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1 Introduction

Chern-Simons (CS) forms have been extensively used in the construction of action principles
in different areas of physics (see [1–6] and references therein). In the context of gravity, CS
forms can be used to define (super-)gravity theories in odd dimensions as genuine gauge
theories [7–10] (for a detailed analysis, see also [11, 12]). However, when gauge fields are
defined on a manifold with a boundary, CS actions become quasi-gauge-invariant. In other
words, under gauge transformations, they change in an exact form. In order to restore
gauge invariance, boundary terms can be added to the action (see, for instance, [13, 14]).
Furthermore, boundary terms together with boundary conditions on the fields are generally
necessary for the action to have a well-defined variation and be a true extremum when the
field equations hold [15]. In the case of three-dimensional CS gravity with a negative
cosmological constant, this procedure generally leads to a (reduced) Wess-Zumino-Witten
(WZW) model defined at the two-dimensional boundary [16]. These results have been
generalized to the five-dimensional case [17], where a WZW4 model is shown to arise at
the boundary when suitable boundary conditions are adopted. The study of gauge theories
defined on bounded manifolds has attracted considerable attention in the last decades due
to the advent of the holographic principle [18, 19] and the AdS/CFT correspondence [20].
In this context, bulk/boundary dualities in CS theories have led to remarkable results in the
direction of a holographic description of three-dimensional gravity (see, for example, [21–
24]). Moreover, in recent years, different aspects of dual field theories associated to higher-
dimensional AdS CS gravities have been explored [25–27].

When applying Dirac’s Hamiltonian formalism for constrained systems [28, 29] to CS
theories in the presence of a boundary, conserved charges appear as surface integrals that,
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provided a set of boundary conditions, regularize the first-class constraints of the system
and allow one to find a surface charge algebra once the gauge is appropriately fixed and
the Dirac brackets are implemented. This is nothing but a particular example of the pre-
scription due to Regge and Teiteilboim [15] applied to gauge theories. Moreover, in 2 + 1
dimensions, the Hamiltonian formalism for CS theories is generic, i.e. the rank of the sym-
plectic form that defines the phase space of the theory is constant, and the corresponding
Dirac brackets can be globally defined [30, 31]. After imposing suitable boundary condi-
tions on the CS gauge connection, one can find the surface charge algebra of the theory from
the Dirac brackets of the regularized first-class constraints. On the other hand, in higher
dimensions, the situation changes completely, and the Hamiltonian dynamics of the theory
is highly non-trivial. This is because, for D ≥ 5, the CS symplectic form has a non-constant
rank throughout the phase space, dividing this into sectors possessing different numbers of
local degrees of freedom. The Hamiltonian formulation, in this case, can be used to find
the conserved charges once a generic and regular sector of the theory has been chosen, and
the constraints of the theory can be adequately split into first- and second-class [32, 33].

Transgression forms first appeared in physics in the topological interpretation of
anomalies in quantum field theory and gravity [34, 35]. In the context of gravitational
gauge theories, transgression field theory (TrFT) can be used to define (super-)gravity ac-
tion principles in odd dimensions that are genuinely gauge invariant [36–39], whereas, in
the even-dimensional case, TrFTs allow one to define gauged-WZW models and topological
gravity theories [40–45]. Being genuinely gauge-invariant, it is possible to define conserved
charges in TrFTs through Noether’s theorem straightforwardly. Transgression forms can
be constructed by subtracting two CS forms plus a boundary term, rendering the theory
gauge invariant. Therefore, it is reasonable to expect that in the case of a TrFT, the
boundary term in its very definition is sufficient to obtain the corresponding conserved
charges as surface integrals in the symmetry generators through Dirac’s algorithm. In this
article, we will show that, provided the boundary variations of the relevant functionals are
consistently treated, this is indeed the case.

As stated before, the usual criteria when applying the Regge-Teitelboim method to
gauge theories is to include regularizing boundary terms in the first-class constraints [21,
46, 47] so that their variations do not drop boundary terms and their Poisson brackets
lead to regularized functionals as well [48]. However, to apply the Hamiltonian formulation
for constrained systems to an action based on a transgression form and not to lose the
information contained in the transgression boundary term during the process, one should
necessarily allow boundary contributions in the variations of the constraints of the theory.
As shown by Soloviev and Bering [49, 50] (see also [51]), treating functionals with boundary
variations requires carefully extending the definition of the usual Poisson bracket to the
boundary of the space-time manifold.1 This is mainly due to the fact that when boundary
variations are allowed, the Poisson bracket does not fulfil the Jacobi identity [53]. Based
on these results, we will analyze TrFT applying Dirac’s formalism for constrained systems

1Another way to circumvent this problem has been developed in [52] by means of a purely geomet-
ric formulation of Dirac’s formalism for constrained systems in bounded regions, which does not require
implementing regularizing terms in the constraints.
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and including the boundary variations of the phase space functionals throughout. The
inclusion of boundary variations in the Poisson brackets effectively leads to a Hamiltonian
formulation based on the modified Poisson bracket proposed by Soloviev and Bering [49, 50].
We will show that this procedure allows us to recover the conserved charges of TrFT from
the resulting boundary terms in the first-class constraints of the theory.

This paper is organized as follows. Section 2 will briefly review the definition of
transgression forms and their relation to CS theory. In section 3, we give a short summary
of the Hamiltonian formulation of CS theories. We introduce a generalized Poisson bracket
and use it to apply Dirac’s algorithm for constrained systems to TrFT. In section 4, we
apply this prescription to transgression forms in three and five dimensions and show that
the boundary terms obtained in the first-class constraints allow us to recover the conserved
charges of the theory. In section 5, we conclude with an analysis of the results and discuss
possible future directions.

2 Transgression forms

We start by briefly surveying the properties of transgression forms and TrFT. This summary
makes no pretence of being complete or up-to-date. More detailed analysis can be found
in the references (see, for instance, [54, 55]).

Given a principal bundle with fibre G over a (2n+ 2)-dimensional base manifold and
a connection one-form A defined on it, one can always construct an invariant polynomial
P (F ) out of the (n+1)-th wedge power of the curvature two-form F = dA+A2 associated
with A, which is usually expressed as2

P (F ) = ⟨F . . . F ⟩ , (2.1)

where ⟨. . . ⟩ stands for an invariant symmetric multilinear form on the Lie algebra g associ-
ated with the Lie group G. By definition, the polynomial (2.1) is a (2n+2)-form invariant
under gauge transformations F → g−1Fg where g ∈ G. The Chern-Weil theorem [55]
ensures that P (F ) is closed [dP (F ) = 0] and that, if F and F̄ are the curvatures corre-
sponding to two different connections A and Ā on the same principal bundle, P (F )−P (F̄ )
is exact, i.e.

