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1 Introduction and summary

Conformal Field Theory is by now a mature subject in some ways. A great deal is understood
about the space of local operators and their correlation functions, see [1] for a review.

Yet, relatively little is understood about extended operators. The simplest class of
extended operators are line operators. For a line operator that is stretching in the time
direction at a point x⃗ = 0 in space, we say that the line operator is conformal if it preserves an

SL(2,R) (1.1)

subgroup of the conformal group. The SL(2,R) subgroup acts at x⃗ = 0 by t→ αt+β
γt+δ , with

αδ − βγ = 1. A conformal line operator admits local defect operators Ôi(t) transforming
under SL(2,R). The defect operators have scaling dimensions ∆̂i ≥ 0 and one can perform
an Operator Product Expansion (OPE) among them. Very importantly, bulk local operators
can be expanded as |x⃗| → 0 in terms of defect operators in the following schematic form

O(x, t) =
∑

ai x
−∆O+∆̂iÔi(t) . (1.2)

In particular, in the presence of a line operator, bulk operators can have a nonzero one-point
function due to the unit operator appearing on the right hand side of (1.2). The ai on
the right hand side of (1.2), along with the ∆̂i and also the defect OPE coefficients, are
observables associated to conformal line defects. This whole structure is referred to as a
Defect Conformal Field Theory (DCFT), see [2] for a review. A special defect operator
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which always appears in nontrivial DCFTs is the displacement operator [3, 4], whose scaling
dimension is ∆̂ = 2. Integrating this operator on the defect is equivalent to changing the
shape of the defect.

When one defines line operators in a conformal field theory, it is not guaranteed that they
are conformal line operators preserving SL(2,R). While the bulk theory remains conformal,
there can be renormalization group flows between line operators, and one typically expects
the deep infrared limit of line operators to be a DCFT. The space of distinct DCFTs in a
given CFT is far from understood. Line operators are of great interest also in the context of
condensed matter, since they represent localized impurities/defects. The long distance limit
of various defects in condensed matter is a subject that goes back to the Kondo problem [5].

We would like to make three general remarks on the general theory of line defects
in CFTs:

• Renormalization group (RG) flows on line defects are constrained by the so-called
defect entropy [6]. For the connection between the defect entropy and entanglement
entropy see [7–9]. This allows one to make consistency checks on various proposals,
and sometimes to prove that a DCFT cannot be trivial (screened).

• Local bulk operators transform in a representation of the ordinary (0-form) symmetry
of the CFT, G. The interplay of line operators with the 0-form symmetry of the
theory is more complicated. First of all, it is possible for a conformal line operator
to break the symmetry G altogether. That means that the intersections of the line
with the co-dimension 1 G-surfaces are not topological. If we wrap the line operator
with the co-dimension 1 G-surfaces, we must obtain a new line operator in which the
bulk VEVs of G-charged operators change accordingly. For a continuous symmetry
G this means that there are tilt operators on the defect which have ∆̂ = 1 exactly.
These are analogous to the displacement operator. See [10, 11] for a review and some
examples of tilt operators.

If the line operator preserves G,1 defect operators that appear on the right hand
side of (1.2) are in representations of G. However, defect-changing operators, and in
particular, end-point operators, do not have to be in representations of G. Physically,
line operators can be viewed as capturing the response of the CFT to heavy/external
objects. The full symmetry in the presence of the heavy objects could be an extension
of G. Some simple examples (without gauge fields) where the end-point operators
indeed only transform in projective representations of G were studied in [13–16] along
with many examples in 1+1 dimensions in the context of the Kondo defect (see [17]
for a review with an emphasis on the screening cloud, a theme we will discuss below
in higher dimensions). We will see examples of this phenomenon in gauge theories in
this paper.

1This means that symmetry defects admit a topological intersection with the line operator. For invertible
symmetries, this also implies that the corresponding defect state is an eigenstate of the symmetry operator;
this is not necessarily true for non-invertible symmetries [12].
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If the end-point operators transform in a projective representation of G, this has
consequences for RG flows on such lines, since they cannot become trivial lines with no
degeneracy (i.e. the unit operator). Indeed, if they were completely trivial lines with
no degeneracy in the infrared, we would not be able to attach operators in projective
representations to them. This argument is presented in more detail in the body of
the paper.

• If the theory admits a one-form symmetry Γ then the line operators transform under
Γ [18]. For a line operator to furnish a nontrivial DCFT it is not necessary for it to be
charged under Γ. However, under additional assumptions that we will discuss later,
it is possible to prove that a line defect transforming under Γ must have a nonzero
displacement operator at long distances.

A special class of line operators, that exist in any gauge theory in any dimension, are
Wilson lines

WR(γ) = trR
(
P exp

(
i

∫
γ
Aµdx

µ
))

, (1.3)

labelled by a representation R of the gauge group and by a closed, or infinite, contour γ.
Historically, Wilson lines have been introduced to diagnose the confinement/deconfine-

ment transition in gapped theories. Then, the interesting Wilson lines are those charged
under the one-form symmetry Γ, since such Wilson lines serve as order parameters for the
confinement/deconfinement transition.

Here our interest is in conformal field theories. Then, as discussed above, Wilson lines
are interesting observables whether or not the Wilson line transforms nontrivially under Γ.
In fact, Wilson lines are interesting line operators even in theories with trivial Γ.

A peculiarity of (1.3) that makes them into intriguing line operators is that there is no
free continuous parameter in the definition (1.3). As we will see, that does not mean that
no RG flow takes place!

This paper is an extended version of [19]. The central goal of this paper is to determine
the long distance limit of (1.3) as a function of the representation R. We will investigate
this question in various examples of conformal gauge theories in four and three space-time
dimensions. There are two complementary ways to analyze this question.

• In the “bulk approach”, we view the insertion of the Wilson line (1.3) as setting a
boundary condition for the dynamical fields of the gauge theory at x⃗ = 0, which
includes an electric field emanating from there; as usual we need to regularize this
by putting the boundary and the boundary condition at some |x⃗| = r0, and asking
what the theory behaves like for |x⃗| ≫ r0. This corresponds to the infrared limit of
the defect. The simplest possible answer, is that the lowest energy state just involves
the electric field going as 1/|x⃗|2 (recall that in Abelian gauge theories the dimension
of Fµν is always ∆ = 2). In other cases we will find that the dynamical fields react
non-trivially to the Wilson line source, and screen it, either partially or completely.
The infrared can then be trivial or partially screened. Another important comment is
that specifying the electric field at |x⃗| = r0 is not sufficient. The boundary conditions
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(and possible boundary interactions) of the charged bulk fields at the insertion should
be specified too, and this leads to new coupling constants that must be added to (1.3)
to define the problem properly. These coupling constants inevitably run and lead to
much of the rich dynamics that we will encounter here and review soon.

• In the “defect approach”, we view the insertion of the Wilson line (1.3) as modifying
the action of the gauge theory by some extra terms that are localized on a “defect”
at x⃗ = 0. One can then discuss a renormalization group flow of the conformal gauge
theory in the presence of these extra defect terms (with an ultraviolet cutoff µ, which
is inversely related to r0 discussed above); for simplicity we can assume that the bulk
theory has already flowed to its low-energy fixed point, and then the non-trivial flow
involves only the action of the defect. This approach is convenient since it utilizes the
ideas behind the renormalization group more directly. While the charge of the Wilson
line is quantized and does not flow under the renormalization group, we will see that
in many cases other couplings (localized on the defect) related to the additional fields
in the theory do flow non-trivially (and, as we remarked above, ignoring them is
inconsistent), reproducing in a different language the bulk physics discussed above.

In the rest of this section we briefly summarize our results.

1.1 Scalar and fermionic QED4

Scalar and Fermionic massless QED4 are not strictly conformal theories (due to the Landau
pole) and hence ideas of DCFT do not rigorously apply. However, at weak enough gauge
coupling the running coupling constant is an insignificant perturbation (and furthermore
there is a double scaling limit in which it is truly a subleading effect, as will be explained
in what follows), and there the physics of these models does lend itself to the language
of DCFT. Also, understanding these examples will be a valuable springboard towards
more complicated 3+1 dimensional gauge theories which are truly conformal. Needless to
say, understanding Wilson lines in QED is of great interest in and of itself. It is perhaps
surprising that there is much new to say on this subject.

We will consider Wilson lines of charge q in either scalar or fermion QED4. These are
given by the “naive” expression:

Wq(γ) = exp
(
iq

∫
γ
Aµdx

µ
)
, (1.4)

and we take the contour γ to be localized at x⃗ = 0.
For concreteness let us start from scalar QED4 with a single complex charge 1 scalar

field ϕ. If one tries to interpret (1.4) as a conformal defect, one can compute the scaling
dimension of the gauge-invariant bilinear ϕ†ϕ. In the bulk at sufficiently weak coupling the
scaling dimension is of course ∆ = 2. But we can also ask about the scaling dimension of
ϕ†ϕ as a defect operator. As we will show in section 2, one finds

∆̂ϕ†ϕ = 1 +

√
1− e4q2

4π2 . (1.5)

This formula is reliable as long as the fine structure constant is small enough (more precisely,
it is exact in the limit of e→ 0 and e2|q| fixed). A consistency check is that for q = 0 the
bulk and defect scaling dimensions coincide.
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Interestingly, (1.5) implies that for e2|q|
2π = 1 the operator becomes marginal on the

defect, while for e2|q|
2π > 1 there is a disease with our defect. Since the operator is marginal at

e2|q|
2π = 1 and slightly irrelevant as we approach e2|q|

2π = 1 from below, we learn that ignoring
it in RG flows is inconsistent, and hence we must study the more general line defect

Wq(γ) = exp
(
iq

∫
γ
Aµdx

µ − g

∫
ϕ†ϕ |dx|

)
. (1.6)

The parameter g has a nontrivial beta function with the following properties:

• For e2|q|
2π < 1 there are two fixed points. One corresponds to a stable DCFT (with no

relevant operators) and the other to an unstable DCFT (with one relevant operator,
ϕ†ϕ).

• For e2|q|
2π = 1 the two fixed points merge and the operator ϕ†ϕ is marginal.

• For e2|q|
2π > 1 the coupling g flows to −∞.

This behavior is reminiscent of how conformality is (presumably) lost in QCD (a.k.a.
Miransky scaling [20]). Here, conformality is lost at e2|q|

2π = 1 in the sense that no DCFTs
with finite g exist for e2|q|

2π > 1. However, the flow g → −∞ must still be analyzed to
determine the infrared behavior of Wilson lines with sufficiently large charge.

Again, analogously to QCD, one finds that an exponentially low energy scale is generated
when e2|q|

2π is slightly larger than 1 (dimensional transmutation). The dynamics is that of an
exponentially large cloud of bosons surrounding the Wilson line. We present the properties
of the cloud, which is essentially a new soliton, and argue that it screens the charge of
the Wilson line entirely. We find that the defects with e2|q|

2π > 1 are trivial DCFTs in the
infrared for a generic bulk scalar potential.

While we find two fixed points for e2|q|
2π < 1, we do not claim that our analysis of

that region is complete. Indeed, for sufficiently small e2|q|
2π the quartic |ϕ|4 defect operator

becomes relevant in the unstable defect fixed point, and the dynamics must be re-analyzed.
We leave this for the future.

For fermionic QED4 the story, which we analyze in section 3, is conceptually similar,
except that the instability occurs at e2|q|

4π = 1, which in nature corresponds to |q| ∼ 137.
The fact that nuclei with charge ∼ 137 lead to difficulties with the Dirac equation was
observed already decades ago [21]. Another difference from the scalar theory is that for
e2|q|
4π > 1 we find an exponentially large charged condensate of fermions that only screens

the line down to e2|q|
4π ≃ 1, and not to a trivial line.

In summary, unlike in pure Maxwell theory, in QED Wilson lines with sufficiently large
|q| are screened, i.e. do not lead to new interesting DCFTs. The transition between the two
regimes involves the annihilation of two fixed points and dimensional transmutation due to
the running coupling g on the Wilson line. Furthermore, for small |q|, there are multiple
fixed points, not all of which we have analyzed.
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We also consider two interesting variations on the above themes. The first variation
is multi-flavor scalar QED. Our soliton that screens the Wilson line for e2|q|

2π > 1 then
transforms nontrivially under an internal symmetry and there is thus some sort of symmetry
breaking — a zero mode of the soliton. We show that this zero mode must be integrated
over, and the true screening cloud does not lead to symmetry breaking. The Wilson line
leaves no measurable trace of its existence at distances much larger than the cloud. It
is therefore completely transparent to all bulk observables. However, on the Wilson line
itself, depending on its charge, there is some degeneracy of states (a 0+1d TQFT stacked
on the trivial, screened line), which follows from symmetry considerations alone. This
happens precisely because of a fact we already mentioned above: the end-point operators in
the multi-flavor model are in a projective representation of the symmetry group, and this
constrains the infrared limit of the line defect.

The second variation on the above themes is to consider QED4 with a scalar of charge
qϕ > 1 but no scalars of charge 1. Now the theory has a Zqϕ electric one-form symmetry,
and hence Wilson lines of q ̸= 0 mod qϕ cannot flow to trivial DCFTs, no matter how large
|q| is. Similarly, in the N = 4 supersymmetric Yang-Mills (SYM) theory with, say, gauge
group SU(2), a Wilson line in a large half-integer spin representation cannot be completely
screened due to the Z2 one-form symmetry. The question of what precisely is the infrared
limit in these two cases goes beyond the leading order we analyze here. We speculate about
the possible infrared phases that are consistent with the one-form symmetry in both cases.

1.2 Non-Abelian gauge theories and N = 4 SYM

Much of what we have found for Abelian theories carries over to essentially all weakly
coupled conformal gauge theories in four dimensions. We discuss non-Abelian theories in
section 4. Let us consider for concreteness the Wilson lines in the N = 4 SYM theory with
gauge group SU(2).

There are multiple possible Wilson lines in this theory, including supersymmetric
versions of the Wilson line which include also scalar fields from the vector multiplet, and
which preserve some fraction of the supersymmetry. These Wilson lines were the subject of
many investigations in the last decades, see e.g. [22]. All the supersymmetric Wilson lines
break the SO(6)R global symmetry of N = 4 SYM to a subgroup. Here we are interested
in the SO(6)R-invariant Wilson line (1.3), which breaks all of the supersymmetry. As in
the Abelian case, one must not ignore scalar bilinears, which turn out to be important
defect operators. We find again that for Wilson lines in the spin s representation of SU(2),
when g2YMs ∼ 1 the Wilson line is screened (for large half-integral s the one-form symmetry
prevents the line from being completely screened). Therefore, as the coupling constant is
increased, fewer Wilson lines survive as nontrivial DCFTs with SO(6)R symmetry. Since
the theory admits electric-magnetic duality, this suggests that SO(6)R-invariant ’t Hooft
lines have interesting dynamics already at weak coupling. In other words, there should be
very few nontrivial SO(6)R-invariant ’t Hooft lines at weak coupling. We will see that this
is indeed the case!
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1.3 2+1 dimensional critical points

Wilson lines in conformal 2+1 dimensional theories, which we analyze in section 5, are
interesting both theoretically but also because they correspond to charged impurities in
2+1 dimensional second order quantum phase transitions, and hence the predictions we
make may be testable (in addition, there are recent numerical techniques which appear
very promising [23] as well as advances on bootstrapping defects, e.g. [24–30]). We analyze
2+1 dimensional scalar and fermionic QED3, with and without a Chern-Simons term. In
these theories again Wilson lines of small enough charge flow to nontrivial DCFTs, while
the others are screened.

We consider both the tricritical and the ordinary scalar QED3, which are related to
second order superconducting transitions. In the tricritical point, all the Wilson lines that
survive in the scaling limit we study are trivial (what that means precisely is that the number
of nontrivial Wilson lines is much smaller than Nf for large Nf ), while for the ordinary
scalar QED3 we expect the number of nontrivial Wilson lines to scale with Nf for large Nf

(but we do not determine the value of the critical charge in this theory). Extrapolating
to small Nf this has repercussions for charged impurities in the superconducting phase
transition, and there could also be implications for 3d dualities. For the fermionic QED3 we
find that the number of nontrivial Wilson lines scales as ∼ Nf and we determine in detail
the precise bound on the charge of conformal line operators. We do not analyze explicitly
the fate of Wilson lines with super-critical charge in any of these 2+1 dimensional examples,
i.e. we do not compute in detail the screening cloud solitons, and we leave it for future work
as well.

Finally, we study the 2+1 dimensional theory of graphene. This has four 2+1 dimen-
sional fermions coupled non-relativistically to the electric field in 3+1 dimensions. Charged
impurities of relatively low charge are screened and a cloud develops [31]. For better
analytic control, we consider a generalization of graphene with 2Nf fermions, and compute
the critical charge in the limit of large Nf and compare with the experimental result [32].
Charged impurities with charge smaller than the critical one admit conformal line phases
and interesting RG flows that have not been observed yet.

1.4 Comments on ’t Hooft lines

We end this paper in section 6 with a few comments on ’t Hooft lines in Abelian and
non-Abelian gauge theories. We emphasize the properties of ’t Hooft lines as DCFTs. We
compute the anomalous dimension of ϕ†ϕ as a defect operator in scalar QED4. Unlike
the situation with Wilson lines, it always remains irrelevant, and in fact, picks up a large
positive anomalous dimension as the charge of the monopole or of the scalar field grows.

For fermionic QED4, it is well known that the lowest angular momentum modes of
the fermion can penetrate the centrifugal barrier and the fermions should then be treated
carefully in the background of a monopole. We reinterpret these statements in terms of the
spectrum of the defect. We show that there exists a marginal operator at tree level which
is a fermion bilinear. Therefore, at tree level there is a continuous conformal manifold of
possible ’t Hooft lines in fermionic QED4, corresponding to different boundary conditions
for the fermions at the defect. This manifold is lifted at one loop and only one fixed point
remains (see [33] and references therein).
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We note that internal symmetries that participate in a nontrivial two-group structure
with the magnetic one-form symmetry are necessarily broken by the ’t Hooft loops. This
leads to tilt operators with ∆̂ = 1 exactly. (In gauge theories with ∑i qi ̸= 0, but where∑
i q

3
i ̸= 0, no spherically symmetric stationary ’t Hooft loops exist. This can be interpreted

as due to a two-group involving the Lorentz symmetry.)
In the N = 4 SYM theory, we consider ’t Hooft loops which are SO(6)-invariant. These

are non-BPS ’t Hooft loops which we can study at weak coupling. We argue that with
gauge group SU(N), they are all screened — there is an instability towards condensing
vector bosons which presumably form a screening cloud, canceling the bare magnetic field
at the core altogether. With non-simple gauge groups, such as PSU(N) = SU(N)/ZN , we
argue that there exist nontrivial ’t Hooft line DCFTs, corresponding to anti-symmetric
representations. This is consistent with the ZN magnetic 1-form symmetry. This picture is
nicely consistent with S-duality which exchanges PSU(N) and SU(N) gauge groups [34]. We
expect that all Wilson lines are screened as we increase the coupling constant in the PSU(N)
gauge theory. Wilson lines in the SU(N) gauge theory cannot completely disappear though
at strong coupling due to the electric ZN one-form symmetry. The minimal conjecture, that
only N Wilson lines survive at strong coupling, is compatible with the fact that we have
exactly N nontrivial ’t Hooft lines at weak coupling in the PSU(N) gauge theory.

2 Scalar QED4

2.1 Two DCFT fixed points

We first consider scalar QED4 in (mostly minus) Minkowski signature with a charge q

Wilson line extending in the time direction:

⟨Wq O1 . . .⟩ =
∫
DϕDAµ exp

[
i

∫
d4x

(
L[A, ϕ]− q δ3(x⃗)A0(x)

)]
O1 . . . ,

L[A, ϕ] = − 1
4e2F

2
µν + |Dµϕ|2 −

λ

2 |ϕ|
4 .

(2.1)

The setup (2.1) defines a so-called defect QFT (DQFT). In the following we will study the
properties of such DQFTs as a function of the charge of the Wilson line q at weak coupling
e2 ∼ λ≪ 1. In most of the section we will assume that the scalar mass is tuned to zero, in
order to get interesting low-energy physics.

By rescaling ϕ = Φ/e, we can see that taking the scaling limit

e→ 0 , λ→ 0 , q → ∞ ,

λ

e2
= fixed , q e2 = fixed ,

(2.2)

leads to a problem that can be treated in the saddle point or semiclassical approximation,
i.e. by solving classical differential equations. The saddle point equations are

∂µF
µν + Jν = e2q δνt δ

3(x⃗) ,

DµD
µΦ+ λ

e2
|Φ|2Φ = 0 ,

(2.3)
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where the expression of the current is Jµ = i
e(Φ†∂µΦ− ∂µΦ†Φ− 2ie|Φ|2). In this section

we look for interesting classical solutions of this system, which would be related to various
infrared phases of the line operator.

The first, obvious classical solution is

At =
e2q

4πr , Φ = 0 . (2.4)

This is the intuitive solution corresponding to the Coulomb field of a point charge and
vanishing scalar field. This solution automatically obeys the SL(2,R) symmetry and hence
leads to a DCFT. However we will find that, depending on the parameters, the resulting
DCFT may be sick and hence a different classical solution would have to be identified.

To investigate the DCFT associated to the saddle point (2.4) we consider fluctuations
around the saddle point. We focus on scalar fluctuations, and we find that close to the
Wilson loop they behave as

Φ(x) =
∑∫
ω,ℓ,m

Φωℓm(r) e−iωτ Yℓm(Ω) ,

ΦA(r) = αA r
−νℓ−1/2

(
1 + q ω r

νℓ − 1/2 + . . .

)
+ βA r

νℓ−1/2
(
1− q ω r

νℓ + 1/2 + . . .

)
,

νℓ ≡
√

1
4 + ℓ(ℓ+ 1)− g2 , g ≡ e2q

4π ,

(2.5)

where A ≡ ωℓm is a superindex. To make the setup well-defined we have to choose boundary
conditions that will fix βA = F (αA); we have more to say on this below. As long as νℓ is
real, with appropriate boundary conditions, the respective modes lead to sensible creation
operators. However, as we increase g, starting from the ℓ = 0 mode, we encounter imaginary
νℓ. This leads to an instability as we will soon explain. The ℓ = 0 mode will be in our focus
in the following, and we repeat the expression for ν ≡ νℓ=0 here:

ν ≡
√

1
4 − g2 , g ≡ e2q

4π . (2.6)

Before we plunge into the details let us summarize what we do below:

• For g2 < 1/4 we have ν > 0 and two different possible power law falloffs, as in (2.5).
We will find two conformal boundary conditions, and hence two different versions
of the DCFT with the one-point functions (2.4). These are two different conformal
Wilson lines between which there is an RG flow (one of the conformal Wilson lines is
RG stable), and we will analyze the spectrum of defect operators in both. We will
also see that something interesting happens for ν = 1/4 to the unstable conformal
boundary conditions.

• We get a critical line for g2 = 1/4 for which the two power laws degenerate. The
DCFT has a marginally irrelevant operator at this point.

• For g2 > 1/4 we see that ν is purely imaginary and Φ fluctuations exhibit oscillations
in the radial direction. We will argue that this signals an instability, in part, because
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defect operators cannot have imaginary scaling dimensions. In this regime the saddle
point (2.4) needs to be replaced by a different one. Importantly, we find a new saddle
point which we call the “scalar cloud”, and we show that it leads to a sensible physical
picture for g2 > 1/4, where very far away from the scalar cloud the initial charge
is completely screened. For λ = 0 the scalar operator admits a nontrivial one-point
function at long distances, while for a nontrivial bulk scalar potential all the one-point
functions vanish. For g2 slightly larger than 1/4 the scalar cloud is exponentially large
and generates a new scale in the system.

It will be technically advantageous to exploit the fact that massless scalar QED4 is
classically conformally invariant, and perform the Weyl transformation2

ds2 = r2
[
−dt2 + dr2

r2
+ ds2S2

]
≡ r2ds̃2AdS2 × S2

(2.7)

which maps the flat space problem to a problem in AdS2 × S2, with the defect now at the
asymptotic boundary of AdS2. The scalar fluctuations in AdS are related to those in (2.5)
through ΦA = 1

r Φ̃A and the gauge field background from (2.4) is unchanged. Through
this mapping, we can readily borrow results from the AdS/CFT literature about boundary
conditions on scalar fields; we give a quick overview below, with the final result obtained
in (2.22) and figure 1. Specializing to the ℓ = 0 mode, the near-boundary behavior is:

Φ̃ω(r) = αω r
1/2−ν

(
1 + q ω r

ν − 1/2 + . . .

)
+ βω r

1/2+ν
(
1− q ω r

ν + 1/2 + . . .

)
. (2.8)

We will drop the tilde from Φ from here onwards.
It will be useful for our purposes below to introduce a small radial cutoff at r = r0 and

never remove it throughout the computation. First, we return to the question of boundary
conditions. These are determined from the variation of the action and keeping track of
boundary terms. Varying the action Sbulk =

∫
AdS2 × S2

√
−gL[A, ϕ] from (2.1) and imposing

the bulk equations of motions gives the boundary term (for ν > 0)

δSbulk = r−2ν
0

1− 2ν
2

∫
dω
(
α†
ωδαω + c.c.

)
+ (subleading) . (2.9)

The subleading terms will be important at the next step, where we will write them out
explicitly. The leading term vanishes if

αω = α†
ω = 0 , (2.10)

whereas βω is a fluctuating degree of freedom. These boundary conditions are analogous
to the Dirichlet boundary conditions, since the more singular mode in (2.8) is set to zero.
Since the boundary terms have to vanish identically on the equations of motion, at finite r0

2Whether the theory is a DCFT at the classical level depends on the boundary conditions we choose.
However, even if the boundary conditions break (boundary) conformal invariance, we can perform the Weyl
transformation, since the bulk remains conformal.
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we need to slightly correct the boundary conditions, or add additional boundary terms, to
cancel the subleading terms. We will only write out the most important such terms. The
same comment applies below.

We can read out the scaling dimension of the defect operators for the conformal
boundary condition (2.10). We see that the βω correspond to operators of dimension
1/2 + ν. Remember that we are studying a gauge theory and hence only gauge-invariant
operators should be considered, and thus the scaling dimension of the bilinear β†β is

∆̂(β†β) = 1 +
√
1− 4g2 . (2.11)

For g → 0 (i.e. the trivial defect q = 0) the scaling dimension becomes ∆̂ = 2, coinciding
with the dimension of the bulk operator Φ†Φ. Therefore the boundary condition (2.10)
defines the usual Wilson line operator, in the sense that if we set q = 0 this boundary
condition means that there is no defect at all.3

There is a twist in the story: the boundary condition (2.10) is not unique. We can add
boundary terms and they can change the boundary conditions and the boundary operator
spectrum [38–42]. Let us add the following boundary term:

S
(1)
bdy = −1− 2ν

2

∫
r=r0

dt
√
−ĝ |Φ|2 , dŝ2 = −dt2

r20
, (2.12)

which is carefully tailored to cancel the leading term in the variation (2.9). Combined with
Sbulk we now have the variation:

δ
(
Sbulk + S

(1)
bdy

)
=
∫
dω

[
2ν
(
β†ωδαω + c.c.

)
+ 2ν r2ν0

(
β†ωδβω + c.c.

)
+ 2q ω r1−2ν

0
2ν − 1

(
α†
ωδαω + c.c.

)
+ (subleading)

]
.

