)= 1
Γ[s]

∫ ∞

0
ts−1

(
KÂ(x,x

′)f(x′)
)

dt. (6.11)

Now let us write down a formal power series expansion of KÂ(t;x,y) as t→ 0

KÂ(t;x,y)=K(t;x,y)(1+ta1(x,y)+t2a2(x,y)+····), (6.12)

where K(t;x,y)= e−|x−y|2/4t

(4πt)n/2 is the usual heat Kernel on Rn. The coincident limits {ak(x,x)}
are local invariants (invariant polynomials of curvature) given in terms of the curvature
of the connection Â. On Rn equipped with the flat metric, one may find through explicit
calculations that a1(x,x)= 0, a2(x,x)= 11

96F P [Â]ijF P [Â]ij (see [38] for a detailed compu-
tation) i.e,

KÂ(t;x,x)=K(t;x,x)
(
1+11t2

96 F P [Â]ijF P [Â]ij+O(t3)
)

. (6.13)

Setting Λ to be a small but fixed positive number, I write the trace integral as follows

Iϵ =
∫
Rn

α(x)(−∆)−s

Â
(x,x)α(x)dnx (6.14)

= 1
Γ[s]

∫
Rn

α(x)
(∫ Λ

ϵ
ts−1K(t;x,x)

(
1+11t2

96 F [Â]ijF [Â]ij+O(t3)
)

+
∫ ∞

Λ
ts−1KÂ(t;x,x)dt

)
α(x)dnx.
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I recover the original integral after taking the limit ϵ→ 0 in a suitable way. Note that the
infrared divergence is absent since the spectrum of ∆

Â
does not contain zero or negative

modes (generic connections are considered) yielding a finite positive contribution from the
integral

1
Γ[s]

∫
Rn

α(x)
(∫ ∞

Λ
ts−1KÂ(t;x,x)dt

)
α(x)dnx.

The problem of ultraviolet divergence occurs at the flat value necessarily since K(t;x,x)=
1

(4πt)
n
2

and therefore
∫ Λ

ϵ ts−1−n
2 dt yields a log ϵ divergence for n=2 and ϵ−

1
2 divergence for

n=3 at s=1 as expected from the previous lemma concerning the trace of ∆−1. This is
natural since t≈ [length]2, ∆−1 in 2 and 3 dim essentially behaves like ln[Length/Length0]
(for some arbitrary reference length Length0) and 1/[Length], respectively. This ultraviolet
divergence is then regularized by means of the previous lemma 4.1. The following lemma
yields an estimate for the finite part of the Ricci curvature away from the flat connection
Â=0

Lemma 6.2 The regularized Ricci quadratic form
∫
Rn α(x)(−∆)−s

Â
(x,x)α(x)dnx satisfies

F.P

{∫
Rn

α(x)(−∆)−1
Â

(x,x)α(x)dnx

}
>F.P

{(∫
Rn

α(x)(−∆)−1
Â

(x,x)α(x)dnx

)
Â=0

}
+O(Λ4−n

2 ),

n=2,3, where F.P denotes the finite part.

Proof. Note the fact that ts−1+k−n
2 is integrable at zero with s=1 for k > n

2 −1. Therefore
recalling the divergences that occur near t=0, I obtain

F.P

{∫
Rn

α(x)(−∆)−1
Â

(x,x)α(x)dnx

}
≥F.P

{(∫
Rn

α(x)(−∆)−1
Â

(x,x)α(x)dnx

)
Â=0

}
+ 11Λ3−n

2

96(3− n
2 )

∫
Rn

α(x)F [Â(x)]ijF [Â(x)]ijα(x)dnx+O(Λ4−n
2 ) (6.15)

>F.P

{(∫
Rn

α(x)(−∆)−1
Â

(x,x)α(x)dnx

)
Â=0

}
+O(Λ4−n

2 ).

□

6.1 Fixing the subtraction scale x0 for 2+1 dimensional case

Notice that in the expression for the regularized Ricci curvature for 2+1 Yang-Mills theory,
one has a logarithmic divergence if the regulator χ is taken to the limit ∞ i.e.,

Ricχ(α,α)= 3C2(G)g2
Y M

16π3

∫
x,x′

(
γ

2 +lnχ|x0|
)

αP (x)αP (x′)d2xd2x
′
,n=2, (6.16)

However, due to dimensional reasons, one also encounters a length scale x0. Then the
following question arises: how to fix this length scale x0 in the renormalization of the
operator ̂̂H (4.2) that will ultimately cancel the logarithmically divergent term appearing
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in the Ricci curvature. This is vital since x0 can not be arbitrary. If it were to be arbitrary,
then I can choose a new scale y0 = e10x0 leading the new value of the Ricci quadratic form
to be

Ricχ(α,α)= 3C2(G)g2
Y M

16π3

∫
x,x′

(
γ

2 +lnχ|y0|−10
)

αP (x)αP (x′)d2xd2x
′ (6.17)

which completely destroys the positivity of the finite part since 10> γ
2 . Therefore, we

need to address how to fix the subtraction scale x0. This is motivated by the study of the
volume of the orbit space by [14]. Remarkably in 2+1 Yang-Mills theory, if one endows the
orbit space of the theory with a metric that is induced by the Kinetic energy part of the
classical action, then the volume of the orbit space turns out to be finite after appropriate
regularization [14]. Since my metric on the orbit space is also induced by the kinetic part
of the action (represented in a different local chart than that of [14]), it is natural to look
at the volume element