P (F )− P (F̄ ) = dT2n+1 . (2.2)

This defines the transgression form

T2n+1
[
A, Ā

]
= (n+ 1)

∫ 1

0
dt
〈(
A−Ā

)
Fn

t

〉
, (2.3)

where t ∈ [0, 1], At = tA + (1 − t)Ā is a connection that interpolates between A and
Ā, and Ft = dAt + A2

t is the corresponding interpolating curvature [34, 35] (for details
on the mathematical definition of the transgression see [54, 55]). From eq. (2.3), it is

2Notice that wedge product between differential forms is understood.
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Figure 1. Cobordant manifolds. Two manifolds M and M̄ having a common boundary ∂M = ∂M̄.

straightforward to show that the transgression form is gauge-invariant. It is important to
note that setting Ā = 0 leads to the CS (2n+ 1)-form

CS2n+1 [A] = T2n+1 [A, 0] = (n+ 1)
∫ 1

0
dt
〈
A
(
tdA+ t2A2

)n〉
. (2.4)

Furthermore, the transgression form (2.3) can be written as the difference of two CS forms
plus an exact term

T2n+1
[
A, Ā

]
= CS2n+1 [A]− CS2n+1

[
Ā
]
− dB2n

[
A, Ā

]
, (2.5)

where B2n is given by

B2n = −n(n+ 1)
∫ 1

0
ds

∫ 1

0
dts

〈
At(A− Ā)Fn−1

st

〉
, Fst = sFt + s(s− 1)A2

t . (2.6)

At this point it is important to remember that the CS form (2.4) is not strictly gauge-
invariant, but quasi-invariant. Indeed, its variation under gauge transformations of the
gauge connections A and Ā drops an exact form. It is precisely the boundary term in
eq. (2.5) that makes the transgression a truly gauge-invariant form. Due to this property,
transgression forms have been used to define gauge-invariant actions for field theories and
gravity in diverse dimensions [36–38].

A TrFT is a field theory whose action is constructed out of a transgression form.
Different variants of TrFT can be defined depending on the way the gauge connections A
and Ā are treated. For instance, one could consider A and Ā as respectively defined on two
different (2n+1)-dimensional manifolds, M and M̄, that are cobordant, i.e. ∂M = ∂M̄ (see
figure 1). The principal bundle with fiber G can then be defined on the manifold M+ M̄
and the definition (2.5) can be used to define the following action principle for a TrFT [38]

I
[
A, Ā

]
= κ

∫
M
CS2n+1 [A]− κ

∫
M̄
CS2n+1

[
Ā
]
− κ

∫
∂M

B2n

[
A, Ā

]
, (2.7)

where κ is a constant.3 In general, one can allow the connections A and Ā to transform
with different group elements, provided they match at the boundary, i.e. the action (2.7)

3Notice that when using TrFT to define a generalization of CS gravity [38], κ is defined in terms of the
D-dimensional Newton constant G as κ = [2(d − 2)!Ωd−2G]−1 (with Ωd the volume of the sphere Sd), and
is usually absorbed in the definition of the invariant multilinear form introduced in eq. (2.1).
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Figure 2. Gauged WZW case. A single manifold M where two connections A and Ah are defined,
belonging to their respective spaces Gp and G′

p at p ∈ M. A and Ah are connected by a gauge
transformation defined by an element h ∈ G, where G is the strucutre group.

is invariant under transformations of the form

A −→ gAg−1 − dgg−1 , Ā −→ ḡAḡ−1 − dḡḡ−1 , g
∣∣∣
∂Σ

= ḡ
∣∣∣
∂Σ
. (2.8)

In the case of infinitesimal gauge transformations, where g = 1 + η, ḡ = 1 + η̄, and
η, η̄ ∈ g, this means

δA = −Dη , δĀ = −D̄η̄ , η
∣∣∣
∂Σ

= η̄
∣∣∣
∂Σ

. (2.9)

The action (2.7) has been used to generalize CS gravitational theories, providing the
conserved charges of the theory and the correct expression for black hole thermodynamics
when suitable boundary conditions are adopted [36, 38, 56].

Another type of TrFT can be constructed by considering both connections, A and Ā, as
defined on the same base manifold, i.e. M = M̄. In particular, one can consider A and Ā as
belonging to the same gauge orbit, Ā = Ah = hAh−1 − dhh−1, where h ∈ G (see figure 2).
In this case, a TrFT reduces to a gauged WZW model living at the boundary [40, 42, 44, 45].

In this work, we will consider the connections A and Ā as independent, but defined
on the same manifold M. However, the results can be easily generalized to the case of
cobordant manifolds discussed above. Considering M = M̄ in eq. (2.7) allows one to write
the TrFT action as simply the integral of the transgression form (2.5) over M,

I
[
A, Ā

]
= κ

∫
M

T2n+1
[
A, Ā

]
. (2.10)

3 Hamiltonian structure of transgression field theory

In this section, we apply Dirac’s formalism for constrained systems to the TrFT defined
by the action (2.10). Since the boundary term in the definition of the transgression form

– 5 –



J
H
E
P
1
2
(
2
0
2
3
)
1
9
0

guarantees the gauge invariance of the theory, we will consider all the contributions coming
from this term throughout the Hamiltonian formalism and will not add any regularizing
boundary term to the constraints by hand. This procedure can be implemented by defining
a generalized Poisson bracket that takes into account the boundary variations of the phase
space functionals. This bracket was introduced by Soloviev and Bering in references [49]
and [50]. By means of this generalized bracket, the boundary terms present in the trans-
gression action will be shown to lead to surface integrals for the first-class constraints of
the theory. The generators of the symmetry transformations constructed in terms of these
first-class constraints form a Poisson algebra isomorphic to the corresponding symmetry al-
gebras of the theory under the modified Poisson bracket. Furthermore, its surface integrals
provide a general formula for the conserved charges of the theory. The important point in
this derivation is that it does not need to adopt any “a priori” boundary conditions on the
fields or regularizing boundary terms.

3.1 Review of Chern-Simons theories

Let us start reviewing the Hamiltonian formulation of (higher-dimensional) CS theories.
We will consider a (2n + 1)-dimensional space-time without boundary and with topology
M = R × Σ, where R corresponds to the real (temporal) line and Σ is a 2n-dimensional
spatial hypersurface. We denote the infinitesimal generators of G as Ta, which satisfy

[[Ta, Tb]] = f c
abTc ,

〈
Ta1 · · ·Tan+1

〉
= ga1···an+1 , a = 1, . . . , dim g , (3.1)

with f c
ab the structure constants of the Lie algebra g ang ga1···an+1 an invariant symmetric

(n+1)-rank tensor. In this case, a connection one-form taking values on g can be split as4

A = Aa
µTadx

µ = Aa
0Tadx

0 +Aa
i Tadx

i . (3.2)

The CS action (2.4) can be written in Hamiltonian form [33, 57],

IH [A] =
∫
dx0

∫
Σ
d2nx

[
Li

a (A) Ȧa
i +Aa

0Ka (A)
]
, (3.3)

where the Gauss law constraint Ka is given by5

Ka (A) =
κ

2n
(n+ 1) ϵi1i2···i2n−1i2ngab1···bnF

b1
i1i2

· · ·F bn
i2n−1i2n

, (3.4)

and Li
a is a function of Ai that determines the phase space symplectic form

Ωij
ab =

δLj
b

δAa
i

− δLi
a

δAb
j

= −κn (n+ 1)
2n−1 ϵijk1k2···k2n−3k2n−2gabc1···cn−1F

c1
k1k2

· · ·F cn−1
k2n−3k2n−2

. (3.5)

4Greek indices µ, ν, ρ, . . . denote space-time directions and range from 0 to 2n, while i, j, k, . . . correspond
to spatial indices, ranging from 1 to 2n. Therefore, coordinates on M = R × Σ can be split in the form
xµ = (x0, xi) were x0 is the temporal coordinate associated with R and xi are coordinates on Σ.