(2.13)

Since for g2 < 1/4 we have 0 < ν < 1/2, the first term is dominant and permits the choice
of boundary condition4

βω = β†ω = 0 . (2.14)

αω becomes a boundary degree of freedom with dimension 1/2− ν. Again, only bilinears
are gauge-invariant. In the AdS/CFT literature this is known as the ‘alternative quantiza-
tion’ [38] of the scalar Φ. The boundary condition (2.14) describes a new DCFT, with a
different operator spectrum from the usual Wilson line defined by (2.10). In particular, the
lowest dimensional gauge-invariant operator is the bilinear α†α, which has scaling dimension
∆̂ = 1− 2ν < 1 and it is therefore relevant. This will be important below, as adding this
operator to the action leads to an RG flow.

3From the perspective of standard perturbation theory (where q is usually taken to be O(1)), the result
for ν in (2.5) re-sums the contribution of infinitely many Feynman diagrams to the anomalous dimensions of
defect operators of the form ∂#Φ†∂#Φ. This is analogous to what happens in other semiclassical limits, see
e.g. [14, 35–37] in a similar context. We checked explicitly the agreement of the semiclassical result (2.5)
with a one-loop diagrammatic calculation of the anomalous dimension of Φ†Φ on the defect.

4Note that the boundary condition in (2.10) remains viable. With that choice the boundary term we
added evaluates to 0 (to the order in r0 we are working).
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A remark is in order. Our analysis of the linearized fluctuations suggests that alternative
quantization defines a unitary DCFT for arbitrary 0 < ν < 1/2, i.e. for arbitrary |q| < 2π2/e2.
This would mean that even low-charge Wilson lines have two different possible fixed points.
As we will explain in the next section, this conclusion is not entirely correct due to nonlinear
interactions between the fluctuations. Eventually, we will only claim that alternative
quantization defines a healthy DCFT in the window 0 < ν < 1/4, which means that there
are two fixed points for the Wilson line starting from charge |q| =

√
3π
e2 up to the unitarity

bound |q| = 2π
e2 .

In our problem we have 1/2 > ν > 0, which in the infrared fixed point (2.10) means
that the lowest lying bilinear operators cover the range from ∆̂ = 2 with no impurity to
∆̂ = 1 at the bound ν = 0, while in the alternative quantization fixed point (2.14) we cover
the range from ∆̂ = 0 when there is no impurity to ∆̂ = 1 at the bound ν = 0. These are
consistent with the unitarity bound ∆ ≥ max

(
d−2
2 , 0

)
, which for d = 1 is ∆̂ ≥ 0.5

There is a way to interpolate between alternative and standard quantization: they
are connected by an RG flow (referred to as the double-trace flow in AdS/CFT) that is
triggered by adding the relevant operator |α|2 to the alternative quantization DCFT action.
This is implemented by the additional boundary term:

S
(2)
bdy = −f0

∫
r=r0

dt
√
−ĝ r2ν0 |Φ|2 . (2.15)

This term is chosen so that it reduces to |α|2 in the limit r0 → 0. Upon imposing
δ
(
Sbulk + S

(1)
bdy + S

(2)
bdy

)
= 0 and defining the dimensionless coupling constant f through

f0 = fr−2ν
0 , we obtain the boundary condition

βω
αω

= f0
2ν − f0r2ν0

= f

2ν − f
r−2ν
0 ,

(2.16)

where we took r0ω ≪ 1 and only kept the leading term.6 For ν > 0 in the limit r0 → 0
this is the well known result for the double-trace deformation [39–42]. To extract the beta
function of f for arbitrary ν we demand that the boundary conditions (2.16) (and hence the
physical theory) are left invariant by a simultaneous rescaling of the cutoff and the coupling.
This Callan-Symanzik style argument [20] implies that r0 ∂(βω/αω)∂r0

− βf
∂(βω/αω)

∂f = 0, which
leads to the beta function

βf = −2νf + f2 . (2.17)

For real ν, we find two fixed points: f = 0 is the UV (alternative quantization) and
f = 2ν the IR (standard quantization) DCFT limit of the resulting RG flow. The RG

5The alternative quantization window commonly quoted in the literature is 0 < ν < 1. However, the
range 1/2 < ν < 1 (which is not realized in our problem) clearly would give rise to a non-unitary alternatively
quantization DCFT since the scaling dimension would be negative. The scalar theory in AdS2 in this mass
range therefore develops a sickness with alternative boundary conditions earlier than in higher dimensions.
See [43] for related comments.

6While we may contemplate whether f0 needs to be a lot smaller than the cutoff scale r−2ν
0 , and hence f

needs to be infinitesimal, this result is trustworthy for f = O(1).
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flow corresponds to interpolating between the boundary conditions in (2.14) and (2.10).
For f < 0 we have βf > 0 leading to the runaway behavior f → −∞ in the IR. In other
words, in the alternative quantization fixed point, which exists for positive ν at f = 0, with
positive sign for f the deformation (2.15) leads to the standard Wilson line fixed point,
while with a negative sign for f , a long flow towards infinitely negative f ensues and the
dynamics has to be understood. We will provide a physical interpretation of this runaway
in the next section.

Let us consider in some detail the special case when the coupling f is marginal, ν = 0,
and only exhibits logarithmic running. Then the two falloffs in (2.5) degenerate and we
have to implement the change of basis

αω = 1
2

(
−aω
ν

+ bω

)
rν0 and βω = 1

2

(
bω
ν

+ aω

)
r−ν0 , (2.18)

for some arbitrary cutoff radius r0. Then we can take the limit ν → 0:

Φ ∼ bω
√
r log(r/r0) + aω

√
r , ν = 0 . (2.19)

We can directly read off the evolution of the coupling constant f :

f∗ log(r/r∗) + 1 = f(r0) log(r/r0) + 1 =⇒ f(r0) =
f∗

1− f∗ log(r0/r∗)
, (2.20)

where r∗ is some reference scale, or equivalently

βf = f2 , ν = 0 . (2.21)

This agrees with [42] for ν = 0. Note that while for ν > 0 we could have taken the r0 → 0
limit from early in the calculation, it is essential to keep r0 finite to make sense of the
marginal case with ν = 0 that corresponds to the critical Wilson loop. The cutoff is also
necessary to study the supercritical case, where ν is imaginary and no real DCFT exists.
We will study the supercritical case below.

Since our theory is naturally equipped with a cutoff r0, the beta function (2.17) should
make sense also in the region g2 > 1/4, where the coupling f however cannot be thought
as a perturbation of a (unitary) DCFT. There is a trick to rewrite the beta function and
the coupling in a way that would make sense with real couplings for both g2 > 1/4 and
g2 < 1/4. To see this, note that in terms of the dimensionless coupling f = f0r

2ν
0 , the

boundary action with the double-trace deformation can be written as:

S
(1)
bdy + S

(2)
bdy = −1 + 2f̂

2

∫
r=r0

dt
√
−ĝ |Φ|2 , f̂ ≡ f − ν . (2.22)

We can make sense of this in the region where ν2 < 0 by choosing a complex f , so that the
coupling f̂ in (2.22) is real. In terms of f̂ the beta function (2.17) reads:

βf̂ = −ν2 + f̂2 . (2.23)

This result holds both for ν2 ≥ 0 and ν2 < 0. Crucially, the coupling f̂ is real in both
regions, making sure that the theory stays unitary.
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Figure 1. An illustration of the β-function associated with the parameter f̂ in equation (2.23).

For ν2 < 0 the beta function (2.23) does not admit fixed points at finite coupling.
Instead, it is associated with a dimensional transmutation phenomenon usually referred to
as “walking” behavior [20, 44]. Suppose that the RG flow starts from a small initial value
for the coupling f̂(µUV). The coupling constantly decreases along the RG, but the rate is
slower near f̂ = 0 where the beta function is small. Eventually −f̂(µ) blows up at a scale
µIR given by

µIR = µUVe
− π

|ν| . (2.24)

We see that the dynamically generated scale is exponentially separated from the UV one
for small ν2 < 0. There is therefore dimensional transmutation on the line defect. We will
discuss the physical implications of this RG flow in section 2.3.

In summary, we learn that there are two DCFT fixed points for subcritical Wilson
lines in scalar QED in the double scaling limit. They correspond to different boundary
conditions for the field ϕ and are connected by an RG flow. The flow is triggered by the
gauge-invariant relevant defect operator |ϕ|2 that has dimension 1− 2ν in the UV DCFT
(alternative quantization) and that becomes irrelevant with dimension 1 + 2ν in the IR
DCFT. For ν = 0, corresponding to the critical Wilson line with q = 2π/e2 = 1/(2αQED),
the two fixed points merge. For q > 2π/e2 they annihilate and there is no DCFT. Instead
there is a runaway towards large negative f̂ .

The fixed point annihilation corresponds to the supercritical regime of Wilson lines,
whose physics we explore in section 2.3. This problem is closely related to another one
we encountered above: if we deform the subcritical UV DCFT (alternative quantization)
with f < 0, we encounter a runaway behavior. Finally, in the following we also analyze the
stability of the alternative quantization DCFT in the subcritical regime at the nonlinear level.

2.2 Stability in the subcritical regime

The abstract DQFT viewpoint was very useful to interpret the f > 0 regime of the phase
diagram, where we found two DCFTs. In particular, standard quantization (with f = 2ν)
is stable for small deformations. From the beta function in (2.17) we also found a runaway
behavior for f < 0. It is not uncommon that such a behavior indicates instability. We
will show below that this is indeed the case. We will find that for ν > 1/4 this instability
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leads to the formation of a classical soliton that we construct numerically. Perhaps more
surprisingly, we will find hints that for ν > 1/4 the alternative quantization fixed-point
admits solitons with arbitrary negative energy for any value of the deformation f . We will
explain why ν = 1/4 is special.

To perform the analysis, we view our setup as a problem in differential equations.
By changing f we are changing the boundary conditions for the equations of motion
(EOM) (2.3). Since these are nonlinear, it is possible that there is an interesting phase
diagram as we change f .

The profile Φ = 0, At = g/r is always a solution of the EOM. The RG analysis predicts
that for f > 0 this solution is stable. For f < 0 we will find that it becomes unstable, and
a new soliton solution takes over. The instability can be diagnosed in two different ways.
First, in appendix A.1 we compute the

〈
αωα

†
ω

〉
retarded two-point function and show that

for f < 0 it has a tachyon pole in the upper half plane, the telltale sign of a dynamical
instability. The endpoint of the instability is the soliton that we construct below. Second,
we show that the soliton has lower energy than the Φ = 0, At = g/r solution, which is a
“thermodynamical” demonstration of instability.

A simple argument establishes that the soliton cannot end up partially screening the
Wilson line: the screening has to be complete.7 Let us assume that partial screening was
possible; in the IR we have At = g′/r. If Φ =const, the Maxwell equation (2.3) is not
satisfied due to the At|Φ|2 term in the gauge current. So we have to assume that Φ is small.
We know the possible small Φ behavior in a Coulomb background from (2.5), Φ ∼ r1/2±ν

with 0 < ν < 1/2. Hence Φ is growing (instead of decaying), and it starts backreacting on
At, ruining the assumed Coulomb behavior. We have thus reached a contradiction, and the
only possible way out is to have complete screening (or Φ = 0 throughout the bulk). Next
we construct the explicit new soliton corresponding to screened Wilson loops.

To perform the computation, first, we forget about the boundary conditions at r = r0
and construct solutions to the EOMs of Φ and At which are regular as r → ∞. Since
the equations are second order in derivatives and regularity provides two conditions, the
resulting solution depends on two constants. One is simply a length scale ξ, while the other
is a dimensionless parameter that we denote by c. These parametrize the asymptotic form
of the solution as r → ∞. Explicitly, the asymptotics are different depending on the value
of λ̄ ≡ λ/e2, and are given by (we have obtained a couple of more orders of the asymptotic
expansions that we suppress here to avoid clutter):

λ = 0 :


Φ = c√

2 + . . .

r eAt = (r/ξ)−
1
2−
√

1
4+c2 + . . .

λ̄ < 2 :


Φ = 1√

2λ̄ log(r/ξ)
+ . . .

r eAt = c [log(r/ξ)]−1/λ̄ + . . .

7That is to leading order in the double scaling limit. Later we discuss situations in which total screening
is in tension with symmetry considerations at subleading order in e2.
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λ̄ > 2 :


Φ = 1

2
√

log(r/ξ)

[
1 + · · ·+ c [log(r/ξ)]1−

λ̄
2 + . . .

]
r eAt =

√
λ̄−2

2
√

log(r/ξ)

[
1 + · · ·+ 2c

λ̄−2 [log(r/ξ)]
1− λ̄

2 + . . .

] (2.25)

Note that c denotes different things in the different cases and for λ̄ > 2 it is hiding at a
subleading order (as a noninteger power term). Also note that we set the AdS radius equal
to one, which makes up for the missing dimensions in the above equations.

Given a solution with the above asymptotics as r → ∞, we may integrate the EOMs
towards smaller r. We may then obtain the near-defect boundary conditions, namely the
charge of the Wilson line g and the value of the double-trace coefficient f , that correspond
to a given choice of the parameters ξ and c.

In practice, we can only solve the EOMs numerically. To this aim, we set ξ = 1 and
use the asymptotics as initial data for the numerical integration of the EOM starting at
some r = rc and integrating towards smaller r (up to some small r0). Let us denote the
resulting solution by {φ(c)(r), A(c)

t (r)}. We can reinstate ξ by a simple rescaling, thereby
obtaining a two-parameter family of solutions{

φ(c)(r/ξ), A
(c)
t (r/ξ)
ξ

}
. (2.26)

If we denote the near-defect asymptotic data corresponding to the solution {φ(c)(r), A(c)
t (r)}

by {α(c), β(c), g(c)}, as in (2.8):8

φ(c)(r) = α(c) r1/2−ν + β(c) r1/2+ν ,

A(c)
t = g(c)

r
,

(2.27)

then the two-parameter family of solutions in (2.26) has asymptotic data{
α = α(c)

ξ1/2−ν
, βsol(α) =

β(c)

ξ1/2+ν
, g(c)

}
, (2.28)

where by writing βsol(α) we emphasize that the family of solitons characterized by fixed c
and varying ξ gives a curve in the (α, β) plane.

From (2.28), we learn that we can use c as a proxy for q (or g). Then for fixed q (or
equivalently c) we can use ξ to tune the absolute value of the ratio of α/βsol(α). The sign of
the ratio β(c)/α(c) determines the sign of the coupling f corresponding to the so-constructed
soliton. More in detail, combining (2.16) with (2.28), for infinitesimal f we have

β(c)

α(c) = f

2ν (ξ/r0)2ν . (2.29)

Since without loss of generality we choose Φ to be positive near the boundary giving α > 0,
it is the sign of β(c) that correlates with that of f . Naively, one might expect all the solitons

8The subleading behavior of the gauge field provides an additional boundary datum. We omit it below,
as it does not play a role in our discussion.
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Figure 2. Sign of f corresponding to the numerical soliton as a function of g.

that can be constructed in this way to correspond to a negative value of the double-trace
coefficient f (since this is the region where an instability exists for positive ν, while for
positive f we expect the dominant saddle point to be (2.4)). Rather surprisingly, we find
the following intriguing pattern of signs as a function of g = e2q/(4π) with blue negative
and red positive:

We will explain this pattern below analytically, showing that the red regions are
associated with the existence of dangerous configurations whose energy seems unbounded
from below. These have a simple interpretation in terms of the renormalization group, as
we will see.

From (2.28) we observe that from the combination

s(g) ≡ −βsol(α)

α
1/2+ν
1/2−ν

= − β(c(g))[
α(c(g))] 1/2+ν

1/2−ν
(2.30)

ξ drops out, hence s(g) is a useful characterization of the nonlinear response of our system
to turning on Φ. The sign of s(g) is then anti-correlated with the sign of f that is required
to get a solitonic solution. A useful construction borrowed from the AdS/CFT literature
is as follows [45, 46]. To avoid clutter let us use the notation A =

√
α†α, B =

√
β†β and

specify the general non-linear boundary condition

B = W ′(A) . (2.31)

For example the interpolating flow between alternative and standard boundary conditions
corresponds to W(A) = fA2/2. We also define

W0(A) ≡
(1
2 − ν

)
s(g)A

1
1/2−ν ,

V(A) ≡ 4ν [W(A) +W0(A)] ,
(2.32)

where V(A) is the effective potential. That is, V(A) is genuinely the (leading order)
quantum effective potential, i.e. (minus) the 1PI effective action evaluated for constant
⟨A⟩; see appendix A.3 for a derivation similar to [45, 46]. One can verify that the solitonic
solution that satisfies the boundary condition (2.31) is a critical point of V(A); this is a
consistency check of the formalism. (Recall that W ′

0(A) = s(g)A
1/2+ν
1/2−ν = −Bsol(A), where

we used (2.30).) Since the value of the effective potential is zero for the naive saddle A = 0
and negative for the soliton critical point, we conclude that it is the energetically favored
configuration, hence establishing thermodynamic stability.

Next we ask if we can provide an analytic understanding of the sign structure of s(g)
(previewed below (2.29)). We will first explain what happens to the bulk scalar profile at
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Figure 3. Plot of s(g) for λ = 0 obtained from numerics. In the inset the numerical data are
plotted together with the analytic formula (2.34) (red dashed line) describing the behavior of s(g)
near the singularity at g =

√
3/4; we get perfect agreement.

the special points where the sign of s(g) flips, and then we interpret the values of g where
the sign flips take place from the point of view of the defect renormalization group.

The near boundary analysis of the equations (at ω = 0, but going beyond the terms
displayed in (2.5)) gives for Φ:

Φ =α r1/2−ν
[
1 + α2 1 + 2(1 + λ̄)ν

4ν(1− 2ν)(1− 4ν) r
1−2ν + . . .

]
+ β r1/2+ν [1 + . . . ]

+ (cross terms between α and β) .
(2.33)

Note that the exponent in the α3 term coincides with that of the β term for ν = 1
4 . Exactly

at this point, the coefficient of the α3 term diverges. Using the relation between β and α

from (2.30), we see that the only way for us to get a regular scalar profile Φ (which we
expect, since nothing drastic happens in the bulk), is to have:

s(g) = − (3 + λ̄)/4
ν(g)− 1/4 + . . . , (for ν → 1/4). (2.34)

Since ν = 1/4 corresponds to g =
√
3/4 = 0.43, we have successfully explained the first sign

change (counting from g = 1/2) of s(g) that we see on the diagram below (2.5), see also
figure 3. It turns out that all the sign changes are explained by an α2k+1 term colliding
with the β term, giving νk = k

2(k+1) for the k’th sign change point.
From the defect point of view we have already mentioned that something special

happens at ν = 1/4, now we can explain why. At these points the operators
(
α†α

)k+1

become marginal. On the other side of this transition point, we have a new relevant operator,
which can be added to the action (included in W) without spoiling the UV alternative
quantization DCFT.9 This can be understood straightforwardly also from (2.14), where we

9We also need new boundary terms for each new relevant operator that supplements (2.12). A worked
out example can be found in appendix D of [46].
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have found that in alternative quantization the scaling dimension of the charged boson is
(1− 2ν)/2, and hence, at ν = 1/4 the quartic operator becomes relevant in the alternative
quantization fixed point.

Irrespective of what coefficients we choose for the relevant terms, the asymptotics of
the effective potential is always determined by the conformal term s(g)A

1
1/2−ν , hence when

s(g) < 0 the effective potential is unbounded from below.10 We speculate that in our case
this indicates an instability of the system, as it seems to allow for the construction of a
configuration with arbitrarily negative energy.11 However, we have not constructed such a
configuration explicitly and we have not found a defect QFT explanation for the potential
loss of stability of alternative quantization. One scenario is that since the quartic operator
becomes relevant, the alternative quantization fixed point is lost, due to the joint beta
function of the bilinear and quartic operator not having mutual zeroes. What we are sure
about is that alternative quantization is a healthy DCFT in the regime

√
3/4 < g < 1/2.

We leave the interesting problem of understanding the regime g <
√
3/4 for future work.

We end this subsection with three examples of soliton solutions in the regime
√
3/4 <

g < 1/2 for the three cases of λ̄ = λ/e2 considered above, see figure 4. These are the lowest
energy states when f < 0 and the runaway behavior of the RG equation (2.17) leads to
the physical interpretation of complete screening of the Wilson line. For these plots, we
determine the value of r0 from the dimensionful coupling f0 as r0 = (f/f0)1/(2ν). By (2.29),
this equals12

r0 =
[
2ν
f

β(c)

α(c)

]1/(2ν)
ξ . (2.35)

We expect r0 to be the scale where nonlinearities operate, and the core of the screening
cloud should be localized on this scale. Indeed, the three examples shown in figure 4 confirm
this expectation. The core region is followed by an extended tail region, as explored in (2.25)
from the point of view of differential equations. A complementary IR DQFT perspective on
these tails is given in section 2.4, while in this section we provided a UV perspective on
screening.

2.3 Screening in the supercritical regime

The bulk physics of the supercritical regime resembles that of the subcritical regime with
the boundary conditions triggering an instability to forming a screening scalar cloud. There
are two distinctions: the screening cloud forms for any boundary condition (i.e. for either
sign of f , as is evident from the beta function (2.23) which leads to negative infinite f
regardless of the initial conditions for imaginary ν) and the cloud slightly above criticality
is generically exponentially large, exp (π/|ν|). These differences originate from the near
defect dynamics as we explain below.

10In itself this does not in itself signal pathology as evidenced by the negative effective potential for the
Hubbard-Stratonovich field in the large N critical O(N) model [47], which is a perfectly healthy theory.

11A circumstantial evidence is that the analogous transition in holography from s > 0 to s < 0 is
accompanied by the loss of the positive energy theorem [45].

12That is, we set the dimensionless coupling f = −2ν/100, so that |f | ≪ 2ν and that f is negative.

– 19 –



J
H
E
P
1
2
(
2
0
2
3
)
1
8
3

ϕ(r) r

E(r) r2

10-10 10-5 1 105 1010
r/r(0)

0.1

0.2

0.3

0.4

0.5

0.6
ϕ(r) r

E(r) r2

10-5 105 1015 1025
r/r(0)

0.1

0.2

0.3

0.4

0.5

0.6
ϕ(r) r

E(r) r2

10-5 105 1015 1025
r/r(0)

0.1

0.2

0.3

0.4

0.5

0.6

Figure 4. Plots of the scalar profile (blue) and the electric field E = Ftr (orange) as functions of
the distance from the probe charge, all normalized to be dimensionless. The analysis was carried
out in the subcritical regime for e2q

2π = 0.9 corresponding to g = 0.45. The left plot is for λ = 0, the
middle is for λ̄ = λ/e2 = 1

2 , and the right one is for λ̄ = 8. These curves were obtained numerically
by solving the saddle point equations of motion (2.3) following the three step procedure explained
in the beginning of this section. Note that on the left plot the scalar (multiplied by r) goes to a
constant in the IR, in the middle one it decays slower than the electric field (multiplied by r2), while
in the right plot, their decay rate is the same (∼ 1/

√
log(r)).

Let us recall from section 2.1 that in the supercritical regime there is no genuine DCFT
and we need to keep the cutoff r0 finite. It is natural to take the boundary condition at the
cutoff surface to be

0 =
(
f̂ + 1

2

)
Φ+ ∂nΦ

∣∣
r0
, (2.36)

where we take n to point towards the origin, we converted the boundary condition (2.16)
into one given in terms of Φ, and we look for a real scalar profile. We use the obvious
boundary conditions F0r|r0 = g/r20 for the gauge field. The profiles Φ = 0 and At = g/r will
always be a solution, but for any f̂ we will always find (infinitely many) scalar solitons. The
reason for the existence of an infinite family of solutions is that the solution of the linearized
equations has a discrete scale symmetry which can be used to generate new solutions from
existing ones. The same phenomenon was discussed in [20, 43, 48].

In more detail, the solutions for the linearized equations are r1/2+i|ν|, so that we
can write:

Φ = C
√
r cos

(
|ν| log

(
r

r0

)
− γ

)
, (2.37)

where C is fixed by bulk regularity of the full nonlinear problem and γ is fixed by the
boundary condition (2.36) to be:

γ = arctan
(
f̂/|ν|

)
. (2.38)

Under discrete scale transformations the profile (2.37) transforms by scaling and hence also
satisfies the boundary condition (2.36) and gives rise to a new soliton

r → Λn r , Φ(r) → (−1)nΛn/2Φ(r) , Λ ≡ exp
(
− π

|ν|

)
. (2.39)

Since the envelope of Φ in (2.37) grows, the solution eventually exits the linear regime and
stops oscillating. The discrete scale invariance is broken by nonlinear effects. Let C = C0
give rise to a regular solution of the equations with zero nodes of the Φ profile. Then by
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Figure 5. Plot of the screening cloud for the supercritical case with g ∼ 2, λ = 0, and Dirichlet
boundary condition for the scalar. We cut off part of this solution with r < r0 thereby obtaining
the physical profiles. If we set r0 = r(0) (rightmost gray line) we get the stable scalar soliton with
Dirichlet boundary condition. If we set r0 = r(n) (the (n+ 1)th gray line), we get the scalar soliton
with n nodes (and n tachyons). A subtlety is that in the oscillating region g changes slightly, so we
have to make slight adjustments in parameter space to keep g constant as we increase the number
of nodes.

the discrete scale invariance (2.39), the amplitude Cn ≈ C0 Λn/2 with n ∈ Z+ will also give
rise to a regular scalar profile with n nodes.13

From the infinitely many potential solitons characterized by Cn, we have to choose
the one that is physically realized: this can be done by comparing the energies of field
configurations or by dynamical stability analysis. In appendix A.2 we determine the
spectrum of fluctuations around the Φ = 0 background and we find infinitely many tachyon
modes with sizes Rk ≃ Λ−k r0 with k ≥ 1. Since we can treat the nth soliton (with
parameter Cn) as consisting of a linearized oscillating region of size Rlin,n ≃ Λ−n r0 followed
by a nonlinear region, we can fit tachyons with k ≤ n (a total of n of them) into the
linearized regions, and we find that the all Cn>0 solitons are unstable. Hence we conclude
that only the C0 soliton is stable, since it lacks a large linearized region, where tachyons
could reside.

As in the subcritical case discussed in section 2.2, there are three possible IR asymptotics
of the scalar soliton depending on the value of λ̄ = λ/e2 as listed in (2.25). Starting from
these and setting ξ = 1 we obtain a scalar soliton. We then reinstate ξ as in (2.26). We
choose ξ such that we satisfy the boundary condition (2.36) at r = r0. An illustrative
example is given in figure 5, where we chose ξ = ξ0 such that Dirichlet boundary conditions
are obeyed. Since the soliton is oscillating in the small Φ region as in (2.37), it is always
possible to satisfy any boundary conditions from the class (2.36). This is unlike the
subcritical case, where the sign of f decided if we have a soliton solution. In fact with the
choice ξn = Λ−n ξ0 we again obtain a soliton that obeys the same boundary conditions. The
corresponding asymptotic amplitude is Cn. This is clearly demonstrated in figure 5.