√
det(G). Naively this is infinite. In order to make sense of it we

need to regularize it in an appropriate way. First, recall the following expression of the
volume element associated with the metric G in a local Coulomb chart around a reference
connection Â (i.e., in a chart ∇̂

Â
·(A−Â)= 0, where ∇̂

Â
is the gauge covariant derivative

with respect to the connection Â) as derived by [20]√
det(G)= ∆F P

[det(∆A)det(∆Â
)]

1
2

, (6.18)

where ∆F P is the Fadeev-Popov determinant explicit expressed as

∆F P =det(∇
Â

∗∇A) (6.19)

where ∇
Â

∗∇A is nothing but the mixed Laplacian with connections A and Â. The very
first point to note here is that unlike ∆A or ∆

Â
, the mixed Laplacian ∇

Â
∗∇A does not

have a sign i.e., its eigenvalues could be negative. In order to tackle this issue, first we note
the following proposition

Proposition 6.2 Assume ||A−Â|| ≤ ϵ for a sufficiently small ϵ > 0 and ||·|| denotes an
appropriate norm (let’s say a Sobolev norm Hs for sufficiently large s). Then the spectra
of ∇

Â
∗∇A is strictly positive i.e., ∇

Â
∗∇A is strongly elliptic.

Proof. In order to prove this statement, we perform the following manipulations for a
section κ of the bundle PAd,g

−∇[Â]i∇[A]iκ=−∇[A]i∇[A]iκ+[A−Â,∇[A]κ]. (6.20)

Now notice that the first term is positive (in the spectral sense) for a reduced connection
A∈A/Ĝ. Now for ||A−Â||< ϵ for sufficiently small ϵ > 0, the first term dominates the
second indefinite term [A−Â,∇[A]κ]. This concludes the proof. This is once again nothing
but the Gribov ambiguity i.e., we can at once only work in a small patch around a reference
connection in the orbit space. Finally, we can glue together all such charts using partition
of unity (care must be taken since we are in infinite dimensions) and a density argument
to extend this result over the entire manifold A/Ĝ. □
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Following proposition (6.2), we will work in a chart around Â defined by ||A−Â||< ϵ within
which we have spectra(∇

Â
∗∇A)> C > 0. Taking logarithm on both sides we write the

equation (6.18) formally as follows

log(det(G))= 2log(det(∇
Â

∗∇A))−log(det(∆A))−log(det(∆
Â
)). (6.21)

Now we will employ ζ function and heat kernel technology [19] to evaluate the logarithms
of the determinants of the elliptic operators. First, recall the following identity in the sense
of spectral resolution for a strongly elliptic operator P and its associated zeta function ζ(s)

ζ(s) :=
∫

spectra(P )
λ−sdEλ =

1
Γ(s)

∫ ∞

0
ts−1K(t)dt, (6.22)

where K(t) is the trace of the heat kernel K(x,y; t) associated with P i.e.,

∂K(x,y; t)
∂t

=−PK(x,y; t) (6.23)

and K(x,y; t)⇀ δ(x,y) as t→ 0. The trace K(t) is defined as follows

K(t) :=
∫

x
K(x,x; t)d2x. (6.24)

Formally the det(P ) is obtainable through the following identity

log(det(P )) :=− d

ds
ζ(s)|s=0. (6.25)

For large t≫ 1, K(t)∼ e−δt, δ > 0 and therefore
∫∞

1
4

ts−1K(t)dt is convergent. Therefore
we need to worry about the small t domain. We can obtain asymptotics of the trace
K(t) for the three operators in our context in the small t limit. To this end, we use
the result from [38] which computes the asymptotic expansion of the heat kernel for any
gauge covariant Laplacian acting on sections of suitable bundles in terms of the bundle
curvature and the geometry of the physical space. Since for us, the physical space is flat,
the expression simplifies. Explicitly, we write for small t

KÂ(t) = 1
4πt

(∫
x

d2x+t

∫
x

a1(x,x)dx+t2
∫

x
aÂ

2 (x,x)dx+····
)

, (6.26)

KA(t) = 1
4πt

(∫
x

d2x+t

∫
x

a1(x,x)dx+t2
∫

x
aA

2 (x,x)dx+····
)

, (6.27)

KA,Â(t) = 1
4πt

(∫
x

d2x+t

∫
x

a
′
1(x,x)dx+t2

∫
x

aA,Â
2 (x,x)dx+····

)
, (6.28)

where KÂ(t),KA(t), and KA,Â(t) are the traced heat kernels associated to the operators
∆

Â
,∆A, and ∇

Â
∗∇A, respectively. The first coefficient a1(x,x) only depends on the

curvature of physical space and hence vanishes in our case. a
′
1 consists of term proportional

to tr(A(x)−Â(x)) in the mixed kernel KA,Â(t) but this is zero if we consider g= su(N).
The O(t2) terms in the brackets are gauge invariant terms quadratic in curvature and read

aÂ
2 (x,x) ∼ tr(F [Â](x)·F [Â](x)), aA

2 (x,x)∼ tr(F [A](x)·F [A](x)), (6.29)

aA,Â
2 (x,x) ∼ tr(F [Â](x)·F [Â](x))+tr(∇̂[Â](A−Â)(x)·∇̂[Â](A−Â)(x)). (6.30)
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With these expressions, we explicitly compute the zeta functions and then analytically
continue to s=0 after taking the derivative with respect to s