5Note that the spatial Levi-Civita symbol in 2n dimensions is defined in terms of the (2n+1)-dimensional
one by ϵi1i2···i2n−1i2n ≡ ϵ0i1i2···i2n−1i2n .
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The phase space of the theory is defined by the spatial components of the connection Aa
i

and its canonically conjugated momenta πi
a, with canonical Poisson brackets6{

Aa
µ(x), πν

b (y)
}
= δa

b δ
ν
µδ

(2n) (x− y) . (3.6)

When applying Dirac’s Hamiltonian formalism [28, 29], the definition of canonical momenta
leads to the following primary constraints

ϕ0
a = π0

a ≈ 0 , (3.7)
ϕi

a = πi
a − Li

a(A) ≈ 0 , (3.8)

whereas the corresponding primary Hamiltonian reads

H = H0 +
∫

Σ
d2nx

[
λaϕ0

a + Λa
i ϕ

i
a

]
, (3.9)

where
H0 = −κ

∫
Σ
d2nx Aa

0Ka (A) ,

is the canonical Hamiltonian and λa, Λa
i are Lagrange multipliers. Time preservation of ϕ0

a

generates the secondary constraint Ka(A) ≈ 0, while time preservation of ϕi
a leads to no

new constraints, but fixes the Lagrange multipliers Λi ≈ DiA0 in the primary Hamiltonian.
The first-class constraints of the theory can be found by redefining Ka in the form

Ga = Ka +Diϕ
i
a , (3.10)

which generates the correct infinitesimal gauge transformations

δAa
i (x) =

{
Aa

i (x),
∫

Σ
d2ny ηb(y)Gb(y)

}
= −Diη

a(x) . (3.11)

Moreover, together with the second-class constraints ϕi
a, the constraints satisfy the Poisson

algebra
{Ga, Gb} = f c

abGc , {Ga, ϕ
i
b} = f c

abϕ
i
c , {ϕi

a, ϕ
j
b} = Ωij

ab . (3.12)

The CS actions are also invariant under diffeomorphisms

δAa
i (x) =

{
Aa

i (x),
∫

Σ
d2ny ζi(y)Li(y)

}
= −LζA

a
i , (3.13)

where Lζ stands for the Lie derivative along a spatial vector field ζ = ζi∂i. Using the
identity

LζA
a
i = −F a

ijζ
j +Di

(
ζjAa

j

)
, (3.14)

6We define canonical Poisson brackets for π0
a and Aa

0 as well, since they are canonical variables at the
beginning of the analysis and variations with respect to Aa

0 will be useful later to generate surface integrals
in the constraints of a TrFT. However, one should keep in mind that Aa

0 is not a physical variable. Indeed,
it is completely arbitrary due to the primary first-class constraint ϕ0

a ≈ 0. Introducing a new constraint to
gauge-fix Aa

0 makes ϕ0
a second class, and implementing a Dirac bracket associated to that pair of constraints

is equivalent to using a standard Poisson bracket only in terms of Aa
i and πi

a.
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one can see that the generator of infinitesimal spatial diffeomorphisms can be constructed
as the following combination of the constraints

Li = Hi +Aa
iGa , Hi = −F a

ijϕ
j
a . (3.15)

Note that Hi generates the so-called improved spatial diffeomorphisms [58], namely, δAi =
−Fijζ

j . Time-like diffeomorphisms, on the other hand, can be shown to be generated by
a combination of Ga and Hi [57]. From eq. (3.15) it is clear that a diffeomorphism with
parameter ζi can be written as an improved diffeomorphism plus a gauge transformation
with a field-dependent parameter ηa = ζiAa

i .
The dynamical structure of the (2+1)-dimensional theory is quite simple in comparison

with higher dimensional cases. In fact, for n = 1, the symplectic form in eq. (3.5) can be
inverted, implying that the constraints ϕi

a are second-class and can be set strongly to zero
after implementing Dirac brackets. This leads to a canonical bracket for the reduced-phase
space variables Aa

i . Once the constraints ϕi
a are eliminated, the gauge generator (3.10)

reduces to the Gauss law constraint Ga = Ka, while Hi vanishes, implying that in three
space-time dimensions diffeomorphisms are on-shell equivalent to gauge transformations.
For n ⩾ 2, on the other hand, the symplectic form Ωij

ab is degenerate [32, 33, 57] (see
also [59–62] for details on degenerate Hamiltonian systems), which means that in higher
odd-dimension, the phase space of CS theories is divided in sectors that are dynamically
disconnected. Furthermore, the constraints may be irregular [63]. In generic and regular
sectors, there are 2n null eigenvectors (vi)j = Fij . This leads the first-class constraints Hi

in eq. (3.15), which are independent of the gauge generators Ga. In non-generic sectors,
there are even more first-class constraints, which generate so-called accidental symmetries.
These will not be considered here.

3.2 Poisson brackets and boundary terms

In order to apply Dirac formalism to a TrFT and keep contributions coming from the bound-
ary term (2.6) throughout, we will not use the standard Regge-Teitelboim prescription [15]
based on regularized functionals, as it requires introducing a different boundary term in the
action (2.7) depending on the boundary conditions chosen for the gauge fields [21, 46–48]
(see [64] for a detailed analysis). Instead, we will consider a generalized Poisson bracket that
includes the boundary variations of the relevant functionals in a consistent way. Brackets
of this kind were proposed first by Soloviev [49], and later on by Bering [50] in the study
of Hamiltonian systems defined on spaces with boundaries.

Let us consider a functional F of some set of fields ψA and their derivatives ∂iψ
A,

defined on a d-dimensional spatial section Σ with boundary ∂Σ

F [ψ] =
∫

Σ
ddxF

(
ψA(x), ∂iψ

A(x)
)
+
∫

∂Σ
dd−1x n̂i f

i
(
ψA(x), ∂iψ

A(x)
)
, (3.16)

where n̂i is a unitary vector normal to ∂Σ. This means that the variation of F with respect

– 8 –
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to ψA drops a boundary term of the form

δF [ψ] =
∫

Σ
ddx

[
∂F
∂ψA

− ∂i

(
∂F

∂ (∂iψA)

)]
δψA

+
∫

∂Σ
dd−1x n̂i

[
∂f i

∂ψA
− ∂j

(
∂f i

∂ (∂jψA)

)
+ ∂F
∂ (∂iψA)

]
δψA .