The most striking feature of supercritical clouds is that for small |ν| the core of the

13We write approximately equal, since some nonlinear effects correct the profile (2.37). For increasing
n these corrections are decreasing in importance. We note that we may regard the Φ = 0 solution as
corresponding to C∞.
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Figure 6. Plot of the screening cloud for the supercritical case with g = 0.51. The striking feature
of this plot is the large cloud size for which the theoretical estimate Rcloud/r0 ≈ 4 · 1013 is consistent
with the plotted numerical result. We have chosen λ̄ = 1/2 and the tail region is identical to the
(middle) λ̄ = 1/2 plot in figure 4. We chose Dirichlet boundary condition Φ(r0) = 0 for the scalar
field (corresponding to f̂ → ∞ in (2.36)). Different boundary conditions for the scalar field lead to
a qualitatively similar plot.

soliton is huge, of order Rcloud ≃ r0
Λ = r0 exp (η/|ν|), where the constant η = O(1) is

determined by nonlinear physics. In contrast, in the subcritical case the soliton has a
natural size, Rcloud ≃ r0, with r0 fixed by the dimensionful coupling constant f0 ∼ r−2ν

0 as
demonstrated in figure 4. Since the tail of the cloud is identical to what we have already
shown for the subcritical case in figure 4, in figure 6 we only show a λ̄ = 1/2 cloud.

We conclude this section by providing an intuitive RG explanation of the Cn solitons
that we constructed numerically. The exponential size for the cloud Rcloud ≃ r0 exp (π/|ν|)
associated with the ground state solution C0 is clearly a consequence of the “walking”
behavior discussed around (2.24). To understand the solutions with n ≥ 1 nodes, it is
convenient to re-express the boundary condition (2.36) in terms of the angle γ parametrizing
the linear solution (2.37):

eiγ = |ν|+ if√
f2 + |ν|2

≡ z . (2.40)

In terms of the phase z, the solution to the beta-function (2.23) for ν2 < 0 reads

z(µ) = z(µ0)
(
µ

µ0

)i|ν|
, (2.41)

where µ is the running scale and µ0 some reference initial scale. (2.41) describes a cyclic
RG flow with period Λ−2. In practice, the beta-function (2.23) describes only the linear
regime, and the nonlinearities drive the RG flow away from the cyclic regime.

Similarly to the Efimov effect [49], the discrete scale invariance (2.39) is a consequence
of the approximate cyclic RG flow (2.41). The Cn solitons are then simply interpreted as
RG flows in which the fields linger in the linear regime for ∼ n/2 cycles before entering the
nonlinear regime and screening the Wilson line. We remark however that the ground state
solution always exits the linear regime before performing a full cycle.
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2.4 Effective defect field theory for screened Wilson lines

Remarkably, the numerical analysis in the previous sections provides an exact solution
for the defect RG flow triggered by unstable Wilson lines, both in the case of negative
double-trace deformations and supercritical charges. In this section we complement that
analysis by interpreting the long distance tail of the screening cloud in terms of an effective
defect field theory description of the final stages of the flow.

Let us consider first the theory with no quartic coupling, λ = 0. In this case the long
distance limit of the screening cloud analyzed in the previous section admits a non-trivial
one-point function for the scalar field with conformal scaling:

⟨|Φ|2(r)⟩ = e4v2

2(4πr)2 , (2.42)

where v ∼ 1/e2 is a dimensionless number which depends upon the initial charge and the
boundary condition.

In the absence of gauge fields, conformal defects sourcing the scalar operator can be
constructed by straightforwardly integrating the fundamental field along the line contour,
see e.g. [50–53]. An equally explicit construction is not available in a gauge theory. Since all
gauge-invariant operators have engineering dimension larger or equal than 2, the effective
defect field theory corresponding to (2.42) cannot be obtained by deforming the trivial
line defect with a local operator. Rather, it should be understood in terms of boundary
conditions for the scalar field at r → 0. To write the corresponding defect explicitly, we
notice that (2.42) is equivalent to a constant profile for the AdS2 rescaled field; in other
words, (2.42) describes a Higgs phase on AdS2. It is therefore natural to decompose the
scalar field into a radial and a Goldstone component

Φ(x) = 1√
2
h(x)eiπ(x) , Φ†(x) = 1√

2
h(x)e−iπ(x) , (2.43)

so that the action reads

S = 1
e2

∫
d4x

[
−1
4F

2
µν +

1
2(∂h)

2 + 1
2h

2(∂µπ −Aµ)2
]
. (2.44)

To obtain the profile (2.42) we then simply introduce a source in the Higgs equations of
motion

−∂2h+A2
µh = −e2v δ3(x⊥) , ∂µF

µν + h2(∂νπ −Aν) = ∂µ
[
h2(∂µπ −Aµ)

]
= 0 ,

(2.45)
with the solution (up to gauge transformations)

Aµ = π = 0 , h = e2v

4πr ≡ hs(r) . (2.46)

The source in (2.45) can be formally represented with a term localized at r = 0

SD = v

∫
r=0

dt h = v

∫
r=0

dt
√
2|Φ|2 . (2.47)
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We stress that, despite its formal representation (2.47), this defect cannot be understood as
a perturbation of the trivial defect by a local operator, but it is rather thought as setting
a boundary condition for the scalar field, somewhat similarly to a ’t Hooft line. As in
that case, the corresponding defect is perfectly local. To appreciate this point further, one
could imagine obtaining such a line operator by starting from an interface separating the
theory (2.44) from a deformed model with a bulk potential V (|Φ|2) which Higgses the gauge
group. The defect (2.47) is then obtained upon deforming the interface into a cylinder
of radius r0 along the time direction, and taking the limit r0 → 0 while simultaneously
scaling the coefficients of the potential V (|Φ|2) with inverse powers of r0 according to
their dimension.

In practice, to concretely study the model given by (2.47) and (2.44) we simply need
to expand the fields around the saddle-point (2.46). We consider a gauge-fixing inspired by
the usual Feynman-’t Hooft choice

Sg.f. = − 1
2e2

∫
d4x

(
∂µA

µ + h2sπ
)2

. (2.48)

Upon rescaling fluctuations with a factor of e, the quadratic action reads

S+Sg.f. ≃
∫
d4x

{
−1
2(∂µAν)

2 + 1
2h

2
sA

2
µ +

1
2(∂δh)

2 + h2s

[1
2(∂π)

2 − 1
2h

2
sπ

2
]}

, (2.49)

where δh = h − hs. Clearly δh behaves as a free field in the absence of a defect. By
studying the propagators of Aµ and π, we find that the lowest dimensional operator in the
bulk-to-defect OPE of the U(1) current jµ ≃ h2s(∂µπ −Aµ) has dimension

δ = 1
2 +

√
1
4 + e4v2

(4π)2 . (2.50)

In particular, there is a (defect) scalar operator with dimension δ corresponding to the r → 0
limit of j0. The corresponding deformation of the defect action (2.47) can be written as

δSD = −q̃
∫
r=0

dt(A0 − π̇) . (2.51)

Note that because of the nontrivial profile of the Higgs field h ∼ 1/r we can write gauge-
invariant defect operators using both the gauge field and the Goldstone mode. The
corresponding coupling q̃ in (2.51) is thus not quantized, and it is in fact irrelevant since
δ > 1. Analyzing perturbatively the deformation (2.51), we find the following one-point
function for the gauge field14

⟨F0i⟩ ∝ xi
e2q̃

4πr2+δ . (2.52)

(2.52) agrees with the functional form for the screening tail of the gauge field previously
derived from the equations of motion in (2.25) (setting c = e2v

4π in (2.25)). Further subleading
corrections to the screening cloud are reproduced by other irrelevant deformations of the
defect (2.47).

14This is derived from the propagator of A0, whose zero-mode, with the chosen gauge-fixing, behaves
analogously to an AdS2 scalar field with dimension δ.
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Let us now discuss the theory with a quartic coupling

S = 1
e2

∫
d4x

[
−1
4F

2
µν +

1
2(∂h)

2 − λ

8e2h
4 + 1

2h
2(∂µπ −Aµ)2

]
. (2.53)

Inspired by the previous analysis, we consider the following defect deformation

SD =
∫
r=0

dt [v h− q̃(A0 − π̇)] . (2.54)

We focus on the double-scaling limit

e2 ∼ λ→ 0 , v ∼ q̃ → ∞ with e2v ∼ e2q̃ = fixed . (2.55)

In this limit the Goldstone mode can be neglected. Including the gauge-fixing (2.48) we
thus consider

S+Sg.f.+SD = 1
e2

∫
d4x

[
−1
2(∂µAν)

2 + 1
2h

2A2
µ +

1
2(∂h)

2 − λ

8e2h
4
]
+
∫
r=0

dt (v h− q̃ A0) .
(2.56)

In what follows, we self-consistently focus on the regime e2v ∼ e2q̃ ≪ 1. In this regime
the one-point functions for the scalar and gauge field admit the following expansion

⟨h(r)⟩ = e2v

4πr

[
F0

(
q̃

v
,
λ

e2
, r

)
+ e4v2

(4π)2F1

(
q̃

v
,
λ

e2
, r

)
+O

(
e8v4

(4π)4

)]
, (2.57)

⟨A0(r)⟩ =
e2v

4πr

[
G0

(
q̃

v
,
λ

e2
, r

)
+ e4v2

(4π)2G1

(
q̃

v
,
λ

e2
, r

)
+O

(
e8v4

(4π)4

)]
. (2.58)

The leading order terms F0 and G0 are determined from the linearized equations of motion

∂2h = e2vδ3(x⊥) , ∂2Aµ = e2q̃δ3(x⊥) , (2.59)

from which we obtain

F0

(
q̃

v
,
λ

e2
, r

)
= 1 , G0

(
q̃

v
,
λ

e2
, r

)
= q̃

v
. (2.60)

Diagrammatically, the leading order result is associated with a single insertion of the defect
couplings and no insertion of the bulk vertices, as in figure 7a.

The subleading contributions arise from the diagrams in figure 7b. The resulting
integrals are divergent; as usual in QFT, this signals a nontrivial RG flow for the defect
couplings v and q̃. To extract the corresponding beta-functions, we evaluate the divergent
parts of F1 and G1 in dimensional regularization:

F1

(
q̃

v
,
λ

e2
, r

)
=
(
q̃2

v2
− λ

2e2

)
× 1

2ε + finite ,

G1

(
q̃

v
,
λ

e2
, r

)
= − q̃

v
× 1

2ε + finite ,
(2.61)

– 25 –



J
H
E
P
1
2
(
2
0
2
3
)
1
8
3

(a)

(b)

Figure 7. Diagrams contributing to the scalar and gauge field one-point functions. Dashed lines
denote scalar fields while wiggly lines stand for gauge fields. The solid line represents the defect and
dots stand for bulk couplings.

where ε = 4− d. For the physical one-point functions (2.57) and (2.58) to be finite, we need
to rewrite the defect couplings in terms of bare ones. Working in the minimal subtraction
scheme, we find

v → v0 = vM ε/2
[
1 + e4v2

(4π)2

(
λ

2e2 − q̃2

v2

)
1
2ε + . . .

]
,

q̃ → q̃0 = q̃M ε/2
[
1 + e4v2

(4π)2
1
2ε + . . .

]
,

(2.62)

where M is the sliding scale. Demanding that the bare couplings v0 and q̃0 be independent
of M , with textbook manipulations [54] we obtain the beta-functions for the physical
couplings v and q̃:

βv =
∂v

∂ log(M) = v

[(
λe2v2

2 − e4q̃2
)
+O

(
e8v4

)]
,

βq̃ =
∂q̃

∂ log(M) = q̃
[
e4v2 +O

(
e8v4

)]
.

(2.63)

The equations (2.63) imply that both v and q̃ run logarithmically to zero in the IR
(M → 0). We therefore conclude that the defect (2.54), describing a fully screened Wilson
line, flows to a trivial defect in the IR.15 Hence the description (2.54) of screened Wilson
lines as a scalar line is useful as an intermediate energy description. In the following we
show how to reproduce the tail of the screening cloud previously derived from the classical
equations of motions.

15For q̃ = 0, the model effectively reduces to the pinning field defect in d = 4, which was studied in [50, 51]
and also flows to a trivial defect.
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We consider the one-point functions for the scalar and the gauge field in the long
distance limit

⟨h(r)⟩ r→∞= e2v(1/r)
4πr , ⟨A0(r)⟩

r→∞= e2q̃(1/r)
4πr , (2.64)

where the couplings are expressed at the scale 1/r. For sufficiently large r, the coupling can
be written using the asymptotic solution to (2.63) for t = − log(M/M0) ≫ 1/(e2v), where
M0 is the scale at which the initial conditions for the couplings are specified; physically, M0
represents the cut-off of the effective description (2.54). The explicit result depends on the
ratio λ/e2 ≡ λ̄. For λ̄ < 2, we find

e2v(M0e
−t) t→∞= t−1/2

√
λ̄

+ b2
√
λ̄

2(λ̄− 1)
t1/2−2/λ̄ + . . . ,

e2q̃(M0e
−t) t→∞= b t−1/λ̄ + . . . ,

(2.65)

while for λ̄ > 2 the asymptotic solution reads

e2v(M0e
−t) t→∞= t−1/2

√
2

+ b
λ̄− 2
2
√
2
t1/2−λ̄/2 + . . . ,

e2q̃(M0e
−t) t→∞=

√
λ̄− 2
2 t−1/2 + b

√
λ̄− 2
2 t1/2−λ̄/2 . . . .

(2.66)

The parameter b in (2.65) and (2.66) depends upon the initial condition for the coupling
constants.16 Unsurprisingly, using (2.65) and (2.66) in the one-point functions (2.64) we
recover the form for the tail of the screening cloud (2.25) previously derived in section 2.2.

2.5 Constraints from 0-Form symmetry and multi-flavor scalar QED4

In this section we briefly discuss the generalization of our results to multi-flavor QED4. We
consider the action

S = 1
e2

∫
d4x

[
|DµΦa|2 −

λ

2e2 (|Φa|
2)2 − 1

4F
2
µν

]
− q

∫
dtA0 , (2.67)

where a = 1, 2, . . . , N . The theory is invariant under the action of the internal symmetry
group PSU(N) = SU(N)/ZN which rotates among the scalars.17 Consider inserting a
Wilson line of charge q. This represents the wordline of a massive external particle of
charge q. If we represent the external particle by a heavy massive field Ψ with no PSU(N)
quantum numbers, then the total global symmetry of the system is now (U(1)×SU(N))/ZN
where the U(1) factor is particle number, normalized such that Ψ carries charge 1, and ZN
is generated by a rotation of Ψ by angle q/N accompanied by a transformation in SU(N)
given by the matrix diag(exp(2πi/N), . . . , exp(2πi/N)). The identification by ZN means
that in a sector with one Ψ particle the SU(N) representation must have q mod N boxes in

16An additional free parameter shows up in the asymptotic solutions (2.65) and (2.66) in the subleading
orders; we did not report additional corrections to (2.65) and (2.66) since these depend upon the higher
order terms neglected in the beta functions (2.63).

17The symmetry group is PSU(N) and not SU(N) because all gauge-invariant operators transform in
representations whose Young diagram consists of p = 0 mod N boxes.
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the Young diagram. This means that the state in the presence of a Wilson line of charge q
must transform under a representation with q mod N boxes, i.e. the Wilson line can only
end on operators transforming in a projective representation of PSU(N). (To make this
precise, we can insert the Wilson loop as a localized charge on the sphere.) This does not
mean that the infrared cannot be completely screened for q ̸= 0 mod N . It is possible
that the infrared theory has a decoupled representation on the line and all the bulk Green
functions coincide with those without a defect. In this situation the infrared g function
is the dimension of the representation. The line operator is simply the trivial line defect
stacked with a quantum mechanical system with vacuum degeneracy. Similar comments
apply whenever we are dealing with symmetric defects in a system whose global symmetry
G can be nontrivially centrally extended (i.e. whenever H2(G,U(1)) is nontrivial). In some
situations this can lead to interesting constraints related to the g theorem, since the infrared
g function is given by the dimension of the representation if the line is otherwise screened.

Let us now analyze in detail the Wilson line in the theory (2.67).
For 0 < |q| ≤ 2π

e2 each of the ℓ = 0 modes of the scalars Φa admit either standard or
alternate boundary conditions on the defect. This leads overall to 2N fixed points, many
of which partially break the internal symmetry group. To analyze the defect RG flows in
this setup, consider the fixed points where all fields are in alternate quantization. As in
the discussion around (2.15), this is achieved by supplementing the action (2.67) with the
following defect term

S
(1)
bdry = −1− 2ν

2

∫
r=r0
dt
√
ĝ|Φa|2 . (2.68)

We now deform this theory with a relevant double-trace deformation as in section 2.1. The
most general bilinear is parametrized by a Hermitian matrix fab0 = (f ba0 )∗:

S
(2)
bdry = −

∫
r=r0
dt
√
ĝr2ν0

∑
a,b

Φ̄afab0 Φb . (2.69)

(2.69) imposes the following mixed boundary conditions among the modes

βa = Cabαb, C = f0 ·
[
2ν1− f0r

2ν
0

]−1
. (2.70)

Proceeding as in the single flavor case, we obtain the beta function of the dimensionless
coupling fab = r2ν0 f

ab
0 by applying the Callan-Symanzik equation to the expression (2.70).

The result is formally identical to (2.23):

βabf = µ
∂fab

∂µ
= −2νfab + (f2)ab , (2.71)

where (f2)ab =∑
c f

acf cb.
To illustrate the result consider N = 2. We call σ4 = 1 and denote the Pauli matrices

with σi, i = 1, 2, 3. It is then convenient to decompose the coupling as (in matrix notation):

f =
4∑

a=1
αaσ

a , =⇒ αa =
1
2Tr [σaf ] . (2.72)
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The result (2.71) can be written in terms of the beta functions of the components βa =
1
2Tr [σaβf ]:

βi = −2ναi + 2α4αi , β4 = −2να4 +
4∑

a=1
αaαa . (2.73)

(2.71) admits the following fixed points:

1. α4 = αi = 0: this an unstable fixed point corresponding to alternate boundary
conditions for all the fields:

2. α4 = 2ν and αi = 0: this is a stable fixed point corresponding to standard boundary
conditions for all the fields.

3. α4 = ν and α2
i = ν: this is a manifold of unstable fixed points corresponding to

standard boundary conditions in one field direction, and alternate in the orthogonal
one. In this fixed point the internal symmetry group SU(2) is broken to U(1).

In the first two cases the line preserves PSU(N), while in the last case it is explicitly broken
and therefore there are protected tilt operators.

We end this section with some comments on the case with e2|q| > 2π where the Wilson
lines are supercritical and expected to be screened. At a classical level, the analysis proceeds
along the lines of section 2.3; in particular the classical scalar profile spontaneously breaks
the internal symmetry. However, quantum-mechanically we have to integrate over the zero
modes of the screening saddle-point.18 Therefore only flavor singlets acquire an expectation
value in the screening cloud, e.g.

⟨Φ∗
aΦb(r)⟩ ∝ δab . (2.74)

Considering the equivalent theory on AdS2 × S2, the long distance limit of the screened
line is well approximated by a defect setting Dirichlet boundary conditions for the (AdS2
rescaled) radial mode, as in section 2.4, with Neumann boundary conditions imposed on
the Goldstone modes.

This shows that sufficiently far from the line, i.e. much farther than the screening cloud,
the bulk expectation values and Green functions are those of the theory without the defect,
i.e. there is screening in this sense. However, as we argued above, the symmetries of the
system force the line defect to carry a representation with q mod N boxes under SU(N). In
the language of defect QFT, this implies that supercritical Wilson lines with charge q ̸= 0
mod N do not furnish simple line defects, and they are completely screened in the bulk. In
particular, supercritical Wilson lines with q ̸= 0 mod N admit a nontrivial g-function in
the deep infrared. We will see another example in 5.2.2.

18In more detail, it was recently argued, under general assumptions, that a line defect that spontaneously
breaks a continuous internal symmetry can only flow to a decoupled one-dimensional sector on the line,
tensored with a DCFT which does not break the symmetry [55]. Therefore at large distances only singlet
operators are allowed to acquire a VEV.
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2.6 Constraints from 1-form symmetry and QED4 with charge qϕ particles

In the previous section we discussed the dynamics of line defects when there are interesting
constraints from 0-form symmetry, i.e. when the infrared symmetry can be extended by the
external (heavy) particles. Here we discuss the constraints imposed by 1-form symmetry.
To motivate the discussion consider a charge q Wilson line in a theory of a charge qϕ > 1
scalar field:

S = 1
e2

∫
d4x

[
|DµΦ|2 −

λ

2e2 (|Φ|
2)2 − 1

4F
2
µν

]
− q

∫
dtA0 , (2.75)

with D = ∂ − iqϕA.
One might expect that in such a theory Wilson lines with charge q mod qϕ ̸= 0 cannot

be fully screened by the scalar particles. Let us make this precise. Wilson lines with charge
q mod qϕ ̸= 0 are charged under the electric Zqϕ one-form symmetry of the theory. We
are therefore led to the following question: what can be inferred about line defects charged
under a one-form symmetry? This question is very general and arises in several different
contexts; we will encounter it again in section 6 in the analysis of ’t Hooft lines. In the
following we thus discuss this problem in full generality. At the end of this subsection we
will discuss the implications of our findings for charge qϕ scalar QED.

It is useful to introduce some terminology that we will use below:

• A line defect is a nontrivial DCFT if and only if the displacement operator is nonzero:
D⊥ ̸= 0.

• A line defect is said to be topological if the displacement operator vanishes D⊥ = 0, i.e.
it is trivial as a DCFT, but the line defect can braid nontrivially with co-dimension 2
surfaces.

• A line defect L is said to be completely trivial if none of the two definitions above apply,
i.e. if it is completely transparent (that is trivial as a DCFT and also transparent to
co-dimension 2 surfaces).

In this language, the lines which are stacked with a 0+1 dimensional TQFT that we have
encountered in the previous subsection are completely trivial (but not simple).

We will now argue that with some additional conditions the existence of a one-form
symmetry implies that the charged Wilson line must necessarily define a nontrivial DCFT.

A line L is charged under a one-form symmetry if and only if it braids nontrivially
with a topological co-dimension 2 operator. Figure 8 represents a line defect that is charged
under a one-form symmetry in 2+1 dimensions. In the figure L is a line defect, A is a
one-form symmetry charge and ω ̸= 1 is a root of unity. Note that this immediately implies
that the line L cannot be completely trivial. The interesting question, that we address
below, is under which conditions the one-form symmetry forces the displacement operator
to be nontrivial.

Note that if there is an intertwining operator between the lines L1 and L2, such as
in figure 9, then the two lines carry the same charge under the one-form symmetry. In
particular, if a line can end (meaning that either of L1 or L2 is trivial), then the line is
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Figure 8. A line defect charged under a one-form symmetry in 2+1 dimensions.

Figure 9. An intertwining operator O12 between the lines L1 and L2.

not charged under the one-form symmetry. Importantly, this does not mean that the line
furnishes a trivial DCFT in general. The example of line defects in 2+1 dimensional TQFT
(which are trivial, topological, but not transparent) that cannot end demonstrates that just
because a line cannot end, it is not necessary a nontrivial DCFT.

Let us assume that the 1-form symmetry charge A can be cut open. This means
that the one-form symmetry charge can be terminated on codimension 3 (twist) operators,
as illustrated in figure 10 in 2+1 dimensions. The end points of A are not topological
in general.

In this case, it is evident that L cannot be topological. This is because if we move L
through A we get a phase ω, but if we move L to the same final location without crossing A
then we do not get a phase. Therefore we have shown that if the one-form symmetry charge
can be cut open, the Wilson lines charged under it must have a nontrivial displacement
operator D⊥ ̸= 0.

In summary, if the one-form symmetry charge A can be terminated on codimension
3 operators, then charged lines cannot furnish a trivial DCFT. The central question is
therefore when can the one-form symmetry charges be cut open. Here we will make two
comments about it.
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Figure 10. A one-form symmetry generator cut open in 2+1 dimensions.

In d = 3 both the one-form symmetry surface and the Wilson line are 1 dimensional
defects. If the one-form symmetry has an anomaly then the one-form symmetry lines
certainly cannot be cut open because they are charged under themselves. One can find
many conformal gauge theories with vanishing one-form symmetry anomaly. For instance,
this is the case in ABJM theory.

In 4d gauge theories, the electric 1-form symmetry surfaces can in many cases terminate
on improperly quantized ’t Hooft lines. Hence Wilson lines charged under the 1-form
symmetry cannot be topological, and must furnish a nontrivial DCFT in such theories. This
certainly applies in pure Yang-Mills theory with gauge group SU(N), QED with charge qϕ
particles, and in N = 4 SYM theory with gauge group SU(N).

Let us now return to (2.75) where lines with charge q mod qϕ ̸= 0 are charged under
the one-form symmetry and should flow to nontrivial DCFTs at large distances. Note that
this argument does not specify which properties this DCFT should have; in particular it
does not imply that the electric field should be non-zero at large distances. All the argument
says is that there should be some remaining response to displacing the line defect.

It is instructive to discuss this prediction within the formalism of section 2.4, where we
described the effective defect field theory describing the long distance limit of a screened
Wilson line.19 In that setup we can model a Wilson of charge q mod qϕ = δq ̸= 0 as a
small perturbation of a neutral (under the one-form symmetry) line of charge q − δq (for
δq ∼ qϕ ∼ O(1) ≪ q). To this aim we simply add to the EFT defect action (2.54) the
following perturbation

δSD = −δq
∫
r=0

dtA0 = −δq
∫
r=0

dt(A0 − π̇/qϕ)−
δq

qϕ

∫
r=0

dt π̇ . (2.76)

The rest of the analysis proceeds as in the case qϕ = 1. In particular in perturbation
theory we can neglect the total derivative in (2.76) and proceed similarly to what we did
below (2.51) and (2.54), where we showed that the operator A0− π̇/qϕ is irrelevant (both for
λ = 0 and λ > 0). Note however that the Goldstone field is 2π-periodic and thus for δq ̸= 0
the last term in (2.76), while it has no effect in perturbation theory, implies a nontrivial
braiding between the defect and the one-form symmetry surface operator, as expected.

19Note that in this model all lines with charge q > 2π/(qϕe2) are unstable.
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We may contrast these findings with the argument above, namely that Wilson lines
of charge δq ̸= 0 cannot furnish trivial DCFTs. For zero quartic coupling, λ = 0, the
scalar admits a nontrivial conformal one-point function (2.46) and the line defines thus
a nontrivial DCFT. It is perhaps still surprising that we do not measure any Coulomb
field at large distances. Physically, this is because in a massless theory the Φ-particles may
have arbitrarily delocalized wave-function; it is therefore possible to store fractional units
of charge at r → ∞.20

To substantiate this interpretation, in appendix A.4 we study the screening cloud for a
scalar of small mass squared m2 > 0, such that m−1 ≫ Rcloud, where Rcloud is the scale over
which the massless soliton we have found is localized. In that case, due to the mass term,
the scalar profile decays exponentially at distances of order of the Compton wavelength
r ∼ m−1. We find that Wilson lines charged under the electric one-form symmetry retain an
O(1) amount of charge. Namely, we show that the flux of the electric field r2Ftr decreases
until it reaches a minimum at distances r ∼ 1/m. After that the flux increases again and
eventually settles into a constant O(1) value. Therefore the Wilson line is nontrivial and,
even at distances such that the scalar profile has decayed completely, r ≫ 1/m, there is an
O(1) remnant Coulomb field.

For a small negative mass m2 < 0 instead the bulk theory flows to a Higgs phase,
described by a Zqϕ gauge theory. In Zqϕ gauge theory the one-form symmetry surface
operator cannot be cut-open because of the emergent two-form symmetry, and thus there is
no obstruction for a charged line to be topological in the IR; this is obviously the fate of
Wilson lines with charge δq ̸= 0.21

The situation is more puzzling for the massless theory with a nonzero quartic coupling
λ > 0. Indeed, the beta functions (2.63) imply that the defect approaches logarithmically a
trivial DCFT in the infrared, irrespectively of the charge of the scalar field. This is tension
with the conclusion that Wilson lines charged under the electric one-form symmetry should
furnish nontrivial DCFTs. The resolution of this apparent paradox might require analyzing
the fate of Wilson lines beyond the double-scaling limit (2.55) in which we worked so far.
We leave the investigation of this fascinating issue for future work.