ζA(s) = 1
Γ[s]

∫ ∞

0
ts−1KA(t)dt (6.31)

= 1
4πΓ[s]

(∫ 1
4

0
ts−2

(∫
x

d2x+Ct2
∫

x
tr(F [A](x)·F [A](x))+O(t3)

))

+ 1
Γ[s]

∫ ∞

1
4

ts−1KA(t)dt (6.32)

=
∫

x d2x

4πΓ[s]

∫ 1
4

0
ts−2dt+(C ′)s+1

4πΓ[s]

∫
x

tr(F [A](x)·F [A](x))+O(|F |3)

=
∫

x d2x

4π(s−1)Γ[s]
1

4s−1 +
(C ′)s+1

4πΓ[s]

∫
x

tr(F [A](x)·F [A](x))+O(|F |3)

where note that the first term has a pole at s=1. C,C
′ are numerical constants i.e.,

independent of s and A. Now note

1
Γ(s) = s+γs2+O(s3) (6.33)

near s=0 (where we would like to analytically continue). Therefore, the derivative reads

d

ds
ζA(s)|s=0 =−

∫
x d2x

π
+C

′

4π

∫
x

tr(F [A](x)·F [A](x))+O(|F |3) (6.34)

and therefore

log(det(∆A))=− d

ds
ζA(s)|s=0 =

∫
x d2x

π
−C

′

4π

∫
x

tr(F [A](x)·F [A](x))+O(|F |3) (6.35)

Now to make sense of the determinant det(∆A), I need a cut-off so that
∫

x d2x is finite.
This gives a large but finite subtraction scale x0. This divergent term

∫
x d2x ultimately

cancels out in the expression for log(det(G)) leaving out finite terms involving potential
energy.

Corollary 6.1 The finite parts of the Ricci curvature verify the following bounds in 2+1
and 3+1 dimensions

Ricfinite(α,α)>
3γC2(G)g2

Y M

16π3

∫
x,x′

αP (x)αP (x′)d2xd2x
′
, n=2, (6.36)

Ricχ(α,α)>
3χC2(G)g2

Y M

2π3

∫
x,x′

αP (x)αP (x′)d3xd3x
′
, n=3, (6.37)

where in 3+1 dimensions χ dependence still remains if one were to yield a finite result.

Proof. Now 2+1 dimensional Yang-Mills theory is superrenormlizable and hence the cou-
pling constant does not run. The finite part of the Ricci curvature does not depend on the
cut-off χ. The eigenvalue of the Laplace-Beltrami operator is simply numerical constant
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times g2
Y M as expected. However, for 3+1 dimensions, I keep a finite χ for dimensional

reasons. At a flat connection, the finite Ricci curvature verifies

Ricfinite(α,α)= 3C2(G)g2
Y M

16π3

∫
x,x′

αP (x)αP (x′)d2xd2x
′
, n=2, (6.38)

Ricχ(α,α)= 3χC2(G)g2
Y M

2π3

∫
x,x′

αP (x)αP (x′)d3xd3x
′
, n=3, (6.39)

Note that away from the flat connection, the finite part of the Ricci quadratic form coming
from the trace of ∆̂−1 is modified by a strictly positive entity at the leading order according
to lemma 6.2. In addition, the tracing operation away from the flat connection involves
multiplication by the non-trivial part of the metric fP UV AU

i (x)∆−1
A (x,y)fV RQAR

j (y) that
yields an additional term that is strictly positive

3
∫

x,y
fP U1V1AU1

i (x)∆−1
A (x,y)fV1R1QAR1

j (y)(fV P RαR
i (x)∆−1

A (x,y)fV QU αU
j (y))> 0. (6.40)

since this is nothing but the product of sectional curvatures at the connection A which
is strictly positive from remark 4. Therefore the strict inequality in the Ricci curvature
follows. □

Even though the regularized Ricci curvature term produces a strictly positive contri-
bution, the Hessian term (Hessian(S) contracted with the gradient of the excited state
functional φ in equation (3.23); II is the main theorem 1.1) can potentially be problem-
atic in the sense that it can contribute by a negative factor and cancel out the positive
contribution from I. However, due to Lorentz invariance, it is expected that ultimately
this Hessian term contributes by a strictly positive factor as well. This is motivated by the
work of [42] on computing the ground state wave functional. More precisely the form of
S[A] functional for 2+1 dimensional Yang-Mills theory is given in [42] as follows

S[A] = 1
2g2

Y M

∫
R2×R2

Ba(x) 1
m+

√
m2+∆

Ba(y)d2xd2y, (6.41)

where ∆ :=−ηij∂i∂j is the Laplacian on R2, m is a strictly positive number, and Ba :=
Ba[A] is the chromomagnetic field. This form of the S[A] functional suggests that the
Hessian of S[A] should produce a strictly positive number (at least in a measure-theoretic
sense; notice that Hessian of a gauge invariant functional can have an arbitrarily large index
due to non-trivial topology of the orbit space but that is expected to happen on a measure
zero set). Proving such a statement with the S[A] functional 6.41 is a monumental task
and we leave it for future research. In the next section, we present a heuristic geometric
argument.