(3.17)

Usually, in this case, one would like to add a surface integral to F such that, provided
certain boundary conditions on the fields ψA, δF does not drop any boundary term. This
would ensure the closure of Poisson brackets [48]. Nevertheless, if this procedure is to be
applied to the transgression action, one should dump the boundary terms (2.6) and later
add regularizing boundary terms to the first-class constraints of the theory. Eliminating
this boundary term turns eq. (2.7) into the sum of two CS forms, yielding to the usual
Hamiltonian formalism for CS theories described in section 3.1. Here, instead, we would
like to exploit the properties of the transgression form by keeping its boundary term un-
touched and dragging its information through the Dirac formalism. Thus, we will not adopt
any boundary conditions for the fields and keep all the boundary terms appearing in the
variations of the functionals. When considering variations of the form (3.17), however, the
usual Poisson bracket does not fulfill the Jacobi identity. The reason for this is that func-
tional derivatives do not commute in the presence of a boundary [53]. A Poisson bracket
that satisfies the Jacobi identity and takes into account these boundary contributions can
be constructed by following the works of Soloviev and Bering in references [49, 50].7 In
order to do that, the bulk and boundary parts of eq. (3.17) are to be considered as the bulk
and boundary functional derivatives of F , denoted by δ̂F/δψA and δ̌F/δψA, respectively,

δF [ψ] =
∫

Σ
ddx

δ̂F

δψA
δψA +

∫
∂Σ
dd−1x

δ̌F

δψA
δψA , (3.18)

where
δ̂F

δψA
= δF
δψA

,
δ̌F

δψA
= n̂i

(
δf i

δψA
+ ∂F
∂ (∂iψA)

)
. (3.19)

Here we have used the notation

δX

δψA
= ∂X

∂ψA
− ∂j

(
∂X

∂ (∂jψA)

)
. (3.20)

Then, given a symplectic structure for the phase space of the theory ωAB, the Poisson
bracket of F with some field ψA can then be extended to the boundary, i.e.

{
F,ψA(x)

}
=
∫

Σ
ddy

δ̂F (y)
δψB(x)ω

BA +
∫

∂Σ
dd−1y

δ̌F (y)
δψB(x)ω

BA , (3.21)

where ωAB is the inverse of ωAB, and defines the Poisson bracket

{ψA(x), ψB(y)} = ωABδ(d)(x− y) . (3.22)
7A similar bracket was previously proposed in [65] for the study of surface waves in ideal fluids.
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For a function F(x) depending of ψA and its derivatives, one finds

{F(x), ψA(y)} =
∫

Σ
ddz

[
∂F(x)
∂ψB(z){ψ

B(z), ψA(y)}+ ∂F(x)
∂(∂(z)

i ψB(z))
{∂(z)

i ψB(z), ψA(y)}
]

= δF(x)
δψB(y)ω

BA +
∫

Σ
ddz ∂

(z)
i

(
∂F(x)

∂(∂(z)
i ψB(z))

ωBA δ(D)(z − y)
)
. (3.23)

Thus, for two functions F and G, this leads to

{F(x),G(y)}=
∫

Σ
ddz

δF(x)
δψB(z){ψ

B(z),G(y)}+
∫

Σ
ddz∂

(z)
i

(
∂F(x)

∂(∂(z)
i ψB(z))

{ψB(z),G(y)}
)

(3.24)

=
∫

Σ
ddz

[
δF(x)
δψA(z)ω

AB δG(y)
δψB(z)+∂

(z)
i

(
δF(x)
δψA(z)ω

AB G(y)
∂(∂(z)

i ψB(z))
+ ∂F(x)
∂(∂(z)

i ψA(z))
ωAB δG(y)

δψB(z)

)]
.

On the other hand, for two functionals of the form (3.16), i.e.

F [ψ] =
∫

Σ
ddxF(x) +

∫
∂Σ
dd−1x n̂i f

i(x) ,

G [ψ] =
∫

Σ
ddy G(y) +

∫
∂Σ
dd−1y n̂i g

i(y) ,
(3.25)

one finds

{F,G}=
∫

Σ
ddx

∫
Σ
ddy{F(x),G(y)}+

∫
Σ
ddx

∫
∂Σ
dd−1yn̂i

(
{F(x),gi(y)}+{f i(y),G(x)}

)
(3.26)

=
∫

Σ
ddx

∫
Σ
ddy{F(x),G(y)}+

∫
Σ
ddx

∫
∂Σ
dd−1yn̂i

(
δF(x)
δψA(z)ω

AB δgi(y)
δψB(z)+

δf i(x)
δψA(z)ω

AB δG(y)
δψB(z)

)
.

Note that in the second line, we have used the fact that ∂∂Σ = ∅. Replacing (3.24) in the
bulk integral of eq. (3.26) and using the definitions (3.19) we find

{F,G} =
∫

Σ
ddx

δ̂F

δψA(x)ω
AB δ̂G

δψB(x)

+
∫

∂Σ
dd−1x

(
δ̂F

δψA(x)ω
AB δ̌G

δψB(x) +
δ̌F

δψA(x)ω
AB δ̂G

δψB(x)

)
.

(3.27)

Considering a set of fields and their corresponding momenta, ψA = (θα, πα), with
canonical (equal time) Poisson brackets given by

{θα(x), πβ(y)} = δ(d)(x− y) , (3.28)

the definition (3.21) implies that the extended Poisson bracket of two functions F and G

of the form (3.16) is given by

{F,G} =
∫

Σ
ddx

(
δ̂F

δθα

δ̂G

δπα
− δ̂G

δθα

δ̂F

δπα

)
(3.29)

+
∫

∂Σ
dd−1x

(
δ̌F

δθα

δ̂G

δπα
+ δ̂F

δθα

δ̌G

δπα

)
−
∫

∂Σ
dd−1x

(
δ̌G

δθα

δ̂F

δπα
+ δ̂G

δθα

δ̌F

δπα

)
.
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Notice that the bracket (3.29) evaluated on functions with only bulk variations reduces to
the standard Poisson bracket. We should also stress here that, in the case of a first-order
theory, such as a TrFT, the bracket (3.29) is obtained by keeping all the boundary terms
when integrating by parts and applying the standard Poisson bracket inside those boundary
terms. This is another way to understand the rather formal formula for the generalized
bracket given in (3.29).