We conclude this section by noticing that in scalar QED there is a U(1) magnetic
one-form symmetry, whose topological charge can be terminated on improperly quantized
Wilson lines. This implies that all ’t Hooft lines, which are charged under the magnetic

20This is similar to the fate of Wilson lines in the Schwinger model (QED2) with fermions of charge
qψ > 1. As in our setup, there the electric flux of Wilson lines with charge q ̸= 0 mod qψ is not fully
screened by massive fermions, while it is in the massless limit [56]. A similar behavior appears also in QCD2

with massless adjoint fermions, where fundamental Wilson lines are screened. In all cases, the IR limit of
charged line defects remains nontrivial and it is given by a topological line. Indeed, with massless fermions,
the infrared theory has multiple vacua and the Wilson line flows to the defect interpolating between these
degenerate vacua. This also means that far away from the Wilson line there is no electric field but there is a
scalar VEV due to an order parameter distinguishing these vacua. Note that the IR limit being topological
does not contradict the general theorem, since the one-form symmetry charge is a local operator in a 2d
QFT and thus cannot be cut open. It would be interesting to study 1 + 1d theories with charged massless
scalars, to see if these can also screen fractional charges.

21This may be seen e.g. from the comments below (2.76) and the fact that the scalar field one-point
function (2.46) is modified so that it decays exponentially to a constant value for r ≫ |m|−1.
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one form symmetry, furnish nontrivial DCFTs. Physically, this is because there are no
monopoles to screen them. We will analyze ’t Hooft lines in greater detail in section 6.

3 Fermionic QED4

In this section we consider fermionic QED in d = 4 dimensions in the presence of a Wilson
line of charge q > 0, extending in the time direction. The action is given by:

S = Sψ,A − q

∫
dtA0 ,

Sψ,A = 1
e2

∫
d4x

[
−1
4F

2
µν + iΨ̄D /DΨD

]
,

(3.1)

where ΨD is a massless Dirac spinor in four dimensions that carries a charge 1 under the
U(1) gauge group, Fµν is the electromagnetic field tensor, /D ≡ ΓµDµ where Dµ = ∂µ − iAµ
denotes the gauge covariant derivative, and Γµ are the Dirac Gamma matrices in d = 4,
satisfying {Γµ,Γν} = 2ηµν .

As in the previous section, we tune the fermion mass to zero and work in the semiclassical
limit specified by the following double-scaling limit:

e→ 0, q → ∞,

e2q = fixed.
(3.2)

In this limit the generated mass scale associated with QED becomes infinite and thus we
can ignore any RG flow in the bulk. In this limit we expand the fields around the classical
saddle point A0 = e2q

4πr ≡ g
r , ψD = 0. In the rest of this section we analyze the fluctuations

of the Dirac field in the Coulomb background profile.

3.1 Dirac fermion on AdS2 × Sd−2

When studying scalar QED in section 2.1, it was convenient to map the theory to AdS2×S2

and perform a Kaluza-Klein (KK) decomposition over the sphere. We shall adopt a similar
strategy for the model (3.1). In this section we thus describe the general KK decomposition
for a Dirac field. For future purposes we consider aribtrary spacetime dimensions d,
specializing to d = 4 later.

We consider a d-dimensional Dirac fermion, which consists of 2⌊d/2⌋ complex components,
coupled to an external gauge field. The action is:

S =
∫
ddx iΨ̄D

(
/∂ − i /A

)
ΨD . (3.3)

Just like in (2.7), we can map the theory from Rd to AdS2 × Sd−2 via a Weyl rescaling

ds2 = r2
[
dt2 − dr2

r2
− dΩ2

d−2

]
= r2ds̃2AdS2×Sd−2 . (3.4)

In a factorized geometry of the form M2 × Sd−2, such as that in (3.4), there exists a
convenient decomposition of the Dirac field and the associated Clifford algebra [57]. The
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fermionic field is written in terms of the following expansion:

ΨD = 1
r
d−1

2

∑
ℓ,s

∑
δ=+,−

ψ
(δ)
ℓs (t, r)⊗ χ

(δ)
ℓs (n̂) , (3.5)

where ψ(δ)
ℓs (t, r) are AdS2 Dirac spinors with two complex components, while the χ(δ)

ℓs (n̂) are
the spinor harmonics on Sd−2 with 2⌊d/2⌋−1 components. The summation over ℓ runs over
the non-negative integers, ℓ = 0, 1, 2, . . .; for every ℓ the χℓs form a representation of spin
j = |ℓ|+ 1/2 of the Spin(d − 1) group, with the index s running over the components.22

The spinor harmonics χ(δ)
ℓ s (n̂) satisfy the following equation [57, 58]:

/∇Sd−2χ
(±)
ℓs (n̂) = ±i

(
ℓ+ d− 2

2

)
χ
(±)
ℓs (n̂) , (3.6)

where /∇Sd−2 is the Dirac operator on Sd−2, as well as the orthogonality relation:∫
dΩd−2 χ

† (δ)
ℓs (n̂)χ (δ′)

ℓ′s′ (n̂) = δℓℓ′δss′δ
δδ′ . (3.7)

We can similarly decompose the d-dimensional gamma matrices Γ. We denote by γ0 and γ1
the two-dimensional gamma matrices in Lorentzian signature, satisfying {γa, γb} = 2ηab =
2 diag(1,−1) (a, b = 0, 1). We additionally introduce a 2⌊(d−2)/2⌋ × 2⌊(d−2)/2⌋ dimensional
representation of the Euclidean Clifford algebra γ̂iE , i = 1, 2, . . . , d − 2, which satisfies
{γ̂iE , γ̂

j
E} = 2δij . Then we have the following decomposition:

Γ0 = γ0 ⊗ 1̂,

Γ1 = γ1 ⊗ 1̂,

Γ2 = iγ3 ⊗ γ̂1E ,

Γ3 = iγ3 ⊗ γ̂2E ,

...
Γd−1 = iγ3 ⊗ γ̂d−2

E ,

(3.8)

where γ3 is the 2× 2 AdS2 chirality matrix defined by

γ3 = γ0γ1, (3.9)

and 1̂ is the identity matrix of dimension 2⌊(d−2)/2⌋ × 2⌊(d−2)/2⌋.23

Using (3.5) and (3.8) we can write the action (3.3) as a sum over the AdS2 spinors:

S =
∑
ℓ,s

∑
δ=+,−

∫
AdS2

d2x
√
g ψ̄

(δ)
ℓs

[
i
(
/∇AdS2 − i /A

)
− δiγ3mℓ

]
ψ
(δ)
ℓs , (3.10)

where ψ̄(δ)
ℓs = (ψ(δ)

ℓs )†γ0 and the masses mℓ are given by

mℓ = ℓ+ d− 2
2 . (3.11)

22For general ℓ and d the multiplicity of s is given by 2⌊ d−2
2 ⌋(d−3+ℓ)!
ℓ!(d−3)! [58].

23Note that in d = 3 under the decomposition on AdS2 × S1, γ̂1
E = 1̂ = 1 are just numbers.
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In (3.10), /∇AdS2 = γaeµa∇µ is the AdS2 Dirac operator, with eµa the vielbeins (which we take
to be in the diagonal convention), and ∇µ the covariant derivative; similarly /A = γaeµaAµ.
We may bring the action (3.10) to a more symmetric form by performing the following axial
transformation:24

ψ
(±)
ℓs → e∓i

π
4 γ

3
ψ
(±)
ℓs ,

ψ̄
(±)
ℓs → (ψ(±)

ℓs )†e±i
π
4 γ

3
γ0.

(3.12)

In this basis, the action (3.10) takes a simple form:

S =
∑
ℓ,s

∑
δ=+,−

∫
AdS2

d2x
√
g ψ̄

(δ)
ℓs

[
i
(
/∇AdS2 − i /A

)
−mℓ

]
ψ
(δ)
ℓs . (3.13)

The action (3.10), in addition to the internal Spin(d− 1) symmetry and the U(1) gauge
transformations, is clearly invariant under SO(2) rotations acting on {ψ(+)

ℓs , ψ
(−)
ℓs }, i.e.

ψ
(±)
ℓs → cos(θ)ψ(±)

ℓs ∓ sin(θ)ψ(∓)
ℓs . (3.14)

In even dimensions, this global symmetry is the AdS2 avatar of the axial symmetry of the
massless Dirac action. To see this in d = 4, we recall the standard definition of Γ5:

Γ5 = iΓ0Γ1Γ2Γ3. (3.15)

The axial transformation of the Dirac spinor in flat space reads:

ΨD → eiΓ
5θΨD, Ψ̄D → Ψ̄De

iΓ5θ, (3.16)

which is a symmetry of the theory (3.1) (at a classical level). Using the decomposi-
tions (3.5), (3.8), and recalling the field redefinitions (3.12), (3.16) is easily seen to be
equivalent to (3.14).

The action (3.1) for the Dirac field in flat d = 4 space is also invariant under the
following discrete parity transformation

ΨD(t, r, θ, ϕ) → Γ5Γ2ΨD(t, r, π − θ, ϕ+ π),
Ψ̄D(t, r, θ, ϕ) → Ψ̄D(t, r, π − θ, ϕ+ π)Γ5Γ2,

(3.17)

where θ and ϕ are the azimuthal angles in spherical coordinate system. The above translates
(up to an overall real factor) into the following transformation for the reduced fields on AdS2:

ψ
(±)
ℓs → ±ψ(±)

ℓs , ψ̄
(±)
ℓs → ±ψ̄(±)

ℓs , (3.18)

which clearly leaves the action (3.10) invariant. Note that the transformations (3.14)
and (3.18) form an O(2) group. The transformation rule (3.14) of the fermions under axial
symmetry as well as the discrete symmetry (3.18) will be useful to classify defect operators
made of fermion bilinears in section 3.2.2.

In conclusion, the action for a d-dimensional massless Dirac field in the presence of an
Abelian gauge field can be decomposed into a sum over KK modes with angular momentum

24Note that this transformation is not anomalous since we rotate the fields ψ(+)
ℓs and ψ(−)

ℓs by opposite angles.
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j = |ℓ| + 1/2 = 1/2, 3/2, . . ., each corresponding to a Dirac field in AdS2. The result is
compactly given in (3.13). For what follows it is important to note that the ℓ = 0 modes in
the decomposition (3.5) have the lowest mass, see (3.11). Their degeneracy is 2× 2⌊ d−2

2 ⌋,
where the first factor of 2 arises from the index δ = +,−, while the second factor is related
to the spin degeneracy associated with s.

3.2 Conformal Wilson lines: old and new fixed points

3.2.1 Dirac fermion in AdS2 and boundary RG flows

Motivated by the decomposition that led to (3.13), in this section we study a single Dirac
fermion in AdS2 in the presence of a Coulomb field A0 = g/r. The action is:25

S =
∫

AdS2
d2x

√
g ψ̄

[
i

(↔
/∇AdS2 − i /A

)
−m

]
ψ . (3.19)

By restoring the proper indices ψ → ψ
(δ)
ℓs and setting the mass m → mℓ as in (3.11), we

recover (3.13). In the following we consider arbitrary m > 0 and g > 0. We choose the
following representation for the gamma matrices

γ0 = σ1 =
(
0 1
1 0

)
, γ1 = iσ3 =

(
i 0
0 −i

)
. (3.20)

Following the analysis in section 2.1, we can extract the scaling dimension of defect
fermionic operators by studying the equations of motion of the Dirac field for r → 0.
Neglecting the time dependence, the equations of motion associated with the action (3.19)
for the Dirac fermion on AdS2 coupled to a Coulomb field A0 = g/r are given by:[

i

(
rγ1∂r −

1
2γ

1 − igγ0
)
−m

]
ψ = 0 . (3.21)

We decompose the field explicitly in its components as

ψ ≡
(
χ

ξ

)
, (3.22)

where χ and ξ are single-component complex Grassmannian fields, in terms of which (3.21)
reads: (

r∂r −
1
2 +m

)
χ− gξ = 0 ,(

r∂r −
1
2 −m

)
ξ + gχ = 0 .

(3.23)

To leading order near the line defect, the dependence of the modes in the radial coordinate
r is of the form ∼ r∆, for both χ and ξ. Substituting such a dependence into the equations
above yields a quadratic equation for the scaling dimension ∆ of the (non-gauge-invariant)
boundary operators associated with ψ. This results in the following:

25Here we used ψ̄
↔
/∇ψ = 1

2 ψ̄γ
a∇aψ − 1

2

(
∇aψ̄

)
γaψ, which ensures that the action is exactly Hermitian

(and not just up to boundary terms).
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• For m2 > g2: there are two real solutions to the quadratic equation for the scaling
dimensions, given by ∆± = 1

2 ±
√
m2 − g2. They correspond to the two possible

conformal boundary conditions for the fermionic modes, as will be detailed below.

• For m2 < g2 there are no real solutions for the scaling dimensions ∆.

Thus when m2 = g2, the parameter g (which is related to the charge q > 0 of the
Wilson line) is at a critical value gc. For g < gc there are two unitary conformal boundary
conditions, while for g > gc there are no real solutions for the scaling dimension of the
fermionic mode. We will see that this implies an instability of the vacuum for g > gc. Both
boundary conditions are normalizable in the window 0 <

√
m2 − g2 < 1/2, where the upper

limit arises from the unitarity bound ∆ > 0. This behavior is analogous to the one which
was observed for scalar QED in the previous section. In d = 4, the mass of the lowest ℓ = 0
mode is m = 1 and criticality is achieved for g = gc = 1. Using g = e2q

4π we obtain the
critical value qc = 4π/e2, in agreement with classic results in the literature [21]. Note that
this value of qc differs by a factor 1/2 from the one obtained for a scalar. In d = 3, m = 1

2 ,
and criticality implies gc = 1

2 , in agreement with the previously known results (see e.g. [59]
and references therein).

Using the real world value for the electromagnetic coupling, the previous analysis gives
a critical charge for point-like nuclei qc ≈ 137. In practice to estimate the real value of the
critical charge one needs to account for both the size of the nucleus r0 and the mass of the
electron me, and the critical charge is much larger, qc ≈ 173 [21, 60]. The huge discrepancy
between the real world instability and the massless result might be surprising given the
smallness of the dimensionless product r0me ≈ 10−3. As we will explain in section 3.4, this
discrepancy is naturally expained as a consequence of dimensional transmutation, and is
similar to the explanation of the proton mass in QCD.

In the rest of this section we analyze the subcritical regime m2 > g2, postponing a
discussion of the supercritical instability to section 3.4. In particular we will show that,
analogously to what we found in scalar QED, the two conformal boundary conditions are
related by RG flow (when both are allowed).

It is convenient to define the following dimensionless parameter:

ν ≡
√
m2 − g2. (3.24)

In the subcritical regime, the parameter ν is real and positive, and when it is also within the
range ν < 1

2 , both boundary conditions discussed above result in normalizable modes for the
fermion.26 The leading order physical solution near the boundary at r → 0 explicitly reads:

χ = αr
1
2−ν + g

m+ ν
β r

1
2+ν ,

ξ = βr
1
2+ν + g

m+ ν
α r

1
2−ν ,

(3.25)

where α and β are two independent Grassmann modes that depend only on the line
coordinate t and where we have omitted subleading terms whose coefficients are fixed

26Of course, for g = 0 this regime corresponds to the usual double quantization window in AdS, see
e.g. [61].
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by α, β; see (2.8) for such terms in the scalar case. The mode expansion (3.25) formally
describes also the critical case m2 = g2 by setting

α =
(
a

4 − bg

2ν

)
rν0 , β =

(
a

4 + bg

2ν

)
r−ν0 , (3.26)

where a and b are complex Grassmann fields, and r0 is an arbitrary cutoff radius. In the
critical limit ν → 0 the fermionic components read:

χ→
√
r

2 (a− b) + g
√
r b log

(
r

r0

)
,

ξ →
√
r

2 (a+ b) + g
√
r b log

(
r

r0

)
.

(3.27)

We now continue the discussion in the spirit of the analysis presented in subsection 2.1.
In particular we want to construct the appropriate boundary terms corresponding to the
two possible conformal boundary conditions in the window 0 < ν < 1/2, for which both
modes in (3.25) are normalizable.

Note first that, unlike the scalar case, the on-shell action vanishes for arbitrary boundary
conditions, since it is linear in derivatives. The variation of the action (3.19) for configura-
tions which satisfy the bulk equations of motion is written purely in terms of the boundary
modes as follows

δS = − i

2

∫
r=r0

dt
√
ggrr

(
ψ̄γ1δψ − δψ̄γ1ψ

)
= 1

2

∫
r=r0

dt
√
ggrr

(
ξ†δχ− χ†δξ + δχ†ξ − δξ†χ

)
= ν

m+ ν

∫
r=r0

dt
(
β̄δα− ᾱδβ + δᾱβ − δβ̄α

)
,

(3.28)

where we use ᾱ, β̄ to denote α†, β†, respectively, and r0 is a small cutoff radius. As in
subsection 2.1, we do not impose Dirichlet boundary conditions, but leave boundary modes
free to fluctuate. Thus we are faced again with the question of adding boundary terms such
that the variation of the action vanishes for either α = 0 or β = 0, while leaving the other
mode free to fluctuate.

At this stage, it is technically convenient to notice that we can use an arbitrary linear
combination of the following four bilinears: ψ̄ψ, ψ̄γ0ψ, iψ̄γ1ψ and iψ̄γ3ψ. For infinitesimal
r0, such that we can neglect subleading terms in (3.25), this is equivalent to considering
the most general linear combination of bilinears in the boundary modes: β̄βr2ν0 , β̄α, ᾱβ
and ᾱαr−2ν

0 . In the following it will be simpler to write operators directly in terms of the
boundary modes.

One possible choice of a boundary term S
(1)
bdy would be:

S
(1)
bdy = ν

m+ ν

∫
r=r0

dt
(
β̄α+ ᾱβ + 2β̄βr2ν0

)
. (3.29)

This term is chosen so that it admits a smooth limit for ν → 0, for which it reduces to
S
(1)
bdy = g

4m

(
āb+ b̄a

)
using (3.27). The total variation δS + δS

(1)
bdy then reads:

δS + δS
(1)
bdy = 2ν

m+ ν

∫
r=r0

dt
[
β̄δα+ δᾱβ +

(
δβ̄β + β̄δβ

)
r2ν0

]
, (3.30)
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which vanishes for β = β̄ = 0, and corresponds to alternate quantization, where the
most singular falloff in (3.25) is allowed to fluctuate; in the limit ν → 0 (3.30) reduces
to δS + δS

(1)
bdy = g

4m

(
δāb+ b̄δa

)
, and thus sets the logarithmic mode to zero, b̄ = b = 0

in (3.27).
The other fixed point is obtained considering the following boundary term:

S
(2)
bdy = − ν

m+ ν

∫
r=r0

dt
(
β̄α+ ᾱβ + 2ᾱαr−2ν

0

)
. (3.31)

It can be checked that the total variation δS + δS
(2)
bdy vanishes for ᾱ = α = 0 and thus

corresponds to standard quantization, in which the less singular term in (3.25) is allowed
to fluctuate. We also note that the boundary term (3.31) coincides with (3.29) in the
limit ν → 0.

The two fixed points are related by RG flow. As in the scalar case, this is triggered by
a double-trace relevant perturbation ᾱα of the alternate quantization boundary fixed point.
In practice, it is convenient to keep the cutoff radius r0 finite and consider the following
deformation of the theory specified by (3.29)

SDTD
bdy = −2f0

∫
r=r0

dt r2ν0

(
β̄βr2ν0 + β̄α+ ᾱβ + ᾱαr−2ν

0

)
(3.32)

where f0 is a dimensionful (bare) coupling. The deformation (3.32) is in general fully
equivalent to a standard double-trace ∼ ᾱα when considered as a perturbation of the UV
DCFT corresponding to β = β̄ = 0. In the limit r0 → 0 it reduces explicitly to −2f0ᾱα.
However the combination in (3.32) is chosen so that in the ν → 0 limit it becomes −f0āa/2,
which is the appropriate double-trace deformation for the logarithmic case (see e.g. [42]).

We now require that the total variation of the action and boundary terms vanishes:
δS + δS

(1)
bdy + δSDTD

bdy = 0. The boundary condition fixes the ratio between the modes:

β = c α , c = f0(m+ ν)
ν − (m+ ν) f0r2ν0

. (3.33)

Note that the limit r0 → 0 simply yields β = (f0(m+ ν)/ν)α, while in the limit ν → 0+
with finite r0, plugging β = c α into the modes expansion (3.25) yields b = f0 a in terms of
the modes in (3.27).

From (3.33) we can compute the beta function associated with the perturbation (3.32).
To this aim we denote by f the dimensionless coupling, f = f0r

2ν
0 . From the Callan-

Symanzik equation, one finds the following beta function

βf = −2νf + 2 (m+ ν) f2. (3.34)

The beta function (3.34) is the main result of this section. It has the same physical
significance as in the scalar case discussed in section 2.1. It admits two fixed points: an
unstable one at f = 0, corresponding to alternate boundary conditions β = 0, and a stable
one at f = ν/(m+ν), corresponding to standard boundary conditions α = 0. For f > 0 and
ν > 0 (3.34) thus describes the RG flow from alternate to standard boundary conditions.
At ν = 0 the two fixed points merge into a unique one at f = 0.
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For f < 0 the coupling has a runaway behavior toward f = −∞. Analogously to
the scalar case, this is associated with an instability of the vacuum. We will analyze this
instability in section 3.3, where we will argue that as a consequence of the Pauli exclusion
principle it leads to the screening of a single unit of charge.

In the limit g → 0 the beta function (3.34) describes the well-known double-trace
RG flow in AdS2 from alternative to standard quantization.27 In particular the beta
function (3.34) vanishes for m = g = 0, since then ν = 0. This can be understood
considering the solution (3.27) in the limit ν → 0. Indeed from (3.27) we see that the
logarithmic falloffs are proportional to g. Taking the limit g → 0 in (3.27) we thus find two
independent complex modes proportional to

√
r. This implies that for ν = g = 0 there is

a marginal operator which rotates between the possible conformal boundary conditions.
Correspondingly, the beta function (3.34) vanishes for m = ν = 0. In practice this regime
is not relevant for our discussion of Wilson lines, since m0 = d−2

2 > 0 for d > 2.
As a final comment, we note that, irrespectively of the value of ν, the alternate

fixed point does not admit relevant perturbations other than the one we considered, ᾱα.
Indeed higher trace deformations of the form (ᾱα)n vanish for n > 1 since the modes are
Grassmanian, and all other defect operators involve derivatives and are thus irrelevant. This
is to be contrasted with the scalar setup, where higher trace deformations could become
relevant at the alternate fixed point, as discussed in section 2.2.

3.2.2 Defect fixed points in four dimensions

We now apply the analysis of the previous section to the case of a Dirac fermion in d = 4. We
thus consider the action (3.13) and focus on the ℓ = 0 modes of the decomposition (3.5), as
these have the lowest mass in AdS2. As explained in section 3.1, there are four ℓ = 0 modes.
We denote them simply by ψ(δ)

s , where δ = +,− and s = +1
2 ,−

1
2 such that ψ(+)

s , and ψ
(−)
s

transform both as doublets under the rotation group SU(2). The vector {ψ(+)
s , ψ

(−)
s } rotates

under the action of the O(2) group associated with the axial transformations and parity.
To extend the analysis of subsection 3.2.1 to d = 4 we thus promote ψ → ψ

(δ)
s , χ→ χ

(δ)
s

and ξ → ξ
(δ)
s , such that as in (3.22):

ψ(δ)
s ≡

(
χ
(δ)
s

ξ
(δ)
s

)
. (3.35)

As a result, the modes α and β in (3.25) are promoted to α
(δ)
s , β(δ)s respectively. We

introduce the notation:

β(δ) =

β(δ)+ 1
2

β
(δ)
− 1

2

 , α(δ) =

α(δ)
+ 1

2

α
(δ)
− 1

2

 , β̄(δ) =
(
β
† (δ)
1
2

, β
† (δ)
− 1

2

)
, ᾱ(δ) =

(
α
† (δ)
1
2

, α
† (δ)
− 1

2

)
,

(3.36)
to conveniently denote the SU(2) doublets.

27It can be checked that (3.34) indeed holds for arbitrary spacetime dimensions d and agrees with the
previous result in [62] up to coupling redefinitions.
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In d = 4, m = m0 = 1 and g = e2q
4π , where q > 0 is the charge of the Wilson line.

According to the discussion below equation (3.23), the fields ψ(δ)
s admit both standard and

alternate boundary conditions for 0 <
√
1− e4q2/(4π)2 < 1/2. Differently than in the case

of scalar QED4 described in subsection 2.1, this condition provides both a lower and a
upper bound on q:28

√
3
2 <

e2q

4π < 1 . (3.37)

In this window, for each of the modes ψ(δ)
s there are two conformal boundary conditions,

leading to 24 = 16 defect fixed points overall. We will focus on this window in what follows,
and study the corresponding RG flows.

Consider the fixed point where β(δ)s = 0 for all modes. This is specified by a defect
term of the form (3.29) (promoting β → β

(δ)
s etc., as discussed above). We are interested

in deformations of this fixed point by fermion bilinear operators on the Wilson line. It is
natural to classify the possible bilinears according to their SU(2)×SO(2) charges, associated
with the symmetries discussed in subsection 3.1. For convenience, we use the notation
σK ≡

(
1, σi

)
, where K = 0, · · · , 3, the matrix 1 is the 2× 2 dimensional identity matrix

and σi, i = 1, 2, 3 are the Pauli matrices. Then, in the notation (3.36), the most general
gauge-invariant bilinear defect operator without derivatives can be written as a linear
combination of the following terms:

Φ(δγ)K ≡ r2ν0

(
β̄(δ)σKβ(γ)r2ν0 +β̄(δ)σKα(γ)+ᾱ(δ)σKβ(γ)+r−2ν

0 ᾱ(δ)σKα(γ)
)
. (3.38)

There are 16 independent real bilinears that are invariant under the gauge symmetry: eight
preserve the global SO(2), among which two preserve the SU(2) while the other six break it,
and eight that break the global SO(2), among which two are invariant under SU(2) while
the remaining six break it. In addition, eight of the bilinears are invariant under parity
P while the other eight break it. There is a single bilinear invariant under all symmetries.
The classification is summarized in table 1.