6.2 Non-negativity of the term II in the main theorem 1.1

The geometric part (the term I in the theorem 1.1) is strictly positive. However, the poten-
tial contribution (term II in the theorem 1.1) can be negative (note that on a topologically
non-trivial space, Hessian of a gauge invariant entity can have an arbitrary large index
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at a point, see [60] for example for index estimates of Yang-Mills potential at the critical
points). This issue needs further investigation. Notice that S[A] is not arbitrary since
Ψ[A] :=Nℏe

−S[A]/ℏ verifies the Schrodinger equation. Here I present a heuristic argument
as to how the term II could contribute by a strictly positive number under some mild
assumptions. I use the finite-dimensional notation to denote the covariant derivatives on
the orbit space for convenience i.e., DS

DAP
i (x) is simply denoted by ∇S. Similarly, the infinite-

dimensional Laplace-Beltrami operator on A/Ĝ is denoted by ∆ for simplicity in notations.
First I derive the following identity for the S[A] functional since Ψ[A] :=Nℏe

−S[A]/ℏ verifies
the functional Schrodinger equation with vanishing ground state energy ĤΨ[A] = 0

1
2∆(|∇S|2e−

2S
ℏ )=

(
|∇2S|2+1

ℏ
∇jS∇j(|∇S|2−V )+Ricci(∇S,∇S) (6.42)

−2
ℏ

Hessian(S)(∇S,∇S)− 1
ℏ2 |∇S|2(|∇S|2−V )+ 2

ℏ2 |∇S|4
)

e−
2S
ℏ ,

where V is twice the Yang-Mills potential i.e., V = 1
2
∫
Rn F P

ij F P
ij . I integrate this expression

over the orbit space and use the vanishing of the boundary term due to rapid fall-off of the
measure e−2S/ℏ near the infinity of the orbit space A/Ĝ to yield

2
ℏ

∫
A/Ĝ

Hessian(S)(∇S,∇S)e−
2S
ℏ

=
∫
A/Ĝ

(
|∇2S|2+ 1

ℏ2 (2|∇S|2−V )(|∇S|2+V )+Ricci(∇S,∇S)
)

e−
2S
ℏ (6.43)

The Ricci quadratic form R(∇S,∇S) is understood to be regularized (this regularization
appears since we start with a regularized Laplacian in the identity 6.42). A natural ob-
struction that arises is the non-negativity of 2|∇S|2−V . To prove this would require the
construction of the measure e−2S/ℏ and then one would need to investigate if S[A] rises fast
enough. Essentially, this is where all the difficulty lies. I expect if one were to construct the
ground state rigorously, then the this desired inequality 2|∇S|2 ≥V should hold (at least
weakly i.e.,

∫
A/Ĝ(2|∇S|2−V )(|∇S|2+V )e−

2S
ℏ ≥ 0. Of course, for a complete argument, one

ought to establish the non-negativity of the Hessian in any arbitrary directions not just
along ∇S. But if it were to be non-negative it must satisfy non-negativity along any di-
rections including ∇S and therefore the inequality

∫
A/Ĝ(2|∇S|2−V )(|∇S|2+V )e−

2S
ℏ ≥ 0 is

desired at a bare minimum. Notice an important fact. Since in Lorentz covariant field
theories, the metric induced on the orbit space can not be arbitrary, we mentioned in the
introduction that the functional can not be independent of the geometry. In fact, the ap-
pearance of the Ricci term in the integral expression 6.43 reflects this fact. Let us examine
the known case i.e., U(1) gauge theory. Clearly the ground state is exactly known (5.9)
and it verifies the equation |∇S|2 =V and therefore we have

∫
A/Ĝ Hessian(∇S,∇S)e−

2S
ℏ =

ℏ
2
∫
A/Ĝ

(
|∇2S|2+ 2

ℏ2 |∇S|4
)

e−
2S
ℏ ≥ 0 since the orbit space of the U(1) theory is flat (5.8).

I present a second argument based on semi-classical expansion presented in section 3.1.
First note that at the flat connection A=0 (or its equivalence class),

Hessian(S)(α,α)≥ 0 (6.44)
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for any α∈TAA/Ĝ. This is because near A=0,

S[A] = 1
2

∫
k

1
|k|

(
−→
k ×

−→
Aa(

−→
k ))(

−→
k ×

−→
Aa(−

−→
k ))+O(|A|3) (6.45)

and therefore result from section 5, inequality 5.10 implies Hessian(S) is positive definite
at the flat connection A=0. Moreover S[A] is convex in an open subset containing A=0,
i.e., Hessian(S)[A] is positive definite in an open subset containing A=0 away from A=0.
Now I argue that Hessian(S)[A] never has vanishing eigenvalues based on a semi-classical
expansion. Recall the expansion of S[A] in ℏ

S[A]≃S0[A]+ℏS1[A]+ ℏ2

2! S2[A]+···· ℏ
k

k! Sk[A]+···· (6.46)

In order for, Hessian(S) to have a zero eigenvalue at some point A∈A/Ĝ each of Hessian(S0),
Hessian(S1), Hessian(S2), . . . must have zero eigenvalues at A simultaneously. But this fails
for S0[A]. This follows from the Hamilton-Jacobi equation (3.12) that is verified by S0 (at
O(ℏ0)) ∫

Rn×Rn

1
2G

AP
i (x1)AQ

j (x2) δS0
δAP

i (x1)
δS0

δAQ
j (x2)

−
∫
Rn

1
4Fjk ·Fjk =0. (6.47)

since Fréchet differentiation of this equation in an arbitrary direction α yields

Hessian(S0)
(

δS0
δA

,α

)
= 1

4Dα

∫
Rn

Fjk ·Fjk. (6.48)