3.3 Dirac algorithm for transgression field theory

Now we turn back to the transgression action (2.7). As stated in section 2, we will consider
the case where M = M̄, but the results can be straightforwardly generalized to the case
of cobordant manifolds. Following the same steps as in the Hamiltonian construction of
CS theories reviewed in section 3.1, we use the splitting (3.2) to write

A = Aa
µTadx

µ = Aa
0Tadx

0 +Aa
i Tadx

i ,

Ā = Āa
µTadx

µ = Āa
0Tadx

0 + Āa
i Tadx

i ,
(3.30)

and re-derive the analog of eq. (3.3), this time keeping all the surface integrals. In the
presence of a boundary, the (2n + 1)-dimensional CS action (2.4) can be written as the
bulk term (3.3) plus a surface integral, namely

κ

∫
M
CS2n+1 [A] = IH [A]−

∫
dx0

∫
∂Σ
dsi Li

a (A)Aa
0 . (3.31)

Notice that, until now, we have dropped the boundary term in the CS action (3.31) and
studied only eq. (3.3). In the Regge-Teiteilboim formalism, this boundary term is generally
neglected and, provided some boundary conditions, a different boundary term must to be
added to the action in order to render its variation well-defined. In the following, instead, we
will study the transgression action by keeping all the boundary terms appearing throughout
Dirac formalism.

By splitting the spatial and temporal components of A and Ā according to eq. (3.30),
the boundary term B2n defined in eq. (2.6) takes the following general form8∫

∂M
B2n

[
A, Ā

]
=
∫
dx0

∫
∂Σ

dsi

[
Ri

a(A, Ā)Aa
0 + ρij

a (A, Ā)Ȧa
j

]
−
{
A↔ Ā

}
, (3.32)

where Ri
a and ρij

a are functions of the gauge connections. Therefore, the (2n + 1)-
dimensional transgression action (2.7) looks like

I
[
A,Ā

]
= IH [A]−

∫
dx0

∫
∂Σ
d2n−1xn̂i

[(
Li

a(A)+Ri
a(A,Ā)

)
Aa

0 +ρij
a (A,Ā)Ȧa

j

]
−
{
A↔ Ā

}
,

(3.33)
where we have defined the boundary surface element as dsi = d2n−1x n̂i, and n̂i is the unit
vector normal to ∂Σ. The non-vanishing canonical Poisson brackets (at equal time) for the
canonical variables are given by{

Aa
µ(x), πν

b (y)
}
= δa

b δ
ν
µδ

(2n)(x− y) ,
{
Āa

µ(x), π̄ν
b (y)

}
= δa

b δ
ν
µδ

(2n) (x− y) . (3.34)

8To avoid cluttering equations, we have introduced the notation f(A, Ā)−{A ↔ Ā} ≡ f(A, Ā)−f(Ā, A).
Written at the end of an equation, as in eq. (3.32), the symbol {A ↔ Ā} refers to all the terms on the
right-hand side written before it.
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The smeared primary constraints, obtained from the canonical momenta associated
with the action in eq. (3.33), are given by

ϕ [η] =
∫

Σ
d2nx ηaπ0

a ,

ϕ̄ [η̄] =
∫

Σ
d2nx η̄aπ̄0

a ,

Φ[Υ] =
∫

Σ
d2nxΥa

i

(
πi

a − Li
a(A)

)
+
∫

∂Σ
d2n−1x n̂i Υa

j ρ
ij
a (A, Ā) ,

Φ̄[Ῡ] =
∫

Σ
d2nx Ῡa

i

(
π̄i

a + Li
a(Ā)

)
−
∫

∂Σ
d2n−1x n̂i Ῡa

jρ
ij
a

(
Ā, A

)
,

(3.35)

while the canonical Hamiltonian reads9

H0 = −
∫

Σ
d2nx Ka(A)Aa

0 +
∫

∂Σ
d2n−1x n̂i

[
Li

a (A) +Ri
a

(
A, Ā

)]
Aa

0 −
{
A↔ Ā

}
. (3.36)

The primary Hamiltonian is obtained by adding a linear combination of the constraints to
eq. (3.36), and reads

H = H0 + ϕ[λ] + ϕ̄[λ̄] + Φ[Λ] + Φ̄[Λ̄] , (3.37)

where λa, λ̄a, Λa
i , Λ̄a

i are Lagrange multipliers. The bulk and boundary variations of
the primary constrains can be computed using the definitions (3.18), where now we use
the collective notation ψA =

(
Aa

i , Ā
a
i , π

i
a, π̄

i
a

)
. This leads to the following non-vanishing

Poisson brackets

{Φ[η],Φ[Λ]} =
∫

Σ
d2nx ηa

i Λb
jΩ

ij
ab(A) +

∫
∂Σ
d2n−1x n̂k η

a
i Λb

jω
ijk
ab (A, Ā) ,

{Φ̄[η̄], Φ̄[Λ̄]} = −
∫

Σ
d2nx η̄a

i Λ̄b
jΩ

ij
ab(Ā)−

∫
∂Σ
d2n−1x n̂k η̄

a
i Λ̄b

jω
ijk
ab (Ā, A) ,

{Φ[η], Φ̄[Λ̄]} =
∫

∂Σ
d2n−1x n̂i η

a
j Λ̄c

kζ
ijk
ba ,

(3.38)

where

ωkij
ab (A, Ā) = −

δ̌ρkj
b (A, Ā)
δAa

i

+ δ̌ρki
a (A, Ā)
δAb

j

− ∂Li
a(A)

∂
(
∂kA

b
j

) ,
ζijk

ba = δ̌ρij
a (A, Ā)
δĀb

k

+ δ̌ρik
b (Ā, A)
δAa

j

,

(3.39)

and Ωij
ab is the symplectic form defined in eq. (3.5).

Time preservation of the primary constraints ϕ[η] and ϕ̄[η̄] leads to secondary con-
straints, given by

χ [η] = {ϕ[η], H} =
∫
d2nx ηaKa (A)− κ

∫
∂Σ
d2n−1x n̂i η

a
(
Li

a (A) +Ri
a

(
A, Ā

))
, (3.40)

χ̄ [η̄] =
{
ϕ̄[η̄], H

}
= −

∫
d2nx η̄aKa

(
Ā
)
+ κ

∫
∂Σ
d2n−1x n̂i η̄

a
(
Li

a

(
Ā
)
+Ri

a

(
Ā, A

))
.

9The Hamiltonian associated with a transgression form has been previously studied in [66], where it was
shown that it satisfies a triangular equation analogous to (2.5).
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In general, even though the set of constraints
{
χ[η],Φ[Υ], χ̄[η̄], Φ̄[Ῡ]

}
do not have vanishing

Poisson brackets among themselves, they have a degenerate Poisson bracket matrix. This
implies that they do not form a second-class set, but there are certain combinations of
them that are first-class. In fact, the following combination of the constraints

Γ [η] = χ[η]− Φ[Dη] , Γ̄ [η̄] = χ̄[η̄]− Φ̄[D̄η̄] , (3.41)

can be shown to be first-class [33, 57].10 It is important to remark that, similarly to what
happens in higher dimensional CS theory, for dimensions greater than three, the trans-
gression theory has a degenerate symplectic form, implying that there are regions in phase
space, where there might be even more first-class constrains due to accidental symme-
tries [32, 57]. As said above, these extra first-class constraints will not be considered here.