We may now calculate the beta-functions associated with the fermion bilinears intro-
duced in table 1. The derivation is analogous to the one discussed in subsection 2.5 for
multi-flavor scalar QED4. We perturb the DCFT by adding the most general relevant
perturbation on the line. This can be written as:

SDTD = −2
∫
dt r2ν0

(
β̄F0βr

2ν
0 + β̄F0α+ ᾱF0β + r−2ν

0 ᾱF0α
)
, (3.39)

where F0 is a 4 × 4 symmetric matrix, which collectively denote all the bare coupling
constants associated with the double-trace deformations (3.38). α, β in the above carry four-
components each in accordance with all the possible combinations of (δ) and s. Explicitly,
the coupling constants in table 1 are related to the matrix F0 via

λA = 1
4 Tr

(
ΣAF0

)
, (3.40)

28Using the physical value of the QED coupling, in natural units this condition reads 119 < q < 137.
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Bilinears SU(2) SO(2) P #
f00
(
Φ++0 +Φ−−0) ✓ ✓ ✓ 1

ik00
(
Φ+−0 − Φ−+0) ✓ ✓ × 1

f i0
(
Φ++i +Φ−−i) × ✓ ✓ 3

iki0
(
Φ+−i − Φ−+i) × ✓ × 3

h00
(
Φ+−0 +Φ−+0) ✓ × × 1

q00
(
Φ++0 − Φ−−0) ✓ × ✓ 1

hi0
(
Φ+−i +Φ−+i) × × × 3

qi0
(
Φ++i − Φ−−i) × × ✓ 3

Table 1. A classification of the gauge-invariant fermion bilinear line operators. The last column
represents the number of independent bilinears of the specified type. fK

0 , kK
0 , hK

0 and qK
0 denote

the (real) bare coupling constants.

with λA = f00 , f
i
0, k

0
0, k

i
0, h

0
0, h

i
0, q

0
0, q

i
0, and the matrices ΣA are 4× 4 matrices given by:

Σf0 =
(
σ0 0
0 σ0

)
, Σf i =

(
σi 0
0 σi

)
, Σk0 =

(
0 iσ0

−iσ0 0

)
, Σki =

(
0 iσi

−iσi 0

)
,

Σh0 =
(
0 σ0

σ0 0

)
, Σhi =

(
0 σi

σi 0

)
, Σq0 =

(
σ0 0
0 −σ0

)
, Σqi =

(
σi 0
0 −σi

)
.

(3.41)
Similarly to the analysis around (3.33), by requiring that the total variation of the

action and boundary terms vanish we find the following ratios between the modes:

β = Cα, C = (m+ ν)F0 ·
[
ν1− (m+ ν)F0r

2ν
0

]−1
, (3.42)

where 1 is the 4 × 4 identity matrix. Defining the dimensionless coupling as F = F0r
2ν
0 ,

from the Callan-Symanzik equation we find the beta-function:

βF = −2νF + 2(m+ ν)F · F . (3.43)

It follows that the beta-functions for each of the couplings in table 1 is given by:

βλA = 1
4 Tr

(
ΣAβf

)
, (3.44)

where βF is the 4× 4 matrix whose terms are given by (3.43).
As an illustration, we write explicitly the system of beta functions for the SU(2)

preserving couplings (i.e. setting f i = ki = hi = qi = 0):

β(f0) = −2νf0 + 2(m+ ν)
[
(f0)2 + (k0)2 + (h0)2 + (q0)2

]
,

β(k0) = −2νk0 + 4(m+ ν)k0f0 ,
β(h0) = −2νh0 + 4(m+ ν)h0f0 ,
β(q0) = −2νq0 + 4(m+ ν)q0f0 .

(3.45)

The fixed points are classified similarly to the analysis in subsection 2.5, according to:
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•
(
f0, k0, h0, q0

)
= (0, 0, 0, 0): an unstable fixed point which corresponds to alternate

boundary conditions to all modes. The anomalous dimensions read:
(
γf0 , γk0 , γh0 , γq0

)
=

(−2ν,−2ν,−2ν,−2ν).

•
(
f0, k0, h0, q0

)
=
(

ν
m+ν , 0, 0, 0

)
: a stable fixed point that corresponds to standard

boundary conditions for all modes. The anomalous dimensions read:
(
γf0 , γk0 , γh0 , γq0

)
=

(2ν, 2ν, 2ν, 2ν).

• f0 = ν
2(m+ν) while (k0)2 + (h0)2 + (q0)2 = ν2

4(m+ν)2 : a family of unstable fixed points
corresponding to mixed boundary conditions. For example, there are two SO(2)
preserving fixed points with q0 = h0 = 0 and

(
f0, k0

)
=
(

ν
2(m+ν) ,∓

ν
2(m+ν)

)
, with

anomalous dimensions
(
γf0 , γk0 , γh0 , γq0

)
= (∓2ν,±2ν, 0, 0).

It is worth mentioning that similarly to the analysis of the fixed points structure in the
SU(2) preserving case discussed above, one can consider perturbing the UV DCFT with
SU(2) breaking deformations as described in table 1, and straightforwardly find fixed points
that correspond to DCFTs (invariant under SL(2,R)) that break spatial rotation symmetry.

Finally, let us remark that, differently than in the case of a single AdS2 Dirac fermion
analyzed in subsection 3.2.1, as we lower the charge below criticality there are additional
operators that become relevant or marginal on the line at the alternate quantization fixed
point. In fermionic QED4, 4-fermion operators become relevant when e2q

4π <
√
15
4 . Because

of the fermionic statistics, there is only a finite number of marginal or relevant operators.
The term that contains a polynomial of the highest number of fields is an 8-fermion term
and it becomes marginal when e2q

4π <
√
55
8 .29

3.3 Partial charge screening from double-trace perturbation

Consider the model (3.19) tuned to alternate boundary conditions. In this section we study
the effect of a double-trace deformation of the form (3.32) with negative coefficient, i.e. we
study the model

S = Salternate − f

∫
r=0

dt ᾱα , f < 0 , (3.46)

where Salternate schematically denotes the action for the UV defect fixed point. In the
following we always assume ν > 0.

As remarked in section 3.2.1, the beta function (3.34) shows that a negative double-trace
coupling flows to infinitely large values. In the scalar case, we found that this kind of RG
flow is associated with the existence of an instability of the vacuum. Somewhat similarly, we
will argue that a negative double-trace deformation leads to a change in the structure of the
vacuum also in the fermionic case. However, the fate and the signature of this instability
are different than in the scalar case as a consequence of fermionic statistics. In particular a
negative double-trace deformation for a single AdS2 Dirac fermion leads to the screening of
a single unit of charge.

29Using the physical value for the fine structure constant, 4-fermion defect operators become relevant for
q < 132, and 8-fermion ones for q < 127.
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In this section we will also introduce some tools that will be relevant in section 3.4,
where we will discuss the supercritical Coulomb potential. Our discussion in this section
will largely be inspired by classic results about QED in strong electromagnetic fields [60].
Several technical details are given in appendix B.

When we analyzed scalar QED4 with a negative double-trace deformation in section 2.2,
we found that the retarded Green’s function of the defect mode displayed a tachyon pole in
the upper half plane. This is not the case for the fermion defect propagator. In appendix B.1
we compute the propagator Gα(ω) for the mode α(ω) in the theory (3.46) and verify
explicitly that no tachyon pole exists.30 Instead, the Green’s function takes qualitatively
the same form for both signs of f .

To understand the physical implication of the double-trace deformation with f < 0, it
is simplest to momentarily consider a massive theory. Consider the 4d model (3.3) with a
mass term δS = −

∫
d4xMΨ̄DΨD. Upon performing the KK decomposition on AdS2 × S2

explained in section 3.1, we find that this amounts to modifying the action (3.13) by a term

δSM =
∑
ℓ,s

∑
δ=±

iδ

∫
AdS2

d2x
√
g rMψ̄

(δ)
ℓs γ

3ψ
(δ)
ℓs , (3.47)

where the overall factor of δ = ± arises from the redefinition in (3.12). Note that the
mass term breaks explicitly both the axial symmetry (3.14) that rotates the (±) fields, as
it should, and part of the AdS2 isometries. We are thus led to consider the model (3.46)
deformed by the term

δS
(±)
M = ±i

∫
AdS2

d2x
√
g rMψ̄γ3ψ , (3.48)

where M > 0 and we will consider both a positive and a negative prefactor for generality.
Note the deformation (3.48) vanishes for r → 0 and thus does not modify the near defect
behavior of the field (3.25). Therefore the boundary conditions read

β/α = m+ ν

ν
f = sgn(f)µ2ν , (3.49)

where we defined for convenience µ ≡
(
m+ν
ν |f |

)1/(2ν) as the mass scale introduced by the
deformation, and momentarily considered both signs for f . The massless limit is recovered
for M/µ→ 0.

As well known, in the presence of a mass gap the spectrum for the Dirac equation
in an external potential organizes itself into an infinite number of discrete (bound) states
with frequency −M < ω < M (with an accumulation point for ω →M), a positive energy
continuum for ω ≥M and a negative energy continuum with ω ≤ −M . In appendix B.2,
we study the discrete part of the spectrum and find the quantization condition on the
frequencies ωn of the discrete bound states at f = 0 and f → +∞, the latter case coinciding
with the well known relativistic Hydrogen atom spectrum [60]. As we increase µ/M while
keeping f positive, all the bound states at f = 0 increase their energy and smoothly
approach the standard quantization energies ωn (corresponding to f → +∞). For negative

30The absence of a tachyon pole is in fact expected as a consequence of the Fermi statistics as opposed to
Bose statistics [41].
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f instead, as we increase µ while keeping M fixed we find that the lowest energy bound
state decreases its energy ω0. Eventually, µ reaches a critical value given by

µ(±)
c ≡ gM

[
π 22ν(m± ν)

g sin (2πν) Γ(2ν)Γ(1 + 2ν)

] 1
2ν

, (3.50)

where the (±) distinguishes the two signs in (3.48); in the following we will drop this
supscript for notational simplicity. At µ = µc we find ω0 = −M , and the bound state
becomes completely delocalized; for larger values of µ the state joins the negative energy
continuum and the bound state ceases to exist. We will prove at the end of this section
that for µ ≳ µc this state still manifests itself as a resonant pole in the second sheet of the
retarded Green’s function.31 This phenomenon is referred to as the dive of a bound state
into the negative energy continuum [60]. All other bound states smoothly approach the
standard quantization (corresponding to f → +∞) energies as f → −∞.

The dive of a bound state implies that the vacuum of the theory acquires one unit of
(negative) charge. To see this, we need to properly define the vacuum. While many choices
are ultimately equivalent in the M → 0 limit, a natural one is to define the vacuum as the
state which minimizes the following modified Hamiltonian [60]:

ĤM = Ĥ −MQ̂ , (3.51)

where Ĥ is the Dirac-Coulomb Hamiltonian and Q̂ the gauge charge (normalized so that
the field has negative unit charge). In old-fashioned language, this means that we consider
as filled holes all states with energy less than −M , while states with energy larger than
−M are particle excitations on top of the vacuum. The definition (3.51) is natural if we
imagine turning on the potential adiabatically starting from the usual vacuum. The term
MQ̂ is a chemical potential, which accounts for the fact that, by charge conservation, the
transition to the new ground state can only happen by creation of an electron-positron pair,
with a positron that escapes far away from the Wilson line.

According to the Hamiltonian (3.51), the dive of the bound state into the low energy
continuum at ω < −M for µ > µc is thus interpreted as a change in the nature of the state
from a particle energy level to a hole in the Dirac sea. Since all holes must be filled in
the ground state, this leads to the screening of one unit of charge. The same remains true
in the massless limit. We can understand this phenomenon physically by interpreting the
double-trace deformation in (3.46) as an attractive potential localized on the defect. For
sufficiently large µ, the potential traps an electron energy level close to the defect, similarly
to the creation of a bound state by a Dirac delta function potential in quantum mechanics.

31To avoid the mention of resonances one can introduce an IR cutoff rfar ≫ 1/M, 1/µ, so that the
full spectrum is discrete, and a resonance simply corresponds to a single state mixing with many nearby
(quasi-continuum) states (see e.g. the discussion in section 2.2 of [63]). The picture of a diving bound state
then simply follows by continuity of the spectrum and the fact that discrete states cannot disappear as we
change continuously the potential. Similar arguments are at the heart of two related well known classical
results: Levinson’s theorem in quantum mechanics [64, 65] and the Friedel sum rule in condensed matter
physics [66, 67].
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We finally discuss how to compute the charge cloud created by this process around the
Wilson line. Note that in the double-scaling limit (3.2) we can safely neglect the change
in the electromagnetic field induced by this process, differently than in the case of scalar
QED4 analyzed in section 2.2, where we needed to account for the backreaction of the
large-charge scalar cloud that formed.

Consider the mode decomposition of the Dirac field in terms of the two continuum
modes and the discrete states,

ψ(t,r)=
∫ ∞

M

dω

2π e
−iωtψω(r)bω+

∑
−M<ωn<M

e−iωntψn(r)bn+
∫ −M

−∞

dω

2π e
−iωtψω(r)d†ω . (3.52)

Different wave functions are orthogonal and we normalized them as∫
dr
√
ggrrψ†

ω(r)ψω′(r) = (2π)δ(ω − ω′) ,
∫
dr
√
ggrrψ†

n(r)ψk(r) = δnk . (3.53)

The canonical commutation relation {ψ†(t, r), ψ(t, r′)} = δ(r − r′)/√ggrr implies

{bω, b†ω′} = {dω, d†ω′} = (2π)δ(ω − ω′) , {bn, b†k} = δnk . (3.54)

According to the discussion around (3.51), the vacuum satisfies

bω|0⟩ = bn|0⟩ = dω|0⟩ = 0 . (3.55)

Note that all these equations are true for arbitrary values of µ/M .
We can use (3.52) to give an explicit formula for the charge polarization of the vac-

uum [60]32

⟨j0(r)⟩ = − lim
x→x′

1
2⟨[ψ̄(x

′)γ0, ψ(x)]⟩

= 1
2

∫ ∞

M

dω

2πψ
†
ω(r)ψω(r) +

∑
M>ωn>−M

ψ†
n(r)ψn(r)−

∫ −M

−∞

dω

2πψ
†
ω(r)ψω(r)

 , (3.56)

which has the obvious physical interpretation of the particle contribution minus the hole
contribution. Note the factor 1/2 upfront. It is sometimes convenient to express (3.56) in
terms of the retarded Green’s function iSR(x;x′) = θ(t− t′)⟨

{
ψ(x), ψ̄(x′)

}
⟩ as33

⟨j0(r)⟩ = −
∫ ∞

−M

dω

2π Im(Tr[γ0SR(ω; r, r)]) +
∫ −M

−∞

dω

2π Im(Tr[γ0SR(ω; r, r)]) , (3.57)

where
SR(t, r; t′, r′) =

∫
dω

2π e
−iω(t−t′)SR(ω; r, r′) . (3.58)

(3.57) simply follows from evaluating the imaginary part of the Green’s function using the
Källén-Lehman representation. Note that (3.56) and (3.57) hold also in the massless case

32We are cavalier about short distance divergences; these can be taken care of by subtracting the charge
density in a reference state, such as the usual vacuum.

33Analogous formulas can be written using the advanced and Feynman propagators.
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(in which case the contribution of bound states is absent). Obviously we recover the total
amount of screened charge via

Qscreen =
∫
dr
√
ggrr⟨j0(r)⟩ . (3.59)

We could now use (3.56) and (3.57) to compute the charge density profile. It is however
obvious on dimensional grounds that for µ≫M the charge is localized at distances r ∼ 1/µ
from the defect, and in the massless limit the IR defect simply corresponds to a Wilson
line with charge q − 1 and standard boundary conditions. We instead conclude this section
by showing how (3.57) implies a discontinuity for the screened charge as µ changes from
below to above the critical value µc for fixed M . Our analysis will also elucidate the
aforementioned relation between diving bound states and resonances.

Consider the difference between the charge density for µ = µc + δµ and µ = µc− δµ for
a positive δµ/M ≪ 1. From (3.56) and (3.57) we see that the only significant contribution
to the charge density in this limit arises from the lowest bound state ψ0(r) and the negative
energy continuum:

⟨j0(r)⟩µ=µc+δµ−⟨j0(r)⟩µ=µc−δµ

=−1
2ψ

†
0(r)ψ0(r)

+
∫ −M

−∞

dω

2π
{

Im(Tr[γ0SR(ω;r,r)]µ=µc+δµ)−Im(Tr[γ0SR(ω;r,r)]µ=µc−δµ)
}
+O(δµ/M) .

(3.60)

Standard arguments about mixing of isolated states with a continuum let us express the
difference in the second line in terms of the wave-function ψ0(r) of the diving state just
below criticality [60, 68]:

Im(Tr[γ0SR(ω; r, r)]µ=µc+δµ)− Im(Tr[γ0SR(ω; r, r)]µ=µc−δµ)

= − ψ†
0(r)ψ0(r)Γres/2

(ω − Eres)2 + Γ2
res/4

+O

(
δµ

M

)
, (3.61)

where Eres +M = O(δµ) (with Eres < −M) while Γres = O(δµ2/M). In other words, the
diving bound state became a resonance in the negative energy continuum.34 In practice (3.61)
only applies locally for r ≲ 1/M , since the analytic continuation of the wave-function ψ0
changes its behavior at infinity when ω0 becomes complex. Using (3.61) in (3.60) we conclude

⟨j0(r)⟩µ=µc+δµ − ⟨j0(r)⟩µ=µc−δµ = −ψ†
0(r)ψ0(r) +O(δµ/M) . (3.62)

(3.62) implies a discontinuity of the Green’s function at µ = µc. Integrating (3.62) we
recover the expected discontinuity for the screening charge:

Qscreen|µ=µc+δµ −Qscreen|µ=µc−δµ = −1 . (3.63)
34It may be argued that the width Γres is associated with the inverse decay time of the wrong vacuum,

where the hole is not filled [60].
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As explained in section 3.1, in d = 4 there are 4 independent ℓ = 0 modes. Thus,
negative double-trace deformations of the UV fixed point may lead to up to 4 units of
charge screening. Intriguingly, this remains true also for massive Dirac fields. It would be
interesting to analyze further possible implications of this analysis for real world nuclei
(note that the window (3.37) implies q > 119 for our world, corresponding to theoretically
predicted super-heavy elements).

3.4 Supercritical Wilson lines

In this section we address the fate of Wilson lines with supercritical charge, q > qc.
Differently from the scalar setup, we will argue that the charge of the Wilson line is
screened only down to q = ⌊qc⌋, as a consequence of the Pauli exclusion principle. We
will be particularly interested in the nearly supercritical regime, where we will show that
dimensional transmutation leads to an exponentially large matter cloud screening the
Wilson line.

While our main focus is on 4d massless QED, whenever possible we keep the notation
general. Indeed our analysis applies almost verbatim to setups where the matter fields live
in d = 3; we discuss some of these in section 5. In particular, our analysis is largely inspired
by previous works on charged impurities in two-dimensional graphene sheets [31, 69, 70].

We consider the model (3.1) in the presence of a Wilson line of charge 4π/e2 < q < 8π/e2
so that m0 < g < m1 (in the notation of (3.11)). The trivial saddle-point ΨD = 0, A0 = g/r

corresponds to the supercritical regime for the ℓ = 0 modes of the decomposition (3.5),
according to the discussion in section 3.2.1. In this case, the solution of the equations of
motion (3.23) for r → 0 is written as35

χ = g

m+ iν̃
βr

1
2+iν̃ + αr

1
2−iν̃ ,

ξ = βr
1
2+iν̃ + g

m+ iν̃
αr

1
2−iν̃

(3.64)

where we let m = m0 and we defined

ν̃ =
√
g2 −m2 . (3.65)

The nearly supercritical regime we will be interested in corresponds to ν̃ ≪ 1. (3.64) shows
that there are no unitary conformal boundary conditions for the Dirac field as r → 0.

We are thus forced to choose non conformal boundary conditions on the defect. While
our results are ultimately independent of this choice, for the sake of definiteness, we
follow [21] and imagine that the charge of the Wilson line is localized inside a small cutoff
surface at r = r0 (modelling the nucleus as a uniformly charged ball). Thus the Wilson line
in (3.1) becomes

−q
∫
dtA0 → − q

4π

∫
r=r0
dt dΩ2A0 . (3.66)

35In this section we will omit the subscript s and the supscript (δ) from the fields, since they are inessential
for our analysis (besides introducing a degeneracy).
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This implies that for ΨD = 0 the saddle-point profile for the gauge field reads

A0 =


g

r0
for r < r0

g

r
for r ≥ r0 ,

(3.67)

so that there is no electric field for r < r0. The ℓ = 0 AdS2 Dirac fields now satisfy standard
boundary conditions for r/r0 → 0,

ψ ∼
(

0
r

1
2+

m
2

)
for r → 0 , (3.68)

as well as being continuous at r = r0.
We now show that in the presence of a supercritical field (3.67), the trivial saddle-point

ΨD = 0 admits infinitely many diving states in the massless limit. In the spirit of section 3.3,
we momentarily consider a field with mass M > 0. In appendix B.3, we find that for ν̃ ≪ 1
the condition for having a bound state with energy ω = −M is36

ν̃ log(2Mgr0) = ν̃η − πn , n = 1, 2, . . . , (3.69)

where η is an O(1) number (which depends on the sign in (3.48) and which we determine
in appendix B.3). (3.69) admits infinitely many solutions given by

Mn =M0 Λn , M0 =
eη

2gr0
, Λ = e−π/ν̃ , (3.70)

where Λ is the same small number we encountered in the discussion of scalar tachyons in
subsection 2.3. Note also that just like in the scalar case there are multiple solutions and
they (3.70) are log-periodic log(Mn/Mn+1) = π/ν̃. We comment more on this below.

Imagine now lowering Mr0 for a single AdS2 Dirac fermion. When M > M1, all bound
states have energy ω > −M . For M1 > M ≥M2 there is one diving state, then as we lower
to M2 > M ≥ M3 we have two diving states, etc. . . In general, for Mn > M ≥ Mn+1, n
states have dived into the negative energy continuum. Somewhat pathologically, in the
massless limit Mr0 → 0 infinitely many states have joined the negative energy continuum.
Physically this implies that the trivial saddle-point with gauge field (3.67) is not a good
approximation to the true ground state. This is reminiscent of the discussion around (3.61):
in appendix B.4 we show that the diving states are reflected in the existence of infinitely
many resonances in the negative energy continuum,37 whose (complex) frequencies satisfy
a logarithmic periodicity property analogous to (3.70); this fact was formerly pointed
out in [31].

36A solution with M ∼ 1/r0, schematically corresponding to n = 0 in (3.69), may exist for different
boundary conditions. Such an n = 0 diving state is somewhat analogous to the one created by a negative
double-trace deformation discussed in section 3.3 and does not play any essential role for us.

37Somewhat improperly, we call resonances complex poles of the retarded Green’s function analytically
continued to the second sheet. These are in one-to-one correspondence with solutions of the Dirac-Coulomb
equation satisfying outgoing boundary conditions: ψn ∼ e−iωnteiωnr with Reωn < 0 and Imωn < 0. Hence
the ψn’s decay in time and grow exponentially for r → ∞. We remark however that the corresponding
frequencies have comparable real and imaginary part Reωn ∼ Imωn, signifying that these cannot be
understood as usual resonances, which arise due to a weak mixing between a discrete and a continuum
spectrum as in the discussion which led to (3.61).
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The result (3.69) in d = 4 was originally derived by Pomeranchuk and Smorodinsky [21],
who used it to argue that the critical charge qc for real world nuclei is in fact mach larger
than 137, the value that is obtained in the massless theory. In fact, for realistic values of
r0 and M , we get qc ≈ 173 ÷ 175 [60]. This is because M1 ≪ 1/r0 for small ν̃, as (3.70)
shows. In light of the connection with the walking behavior associated with the fixed-point
merger, as we discussed in section 2.1 for scalar QED, the discrepancy between the massless
result and the real world is understood as a consequence of dimensional transmutation.
Indeed, the mass of the first diving state M1 coincides parametrically with the scale µIR at
which the double-trace coupling blows up, cf. (2.24), given a UV scale µUV ∼ 1/r0. This is
analogous to dimensional transmutation in QCD, where the proton mass parametrically
coincides with the strong coupling scale of the one-loop beta function of the gauge coupling.

Another important remark is the following. The log-periodic structure of the solu-
tion (3.70) reflects an approximately cyclic RG, as for the scalar tachyons discussed in
section 2.3. Such an RG structure implies that the mass scale Mn at which the nth state
dives is exponentially larger than Mn+1 for ν̃ ≪ 1.38 Note that this is also true for the
first diving state, since M1 is exponentially smaller than the cutoff scale 1/r0 as we com-
mented above. A finite small mass M provides an IR cutoff to this periodic flow after
∼ ν̃

π log(M1/M) cycles.
In the massless limit, the periodic flow does not persist at arbitrary long distances

once we account for the screening cloud created by the matter field and the corresponding
backreaction of the gauge field. In particular, after q−qc units of charge have been screened,
the Coulomb field becomes subcritical. According to the analysis in the previous sections,
no further instability can occur beyond this point (up to the one discussed in section 3.3,
which may only change the final charge by an O(1) amount) and the RG flow terminates
at the standard quantization fixed point. Nonetheless, the approximate cyclic flow plays
an important role at intermediate scales; we will momentarily use this observation to
our advantage to estimate the size of the screening cloud for ν̃ ≪ 1. Note that this is
different from scalar QED, for which, as we discussed in section 2.3, all the screening solitons
corresponding to more than one RG cycle are unstable.

To this aim, let us consider the formula (3.56) expressing the charge density in terms
of the single-particle (AdS2) wave-functions:

⟨j0(r)⟩Rd =
κ0/2

Ωd−1rd−1

∫ ∞

0

dω

2π
[
ψ†
ω(r)ψω(r)− ψ†

−ω(r)ψ−ω(r)
]
, (3.71)

where the prefactor arises due to rescaling to flat space and κ0 = 2⌊ d2 ⌋(= 4 in d = 4) is
the degeneracy of the ℓ = 0 modes; note the result is spherically symmetric since we are
summing over all the spinor harmonics of the degenerate modes. In appendix B.4 we show
that the wave-functions satisfy the following property

ψω(Λn r) ≃ Λn/2 ψΛnω (r) , n ∈ Z , (3.72)

which holds as long as ωr0 ≪ 1 and Λnωr0 ≪ 1. The property (3.72) implies that in the
absence of backreaction the charge density at distances r ≫ r0 satisfies a log-periodicity

38This is completely analogous to the phenomenon of Efimov bound states [20, 49].
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property similar to (3.70):

rd−1⟨j0(r)⟩Rd ≃ (Λ−n r)d−1⟨j0(Λ−n r)⟩Rd for n ∈ Z . (3.73)

This property (3.73) was formerly noticed in [70]. It reflects the aforementioned cyclic RG
flow. In particular, there are nκ0 units of screening charge between some r ≫ r0 and Λ−n r,
for every n.39

Let us now define r1 to be the radius of the region inside which κ0 units of screening
charge are contained; while its precise value depends on the boundary condition, we
generically expect r1 ∼ r0/Λ. According to the aforementioned periodicity property, it is
not until exponentially larger distances r2 ≃ r1/Λ that an additional κ0 units of charge
get screened. In between we may thus safely assume that the Coulomb potential is well
approximated by

A0 ≃
e2(q − κ0)

4πr for r1 ≪ r ≪ r2 . (3.74)

This implies that in computing the radius r2 ≃ r1e
π/ν̃ we should use the value of ν̃

corresponding to the backreacted gauge field (3.74). This is a small correction to r2 itself
in the double-scaling limit (3.2). We can now repeat this process self-consistently for r3, r4,
etc., where rn denotes the size of the region where nκ0 units of charge have been screened.
In general, defining

ν̃(n) =
√
e4(q − nκ0)2

(4π)2 −m2 , (3.75)

this leads to the following the equation

log(rn/rn−1) =
π

ν̃(n) . (3.76)

For a sufficiently supercritical charge (but still such that ν̃ ≪ 1) we may treat n as a
continuous variable and approximate (3.76) with a differential equation

dn

d log(r) ≃ ν̃(n)
π

= 1
π

√
e4(q − nκ0)2

(4π)2 −m2 , (3.77)

where −κ0n(r) is the amount of screened charged at distance r. We obtain the ratio rn/r0
by integrating this equation:

log(rn)− log(r0) ≃
∫ n

0
dx

π√
e4(q−κ0x)2

(4π)2 −m2

= 4π2
e2κ0

[
cosh−1

(
q

qc

)
− cosh−1

((q − κ0n)
qc

)]
,

(3.78)

39To see this, consider introducing a mass M such that Mn+1 ≪ M ≪ Mn, for which thus nκ0 states
dived into the negative energy continuum. Such a deformation provides an IR cutoff to the radius of the
screening cloud at distances R ∼ 1/M with 1/Mn ≪ R ≪ 1/Mn+1. Consistency demands that there are
exactly nκ0 units of screening charge for r ≲ R. By iteration of this argument for different n, we conclude
that there must be κ0 units of screening charge localized at distances R ∼ Λ−n r0 for every n.
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where we wrote the last line using the value for the critical charge qc = 4πm/e2. In particular
we obtain an estimate for the total radius of the screening cloud by setting q − κ0n = qc:

Rcloud ≃ r0 exp
[
4π2
e2κ0

cosh−1
(
q

qc

)]
≃ r0 exp

[
8π2
e2κ0

√
q − qc
2qc

]
, (3.79)

where we expanded for q/qc − 1 ≪ 1. (3.77)–(3.79) were formerly derived in [69] via
different, less direct means. (3.79) predicts an exponentially large cloud in the limit where e
is infinitesimal and ν̃ = m

√
q2/q2c − 1 is fixed (and small). Note that the exponent in (3.79)

is larger by a factor of 2 than the naive estimate that does not account for backreaction
R

(naive)
cloud ≃ exp

[
q−qc
κ0

π
ν̃(0)

]
≃ exp

[
4π2

e2κ0

√
q−qc
2qc

]
.