Now in order for the right-hand side to vanish, the Euclidean action functional 1
4
∫
Rn Fjk ·Fjk

must have a critical point in the orbit space A/Ĝ. In other words, one must solve for the
Euclidean Yang-Mills equations on the Cauchy slice Rn, n=2,3. But for n=2 and 3, there
is no non-trivial solution to Euclidean Yang-Mills equations with any finite energy [61]
(notice this fails for n=4 due to conformal invariance and also if one includes a Higgs
field). By scaling one may increase the Yang-Mills potential energy for n=2 and n=3 as
large as desired (since conformal invariance does not hold in any other dimensions except
n=4). Therefore Hessian(S0)

(
δS0
δA ,α

)
̸=0 yielding

Hessian(S)
(

δS

δA
,α

)
̸=0. (6.49)

Now, if we assume that S is a smooth functional (or at least thrice Fréchet differen-
tiable) on the orbit space A/Ĝ or at least almost everywhere smooth and the complement
of the set on which it is non-smooth is connected, then Hessian(S)

(
δS
δA ,α

)
≥ 0 at A=0,

Hessian(S)
(

δS
δA ,α

)
> 0 near A=0, and Hessian(S)

(
δS
δA ,α

)
̸=0 everywhere else (on the con-

nected full measure set where it is differentiable) implies Hessian(S)
(

δS
δA ,α

)
> 0 almost

everywhere on A/Ĝ. Now one point that needs to be addressed is whether A/Ĝ is path
connected or not. I argue this as follows. If I assume connections on A/Ĝ to have finite
energy, then every connection is described by its asymptote at ∞ of Rn,n=2,3 which is a
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flat connection A= g−1dg where g is a map from the boundary sphere Sn−1 at ∞ to the
gauge group SU(N) i.e.,

g : Sn−1 → SU(N). (6.50)

Therefore, A/Ĝ is homotopy equivalence to the space Maps(Sn−1 → SU(N)). Now for
n=2 and 3, we have π1(SU(N))= 0,π2(SU(N))= 0 indicating A/Ĝ to be path connected
(A/Ĝ is a topologically complicated space). This completes the heuristic argument that
indeed the Bakry-Emery Ricci curvature associated with the n+1, n=2,3 dimensional
quantum Yang-Mills theory admits a strictly positive lower bound ∆ (for 2+1 dimensions,
∆= 3γC2(G)g2

Y M
4π and for 3+1 dimensions, ∆= 3χC2(G)g2

Y M
2π3 from corollary 6.1). Even though,

a rigorous analysis is to be performed to make sense of the semi-classical series 6.46, these
heuristic arguments tend to point toward a positive answer to the Yang-Mills mass gap
problem.

6.3 Dimensional analysis, large N limit

Now I perform an elementary dimensional analysis and argue that for 3+1 dimensional
Yang-Mills theory, one needs to introduce a length scale L in order to obtain a mass gap.
I set the light speed c equals to 1. With this convention, I have [t] = [x] =L. The classical
action

∫
R1,3⟨F,F ⟩dtd3x has the dimension of ℏ. Therefore A has the dimension of ℏ

1
2

L and
g2

Y M has the dimension of 1
ℏ . Now according to (6.39), the dimension of Ricχ(α,α)∫

R3×R3 α(x)α(x′ ) is 1
ℏL

since χ has dimension 1
L . Therefore ∆ in the main theorem 1.1 has dimension 1

ℏL yielding
the dimension of E∗−E0 to be ℏ

L which is the correct dimension of energy. Therefore, the
introduction of a finite χ (inverse length) is absolutely necessary to generate an energy scale
in the quantum Yang-Mills theory in 3+1 dimensions. Contrary to 3+1 dimensions, in the
chosen convention c=1, the Yang-Mills coupling constant has an appropriate dimension
in 2+1 dimensions. In other words, g2

Y M has the dimension of 1
ℏL that yields a dimension

of 1
ℏL for the Bakry-emery bound ∆ from (6.1). This in turn implies that the gap E∗−E0

has the correct dimension of ℏ
L . Therefore, I do not need to introduce an additional length

scale for the energy gap in the 2+1 dimensional quantum Yang-Mills theory. In fact, 2+1
dimensional Yang-Mills theory is super-renormalizable and therefore does not run.

In 3+1 Yang-Mills theory, gY M is dimensionless (i.e., has the dimension of 1
ℏ) and

thus one can not create a mass out of the occurring constants (i.e., gY M ,ℏ, c=1) (purely
on dimensional grounds). In order to generate the dimension of mass, one must introduce
an additional length scale as I have demonstrated previously. However, this naturally
appears through the regularization process as one can not simply eliminate χ. Therefore in
the 3+1 case, one may not take the limit χ→∞ (or length approaching zero) but set it to
1
L , L > 0. This L is then to be fixed possibly by measuring the mass of the lowest glue-ball
state. Roughly the finite part of the Ricci curvature is proportional to 3C2(G)g2

Y M
2π3L

. In 3+1
dimensions, the introduction of a length scale L introduces another scale the mass m0 of the
lowest glu-ball state. Essentially the ratio of the two scales m0L is the meaningful entity. It
would be interesting to understand this issue from a perspective of renormalization group
flow i.e., to introduction of a length via regularization and renormalization process.
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Lastly one of the most interesting features of the kinetic contribution from corollary 6.1
is its invariance under large N or the ’t Hooft limit [62]. Notice that the kinetic contribution
in corollary 6.1 scales as C2(G)g2