Notice that, in these expressions, A0 and Ā0 play the role of gauge parameters. Thus,
the condition (2.9) necessary for gauge invariance leads to

A0

∣∣∣∣
∂Σ

= Ā0

∣∣∣∣
∂Σ
. (3.42)

The total Hamiltonian (3.37) can be written in terms of eq. (3.41) as

H = Γ [A0] + Γ̄
[
Ā0
]
+Φ[Λ−DA0] + Φ̄[Λ̄− D̄Ā0] . (3.43)

As we will see in the following section, the term Γ [A0] + Γ̄
[
Ā0
]

corresponds to the gauge
symmetry generator of the theory provided the condition (3.42) holds. Since the con-
straints Φ and Φ̄ transform in the coadjoint representation of the gauge group [33, 57], the
constraints (3.41) are automatically preserved during the time evolution of the system, and
thus there are no more constraints in the theory.

As discussed in section 3.1, for D = 2 + 1 the theory is generic. Temporal preser-
vation of the constraints (3.41) leads to the conditions Λi ≈ DiA0 and Λ̄i ≈ D̄iĀ0. In
this exceptional case, the constraints Φ[Υ] and Φ̄[Ῡ] are second-class and do not acquire
boundary contributions (see section 4.1). The first-class constraints of the theory are χ[η]
and χ̄[η̄], which are equivalent to (3.41) after implementing the Dirac bracket that allows
one to eliminate the second-class constraints. For D ≥ 4 + 1, however, the degeneracies
of the symplectic form imply that only some of the Lagrange multipliers are fixed. Then,
as mentioned above, the existence of arbitrary parameters in the total Hamiltonian leads
to more first-class generators, associated with accidental symmetries that appear in the
degenerate sectors of the theory.

4 Symmetry generators and conserved charges

Now, let us consider the following combination of the first-class constraints defined in
eq. (3.41),

G [η, η̄] = Γ [η] + Γ̄ [η̄] = bulk +Q [η, η̄] , (4.1)
10The notion of first- and second-class constraints here refers only to the bulk dynamics, i.e. up to

boundary terms.
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where the bulk part weakly vanishes, and the surface integral is given by

Q [η, η̄] = −κ
∫

∂Σ
d2n−1x n̂i

[
ηa
(
Li

a(A) +Ri
a(A, Ā)−Djρ

ij
a (A, Ā)

)

− η̄a
(
Li

a(Ā) +Ri
a(Ā, A)− D̄jρ

ij
a (Ā, A)

)]
.

(4.2)

From eq. (2.9), we know that the gauge invariance of the action is guaranteed even when
the connections A and Ā transform with different gauge parameters, provided they are
identified at the boundary. Therefore, the generator of gauge transformations is given by

G [η, η̄] = G [η, η̄]
∣∣∣∣

η|∂Σ= η̄|∂Σ

. (4.3)

Furthermore, the generator (4.3) clearly gives the correct gauge transformation for the
gauge connections (2.9) when using the generalized bracket (3.29),

δAa
i = {Aa

i , G [η, η̄]} = −Diη
a ,

δĀa
i =

{
Āa

i , G [η, η̄]
}
= −D̄iη̄

a , ηa|∂Σ = η̄a|∂Σ .
(4.4)

We mentioned in section 3.1 that, in the case of higher-dimensional CS theory, when
restricted to a sector in which the symplectic form has maximal rank, its zero modes lead
to an independent generator for spatial diffeomorphisms given by eq. (3.15). In the case of
a transgression field theory, the analogous smeared constraint is given by

L
[
ζ, ζ̄

]
=
(
Φ [ζ · F ] + Φ̄

[
ζ̄ · F̄

]
+ G

[
ζ ·A, ζ̄ · Ā

] )∣∣∣∣∣
ζ|∂Σ= ζ̄|

∂Σ

, (4.5)

where we use the notation ζ · A ≡ ζiAi and ζ · F ≡ ζjFij . This constraint generates the
transformations

δAa
i (x) =

{
Aa

i (x), L
[
ζ, ζ̄

]}
= −LζA

a
i ,

δĀa
i (x) =

{
Āa

i (x), L
[
ζ, ζ̄

]}
= −Lζ̄Ā

a
i , ζi

∣∣∣
∂Σ

= ζ̄i
∣∣∣
∂Σ

.
(4.6)

By using eqs. (4.1) and (4.2), we can evaluate the boundary integrals of the generators
given in eqs. (4.3) and (4.5), which correspond to the surface charges associated with gauge
transformations and spatial diffeomorphisms, respectively;

Qgauge [η] = Q [η, η̄]
∣∣∣∣
η=η̄

,

Qdiff [ζ] = Q
[
ζ ·A, ζ̄ · Ā

] ∣∣∣∣∣
ζ=ζ̄

+
∫

∂Σ
d2n−1x n̂i ζ

k
(
ρij

a (A, Ā)F a
jk − ρij

a (Ā, A) F̄ a
jk

)
.

(4.7)

It is important to note that, from the general theory of conserved charges in gauge theo-
ries [67] (see also [68]), equivalence classes of conserved forms are known to be in one-to-one
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correspondence with reducibility parameters that leave the gauge fields invariant asymp-
totically. In the case of gauge transformations the reducibility parameters are defined by

Dηa
∣∣
∂Σ = 0 = D̄ηa

∣∣
∂Σ , (4.8)

whereas for diffeomorphisms the analog condition reads

LζA
a
i

∣∣
∂Σ = 0 = LζĀ

a
i

∣∣
∂Σ . (4.9)

Thus, integrating by parts of the covariant derivatives in eq. (4.2) and using the reducibility
condition on ηa, η̄a, ζi and ζ̄i allows one to eliminate the functions ρij

a in the resulting
surface integrals. This leads to

Qgauge [η] = −κ
∫

∂Σ
d2n−1x n̂i η

a
[
Li

a (A) +Ri
a

(
A, Ā

)
−
{
A↔ Ā

}]
, (4.10)

Qdiff [ζ] = −κ
∫

∂Σ
d2n−1x n̂i ζ

j
[
Aa

j

(
Li

a (A) +Ri
a

(
A, Ā

) )
−
{
A↔ Ā

}]
. (4.11)

Remarkably, these surface charges are obtained directly from the transgression form by
dragging all the boundary terms in the action through Dirac formalism without the need
to add regularizing boundary terms at any stage of the procedure. In the following, we show
how to apply this result for a TrFT in (2+1) and (4+1) dimensions. The generators of gauge
transformations and spatial diffeomorphisms will be constructed using the general results
of eqs. (4.3) and (4.5). In each case, the symmetry generators satisfy the Poisson algebra11