The extrapolation of the first equation of (3.79) to q ≫ qc predicts a power law increase
for the radius of the cloud Rcloud ∼ r0(2q/qc)4π

2/(e2κ0). In the future it would be interesting
to compare this behavior with a more accurate analysis of the screened line, beyond the
regime ν̃ ≪ 1. The numerical methods previously developed to study Fermi surfaces in
AdS/CFT [71–73] might prove useful in this context.

We finally comment on the generalization to fermions with charge qψ > 1. In this
case Wilson lines are screened to the largest possible value qIR ≤ qc, which is compatibe
with the condition that the charge difference q − qIR has to be quantized in units of qψ. In
particular, the IR limit of a supercritical Wilson line is always a non-trivial (as well as a
non-topological) defect, in agreement with the general constraints discussed in section 2.6.

4 Non-Abelian gauge theory

4.1 Non-Abelian saddle point

In this section we discuss the generalization of our analysis to weakly coupled non-Abelian
conformal gauge theories in 4d,40 focusing on the illustrative case of an SU(2) gauge group.
Schematically, the action of the models of interest is given by:

Lbulk = − 1
4g2YM

F aµνF
µν
a + θ

32π2F
a
µνF̃

µν
a + matter , (4.1)

where a = 1, 2, 3 and F aµν = ∂µA
a
ν − ∂νA

a
µ + εabcAbµA

c
ν . Relevant examples of such theories

include N = 4 SYM and the N = 2 SCFT with Nf = 4 hypermulitplets in the fundamental.
Our former analysis of the DCFT fixed points associated with a Wilson line in QED

crucially relied on expanding the gauge field around a “Coulomb”-like fixed point. To do
the same in the non-Abelian gauge theory we introduce a convenient representation of the
line operator. Consider a Wilson line in the (2s+ 1)-dimensional representation of SU(2)

Ws = Tr
[
Pei

∫
dxµAaµT

a
]
, (4.2)

where T a form a spin-s representation of the SU(2) algebra. An equivalent representation
of the defect (4.2) can be given in terms of a bosonic SU(2) doublet z = {z1, z2} on the line,

40Former discussions of instabilities for Wilson lines in non-Abelian gauge theories can be found in [74–77].
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subject to the constraint z̄z = 2s. In this formulation, the total action (bulk and defect) of
the defect quantum field theory (DQFT) reads

S = Sbulk +
∫
dτ

[
iz̄ż + z̄

σa

2 z A
a
µẋ

µ
]
, z̄z = 2s , (4.3)

where σa are Pauli matrices and xµ(τ) is an affine parametrization of the line contour. The
action (4.3) is invariant under SU(2) gauge transformations, and thanks to the constraint it
is also invariant under the U(1) gauge transformations z → eiα(τ)z. We refer the reader
to [14, 78] for details on the equivalence between (4.2) and (4.3). In the representation (4.3),
the color matrices are given by the following bilinear operator:41

T a(τ) = z̄(τ)σ
a

2 z(τ). (4.4)

Physically, the variable z is a quantum-mechanical representation of the color degrees of
freedom of the heavy probe modeled by the Wilson line.

The representation (4.3) makes it straightforward to generalize the analysis of the
previous sections to the non-Abelian case. Rescaling z →

√
sz we recast (4.3) as

S = 1
g2YM

Ŝbulk + s

∫
dt

[
iz̄ż + z̄

σa

2 z A
a
0

]
, (4.5)

with z̄z = 2, where we pulled out explicitly the coupling in front of the bulk action
Sbulk = Ŝbulk/g

2
YM and we assumed a straight line at r = 0. It is then clear that we can

work in the double-scaling limit

g2YM → 0 , s→ ∞ with g2YMs = fixed . (4.6)

The saddle-point profile (assuming trivial values for the matter fields) takes the form

z = z0 = const. , Aa0 = g2YMs

4πr z̄0
σa

2 z0 . (4.7)

There is a S2 manifold of saddle-points: this is accounted for by the integration over the
zero modes which rotate the solution as z0 → Uz0, where U is an arbitrary element of
SU(2), modulo the U(1) gauge transformations. The integration over the zero modes has a
trivial effect on (gauge-invariant) correlation functions. If we take only the first component
of z0 to be non-zero we obtain A3

0 = g2YMs/(4πr), as in the Abelian case for charge q = s.
On the saddle-point (4.7) we may then effectively decompose the matter fields according

to their charge under the unbroken U(1) generated by the direction T a ∝ z̄0
σa

2 z0. For
instance, a field in the fundamental decomposes into components of charge −1 and charge
1, a field in the adjoint has a neutral component and charge ±2 components, etc.42 The
rest of the analysis thus proceeds as in the Abelian case. In particular we find that

• A scalar in the 2S + 1 representation of SU(2) becomes tachyonic when
∣∣∣∣g2

YMsS
2π

∣∣∣∣ > 1;

41More precisely, (4.4) involves a point splitting procedure T a = limη→0+ z̄(τ + η)σ
a

2 z(τ), see [14]. This
subtlety will not play a role in our analysis.

42We work in conventions such that U(1) charges are quantized in integer units.
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• A fermion in the 2S+1 representation of SU(2) leads to an instability for
∣∣∣∣g2

YMsS
4π

∣∣∣∣ > 1;

• The charged components of the vector bosons also become tachyonic when
∣∣∣∣g2

YMs
6π

∣∣∣∣ > 1
(see appendix C for the derivation).

Additionally, depending on the flavor group and the charge s of the line defect, several fixed
points may exist; these are connected by RG flows analogous to the ones discussed in the
Abelian case (including the one corresponding to screening).

The generalization to arbitrary gauge groups G is straightforward (still working in
the semi-classical large-representation limit as above). In some cases, like symmetric and
anti-symmetric representations of SU(N), there is a simple worldline action for the Wilson
line as in (4.3), while in other cases writing down a worldline action is more complicated
(see, for instance, [79, 80]). If the Wilson line is in a representation R, and ρ⃗R is the highest
weight vector of this representation, then without loss of generality we choose the Wilson
line to generate an electric field in the Cartan subalgebra going as A⃗0 = g2YMρ⃗R/4πr (and
we will have zero modes that will rotate this inside the group as in the discussion above).
Here we normalized the roots to square to one, to agree with the SU(2) case discussed
above. If we have in the bulk a scalar field in a representation r with weights µ⃗r, then it
obtains an effective mass on AdS2 proportional to g2YM|ρ⃗R · µ⃗r|, and we have an instability
whenever for some component of this field this becomes larger than 2π. The analysis for
fermions and gauge bosons is similar with instabilities at 4π and 6π, respectively, as above.

For example, if we consider the SU(N) N = 4 SYM theory, where all fields are in the
adjoint representation, the first instability arises from the adjoint scalars, and specifically for
the scalar with µ⃗ = α⃗1+· · ·+α⃗N−1.43 If we write the highest weight vector of the Wilson line
as ρ⃗R =∑N−1

k=1 λkµ⃗k, where λk are non-negative integers and µ⃗k are the fundamental weights
of SU(N) (satisfying µ⃗k · α⃗j = δjk), then the instability arises when g2YM

∑N−1
k=1 λk = 4π.

For any fixed non-zero value of g2YM, only a finite number of Wilson line representations
lead to stable DCFTs.

The extrapolation44 of our results to the ’t Hooft large N limit with fixed g2YMN

suggests that we must consider representations with weights of order N in order to obtain
instabilities. We will discuss the holographic interpretation of this below.

4.2 Example: N = 4 SYM

Let us discuss in more detail the concrete example of the N = 4 SYM theory with gauge
group SU(2). As well known, the theory consists of 6 scalars Φi in the 6 of the SO(6) ≃ SU(4)
R-symmetry group, 4 Dirac fermions in the 4 of SU(4), and the non-Abelian gauge field
(which is not charged under the R-symmetry). All matter fields are in the adjoint of the
gauge group SU(2).

43This is the generic case. For special weight vectors of the Wilson line, some other scalars will also
become unstable at the same time, but not before.

44Strictly speaking, the semiclassical saddle-point described in this section is only guaranteed to apply to
the large representation limit at small coupling g2

YM with fixed N [35]. We nonetheless expect the qualitative
features of our results to survive in the ’t Hooft large N limit.

– 55 –



J
H
E
P
1
2
(
2
0
2
3
)
1
8
3

The N = 4 SYM theory has famous half-supersymmetric Wilson lines which involve
a coupling to the scalar fields that breaks the SU(4) R-symmetry; these always flow to
stable DCFTs, and we will discuss them more below. Here we consider Wilson lines that
preserve the SU(4) R-symmetry. This does not allow any coupling to single scalar fields on
top of (4.2), but scalar and fermion bi-linears are allowed.

Let us consider the (non-supersymmetric) Wilson line (4.2). According to the previous
discussion, all matter fields are stable around the saddle-point (4.7) as long as g2YM|s| ≤ 2π,
above which value the scalars develop an instability. It is instructive to analyze explicitly
defect operators in this setup. For concreteness, we will focus on scalar bilinears and
consider the case where standard boundary conditions are imposed on all fields. We denote
the scalars as Φai , where a is the SU(2) index and i is an SO(6) index. In the formalism
of (4.3), we can construct SU(2) invariants by contracting the SU(2) indices with the line
color matrix T a, and the most general gauge-invariant defect operators made from two
scalars take the form:

O(1)
ij = 1

s2
ΦaiΦbjT aT b = O(1)

ji , (4.8)

O(2)
ij = ΦaiΦaj −

1
s2

ΦaiΦbjT aT b = O(2)
ji , (4.9)

O(3)
ij = 1

s
εabcΦaiΦbjT c = −O(3)

ji . (4.10)

Without loss of generality we can consider a saddle point such that T a = sδa3 , since the
zero-modes’ integration does not affect gauge-invariant correlators. Adapting to the U(1)
unbroken by the saddle-point (4.7), Φia can be written in terms of a neutral component
ϕ3i ≡ Φ3

i and a charge 1 complex field ϕ±i ≡ 1√
2
(
Φ1
i ± iΦ2

i

)
. In terms of this decomposition

the quadratic expansion of the operators in (4.8) is:

O(1)
ij = ϕ3iϕ

3
j + . . . , (4.11)

O(2)
ij =

(
ϕ+i ϕ

−
j + ϕ+j ϕ

−
i

)
+ . . . , (4.12)

O(3)
ij = i

(
ϕ+i ϕ

−
j − ϕ+j ϕ

−
i

)
+ . . . . (4.13)

From the analysis of the previous section we thus conclude that to leading order in the
double-scaling limit (4.6) the dimension of the defect operators is

∆
(
O(1)
ij

)
= 2 , ∆

(
O(2)
ij

)
= ∆

(
O(3)
ij

)
= 1 +

√
1− g4YMs

2

4π2 . (4.14)

We can also consider more general fixed points where some operators are instead relevant
and the SO(6) group is broken to a subgroup, analogously to the discussion in section 2.5.

Thus, as in the previous subsection, SO(6) preserving Wilson lines become unstable
to scalar condensation for g2YM|s| > 2π. The screening mechanism is completely analogous
to the one discussed for scalar QED with no quartic coupling; note in particular that
the screening cloud naturally aligns on a flat direction, such that the potential trivializes
V ∼ Tr{[Φi,Φj ]2} = 0. Therefore the IR DCFT admits a nontrivial one-point function
for the scalar field, with a coefficient that depends on the initial charge and the boundary
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condition. Such a coefficient therefore represents a marginal parameter in the double-scaling
limit. We expect that quantum corrections will lift this marginal direction. At a quantum
level, the R-symmetry group is preserved by the scalar cloud according to the discussion in
subsection 2.5.

The generalization of our discussion to SU(N) gauge group is straightforward, with (4.2)
deformed by Φai T aΦbjT b and all the other possible billinears; the only difference is that for
N > 2 there are more than three independent bilinear operators.

We close this section with some comments on a well studied generalization of the
standard Wilson line (4.2), which also includes a coupling to the adjoint scalar:

WBPS
s = Tr2s+1

[
P exp

(∫
C
dt(iẋµAaµ + ζ|ẋ|Φa1)T a

)]
. (4.15)

The coupling to the scalar (conventionally chosen in the “1” direction) breaks the R

symmetry group to SO(5). For ζ = 1 the line (4.15) additionally preserves half of the
supersymmetry charges, and many exact results are available about this case [7, 79, 81–96].45

The coupling ζ has a nontrivial beta function to one-loop order in perturbation theory, and
there is a nontrivial RG flow from the standard fixed point at ζ = 0 to the superconformal
one at ζ = 1 [100] (see also [35, 80, 101, 102]).

Let us consider the operator (4.15) in the double-scaling limit (4.6). The main difference
with respect to the previous case is that the saddle-point (4.7) now also includes a nontrivial
scalar profile proportional to ζ:

Φai =
ζg2YMs

4πr z̄0
σa

2 z0 . (4.16)

It is now straightforward to repeat the analysis in section 2.1 and compute the scaling
dimensions of the defect operators (4.8). Since to leading order in the double-scaling limit
the running of the scalar coupling in (4.15) is negligible, we can write the result for arbitrary
values of ζ. For g4

YMs
2

4π2
(
1− ζ2

)
< 1 the corresponding DCFT is unitary and the possible

values of the scaling dimensions are given by

∆
(
O(1)
ij

)
= 2 , ∆

(
O(2)
ij

)
= ∆

(
O(3)
ij

)
= 1±

√
1− g4YMs

2

4π2 (1− ζ2) , (4.17)

where the sign in front of the square root for each operator depends on the boundary
conditions as before. Importantly, for ζ = 1 no value of s leads to an instability: this is a
consequence of the supersymmetry preserved by the line, which as well known ensures that
the ground state has zero energy. Additionally, for ζ = 1 there is always a unique Wilson
line.

The final remark concerns the RG flow from ζ = 0 to ζ = 1 initially studied in [100].
Our analysis shows that the starting point of such an RG flow is ill-defined for s > 2π/g2YM.
The running of ζ can nonetheless be analyzed for smaller values of s in the double-scaling
limit (4.6). This in general requires the analysis of one-loop corrections around the saddle-
point profile; see [35] for recent progress in this direction.

45For a general approach to supersymmetric line defects in diverse dimensions see [97–99].
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4.3 Holographic description

The SU(N) N = 4 SYM theory is famously dual to type IIB string theory on AdS5 × S5,
with a fixed weakly coupled string theory background appearing in the ’t Hooft limit of large
N with fixed g2YMN . Supersymmetric Wilson lines have been extensively discussed in this
context, but for the non-supersymmetric Wilson lines (4.2) the discussion has mostly been
limited to the fundamental representation. For that representation, as discussed in [103],
the Wilson line (4.2) maps to a string ending on the appropriate contour on the boundary
of AdS5, with Neumann boundary conditions for the S5 position of the string.46 This string
is stable under SO(6)-preserving deformations, consistent with our discussion above.

Our discussion suggests that instabilities should occur for non-supersymetric Wilson
lines with weights of order N . (The stability of Wilson lines in small representations
follows simply from the large N factorization of correlation functions.) Supersymmetric
WLs with weights of that order may be described by D-branes [79, 104, 105]; for instance,
the supersymmetric WL in the k’th anti-symmetric representation is described by a D5-
brane wrapping an S4 ∈ S5 (and carrying some electric field that gives it the appropriate
fundamental string charge). It seems natural to conjecture that non-supersymmetric Wilson
lines in representations with weights of order N would be described by non-BPS D-branes
wrapping the S5; for instance, the straight anti-symmetric representation Wilson line may
be described by a non-BPS D6-brane on AdS2 × S5 (with an appropriate electric field
on AdS2). At large ’t Hooft coupling where the S5 is weakly curved, any such non-BPS
D-brane has a tachyonic instability, and it is tempting to identify this with the instability
discussed above; note that for large ’t Hooft coupling any WL with weights of order N is
expected to be unstable. Condensation of the tachyon in a non-uniform fashion that breaks
SO(6) to SO(5) can describe the flow to the supersymmetric WLs, while the end-point of
an SO(6)-preserving tachyon condensation is less clear. It would be interesting to study
further the holographic description of non-supersymmetric WLs in various representations
and their instabilities.

5 2+1 dimensional CFTs

In this section we analyze Wilson lines in 2 + 1 dimensional CFTs, focusing on Abelian
gauge theories. The main difference with respect to four-dimensional theories is that the
standard kinetic term F 2

µν for the gauge field is not conformal. Nonetheless, Abelian gauge
fields lead to interesting conformal fixed points in Chern-Simons theories or when they
interact with matter fields in certain strongly coupled models, some of which may be
analyzed perturbatively in a large Nf expansion. Additionally, it is possible to couple
Abelian gauge fields in four dimensions to matter fields confined on a three-dimensional
interface, a setup that for instance describes the long wavelength limit of graphene. We
discuss several examples below.

5.1 Chern-Simons theories with and without matter

Here we review some of the properties of Chern-Simons theories with gauge group U(1)
coupled to a fermion or a scalar, and then study the Wilson line operators of these theories.

46As opposed to the supersymmetric Wilson loop that obeys Dirichlet boundary conditions.
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The Chern-Simons term at level k is given by

kSCS = k

4π

∫
d3xϵµνρAµ∂νAρ . (5.1)

Without additional matter fields it describes a topological theory. Wilson lines with electric
charge q harbor magnetic flux −2πq/k. The magnetic flux is localized to the worldline.
This familiar fact can be reproduced by solving the equations of motion in the presence of
the line operator eiq

∫
dtA0 , leading to

k

2πFxy = qδ2(x⊥) , (5.2)

where x⊥ stands for the coordinates on the plane (x, y). In other words, we have a holonomy
in polar coordinates:

Aθ =
q

k
. (5.3)

Since there are no charged matter fields in this theory, Wilson lines with arbitrary q do not
lead to instabilities. Note that for q = nk, with n ∈ Z the Wilson line harbors an integer
multiple of the 2π flux unit, which is why such a line is transparent in the language of
topological field theory. Such a Wilson line is equivalent to a shift of the gauge field by an
integral holonomy Aθ → Aθ + n. Even in the presence of dynamical matter fields Φa (of
any spin) an integral holonomy Aθ = n does not have any physical consequence, as it can
be eliminated via a field redefinition of the form Φa → e−inθΦa. (Note that this redefinition
preserves the boundary conditions around the defect only for n ∈ Z.) More generally
this implies that Wilson lines with different charges in Chern-Simons matter theories are
identified modulo k: q ∼ q + k. This observation will be important in section 5.2.3.

Adding matter fields to (5.1) famously leads to a very rich set of nontrivial conformal
field theories in 2+1 dimensions. These theories can be analyzed perturbatively for k ≫ 1.
Let us consider adding Nf scalar fields Φi of charge 1 under the gauge symmetry and Nf

Dirac fermions ψi of charge 1. There are four independent SU(Nf )-invariant marginal terms
in the bulk:

ψ̄iψ
iΦ†

kΦ
k , ψ̄iψ

jΦ†
jΦi , (ψ̄iψ̄jΦiΦj + ψiψjΦ†

iΦ
†
j) , (Φ

†
iΦi)3 . (5.4)

The system of beta functions was written in [106]. At large k and fixed Nf , there are
perturbative fixed points where all the couplings with fermions scale like 1/k while the
sextic coupling scales like 1/k2. Curiously, without fermions, no perturbative fixed points
exist. In the following we will not need to know the precise value of the couplings at which
the fixed points appear. The action reads

S = kSCS +
∫
d3x

[
|DΦi|2 + iψ̄i /Dψ

i + α

k
ψ̄iψ

iΦ†
kΦ

k + β

k
ψ̄iψ

jΦ†
jΦi

+ γ

4k (ψ̄iψ̄jΦ
iΦj + ψiψiΦ†

iΦ
†
j)−

h

6k2 (Φ
†
iΦi)3

]
,

(5.5)

where we normalized the couplings so that the coefficients α, β, γ and h are all O(1) at the
fixed points of interest.
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Here we would like to make some observations about Wilson lines in these theories.
Let us consider a Wilson line of a charge q particle. This amounts to again deforming
the action (5.5) by −q

∫
A0δ

2(x⊥). It is convenient to normalize the fields Φ →
√
kΦ and

ψ →
√
kψ. Then all four vertices (5.4) become of order O(k) and hence the action admits

a double scaling limit for large k and fixed q/k:

S = k

{
SCS +

∫
d3x

[
|DΦ|2 + iψ̄ /Dψ + αψ̄iψ

iΦ†
kΦ

k + βψ̄iψ
jΦ†

jΦi

+ 1
4γ(ψ̄iψ̄jΦ

iΦj + ψiψiΦ†
iΦ

†
j)−

h

6 (Φ
†
iΦi)3

]
− q

k

∫
d3xA0δ

2(x⊥)
}
.

(5.6)

The parameters α, β, γ, h are all O(1) in this normalization.
The classical solution we will be expanding about has Φ = 0, fermions in their ground

state, and the gauge field given by (5.3). The fluctuations around this background can be
analyzed by writing dropping nonlinear terms in the action as in section 2.1. Consider first
the scalar field. We decompose the field in components with different angular momenta as

Φ =
∞∑

ℓ=−∞

eiℓθ√
r
Rℓ(t, r) , (5.7)

where we can interpret the {Rℓ(t, r)} as the KK modes of the scalar for the theory on
AdS2 × S1. Going to frequency space Rℓ(t, r) = e−iωtRℓ(r), the linearized equations of
motion read

−∂2rRℓ +
−1

4 +
(
ℓ− q

k

)2
r2

Rℓ = ω2Rℓ . (5.8)

The coefficient of the 1/r2 term in (5.8) corresponds to the AdS2 mass of the ℓ’th KK mode.
Since this coefficient is always greater than the BF bound, −1/4, for every ℓ and q/k, we
find there is no perturbative instability for the Wilson line. Note however that for q = 0
the mass of the ℓ = 0 KK mode sits exactly at the BF bound, and thus may be destabilized
by arbitrary small perturbations. This observation will be important for the theories that
we analyze in the next subsections.

There is still more to say since the mode Rℓ admits two possible conformal boundary
conditions if |ℓ− q

k | < 1. Let us focus first on standard boundary conditions. Proceeding as
in the previous sections, from (5.8) we find the following scaling dimensions for (non-gauge-
invariant) defect operators:

∆(Dℓ
zΦ) =

1
2 +

∣∣∣∣ℓ− q

k

∣∣∣∣ , ∆(Dℓ
z̄Φ) =

1
2 +

∣∣∣∣−ℓ− q

k

∣∣∣∣ , (5.9)

where we denoted the transverse complex coordinate by z = x − iy (and z̄ = x + iy).
Note that for small q/k (5.9) indeed corresponds to small corrections to the classical
dimension 1

2 + |ℓ|.
Consider now deforming the action by quadratic terms corresponding to operators with

0 < |ℓ − q
k | < 1/2. Since ℓ is integral, there is at most one ℓ satisfying |ℓ − q

k | < 1/2; we
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denote it by ℓ0 and assume ℓ0 > 0 for simplicity. We can then deform the line operator by
δS ∝

∫
dtDℓ0

z ΦDℓ0
z̄ Φ†. This deformation is irrelevant, but formally it leads to a UV fixed

point, at which the scaling dimension is flipped for ℓ = ℓ0, i.e. ∆(Dℓ0
z Φ) = 1

2 −|ℓ0− q
k |, while

the scaling dimension of the operators with ℓ ̸= ℓ0 remain the same as in the infrared fixed
point. The dimension of the bilinear Dℓ0

z ΦDℓ0
z̄ Φ† in the UV fixed point is 1− 2|ℓ0 − q

k | < 1,
which is positive only for |ℓ0 − q

k | < 1/2. Note however that as we change |q/k| quartic
operators may become relevant, and the fate of the ultraviolet fixed point has to be
re-considered similarly to section 2.2.

As in the analysis of 4d QED, we can ask what happens when we deform the ultraviolet
defect fixed point by a negative coupling double-trace deformation. Let us focus on the
case where | qk | < 1/2, so that the operator with flipped scaling dimension at the UV fixed
point is Φ†Φ. The perturbation we consider is given by (in Minkowski signature)

SDCFTUV → SDCFTUV + f1−∆Φ†Φ

∫
r=0
dtΦ†Φ , (5.10)

where f > 0 and ∆Φ†Φ = 1 − 2| qk |. As in four dimensions, this deformation leads to a
classical instability of the vacuum, and the new ground state is provided by a nontrivial
solitonic profile. This profile can be interpreted as an RG flow to a different, screened, defect.
Unlike in scalar QED4, here we do not solve for the RG flow numerically, and we content
ourselves with providing the endpoint of this flow, focusing on the theory with a single
scalar and nonzero sextic coupling h

6

(
Φ†Φ

)3
. In this case, a straightforward asymptotic

analysis of the equations of motion shows that at large distances from the defect both the
electric and magnetic field decay faster than 1/r2, where r is the distance from the defect,
hence the gauge field is fully screened. Instead, the scalar decays according to a conformal
scaling law with a coefficient which does not depend on q:

⟨Φ†Φ(r)⟩ = h−1/2/2
r

for r ≫ f−1 . (5.11)

(5.11) represents a nontrivial one-point function for the scalar field, which Higgses the gauge
field close to the defect. Note that the coefficient is fixed in terms of the bulk coupling.47

The subleading falloff of the scalar and the gauge field depend on the ratio h/(q/k) and we
will not discuss them here.