Y M . Now let us assume that G=SU(N) and therefore
C2(G)g2

Y M =Ng2
Y M since C2(G)=N . But the ’t Hooft’s large N limit is nothing but

increasing N while keeping g2
Y M N fixed. This property seems to indicate that the curvature

contribution persists in the large N limit. The strict N →∞ limit is essentially a free theory
in the sense that all the correlation functions of single trace, gauge invariant operators
factorize (maps onto a free string theory [59, 62]). Nevertheless, in the large N limit, the
theory exhibits a mass gap (in fact the strict lower bound does not depend on N as long as
the t’Hooft coupling is fixed as seen from the explicit expression). Therefore my calculation
seems to support the belief that in the strict large N limit, one has a tower of massive free
particles. It would perhaps be interesting to investigate from ADS-CFT perspective.

7 Concluding remarks

Topology and geometry of the configuration space of the classical gauge theory have been
studied previously [11, 12, 55]. At the classical level, the geometry of the configuration
space is not known to play a vital role in the sense that one does not require the ge-
ometric information of the configuration space (its curvature, etc) while studying local
Cauchy problems and even in understanding the long time dynamics. Classical Yang-Mills
fields are globally well-posed on both R1+2 and R1+3 and in the proof of such global well-
posedness [56–58] nowhere does the geometry of the configuration space enter crucially. It
is suspected however that the geometry of the configuration space has an important role to
play at the level of quantum field theory. While very little effort is paid to understanding
the role of the geometry of the classical configuration space in quantized field theory in con-
temporary high-energy physics, it is certainly worth the attention. In a finite-dimensional
setting, sharp estimates on the spectrum of the Hamiltonian operator of a quantum theory
are obtainable through Lichnerowicz-type estimates on a constructed weighted manifold
under a suitable convexity assumption on the potential [8]. In addition, several results
on the estimates of the spectrum of the Schrodinger operator are available [63–65]. At
the level of field theory, this is much more delicate since the operators do not make sense
without appropriate regularization. Even after one performs such regularization, making
sense of a rigorous quantum theory requires new novel ideas that are yet to be thought of.
But the non-perturbative techniques such as the semiclassical method developed by [6, 7]
and stochastic quantization scheme developed by [46, 47] seem promising at the moment.

The loop corrections to the tree solution (semi-classical approximation) obtained by
solving the functional Hamilton-Jacobi equation require regularization. This is because
the tree contribution appears as a source term acted upon by the functional Laplacian in
the transport equations for the quantum corrections. At the semi-classical level, no such
regularization is required since the functional Hamilton-Jacobi equation does not involve
singular operators. This singular nature of the operators appearing at the loop level is
essentially related to the divergences associated with the quantum field theory. Similarly,
notice that the Riemann curvature of the configuration space is a purely classical object.
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However, to define the Ricci curvature, I had to invoke the same regularization scheme, and
as such the formal non-regularized Ricci curvature contains ultraviolet divergence terms.
This hints towards a conclusion that the quantum field theory is affected by the geometry
at the level of Ricci curvature (Bakry-Emery Ricci where the potential contribution is
considered). Appropriate invariants of the Riemann curvature should show up at the tree-
level scattering amplitudes. It is almost certainly expected that the Ricci curvature would
inevitably show up when one tries to compute the loop amplitudes indicating a quantum-
nature of the Ricci curvature of this infinite-dimensional configuration space. A natural
conjecture would be that the renormalization group flow for the metric corresponds to a
forced (due to the presence of the potential term) infinite-dimensional Ricci flow. This
should result in a flat metric at the high energy limit indicating the asymptotic freedom.
In addition, the idea of renormalization and how it can be used to obtain a length scale to
define a mass in 3+1 dimensional Yang-Mills theory is to be understood in a rigorous way.

Another example of the orbit space geometry playing an important role in the case of
scalar electrodynamics where photons remain gap-less due to vanishing Riemann curvature
of the orbit space of the U(1) connections while moduli of charged scalar fields are shown to
have a non-vanishing curvature [8]. It should be interesting to consider the large N limit of
SU(N) non-abelian gauge theories since I have noticed the constancy of t’Hooft’s coupling
indicates that the curvature contribution is invariant in the large N limit. It may be
interesting to study this from the ADS-CFT perspective. Another interesting application
would be to study the N =4 super Yang-Mills theory and investigate whether the expected
gapless spectra can be geometrically explained.
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A Calculations for the proof of the main theorem

Here I provide the calculations regarding the commutation of the covariant derivatives to
obtain the identity (A.3) (see [8] for the corresponding finite-dimensional calculations).
First, consider the following entity

Q :=
∫
Rn×Rn

G
AP

i (x)AQ
j (x′ )

δχ
ΘP Q(x,x

′)

 Dφ[A]†

DAP
i (x)

Dφ[A]
DAQ

j (x
′)
|Nℏ|2e−2S[A]/ℏ

dnxdnx
′ (A.1)
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and apply the regularized covariant functional Laplacian to yield (denote Rn×Rn by K)∫
K

G
AL

k (y)AM
l (z)

δχ
ΘLM (y,z) D

DAL
k (y)

D

DAM
l (z)

Q

=
∫
K

G
AL

k (y)AM
l (z)

δχ
ΘLM (y,z) D

DAL
k (y)

D

DAM
l (z)

∫
K

G
AP

i (x)AQ
j

(x
′
)