{G[η, η̄], G[λ, λ̄]} = G
[
[[η, λ]], [[η̄, λ̄]]

]
,{

L
[
ζ, ζ̄

]
, L
[
ξ, ξ̄
]}

= −L
[
{ζ, ξ}Lie, {ζ̄, ξ̄}Lie

]
,

(4.12)

which can be shown using the generalized Poisson bracket (3.29). From eq. (4.12) it
follows that, after setting the constraints strongly to zero, the corresponding surface
charges satisfy the Dirac algebra12

{Qgauge [η] , Qgauge [λ]}∗ = Qgauge [[[η, λ]]] , (4.13)
{Qdiff [ζ] , Qdiff [ξ]}∗ = −Qdiff [{ζ, ξ}Lie] . (4.14)

The algebra of the charges does not include central terms, which is to be expected
from the true gauge invariance of the theory. This is in contrast with CS theory, where
quasi-invariance of the action under gauge transformations translates into central charges
in the surface charge algebra [30, 32, 33]. One of the advantages of the expressions (4.10)
and (4.11) is that they give formulas for the conserved charges which can be directly
evaluated once the functions Li

a and Ri
a are read off from the transgression action.

Furthermore, the conserved charges associated with CS theory can be obtained by setting
one of the connections to be zero.

11Notice that on the right-hand side of (4.12), [[η, λ]] denotes the commutator (3.1) of g-valued gauge
parameters, whereas {ζ, ξ}Lie stands for the Lie bracket of vector fields. The same definitions hold for the
barred sector.

12Here {X, Y }∗ denotes the Dirac bracket of X and Y [28].
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4.1 2 + 1 dimensions

As a first example, let us consider the (2 + 1)-dimensional TrFT, which is obtained by
evaluating (2.10) for n = 1. This yields to

I[A, Ā] = κ

∫
M

CS2+1[A]− κ

∫
M

CS2+1[Ā]− κ

∫
∂M

B2[A, Ā] , (4.15)

where the CS terms and the boundary term follow from eq. (2.4) and eq. (2.6), and read

CS2+1 [A] =
〈
dA+ 2

3A
3
〉
, B2

[
A, Ā

]
=
〈
AĀ

〉
. (4.16)

Splitting the connection A as in eq. (3.30) we can write these terms in the form (3.31)
and (3.32), from which we can directly read off the functions Li

a and Ri
a,

Li
a(A) = κϵijgabA

b
j , Ri

a(A, Ā) = −κϵijgabĀ
b
j . (4.17)

These expressions can now be plugged in eqs. (4.10) and (4.11) to obtain the conserved
charges

Qgauge[η] = −2κ
∫

∂Σ
dx n̂i ϵ

ij gab η
a (Ab

j − Āb
j) ,

Qdiff [ζ] = −κ
∫

∂Σ
dx n̂i ϵ

ij gab ζ
k (Aa

k + Āa
k) (Ab

j − Āb
j) .

(4.18)

These charges are in agreement with the ones found in reference [38]. The (2 + 1)-
dimensional case is special due to the non-degenerate structure of the symplectic form.
Due to this reason, the constraints associated with these charges are not independent [30].
Another way to see this is that in 2+1 dimensions the Lie derivative of a gauge connection
is on-shell equivalent to a gauge transformation with a field-dependent parameter. Indeed,
from eq. (3.14), one finds that

LζA
a
i =

on−shell
Di

(
ζjAa

j

)
. (4.19)

The generators associated with the charges (4.18) can also be constructed directly from
the results we have already obtained. Using the general expressions (3.31) and (3.32), we
see that in this case (4.16) leads to

Ka (A) = κϵijgabF
b
ij , ρij

a

(
A, Ā

)
= 0 . (4.20)

Replacing this together with eq. (4.17) in eqs. (4.3) and (4.5), and using the results in
eqs. (3.35), (3.40), (3.41) and (4.1), yields

G [η, η̄] =
∫

Σ
d2x

[
−Diη

aπi
a − D̄iη̄

aπ̄i
a

+ κϵijgab

(
ηaF b

ij − η̄aF̄ b
ij +Diη

aAb
j − D̄iη̄

aĀb
j

)]
+Qgauge [η] ,

L
[
ζ, ζ̄

]
=
∫

Σ
d2x

[
− LζA

a
i π

i
a − Lζ̄Ā

a
i π̄

i
a

+ κϵijgab

(
ζkAa

kF
b
ij − ζ̄kĀa

kF̄
b
ij + LζA

a
iA

b
j − Lζ̄Ā

a
i Ā

b
j

)]
+Qdiff [ζ] .

(4.21)
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Finally, from the generalized bracket (3.29), one can explicitly show that these gener-
ators satisfy the Poisson algebra (4.12). This automatically leads to the Dirac alge-
bra (4.13), (4.14), after setting the constraints strongly to zero. For Āa

i = 0, eq. (4.21)
reduce to the regularized smeared generators for gauge transformations and spatial diffeo-
morphisms for CS theory, and the associated charges (4.18) reduce to the known results
that are derived using the Regge-Teitelboim method [30, 31, 64].

4.2 4 + 1 dimensions

As a second relevant case, we construct the (4+1)-dimensional TrFT action by evaluating
eq. (2.10) for n = 2. This gives

I[A, Ā] = κ

∫
M
CS4+1(A)− κ

∫
M
CS4+1(Ā)− κ

∫
∂M

B4 . (4.22)

The explicit form of the CS terms follow from eq. (2.4), from which we find

CS4+1 [A] =
〈
AdAdA+ 3

2A
3dA+ 3

5A
5
〉
, (4.23)

whereas the boundary term (2.6) in this case reads

B4
(
A, Ā

)
=
〈
AĀ

(
F + F̄

)
+ 1

2ĀA
3 + 1

2Ā
3A+ 1

4AĀAĀ
〉
. (4.24)

Splitting the connections A and Ā in spatial and temporal components according to
eq. (3.30), these expressions can be put in the form (3.31) and (3.32), where

Li
a (A) = κϵijklgabc

(
F b

jkA
c
l −

1
4f

b
deA

c
jA

d
kA

e
l

)
,

Ri
a

(
A, Ā

)
= κϵijklgabc

[
1
2A

b
jF̄

c
kl −Ab

jf
c
de

(
Ād

kĀ
e
l −

1
2Ā

d
kA

e
l −

1
2A

d
kĀ

e
l

)
(4.25)

− 1
2Āj

(
2Fkl + F̄kl

)
+ Āi

(1
2AjAk + 1

2ĀjĀk − 1
2AjĀk

)]
.