An analogous discussion concerns the fluctuations of the Dirac field. We find that no
value of q/k leads to an instability. In terms of the decomposition discussed in section 3.1,
we see that the holonomy (5.3) simply shifts the AdS2 mass of the (±, ℓ) mode as m(±)

ℓ →
m

(±)
ℓ ± q/k, where m(±)

ℓ = 1
2 + ℓ = |j| in terms of the angular momentum j ∈ 1

2 + Z. We
47Interestingly, we can represent the boundary conditions leading to (5.11) in terms of the following defect:

D = exp
[
iπ

∫
r=0
dtΦ†Φ

]
. (5.12)

To prove that the defect (5.12) indeed leads to (5.11) it is enough to take the variation of the scalar action
including the defect term (5.12). Upon regularizing the defect by introducing an infinitesimal thickness r0,
to be taken to zero at the end of the calculation, it is easily seen that the variations of both the boundary
term and the bulk action vanish on a solution of the form (5.11).
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conclude that the scaling dimensions of defect operators corresponding to KK modes with
different spin are given by

∆j =
1
2 +

∣∣∣∣j + q

k

∣∣∣∣ , (5.13)

which for small q/k is a small perturbation of the free theory result. As in the scalar case,
when

∣∣j + q
k

∣∣ < 1/2 for some j = j0 there exists a UV fixed point on the Wilson line, which
flows to the infrared one via a double-trace deformation.

5.2 Large Nf critical points

5.2.1 QED3 with 2Nf fermions

Abelian gauge fields coupled to matter fields are expected to lead to several interesting
conformal fixed points. Perhaps the most interesting and well studied example is given by
QED3 with 2Nf charge 1 Dirac fields (complex fermions with two components):

L = i

2Nf∑
a=1

Ψ̄a
(
/∂ − i /A

)
Ψa , (5.14)

where we omitted the kinetic term for the gauge field, since it is irrelevant in the sense
of RG. The theory (5.14) enjoys a SU(2Nf ) internal symmetry and it is parity invariant;
Chern-Simons terms are therefore disallowed.

The model (5.14) is believed to flow to an interacting CFT, at least for sufficiently
large Nf . The theory (5.14) can be studied perturbatively in the ε-expansion [107] and in
the large Nf limit [108]. We will focus on the latter limit in what follows.

To leading order in Nf the fermions behave as free fields. The gauge field has a more
interesting large Nf limit instead. To see this, it is convenient to integrate out the fermions
in (5.14) and write a nonlocal action for the gauge field. In Euclidean signature this reads:

Seff [A] ≡ −2NfTr
[
log

(
/∂ − i /A

)]
= const. + Nf

16

∫
d3k

(2π)3Aµ(k)|k|
(
δµν − kµkν

k2

)
Aν(−k) + . . . ,

(5.15)

where in the second line we expanded around Aµ = 0 and computed the loop integral with
a gauge-invariant regulator. Therefore, to leading order in 1/Nf , the gauge field two-point
function is given by:

⟨Aµ(k)Aν(−k)⟩ = Nf
8
|k|

(
δµν −

kµkν
k2

)
+ gauge dependent terms . (5.16)

Equivalently, the result (5.16) can be seen as the resummation of infinitely many bubble
diagrams with fermion loops.

We now consider the theory (5.14) in the presence of a Wilson line. Upon integrating
out the fermions, the Euclidean action reads:

Sq[A] = −2NfTr
[
log

(
/∂ − i /A

)]
+ iq

∫
dτA0 , (5.17)
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Figure 11. Plot of the value of E (in blue) in (5.19) as a function of q/Nf (for q > 0) as determined
from (5.18). The red line corresponds to the linearized result in (5.20); as expected, the two curves
perfectly agree for small q/Nf .

where the factor of i in front of q is due to the Euclidean signature of the metric and we
assume q ∼ Nf . The gauge field sourced by the Wilson line is determined by the following
nonlocal equation:

δTr
[
log

(
/∂ − i /A

)]
δAµ(x)

= iδµ0
q

2Nf
δ2(x⊥) . (5.18)

Because of conformal invariance, the field which solves (5.18) is Coulomb-like

Fτi = iE
xi

r3
, (5.19)

where E is a nontrivial function of q/Nf . For q/Nf ≪ 1, we can linearize the fluctuation
determinant using (5.15) and solve for E:

E = 4q
πNf

+O

(
q2

N2
f

)
. (5.20)

According to the general analysis in section 3.2.1, in the presence of the electric
field (5.19), the scaling dimensions of the single-trace defect operators with spin j = ±1

2 is
given by

∆ = 1
2 +

√
1
4 − E2 . (5.21)

When the electric field becomes as large as |E| = 1/2 the j = ±1/2 modes of the Dirac
field develop an instability. In the following we would like to determine the critical value of
q/Nf for which |E| = 1/2. Clearly, the linearized approximation (5.20) is not enough and
we need to solve the saddle-point equation (5.18) in the nonlinear regime.

To this aim, we have to compute the fluctuation determinant in (5.15) for arbitrary
values of E. This can be conveniently done by exploiting Weyl invariance to map the theory
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to AdS2 × S1. We provide details on the calculation in appendix D. The result for E =
E(q/Nf ) is shown in blue in figure 11, where we also compare with the linearization (5.20)
(in red). We find that the critical value for the instability is found at:∣∣∣∣∣E

(
qc
Nf

)∣∣∣∣∣ = 1
2 =⇒ |qc|

Nf
≃ 0.56 . (5.22)

We also comment that the functional determinant develops an imaginary part for E > 1/2,
in agreement with the existence of an instability.

Note that the result for the critical charge in (5.22) is larger than the one obtained by
naively extrapolating the linear approximation (5.20). In particular, there are more than
Nf independent stable lines (counting both positive and negative values of q). An intuitive
justification for this fact is as follows. Imagine adding a mass term to the model (5.14) in a
maximally parity breaking form. As well known, integrating out all the fermions in this
setup results in a U(1)Nf Chern-Simons theory in the IR. The latter is a topological theory
which admits Nf independent Wilson lines. Therefore it is natural to expect that the number
of independent stable lines in the UV theory should also be at least Nf . Interestingly, the
linear extrapolation (5.20) would give less than Nf stable lines (as easily read from the red
line on figure 11), which would lead to a tension with the above RG argument.

The most physically interesting value of Nf for the model at hand is Nf = 2 [109, 110].
In this case the result (5.22) suggests the existence of two nontrivial Wilson lines. It would
be interesting to analyze the effect of subleading corrections in 1/Nf for this prediction.

Finally, we comment that for 0 < |E| < 1/2 the j = ±1/2 modes admit alternate
boundary conditions on the line, and lead to several ultraviolet fixed points on the defect.
Since the fluctuation determinant in (5.18) implicitly depends on the boundary conditions
of the Dirac field at the defect, the relation between the electric field and q/Nf at these
fixed points is different than the one at the infrared fixed point shown in figure 11. It would
be interesting to determine the new curve, which is constrained to have the same endpoint
at E = 1/2 as the one in figure 11.

5.2.2 Comments on scalar QED3

We now consider theories with Nf ≫ 1 charged scalars Φa coupled to an Abelian gauge field:

L =
Nf∑
a=1

|DµΦa|2 − V (|Φa|2) , (5.23)

where Dµ = ∂µ − iAµ and we omitted again the kinetic term for the gauge field. The
theory (5.23) admits several multicritical fixed points in the large Nf limit depending on the
potential V (|Φa|2), which may break the SU(Nf ) symmetry, see e.g. [111]. Parity forbids a
Chern-Simons term as in (5.14).

As before, to leading order in Nf the dynamics of the gauge field follows from integrating
out the scalar fields in (5.23), leading to a propagator for the gauge field proportional
to (5.16). Below we briefly comment about the fate of Wilson lines in this class of theories.

Let us consider first the tricritical theory, which is defined by V (|Φa|2) = 0 at large
Nf [111]. It is easy to see that all Wilson lines are unstable in the double-scaling limit q → ∞,
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Nf → ∞ with q/Nf = fixed. By conformal invariance, inserting a Wilson line results in
a Coulomb field of the form (5.19). For q = 0 the singlet scalar bilinear ∑a |Φa|2 has
dimension ∆ = 1 and provides a marginal deformation of the trivial line defect. Therefore
the AdS2 mass of the ℓ = 0 mode of the scalar sits exactly at the BF bound for q = 0, and
for any value of q ̸= 0 the electric field leads to an instability.48

The instability does not imply necessarily that Wilson lines are trivial in the infrared.
Indeed, as in subsection 2.5, for q ̸= 0 mod Nf the endpoint operators transform in a
nontrivial projective representation of PSU(Nf ). Therefore, even if the electric and scalar
fields were fully screened, there must be a 0+1 dimensional system on the line furnishing
a representation of SU(Nf ) with q mod Nf boxes. Since the operator in the adjoint of
SU(Nf ) ΦaΦ†

b −
1
Nf
δba|Φ|2 has scaling dimension 1 in the large Nf limit, it can couple to

the 0+1 dimensional system via a marginal coupling and one is required to consider 1/Nf

corrections to understand the true infrared limit, and whether there is a fixed point akin to
the spin impurity fixed points discussed in [14, 35, 113].

The situation is different in the presence of a non trivial potential. Consider in
particular the critical theory which is obtained including a SU(Nf ) invariant deformation
V = λ(∑a |Φa|2)2. Via a standard Hubbard-Stratonovich transformation, the singlet scalar
bilinear ∑a |Φa|2 is seen to have dimension ∆ = 2 for Nf → ∞ at the IR fixed point.
For small |q|/Nf the dimension of the singlet bilinear defect operator can be obtained
perturbatively, i.e. ∆ = 2 +O(q2/N2

f ), and no instability is expected until a critical value
|q| = qc ∼ Nf . We thus expect ∼ Nf stable Wilson lines at the critical fixed point.

As in the tricritical theory, for q ̸= 0 mod Nf we have a projective representation of
PSU(Nf ) living on the line, and again (around the trivial saddle-point Φ = Aµ = 0) there
is a marginal coupling due to the adjoint bilinear, which might be important to take into
account at the next order in 1/Nf .

In the future it would be interesting to compute the value of qc/Nf similarly to the
previous section in the critical theory with V = λ(∑a |Φa|2)2.49 This analysis might provide
hints about the fate of Wilson lines in the Nf = 1 theory, i.e. the Abelian-Higgs model.
Because of particle-vortex duality, Wilson lines in the critical Abelian-Higgs model should
correspond to defects in the O(2) model. Some implications of the duality for Wilson lines
were discussed in [114].

5.2.3 U(1)k with 2Nf fermions

As a final example, we consider the theory that we obtain upon adding a level k Chern-Simons
term to the action (5.14). In the presence of a charge q Wilson line the action reads

Sq =
∫
d3x

i 2Nf∑
a=1

Ψ̄a
(
/∂ − i /A

)
Ψa +

k

4πε
µνρAµ∂νAρ

− q

∫
dtA0 . (5.24)

48Equivalently, this means that the one-loop determinant of the scalar fields is complex for arbitrary (real)
values of E [112].

49To this aim, one would also need to compute the one-point function of the Hubbard-Stratonovich field
σ ∼

∑
a
|Φa|2 for q ̸= 0, since this contributes to the AdS2 mass of the fundamental fields similarly to [51].
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The theory (5.24) admits a natural triple scaling limit for Nf ∼ k ≫ 1 with q/k (and hence
q/Nf ) fixed. We would like to determine for which values of q there is an instability of the
matter fields in this limit. To this aim we analyze below the response of the gauge field to
the Wilson line.

Despite the similarity with the action (5.14), the Chern-Simons term has a remarkable
consequence as explained in section 5.1: Wilson lines with different charges are identified
modulo k. We therefore need to analyze only Wilson lines with charges − |k|

2 < q ≤ |k|
2 .

Proceeding as in the previous section, the equation of motion for the gauge field in
Euclidean signature can be written as

2δTr
[
log

(
/∂ − i /A

)]
δAµ(x)

− i
k

4πNf
εµνρFνρ = iδµ0

q

Nf
δ2(x⊥) . (5.25)

The most general solution consistent with conformal invariance is given by a Coulomb field
with a holonomy in the angular direction (which is allowed since the Chern-Simons term
breaks parity):

Fτr = i
E

r2
and Aθ = b = const. , (5.26)

where both E and b are functions of k/Nf and q/Nf . Note that the fluctuation determinant
Tr
[
log

(
/∂ − i /A

)]
is a periodic function of b according to the former discussion.

In the presence of the electromagnetic field (5.26), the scaling dimension of the defect
operator corresponding to the spin j KK mode of the fermion is given by

∆j =
1
2 +

√
(j + b)2 − E2 , j ∈ 1

2 +Z . (5.27)

The theory develops an instability towards charge screening when (j + b)2 − E2 < 0 for
some value of j.

When |q| ≪ |k|, Nf we can linearize the fluctuation determinant and find explicitly the
values of E and b which solve (5.25):

E ≃ 4πNfq

16k2 + π2N2
f

, b ≃ 16kq
16k2 + π2N2

f

. (5.28)

It is less trivial to solve (5.25) for general values of q. In practice, rather than solving (5.25)
for fixed values of kR ≡ k/Nf and qR ≡ q/Nf , it is easier to do the opposite. Namely, given
a certain value of E and b for which (j + b)2 − E2 > 0 for all j ∈ Z+ 1

2 , we determine the
values of k and q that solve (5.25). Since, as we explained before, an integral holonomy is
unphysical, it is enough to determine the region R in the (k, q) plane where b ∈ (−1/2, 1/2)
and |E| < 1/2− |b|, so that no mode is tachyonic.

In appendix D we compute numerically the functional determinant and determine the
region R. The result is perhaps surprising. We find that the region R spanned by the possible
values of (kR, qR) strictly includes the one specified by the inequality −|k|/2 ≤ q ≤ |k|/2,
which sets the number of independent Wilson lines. This implies that there exists at least
one real stable saddle-point solution to (5.25) for all Wilson lines (remember that q ∼ q+k).
Additionally, the region R includes points where |q| > |k|/2. Since the region R is obtained
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Figure 12. In this plot we separate the (k/Nf , q/k) plane into different regions according to the
number of saddle-points; the legend on the right associates the color to the number of solutions.
The plot is restricted to the physical regions |q| ≤ |k|/2, and to 1/6 < k/Nf < 2.5; a specular plot
can be drawn for negative k.

by restricting the value of the holonomy to |b| < 1/2, via shifts of the form b→ b± n and
q → q ∓ kn, with n ∈ N, the points in R for which |q| > |k|/2 correspond to additional
saddle-points in the physical region |q| ≤ |k|/2. In other words, for certain values of q and
k there are multiple saddle-point solutions for the gauge field.

Our results are summarized in figure 12, where we separate the physical region |q| ≤ |k|/2
into smaller subregions according to the number of saddle-points found. Note that the
number of solutions corresponding to a given charge q increases as we lower |k|/Nf . We did
not analyze the question of stability of these saddle-points; we expect that the only stable
saddle-points at a nonperturbative level are those with the minimal absolute value for the
holonomy b (when restricting to −|k|/2 ≤ q ≤ |k|/2). It would be interesting to confirm or
disprove this expectation.

In conclusion, in the theory (5.24) Wilson lines with different charges are identified
modulo k, because of the Chern-Simons term. We find that all Wilson lines are stable.

Wilson lines in various other Chern-Simons-Matter theories are of great interest as well
(e.g. due to the their connection with boson-fermion duality, holography etc). We do not
study them here. For some recent results see [115–118].

5.3 Graphene

It is well known that in a layer of graphene, due to its peculiar lattice structure, the
quasi-particles at the Fermi energy are described in terms of an effective Lorentz-invariant
theory consisting of four three-dimensional Dirac fermions moving at an effective speed
vf ≈ 1/300 [119], in the usual relativistic units where the speed of light is set to one. Since
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vf ≪ 1, these quasiparticles experience an enhanced coupling to the 3 + 1-dimensional
Coulomb field [119]:

e2eff = e2

vf
≫ e2 . (5.29)

Naively using the modified coupling in the formula for the Coulomb potential sourced by
a Wilson line, A0 = e2

effq
4πr , the general analysis in section 3 implies that there should be

an instability towards charge screening for |q| ≥ |qc| = 2π/e2eff ≃ 0.2. This observation
motivated several works in the condensed matter literature, see [119] for a review. Of
particular relevance for us is the analysis of the screening cloud and the related resonances
in [31, 69, 70], which largely inspired our analysis in section 3.4. Remarkably, this instability
and the corresponding screening cloud were experimentally observed in [32] by introducing
an external ion close to the material layer.

In practice, the formula (5.29) neglects important polarization effects that arise because
of the strong interaction. To model these effects in a controlled setup it was proposed
in [120] to study a model of 2Nf ≫ 1 Dirac fields living on an interface coupled to the
Coulomb field A0:

S = − 1
e2

∫
dzd3x

1
4(∂iA0)2 + i

2Nf∑
a=1

∫
z=0

d3xΨ̄a

[
1
vf
γ0 (∂0 − iA0) + γi∂i

]
Ψa , (5.30)

where Ψa are Dirac fields as in section 5.2.1. The coupling to A0 is fixed by gauge-invariance
and breaks the emergent Lorentz-invariance on the interface. Note that the model (5.30)
neglects the spatial components Ai of the gauge-field since their interaction with the Dirac
quasiparticles is not enhanced by vf . For Nf = 2 (5.30) describes the low energy limit
of graphene, but following [120] we allowed for an arbitrary number of fermions. See
also [121, 122] for discussions of related models.

In the model (5.30) the bulk coupling e2 is given by the QED value and cannot be
renormalized by interactions with the fields on the interface. Due to the lack of Lorentz
invariance, the value of vf may instead be renormalized by interactions. It was shown
in [120] that the velocity vf , and thus the effective strength of the coupling (5.29), undergo a
nontrivial RG flow at order 1/Nf . The RG admits an IR relativistic fixed-point at vf → ∞
and a UV quantum critical point (corresponding to vf = 0) with Lifshitz scaling. Due to
the smallness of the measured value of vf , this suggests that the physical theory might
display approximate Lifshitz scaling.

In the following we will study the model (5.30) in the presence of a Wilson line of
charge q at x = y = z = 0. We will work in the triple-scaling limit defined by

Nf ∼ 1
e2eff

∼ q → ∞ with e2effNf ∼ e2effq = fixed . (5.31)

In this limit the running of the velocity vf can be neglected. We will use below the
technology that we developed in the analysis of QED3 in the large Nf limit to compute the
critical charge in this approximation.50

50A former analysis of the Coulomb impurity problem in this model appeared in [123]; that work however
focused on charges q ≪ Nf ∼ 1/e2

eff , in which case the fluctuation determinant in (5.34) can be linearized.
This is not possible for nearly critical electric fields, as figure 11 shows.
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Wick rotating to Euclidean signature, we integrate out the fermions as in section 5.2.1
to obtain the effective action for the gauge field

S[A] = 1
e2effv

2
f

∫
dzd3x

1
2(∂iA0)2 − 2NfTr

[
log

(
/̃∂ − i /A/vf

)]
+ iq

∫
dτA0 , (5.32)

where we defined ∂̃µ = {∂0/vf , ∂i}. The gauge field sourced by the line takes the form

A0 = vf Ā0 , Ā0 =
iE√

x2⊥ + z2
, (5.33)

which becomes critical for |E| = 1/2. The value of E is determined by the saddle-point
equation

∂2i Ā0 + 2e2effNf

δTr
[
log

(
/̃∂ − i /̄A

)]
δĀ0(x)

= i e2effq δ
2(x⊥)δ(z) . (5.34)

Since the rescaling t→ t/vf leaves invariant the fermion one-loop determinant, we can use
the result (5.22) to find the critical value for the charge

|qc| =
1
2
4π
e2eff

+ 0.56Nf . (5.35)

The (unjustified) extrapolation of the result (5.35) to the physical theory, for which Nf = 2
and e2eff/(4π) = αEM/vf ≃ 2.2, gives |qc| ≃ 1.35, which is not too far from the experimentally
observed |qc| ≈ 2÷ 3 [32].

We finally mention that it is possible to consider other instances of charged matter
fields on a 3d interface or boundary coupled to a four-dimensional Abelian gauge field. This
setup often gives rise to a continuous family of BCFTs, parametrized by the gauge coupling
e and the θ angle of the theory [124]. We leave the analysis of Wilson lines in these theories
for future work.

6 ’t Hooft line operators

6.1 ’t Hooft lines in Abelian gauge theories

We discuss the case of 4 space-time dimensions, and take the gauge group to be U(1),
with matter fields that are some massless fermions and scalars with U(1) charges that we
will specify later. Such a theory admits a magnetic U(1) one-form symmetry, since the
current (⋆F )µν is conserved due to the Bianchi identity dF = 0. Furthermore, the one-form
symmetry operator eiα

∫
Σ2

F can be cut open in a straightforward fashion, by just allowing
Σ2 to have a boundary ∂Σ2. The non-genuine line operator on ∂Σ2 can be viewed as a
Wilson line with fractional charge.

Therefore, our considerations in subsection 2.6 imply that ’t Hooft lines in such theories
cannot be trivial, or topological. This is simply because the magnetic field cannot be
screened. Let us therefore make some remarks about the defect conformal theories arising
from ’t Hooft lines.
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Inserting a ’t Hooft line representing the worldline of a monopole of magnetic charge n
leads to a boundary condition for the gauge field on a small S2 surrounding the ’t Hooft
line, which can be written (up to gauge transformations) as:51

A = n

2 (1− cos(θ))dϕ. (6.1)

In fact, setting all the matter fields to vanish and adopting (6.1) everywhere in space leads to
a solution of the equations of motion, and as before, we can now investigate the fluctuations
around this background.

We start from a scalar field Φ of charge q and we consider it in the background (6.1).
We separate the variables as usual Φ = eiωtY (θ, ϕ)1rR(r), and find that the function Y (θ, ϕ)
has to be a monopole spherical harmonic [125–127]:[

∆S2 −
qn/2

cos2(θ/2)

(
i∂ϕ +

qn

2

)]
Yqn/2,ℓm = −ℓ(ℓ+ 1)Yqn/2,ℓm . (6.2)

The Yqn/2,ℓm transform in the spin ℓ representation of so(3). Most importantly,

ℓ ∈ |qn/2|+ Z+ , (6.3)

which famously leads to ground state degeneracy in the presence of a monopole as it removes
the s-wave modes for nonzero qn. We can now turn to the radial equation, assuming the
angular part of the wave function is in a state with spin ℓ = |qn/2|. We obtain the radial
wave equation:

−∂2rR+ |qn|
2r2 R = ω2R . (6.4)

The potential is effectively always repulsive and there is no instability for any qn. The
dimension of the defect operator Φ†Φ is inferred from the behavior of R(r) near the origin,
as before

∆ = 1 + 2

√
|qn|
2 + 1

4 . (6.5)

We see that the already for the minimal ’t Hooft line with qn = 1 the dimension of the
defect operator is 1+

√
3 which is larger than the bulk scaling dimension of Φ†Φ, which is 2.

The charged bosons therefore never furnish relevant or marginal operators on the ’t Hooft
line, unlike the case of the Wilson lines. (6.5) is a good approximation as long as e2, λ≪ 1,
where λ is the scalar quartic coupling. Note that unlike for Wilson lines, here no double
scaling limit is necessary.

The analysis of fermions around a ’t Hooft line is analogous. The Dirac equation for a
4 component fermion in spherical coordinates can be written as[

γ0
∂

∂t
+ γr

∂

∂r
+ 1
r
γθ

∂

∂θ
+ 1
r sin(θ)γ

ϕ
(
∂

∂ϕ
− iqAϕ

)]
Ψ = 0 , (6.6)

51To see that n is an integer we consider the region near the south pole, where we have A ∼ ndϕ, which
can be interpreted as being due to a transparent solenoid if n is an integer. We adopted spherical coordinates
ds2 = dt2 −

[
dr2 + r2 (dθ2 + r2 sin2(θ)dϕ2)].
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acting on a four-component spinor with the following matrices:

γ0 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , γr =


0 0 cos(θ) sin(θ)e−iϕ

0 0 sin(θ)eiϕ −cos(θ)
−cos(θ) −sin(θ)e−iϕ 0 0

−sin(θ)eiϕ cos(θ) 0 0

 ,

γθ =


0 0 −sin(θ) cos(θ)e−iϕ

0 0 cos(θ)eiϕ sin(θ)
sin(θ) −cos(θ)e−iϕ 0 0

−cos(θ)eiϕ −sin(θ) 0 0

 , γϕ =


0 0 0 −ie−iϕ

0 0 ieiϕ 0
0 ie−iϕ 0 0

−ieiϕ 0 0 0

 .
(6.7)

An important novelty compared to the boson, is that now there are modes with total angular
momentum |qn|/2 − 1/2 if |qn| > 0. This is the minimal achievable angular momentum.
These modes are often called “spinor spherical harmonics of the third type” and the explicit
formula in terms of the ordinary monopole harmonics with azimuthal angular momentum
m is (denoting µ = |qn|/2):

Ω(3)
µ,µ−1/2,m =

−√µ−m+1/2
2µ+1 Yµ,µ,m−1/2√

µ+m+1/2
2µ+1 Yµ,µ,m+1/2

 . (6.8)

See [127] for an exposition to this subject. An ansatz for the solution of the Dirac equation is

Ψ = e−iEt 1r

(
F (r)Ω(3)

µ,µ−1/2,m

iG(r)Ω(3)
µ,µ−1/2,m

)
. The Dirac equation then reduces to dG

dr = EF , dFdr = −EG.

There are two independent solutions here, F = eiEr, G = −ieiEr and F = e−iEr, G = ie−iEr.
The doublet

(
F
G

)
is acted upon by the Hamiltonian H =

(
0 d

dr

− d
dr

0

)
. Since r = 0 plays

the role of a boundary, one needs to impose a boundary condition for the existence of a
well-defined variational problem (equivalently, the existence of a Hermitian Hamiltonian).
Therefore we require that

〈(F
G

)
,

(
0 d

dr

− d
dr 0

)(
F

G

)〉
=
〈( 0 d

dr

− d
dr 0

)(
F

G

)
,

(
F

G

)〉
(6.9)

The Hamiltonian is Hermitian if F ∗(0)G(0) is purely real. The most general admissible
solution is thus

F = AeiEr +Be−iEr , G = −iAeiEr + iBe−iEr , B = eiθ+iπ/2A , (6.10)

where θ is the θ-angle (not to be confused with the azimuthal coordinate). (The π/2
shift is a convention.) For instance, assuming θ = 0 we get F ∼ cos(Er − π/4) and
G ∼ sin(Er − π/4). The falloff of the wave function near the origin allows us to read the
dimensions of defect operators as usual. We can therefore interpret the coefficient A (or B)
as an operator of dimension 1/2.52

52For qn = 0, i.e. the trivial defect, the wave functions behave as sin(Er)/r for small r and the corresponding
defect operator has dimension 3/2, which is nothing but the original bulk fermion on the trivial defect.
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The conclusion is that for any non-zero n and q we have an operator of dimension 1/2
on the defect and hence gauge-invariant marginal bilinears of dimension 1. In particular
there is a marginal bilinear of spin 0, which has a clear interpretation — it allows to change
the θ angle appearing in the boundary condition for the fermion in (6.10). The appearance
of a θ angle for monopoles in an Abelian gauge theory was noted already in [128]. We will
soon see that this angle has a very simple interpretation following from the symmetries of
the theory.

Before discussing in more detail the θ angle and the corresponding marginal operator,
we would like to generalize our discussion of the boundary conditions corresponding to a ’t
Hooft line to arbitrary U(1) gauge theories.