δχ
ΘP Q(x,x

′
)(

Dφ[A]†

DAP
i (x)

Dφ[A]
DAQ

j (x′)
|Nℏ|2e−2S[A]/ℏ

)

=
∫
K

G
AL

k (y)AM
l (z)

δχ
ΘLM (y,z)

∫
K

G
AP

i (x)AQ
j

(x
′
)

δχ
ΘP Q(x,x

′
)

D

DAL
k (y)

(
D

DAP
i (x)

Dφ†

DAM
l (z)

Dφ

DAQ
j (x′)

|Nℏ|2e−2S/ℏ

+ Dφ†

DAP
i (x)

D

DAQ
j (x′)

Dφ

DAM
l (z)

|Nℏ|2e−2S/ℏ− 2
ℏ

Dφ†

DAP
i (x)

Dφ

DAQ
j (x′)

DS

DAM
l (z)

|Nℏ|2e−2S/ℏ

)

=
∫
K

G
AL

k (y)AM
l (z)

δχ
ΘLM (y,z)

∫
K

G
AP

i (x)AQ
j

(x
′
)

δχ
ΘP Q(x,x

′
)
{(

D

DAP
i (x)

D

DAL
k (y)

Dφ†

DAM
l (z)

+RAM
l

(z)AN
n (x′′ )AL

k
(y)AP

i
(x)

Dφ†

DAN
n (x′′)

)
Dφ

DAQ
j (x′)

|Nℏ|2e−2S/ℏ

+ D

DAP
i (x)

Dφ†

DAM
l (z)

D

DAL
k (y)

Dφ

DAQ
j (x′)

|Nℏ|2e−2S/ℏ

+
(

D

DAP
i (x)

D

DAL
k (y)

Dφ

DAM
l (z)

+RAM
l

(z)AN
n (x′′ )AL

k
(y)AP

i
(x)

Dφ

DAN
n (x′′)

)
Dφ†

DAQ
j (x′)

|Nℏ|2e−2S/ℏ

+ D

DAL
k (y)

Dφ†

DAP
i (x)

D

DAQ
j (x′)

Dφ

DAM
l (z)

|Nℏ|2e−2S/ℏ

−2
ℏ

D

DAP
i (x)

Dφ†

DAM
l (z)

Dφ

DAQ
j (x′)

DS

DAL
k (y)

|Nℏ|2e−2S/ℏ

−2
ℏ

Dφ†

DAP
i (x)

D

DAQ
j (x′)

Dφ

DAM
l (z)

DS

DAL
k (y)

|Nℏ|2e−2S/ℏ

−2
ℏ

D

DAL
k (y)

(
Dφ†

DAP
i (x)

Dφ

DAQ
j (x′)

DS

DAM
l (z)

|Nℏ|2e−2S/ℏ

)}
.

I have utilized the fact that the functional covariant derivative commutes with the parallel
propagator (Wilson line). Now notice that the Riemann curvature of the space A/Ĝ appears
in the previous expression, which without regularization would lead to the formal Ricci
curvature which would not make sense as a trace of a non-trace class operator. In order to
relate this expression to the spectral gap of the regularized Hamiltonian operator Ĥ, first,
recall the following identity

∫
K

G
AL

k (y)AM
l (z)

δχ
ΘLM (y,z)

(
D

DAL
k (y)

Dφ

DAM
l (z)

)
e−S/ℏdnydnz =− 2

ℏ2 (Ĥ−E0)(φe−S/ℏ)

+2
ℏ

∫
K
G

AL
k (y)AM

l (z)
δχ

ΘLM (y,z) DS

DAL
k (y)

Dφ

DAM
l (z)

e−S/ℏdnx. (A.2)
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Now in order to obtain a lower bound for the spectrum of Ĥ−E0, I need to manipulate the
expression for the entity

∫
KG

AL
k (y)AM

l (z)
δχ

ΘLM (y,z) D
DAL

k
(y)

D
DAM

k
(z)Q. Under the assumption

of the existence of a rigorous quantum field theory, I may take S and φ to be smooth
functionals of A. Therefore, under this bold assumption, all the integrals supposedly yield
finite values rendering an application of Fubini’s theorem to interchange the integrals over
K whenever necessary. In addition, having assumed the existence of a quantized theory,
the regularized operator Ĥ−E0 is self-adjoint with respect to the measure e−2S[A]/ℏµG and
as a consequence, I may discard the boundary terms that arise in the process (rapid decay
of the measure e−

2S
ℏ ). For now let us evaluate

∫
KG

AL
k (y)AM

l (z)
δχ

ΘLM (y,z) D
DAL

k
(y)

D
DAM

k
(z)Q∫

K

G
AL

k (y)AM
l (z)

δχ
ΘLM (y,z) D

DAL
k (y)

D

DAM
l (z)

Q

=
∫
K

G
AL

k (y)AM
l (z)

δχ
ΘLM (y,z)

∫
K

G
AP

i (x)AQ
j

(x
′
)

δχ
ΘP Q(x,x

′
)(

−2 D

DAL
k (y)

Dφ†

DAM
l (z)

D

DAP
i (x)

Dφ

DAQ
j (x′)

e−2S/ℏ

+2
ℏ

D

DAL
k (y)

Dφ†

DAM
l (z)

Dφ

DAQ
j (x′)

DS

DAP
i (x)

e−2S/ℏ+ 2
ℏ

D

DAL
k (y)