Using these expressions, we can write down the conserved charges associated with gauge
transformations and spatial diffeomorphisms in a straightforward way from the general
formulae (4.10) and (4.11),

Qgauge [η] =−κ2

∫
∂Σ
d3xn̂i ϵ

ijklgabc η
a
(
Ab

j −Āb
j

)[
3
(
F c

kl+ F̄ c
kl

)
−f c

de

(
Ad

k −Ād
k

)(
Ae

l −Āe
l

)]
,

Qdiff [ζ] =−κ2

∫
∂Σ
d3xn̂i ϵ

ijklgabc ζ
m(Ab

j −Āb
j)
[
Aa

m

(
2F c

kl+ F̄ c
kl−

1
2f

c
de(Ad

k −Ād
k)(Ae

l −Āe
l )
)

+Āa
m

(
F c

kl+2F̄ c
kl−

1
2f

c
de(Ad

k −Ād
k)(Ae

l −Āe
l )
)]

. (4.26)
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Moreover, comparing the space-time decomposition of (4.22) and the general expressions
in (3.31) and (3.32), we also find

Ka (A) = 3κϵijklgabcF
b
ijF

c
kl , ρij

a

(
A, Ā

)
= −κϵijklgabcA

b
kĀ

c
l , (4.27)

which can be used to write down the symmetry generators obtained by evaluating (4.3)
and (4.5). The generator of gauge transformations (4.3) is given by

G [η, η̄] =κ

∫
Σ
d4x

{
−Diη

aπi
a−D̄iη̄

aπ̄i
a+ϵijklgabc

[
3
4
(
ηaF b

ijF
c
kl− η̄aF̄ b

ijF̄
c
kl

)
(4.28)

+Diη
a
(
F b

jkA
c
l −

1
4f

c
deA

b
jA

d
kA

e
l

)
−D̄iη̄

a
(
F̄ b

jkĀ
c
l −

1
4f

c
deĀ

b
jĀ

d
kĀ

e
l

)]}
+Qgauge [η] ,

whereas the generator of diffeomorphisms reads

L
[
ζ,ζ̄
]
=
∫

Σ
d4x

{
−LζA

a
i π

i
a−Lζ̄Ā

a
i π̄

i
a+κϵijklgabc

[
3
4
(
ζmAa

mF
b
ijF

c
kl−ζ̄mĀa

mF̄
b
ijF̄

c
kl

)

+LζA
a
i

(
F b

jk−
1
4f

b
deA

d
jA

e
k

)
Ac

l −Lζ̄Ā
a
i

(
F̄ b

jk−
1
4f

b
deĀ

d
j Ā

e
k

)
Āc

l

]}
+Qdiff [ζ] . (4.29)

By means of the generalized bracket (3.29), one can explicitly show that G [η, η̄] and L
[
ζ, ζ̄

]
satisfy the Poisson algebras given in (4.12). Thus, again, one directly obtains the Dirac
algebra (4.13), (4.14), after setting the constraints strongly to zero. For Āa

i = 0, these
expressions boil down to the regularized smeared generators of gauge transformations and
spatial diffeomorphisms that correspond to CS theory. The associated charges (4.26) re-
duce to the known results that have been previously derived using the Regge-Teitelboim
method [30, 33].

5 Conclusions

We have studied the Hamiltonian formulation of TrFT in arbitrary odd space-time dimen-
sions considering regular and generic sectors. Instead of adopting the standard approach of
regularizing the relevant functionals by adding boundary terms that cancel boundary vari-
ations, we have allowed the presence of surface integrals in the variations of the constraints
in order to track down the contribution of the transgression boundary term throughout
Dirac’s algorithm. By doing so, we have found useful the prescription by Soloviev and
Bering that extends the definition of the Poisson bracket to the boundary. As shown in
section 3.2, for a theory whose action depends only on the fields and their first derivatives,
using such generalized Poisson bracket is equivalent to acting with standard Poisson brack-
ets inside the boundary terms, allowing to retain the contribution of the surface integrals
coming from partial integration. The effect of keeping all the boundary contributions pro-
duced by the generalized Poisson bracket leads to surface integrals for the generators of
gauge transformations (4.3) and diffeomorphisms (4.5) of the theory. We have developed
in detail the D = 2 + 1 and D = 4 + 1 cases, where we have shown that the resulting
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surface integrals appearing in the symmetry generators match the ones previously found
in the literature by means of Noether’s theorem and can be interpreted as the charges
associated with these transformations [38]. The generalized Poisson bracket also allows
obtaining the right Poisson algebra of the charges, which do not possess central terms due
to the gauge-invariant character of the action. Since setting one of the connections in the
transgression to zero reduces the gauge and diffeomorphism charges to the CS case, it is
not possible to obtain the known central terms in the surface algebra associated with CS
theories by simply evaluating the charge algebra found in the transgression case. Instead,
in the CS case, after finding the expression of the conserved charges, their algebra should
be computed once again to obtain a central term. We hope to address the emergence of
such central charges in the context of our formalism elsewhere.

The generalized Poisson bracket (3.29) thus provides an alternative approach to com-
pute conserved charges in field theory and gravity in a straightforward manner. Also, it
could be advantageous as a tool in the description of asymptotic symmetries and conserved
charges in gauge and gravity theories, where boundary terms defining such charges are cus-
tomary [69]. However, it is important to highlight that the exceptional structure of the
transgression boundary term seems to be of primary importance for this method to produce
the right final result at the level of the symmetry generators. It is, therefore, likely that
for this procedure to be well-defined, the initial action of a given theory must contain the
right boundary term to regularize the action after imposing some boundary conditions.

An interesting future direction is the relation between the Poisson algebra of surface
charges in transgression field theory and asymptotic symmetries in gravity. A good example
is the Bondi, van der Burg, Metzner and Sachs (BMS) algebra [70, 71]. Even though
Chern-Simons gravity in five dimensions is known to be different from five-dimensional
General Relativity [10, 36, 37, 72], asymptotic symmetries of this type can emerge from
the structure of the transgression form. Indeed, a five-dimensional version of the BMS
algebra has been recently constructed [73]. Given certain boundary conditions, a five-
dimensional gravity theory based on a TrFT could give rise to an asymptotic symmetry
of this type. Another possible future direction is the use of TrFT in the description of
certain condensed matter systems. Indeed, non-relativistic Chern-Simons forms provide
effective models for topological phases of matter, such as the fractional quantum Hall effect,
topological insulators and topological superconductors (see, for example, [74]). Moreover,
transgression forms have been used to define effective boundary descriptions of topological
insulator interfaces [75], which may allow for higher-dimensional generalizations. Along
the same lines, a transgression generalization of the pure CS construction given in [76] for
fractional quantum Hall states could be useful in the geometric description of bi-layer Hall
systems. Finally, it would be interesting to generalize our construction to the case of the
gauged-WZW models considered in [40], which can be obtained from a TrFT when one
of the gauge connections is a gauge transformation of the other one. The motivation in
this case is that WZW models are relevant in the edge description of higher-dimensional
versions of the quantum Hall effect [77, 78].
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