Dφ

DAM
l (z)

Dφ†

DAQ
j (x′)

DS

DAP
i (x)

e−2S/ℏ

+RAM
l

(z)AN
n (x′′ )AL

k
(y)AP

i
(x)

Dφ†

DAN
n (x′′)

Dφ

DAQ
j (x′)

e−2S/ℏ)

+RAM
l

(Z)AN
n (x′′ )AL

k
(y)AP

i
(x)

Dφ

DAN
n (x′′)

Dφ†

DAQ
j (x′)

e−2S/ℏ

+ D

DAP
i (x)

Dφ†

DAM
l (z)

D

DAL
k (y)

Dφ

DAQ
j (x′)

e−2S/ℏ+ D

DAL
k (y)

Dφ†

DAP
i (x)

D

DAQ
j (x′)

Dφ

DAM
l (z)

e−2S/ℏ

−2
ℏ

D

DAP
i (x)

Dφ†

DAM
l (z)

Dφ

DAQ
j (x′)

DS

DAL
k (y)

e−2S/ℏ− 2
ℏ

Dφ†

DAP
i (x)

D

DAQ
j (x′)

Dφ

DAM
l (z)

DS

DAL
k (y)

e−2S/ℏ

+ D

DAP
i (x)

(
D

DAL
k (y)

Dφ†

DAM
l (z)

Dφ

DAQ
j (x′)

e−2S/ℏ

)
+ D

DAP
i (x)

(
D

DAL
k (y)

Dφ

DAM
l (z)

Dφ†

DAQ
j (x′)

e−2S/ℏ

)

−2
ℏ

D

DAL
k (y)

(
Dφ†

DAP
i (x)

Dφ

DAQ
j (x′)

DS

DAM
l (z)

e−2S/ℏ

))
.

Now utilizing the identity (A.2), I may write the following∫
K

G
AL

k (y)AM
l (z)

δχ
ΘLM (y,z)

∫
K

G
AP

i (x)AQ
j

(x
′
)

δχ
ΘP Q(x,x

′
) D

DAL
k (y)

Dφ†

DAM
l (z)

D

DAP
i (x)

Dφ

DAQ
j (x′)

e−2S/ℏ

= 4
ℏ4

{
(Ĥ−E0)(φe−S/ℏ)

}{
(Ĥ−E0)(φ†e−S/ℏ)

}
+ 2
ℏ

∫
K

G
AL

k (y)AM
l (z)

δχ
ΘLM (y,z)

∫
K

G
AP

i (x)AQ
j

(x
′
)

δχ

ΘP Q(x,x
′
)
(
2
ℏ

D

DAL
k (y)

Dφ

DAM
l (z)

DS

DAP
i (x)

Dφ†

DAQ
j (x′)

e−2S/ℏ

+2
ℏ

D

DAP
i (x)

Dφ†

DAQ
j (x′)

DS

DAL
k (y)

Dφ

DAM
l (z)

e−2S/ℏ

− 4
ℏ2

DS

DAP
i (x)

Dφ

DAQ
j (x′)

DS

DAL
k (y)

Dφ†

DAM
l (z)

e−2S/ℏ

)
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substitution of which in the expression for
∫
K δχ(y,z)ΘLM (y,z) D

DAL
k

(y)
D

DAM
k

(z)Q yields

∫
K
ΘLM (y,z)GAL

I (y)AM
J (z)

χ
D

DAL
I (y)

D

DAM
J (z)

Q

= − 8
ℏ4

{
(Ĥ−E0)(φe−S/ℏ)

}{
(Ĥ−E0)(φ†e−S/ℏ)

}
+
∫
K
G

AL
k (y)AM

l (z)
δχ

ΘLM (y,z)
∫
K
G

AP
i (x)AQ

j (x′ )
δχ

ΘP Q(x,x
′)RAM

l
(z)AN

n (x′′ )AL
k

(y)AP
i (x)

Dφ†

DAN
n (x′′)

Dφ

DAQ
j (x

′)
e−2S/ℏ

+RAM
l

(z)AN
n (x′′ )AL

k
(y)AP

i (x)
Dφ

DAN
n (x′′)

Dφ†

DAQ
j (x

′)
e−2S/ℏ

+4
ℏ

D

DAP
i (x)

DS

DAM
k (z)

Dφ†

DAQ
j (x

′

Dφ

DAL
k (z)

e−2S/ℏ

+2 D

DAL
k (y)

Dφ†

DAP
i (x)

D

DAQ
i (x

′)
Dφ

DAM
l (z)

e−2S/ℏ

+ D

DAP
i (x)

(
D

DAL
k (y)

Dφ†

DAM
l (z)

Dφ

DAQ
i (x

′)
e−2S/ℏ

)

+ D

DAP
i (x)

 D

DAL
k (y)

Dφ

DAM
l (z)

Dφ†

DAQ
j (x

′)
e−2S/ℏ


−2
ℏ

D

DAL
k (y)

 Dφ†

DAP
i (x)

Dφ

DAQ
j (x

′)
DS

DAM
l (z)

e−2S/ℏ


−2
ℏ

D

DAP
i (x)

 Dφ

DAQ
j (x

′)
Dφ†

DAL
k (y)

DS

DAM
l (z)

e−2S/ℏ


−2
ℏ

D

DAP
i (x)

 Dφ†

DAQ
j (x

′)
Dφ

DAL
k (y)

DS

DAM
l (z)

e−2S/ℏ

 .
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