In the background of a monopole with n units of magnetic field, a charge q left moving
4d Weyl fermion reduces (in its lowest angular momentum mode on S2) to nq left moving 2d
fermions if nq > 0 and −nq right moving fermions for nq < 0. Either way, they transform
in the spin (|nq|/2− 1/2) representation of SU(2), which indeed has |nq| components. (For
nq = 0 the special representations of spin (|nq|/2 − 1/2) do not exist.) These massless
fermions live on a half-infinite line r ≥ 0. We must therefore choose boundary conditions
at r = 0.

It is useful to quickly review some facts about boundary conditions in 2d. For a recent
discussion of the connections between anomalies and boundary conditions see [129, 130].
Unless cL = cR no boundary condition which is time-translation-invariant exists. Similarly,
the Tr[U(1)]2 anomaly precludes the existence of a U(1)-preserving boundary condition and
the Tr[U(1)AU(1)B] anomaly precludes the existence of a boundary condition preserving
both U(1)A and U(1)B.

Since the ’t Hooft line has to be gauge-invariant, we must insist that a U(1)-preserving
boundary condition exists. The |nq| left moving fermions contribute to the Tr[U(1)]2
anomaly nq × q2 = nq3 for q > 0, and the |nq| right moving fermions give −|nq3| for q < 0.
Summing them all up we have a condition equivalent to ∑ q3 = 0 over all Weyl fermions.
Therefore, as long as the original 4d gauge theory is consistent (free of gauge anomalies) we
have no obstruction to picking a gauge-invariant boundary condition at the ’t Hooft line.

For there to exist time-translational-invariant boundary conditions a necessary condition
is that the number of left and right moving fermions coincides, so that a 2d gravitational
anomaly is absent. This gives ∑

qi>0
|qi| −

∑
qi<0

|qi| = 0 . (6.11)

This is realized if the four dimensional theory has no anomaly of the form

∂jgauge ∼

 ∑
weyl fermions

qi

R ∧R . (6.12)

Traditionally, the 4d anomaly (6.12), which was first described in [131], is interpreted as an
obstruction to gauge invariance in curved space. Here we see that upon introducing a ’t
Hooft line, it leads to an imbalance of left- and right-moving fermions and consequently,
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obstructs the existence of time-translationally and rotationally invariant ’t Hooft lines.
In modern parlance the anomaly (6.12) should be described by a two-group symmetry
involving the magnetic one-form symmetry and Lorentz symmetry [132]. We conclude that
it is not possible to construct ’t Hooft lines that preserve rotational invariance and time
translational invariance in such theories with a two-group symmetry. (The calculation of
the SU(2) rotation symmetry anomalies is in section 5 of [33]. The conclusion is that if
the theory is free of a gauge anomaly and the two-group symmetry involving the magnetic
one-form symmetry and Lorentz symmetry is trivial, then there is no obstruction to choosing
a boundary condition at the monopole which is rotationally invariant.)

Next let us consider a global U(1)Q symmetry with charges Qi such that ∑Qiq
2
i = 0, i.e.

it suffers from no ABJ anomaly (and thus it is a true continuous symmetry), but such that∑
Q2
i qi ̸= 0, namely, the global symmetry and the magnetic one-form symmetry furnish a

two-group [132]. It is easy to see that the 2d modes in the lowest angular momentum sector
have an anomaly Tr[U(1)Q]2 ̸= 0 and hence no ’t Hooft lines can preserve U(1)Q. Any
line operator that violates a global symmetry leads to an exactly marginal “tilt” operator
and hence there would be exactly marginal tilt operators corresponding to such U(1)Q
global symmetries.

Let us now comment on the axial symmetry with charges QAi , for which there is an
ABJ anomaly in 4d ∑

QAi q
2
i ̸= 0. This anomaly removes the continuous symmetry in

4d. Depending on the monopole charge, a discrete subgroup can be preserved by the
monopole boundary conditions. Furthermore, the θ angle in (6.10) couples to an operator
that is marginal at tree level, but already at the next order in e2 it becomes marginally
irrelevant [33] (and references therein). Indeed, since there is no continuous axial symmetry
in 4d, there is no reason to expect a tilt operator.

Let us summarize the main highlights about ’t Hooft lines in Abelian gauge theories:

• The axial symmetry leads to a marginal operator at tree level, but this operator and
the corresponding θ angle are irrelevant in the full theory.

• Unless ∑i qi = 0, no ’t Hooft lines which are time independent and rotationally
symmetric exist.

• Bosons generally receive positive anomalous dimensions and do not lead to low-lying
operators on the defect.

• Exactly marginal defect operators arise from global U(1) symmetries which participate
in a nontrivial two-group with the magnetic one-form symmetry.

6.2 ’t Hooft lines in non-Abelian gauge theories and S-duality

In weakly coupled non-Abelian gauge theories, to specify a ’t Hooft line, we can simply
fix the magnetic fluxes for the gauge fields in the Cartan sub-algebra [133, 134]. Then,
expanding around this classical solution with all the other fields vanishing, the main novelty
that we encounter compared to the Abelian theory is that we also have spin 1 massless
charged fields (the off-diagonal W-bosons).
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Let us therefore generalize the discussion in the previous subsection to the problem of
charge q, spin s particles, with magnetic g-factor gm. We need to determine the centrifugal
barrier for these particles. The total angular momentum is made out of the angular
momentum ℓ and the internal spin s. The range of ℓ is like for the bosonic wave functions
in the presence of the unit monopole: ℓ = |nq|/2, |nq|/2 + 1, . . ..

The general result for the centrifugal barrier matrix is given by [127]

V =
ℓ(ℓ+ 1)− n2q2/4− 1

2nqgmr̂
aSa

r2
, (6.13)

where Sa are spin s representation matrices and r̂ is the unit vector. The eigenvalues of
r̂aSa in principle can be between −s,−s+ 1, . . . , s. However for the short representations
with total angular momentum j = ℓ − s which are possible for ℓ ≥ s, only a subset of
these values is realized, see for instance [135]: r̂S has to be +s for positive nq and −s for
negative nq.

Without loss of generality, taking positive nq we find the centrifugal barrier for repre-
sentations with spin |nq|/2− s is

V = 1
2nq

1− gms

r2
. (6.14)

For scalars we have a repulsive centrifugal force exactly consistent with (6.4). For fermions
with the standard magnetic moment gm = 2 the numerator vanishes and we have no
centrifugal barrier, as we have seen in the previous subsection.

Now let us discuss charged vector bosons. If these vector bosons are approximately
fundamental particles, as they are in weakly coupled gauge theories, then we have gm = 2.
The discussion for vector bosons has to be split between the case of nq ≥ 2 and nq = 0, 1.
In the latter cases the special representation with spin nq/2− 1 which gives rise to (6.14)
does not exist and there are no relevant defect operators associated to the vector bosons.
In the case that nq ≥ 2 the formula (6.14) is valid, and we clearly see that the potential is
attractive with coefficient −1

2nq
1
r2 , which for nq ≥ 2 always leads to an instability of the

vector bosons — the bilinear operators associated to the vector bosons do not have a real
scaling dimension, similarly to the super-critical Wilson lines. This means that we have to
condense vector bosons with nq ≥ 2 and the infrared limit of such ’t Hooft lines remains to
be determined.

Let us now consider some examples — for instance, the N = 4 SYM theory with gauge
group SU(2) and the N = 4 SYM theory with gauge group SO(3). Those theories have
supersymmetric ’t Hooft lines which are stable, but we discuss here the non-supersymmetric
SO(6)R-invariant ’t Hooft lines which couple only to the gauge field. For SU(2) the minimal
monopole has n = 1 and the vector boson charge is q = 2 (in units of the minimal charge).
Therefore, even the minimal ’t Hooft line is unstable to W-boson condensation at weak
coupling, and deep in the infrared it presumably becomes trivial. (The cloud of W-bosons
that forms remains to be computed.) In the latter case, with gauge group SO(3), the charge
of the W-boson is 1 and hence in the background of the minimal ’t Hooft line n = 1 we
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have no such instability and the minimal ’t Hooft line should furnish a healthy conformal
defect. Higher ’t Hooft lines are all unstable to W-boson condensation, though.53

These results are consistent with one-form symmetry. The SO(3) theory has a magnetic
Z2 one-form symmetry protecting the minimal ’t Hooft line while the SU(2) theory does
not have such a magnetic one-form symmetry and hence the ’t Hooft lines are unprotected.

Let us now make some comments about S-duality for the SO(6) R-symmetry invariant
lines. Let us start from the SU(2) theory. As we crank up the coupling constant on the
conformal manifold, we have seen that fewer and fewer Wilson lines remain as nontrivial
infrared DCFTs. Presumably at strong coupling only the unique Wilson line in the
fundamental representation remains, as it is protected by the electric Z2 one-form symmetry.
By S-duality this should map to ’t Hooft lines in weakly coupled SO(3) gauge theory. Indeed,
we have just argued that at weak coupling no ’t Hooft lines other than the minimal one
exist. For the SO(3) gauge theory, Wilson lines again gradually disappear as the coupling
is cranked up, presumably leaving none at strong coupling, consistently with the absence
of any conformal ’t Hooft lines in weakly coupled SU(2) gauge theory. Therefore, our
results for the non-supersymmetric line operators in N = 4 SYM theory are consistent with
S-duality.

Acknowledgments

We thank S. Bolognesi, I. Klebanov, J. Maldacena, M. Metlitski, S. Sachdev, N. Seiberg,
A. Sever, S.-H. Shao, Y. Wang, and S. Yankielowicz for useful discussions. The work of OA
was supported in part by an Israel Science Foundation (ISF) center for excellence grant
(grant number 2289/18), by ISF grant no. 2159/22, by Simons Foundation grant 994296
(Simons Collaboration on Confinement and QCD Strings), by grant no. 2018068 from
the United States-Israel Binational Science Foundation (BSF), by the Minerva foundation
with funding from the Federal German Ministry for Education and Research, by the
German Research Foundation through a German-Israeli Project Cooperation (DIP) grant
“Holography and the Swampland”, and by a research grant from Martin Eisenstein. OA is
the Samuel Sebba Professorial Chair of Pure and Applied Physics. GC was supported by the
Simons Foundation grants 488647, 397411 (Simons Collaboration on the Non-perturbative
Bootstrap) and 994296 (Simons Collaboration on Confinement and QCD Strings). ZK,
MM and ARM are supported in part by the Simons Foundation grant 488657 (Simons
Collaboration on the Non-Perturbative Bootstrap) and the BSF grant no. 2018204. MM
gratefully acknowledges the support and hospitality from the Simons Center for Geometry
and Physics during the final stages of this work. ARM is an awardee of the Women’s
Postdoctoral Career Development Award.

53For the PSU(N) N = 4 SYM theory the statement would be that only ’t Hooft lines in the fully
anti-symmetric representation are unscreened at weak coupling. When we refer to the SO(3) gauge theory
we really have in mind the SO(3)+ gauge theory which admits purely magnetic lines, and similarly, when we
refer to PSU(N) gauge theory, we have in mind the one with purely magnetic lines [34].

– 75 –



J
H
E
P
1
2
(
2
0
2
3
)
1
8
3

A Details on scalar QED4

A.1 Defect propagator and double-trace deformation for subcritical charge

In this section we consider a charged field in AdS2, with Euclidean action:

Sbulk =
∫

AdS2
d2x

√
g
[
|DµΦ|2 +m2|Φ|2

]
, (A.1)

where Dµ = ∂µ − iAµ and Aµ = −iδ0µg/r is a subcritical Coulomb potential, i.e. such that
1 + 4m2 − 4g2 > 0. We assume g > 0 with no loss of generality. For such a model the near
boundary (r → 0) expansion of the operator Φ reads:

Φ ∼ αr1/2−ν + βr1/2+ν , (A.2)

where ν =
√
1/4 +m2 − g2 > 0. We will compute the propagator for the mode α at the

alternate quantization fixed point β = 0. We will then use this result to obtain the exact
propagator in the presence of a double-trace defect deformation of the form ∼ fᾱα. We
will finally argue that such a propagator displays a tachyon pole when the coefficient of the
deformation is negative. This signals an instability of the trivial vacuum Φ = 0, whose end
point we analyze in section 2.2.

We start by computing the propagator at the alternate quantization fixed-point. We
use the generating function approach, which is typically employed for AdS/CFT calcula-
tions [136]. To this aim, differently from in the main text, we consider the theory with the
following Dirichlet boundary conditions in terms of the modes (A.2)

β(τ) = 1
ν
J(τ) , β†(τ) = 1

ν
J̄(τ) , (A.3)

where J is a complex fixed function that we will soon interpret as an external source. For
the action to be stationary with boundary conditions of the form (A.3) we add the following
boundary term:

Sbdry = lim
r0→0

∫
r=r0
dτ

[(
Φ†∂rΦ+ c.c.

)
− 1− 2ν

2r0
Φ†Φ

]
. (A.4)

The sum of the bulk action (A.1) and the boundary term (A.4) is finite on-shell and can be
written as

Sbulk + Sbdry|on−shell = ν

∫
dτ
[
β†(τ)α(τ) + α†(τ)β(τ)

]
=
∫
dτ
[
J̄(τ)α(τ) + α†(τ)J(τ)

]
,

(A.5)

where in the last step we used the Dirichlet conditions (A.3).
We now follow the GKPW prescription and interpret the theory with Dirichlet boundary

conditions (A.3) as the deformation of the alternate fixed point by a complex source J for
α [137, 138]. It follows by Wick’s theorem that the propagator for the boundary field α at
the alternate quantization fixed point is

⟨α(ω)α†(ω′)⟩f=0 = 2πδ(ω − ω′)G(0)
α (ω) , G(0)

α (ω) = −
[
α(ω)
J(ω) +

α†(ω)
J̄(ω)

]
, (A.6)
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where α in G
(0)
α is obtained from the boundary limit of a regular solution of the bulk

equations of motion with boundary condition (A.3) for r → 0. The Fourier transform is
defined according to

α(τ) =
∫
dω

2π e
−iωτα(ω) , α†(τ) =

∫
dω

2π e
iωτα†(ω) , (A.7)

and similarly for J(τ), J̄(τ).
All that is left to do is to solve the Euclidean Klein-Gordon equation in a Coulomb

potential:
−r2(∂0 − iA0)2Φ− r2∂2rΦ+m2Φ = 0 . (A.8)

Using A0 = −ig/r and setting Φ(τ, r) = e−iωτΦ(r), we find

−r2∂2rΦ+
[
m2 − (g + irω)2

]
Φ = 0 . (A.9)

The most general solution of (A.9) can be written as a linear combination of Whittaker’s
W functions:

Φ(r) = c1Wig,−ν(2rω) + c2W−ig,ν(−2rω) . (A.10)

In the following we focus on ω > 0. From Wx,y(z)
z→∞∝ e−z/2, we infer that regularity at

r → ∞ implies that we need to set c2 = 0 in (A.10). We then extract α and β from the
comparison of (A.2) with the expansion of the Whittaker’s function

Wx,y(z) z→0∼ z
1
2−y

Γ(2y)
Γ
(
1
2 − x+ y

) + z
1
2+y

Γ(−2y)
Γ
(
1
2 − x− y

) . (A.11)

Similarly solving the equation for Φ†, we conclude

α(ω)
β(ω) = α†(ω)

β†(ω) = (2ω)−2ν
Γ(2ν)Γ

(
1
2 − ν − ig

)
Γ(−2ν)Γ

(
1
2 + ν − ig

) , ω > 0 . (A.12)

Note that α, β are not complex conjugates of α†, β† on the solution. The propagator then
follows from (A.6):

G(0)
α (ω) = (2ω)−2ν

4Γ(2ν)Γ
(
1
2 − ν − ig

)
Γ(1− 2ν)Γ

(
1
2 + ν − ig

) , ω > 0 . (A.13)

An important remark follows. Consider the Euclidean propagator (A.13) analytically
continued to complex values of ω = |ω|eiλ. We find that for g > 0 and 0 < ν < 1/2, the
imaginary part of the propagator vanishes for a value λ = λ∗ between 0 and π/2:

Im
[
G(0)
α (|ω|eiλ∗)

]
= 0 for 0 ≤ λ∗ < π/2 . (A.14)

Additionally, such a zero is unique for −π/2 ≤ λ ≤ π/2. The property (A.14) follows by
noticing that the equation Im

[
G

(0)
α (|ω|eiλ∗)

]
= 0 is equivalent to

e4πg sin (2 (π − 2λ∗) ν)− 2e2πg sin (4λ∗ν)− sin (2 (π + 2λ∗) ν) = 0 . (A.15)
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(A.15) is obtained by writing the ratio G(0)
α /

[
G

(0)
α

]∗
using the identity Γ(1/2 + x)Γ(1/2−

x) = π/ cos(πx) to simplify the Gamma functions. The unique solution of (A.15) for
−π/2 ≤ λ ≤ π/2 can be written in a simple form in the limits g → 0 and g → ∞:

λ∗ =


0 + π sin(πν)

2ν cos(πν)g +O
(
g3
)

for g → 0

π

2 − sin(2πν)
2ν e−2πg +O

(
e−4πg

)
for g → ∞ .

(A.16)

It can be checked that λ∗ monotonically grows from 0 to π/2 as g increases (with 0 <
ν < 1/2). Note that the propagator (A.13) is real on the Euclidean axis for g = 0:
G

(0)
α (ω) = ω−2ν 22ν+1Γ(ν)

Γ(1−ν) > 0. We also find that the real part of the propagator is positive
when the imaginary part vanishes, Re

[
G

(0)
α (|ω|eiλ∗)

]
> 0.

We finally consider a double-trace defect deformation of the form

δS = f

∫
dτα†α . (A.17)

This deformation is relevant for ν < 1/2. The exact Euclidean propagator in this case
can be obtained from (A.6) by resumming the perturbative series in f , leading to the well
known result (see e.g. [40, 139]):

⟨α(ω)α†(ω′)⟩ = 2πδ(ω − ω′)Gα(ω) , Gα(ω) =
G

(0)
α (ω)

1 + fG
(0)
α (ω)

. (A.18)

The retarded propagator Gα,R is obtained by analytically continuing the Euclidean expres-
sion from ω > 0 as

Gα,R(ωL) =

Gα(|ωL|e
−iπ2 ) for ωL > 0

Gα(|ωL|ei
π
2 ) for ωL < 0 .

(A.19)

The property (A.14) implies that, for f < 0, the retarded propagator analytically
continued to the upper half plane has a tachyon pole for Im(ωL) > 0 and Re(ωL) < 0. Such
a pole corresponds to a solution of the classical equations of motion with purely outgoing
boundary conditions which grows in time. Therefore it signals an instability of the vacuum.
No such pathology occurs for f > 0, in which case we can safely expand the result at small
frequencies ω/|f | 1

2ν ≪ 1 and find a result corresponding to an operator of scaling dimension
∆ = 1

2 + ν (up to a contact term).

A.2 Tachyons for a supercritical Coulomb potential

In this section we study the Klein-Gordon equation for a charged field in AdS2 in an
external potential,

r2(∂0 − iA0)2Φ− r2∂2rΦ+m2Φ = 0 , (A.20)

where we work in Lorentzian signature, such that A0 = g/r with g2 > 1/4+m2, correspond-
ing to a supercritical Coulomb potential. We will be particularly interested in the regime
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ν̃ =
√
g2 −m2 − 1/4 ≪ 1. We introduce a cutoff at a small radius r = r0, and impose the

most general linear boundary condition on Φ as in (2.36):[
r∂rΦ−

(1
2 + f̂

)
Φ
]
r=r0

= 0 . (A.21)

In the following we show that the problem specified by (A.20) and (A.21) admits infinitely
many tachyonic solutions with negative real part of the frequency.

We consider the following solution to (A.20):

Φ ∝ e−iωtWig,iν̃(−2irω) . (A.22)

(A.22) behaves as Φ ∝ e−iωteiωr for r → ∞, and thus corresponds to purely outgoing
boundary conditions for Re(ω) < 0. The expansion for r ≪ ω−1 of the solution (A.22)
takes the general form

Φ ∼ αr1/2−iν̃ + βr1/2+iν̃ , (A.23)

where the ratio between the modes reads

α

β
= (−2iω)−2iν̃

Γ (2iν̃) Γ
(
1
2 − ig − iν̃

)
Γ (−2iν̃) Γ

(
1
2 − ig + iν̃

) . (A.24)

Focusing on ω ≪ 1/r0, we can express the boundary condition (A.21) in terms of the
modes (A.23). Using (A.24) and working at leading order in ν̃ ≪ 1, we find the condition:(

−2 c ω r0 eiγ̃
)−2iν̃

= 1 , (A.25)

where we defined
γ̃ = π

e2πg + 1 , (A.26)

and c is an O(1) positive number given by

c = exp
[
1
2ψ

(1
2 + ig

)
+ 1

2ψ
(1
2 − ig

)
− 1
f̂
+ 2γE

]
, (A.27)

with γE is the Euler-Mascheroni constant. (A.25) has infinitely many solutions given by

ωn = − 1
2cr0

e−iγ̃−nπ/ν̃ , n ∈ Z+ , (A.28)

where we excluded n ≤ 0 since our approximations break down for ω ≳ 1/r0. Noticing
that 0 < γ̃ < π/2 for g > 0 (as we assumed throughout this section), we see that the
frequencies (A.28) have Re(ωn) < 0 and Im(ωn) > 0. The corresponding solutions (A.22)
thus grow in time and signal an instability of the Φ = 0 saddle-point. For the physical
case of the ℓ = 0 mode of a 4d scalar we have m = 0, thus (from the condition of small ν̃)
g ≃ 1/2 and we find

Im(ωn) ≃ −0.13Re(ωn) for g = 1/2 . (A.29)
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A.3 The effective potential from the soliton solution

In a semiclassical theory the connected generating functional W [J ] and one point function
Ā[J ] are:

W [J ] =
(
S +

∫
dt JA

) ∣∣∣
A saddle

,

Ā[J ] = δW [J ]
δJ

,

(A.30)

where in the first line we used the saddle point approximation and set W(A) = 0 for
simplicity, cf. (2.32). (We will restore it later.) The Legendre transform of W [J ] is the 1PI
effective action:

Γ[Ā] =W [J [Ā]]−
∫
dt J [Ā] Ā , J [Ā] = −δΓ[Ā]

δĀ
. (A.31)

Now we specialize to constant Ā (and hence constant source J) and integrate the above
equation to get:54

Γ(Ā) ≡ T V(Ā) = −T
∫ Ā

0
dĀ′ J(Ā′) . (A.32)

Now let us determine J in terms of the quantities we know. The saddle point condition
from the first line of (A.30) is

0 = δS

δA
+ J =⇒ J = −4νB(A) , (A.33)

where we used (2.13) combined with the fact that the phase of the scalar Φ is constant for
the soliton solution. Plugging this result back into (A.32) our final formula is:

V(Ā) = −4ν
∫ Ā

0
dĀ′B(Ā′)

= 4ν
∫ Ā

0
dĀ′ s(g)

(
Ā′
) 1/2+ν

1/2−ν

= 4ν
(1
2 − ν

)
s(g)

(
Ā
) 1

1/2−ν ,

(A.34)

which agrees with (2.32) with W(A) = 0. We can restore W(A) dependence by adding
4νW(A) to S in (A.30) and the first line of (A.33), which then shifts J by 4νW ′(A), which
upon integrating over A as in (A.32) simply adds 4νW(A) to the result in (A.34) as stated
in the main text in (2.32).

A.4 Quantization of the screening cloud for a light massive scalar

In section 2.6 we proved that a line charged under a one-form symmetry cannot flow to a
topological line in the IR, if the topological operator implementing the one-form symmetry

54We can also obtain that

W (J) = T

∫ Ā(J)

0
dĀ′ (J − J(Ā′)

)
;

we can verify that this equation solves the second line of (A.30) by taking the J derivative.
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can be cut-open. In this appendix we explore an application of this result to Wilson lines in
QED4 in the Coulomb phase with a charge qϕ > 1 massive scalar. Because of the one-form
symmetry, supercritical Wilson lines with charge q ̸= 0 mod qϕ cannot become topological
in the IR. We show how this expectation is borne out by explicitly quantizing the screening
soliton. We find that, for sufficiently small mass, the endpoint of the defect RG flow is a
Wilson line of charge qIR ̸= 0.

The action of the model we consider reads:

S = 1
e2

∫
d4x

[
|∂µΦ− iqϕAµΦ|2 −m2|Φ|2 − 1

4F
2
µν

]
, (A.35)

where we take qϕ > 1 (integer), m2 > 0 and we neglected the quartic scalar vertex for
simplicity; this will not affect our considerations.

We now consider a Wilson line of charge q ≫ 1. As in section 2.3, we regulate this
insertion by cutting off space at a surface r = r0. As we will focus on distances r ≫ r0, the
detailed form of the boundary conditions at r = r0 will not be important for us.

In the massless limit, the trivial saddle-point A0 = e2q
4πr is unstable when the Wilson

line is supercritical for q > 2π/(qϕe2) or when deforming the alternate quantization fixed
point by a double-trace operator with negative coefficient f . In both cases we schematically
denote Rcloud the radius of the screening cloud. For supercritical lines with ν̃ ≪ 1 this
scales as Rcloud ∼ r0e

π/ν̃ , where ν̃ =
√
e4q2ϕq

2/(4π2)− 1. For double-trace deformations it

is parametrically set by the coupling, Rcloud ∼ |f |1/(2ν̂), where ν̂ =
√
1− e4q2ϕq

2/(4π2).
A sufficiently large mass term m ≳ R−1

cloud sets an IR cutoff for the screening cloud. The
scalar therefore does not fully screen the Wilson line anymore, leaving a remnant Coulomb
field at distances r ≳ m−1 irrespective of the value of q mod qϕ. A quantitative analysis
for qϕ = 1 can be found in [60]. Quantum effects do not qualitatively change the IR limit of
the Wilson line (though they might change the value of the charge of the endpoint by an
O(1) amount for qϕ > 1).

In what follows we focus on the regime m≪ R−1
cloud. In this case, a naive extrapolation

of the analysis of the massless setup in sections 2.2 and 2.3 suggests that the Coulomb field
of unstable Wilson line is fully screened for every value of q and qϕ. We will see below that
this is not the case and that for distances larger than the Compton wavelength there is a
nontrivial electric flux, in agreement with the one-form symmetry charge.

Consider first the theory in the presence of a charge q Wilson line, such that q/qϕ ∈ N.
In this case we do not expect any subtlety and we can describe the IR limit of the line defect
at distances r ≳ Rcloud via the effective description (2.47). As discussed in section 2.4, this
amounts to expanding the scalar field around a non-trivial solution of the equations of
motion in the presence of a source (2.45). In the massive case, up to gauge transformations,
the profile takes the following form

⟨Φ(r)⟩ = ⟨Φ̄(r)⟩ = hs(r)√
2
, hs(r) =

e2v

4π
e−mr

r
. (A.36)

We now quantize the zero modes of the theory in the background (A.36). We work
in the gauge Ar = 0. This completely specifies the gauge up to r-independent gauge
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transformations. We define fluctuations as follows:

Φ = hs(r)√
2

+ e
δϕ+ iδψ√

2
, A0 = 0 + e a0 , (A.37)

where δϕ and δψ are real and we neglected the angular components of the gauge field as
these will not play a role in what follows. The quadratic action then reads:

S ≃
∫
d4x

[
1
2 (∂µδϕ)2 +

1
2
(
∂µδψ − qϕhs(r)a0δ0µ

)2
− m2

2
(
δϕ2 + δψ2

)
+ 1

2 (∇a0)2
]
+ . . . .

(A.38)
The linearized scalar U(1) charge density is given by:

j0 = −iqϕ
∂L
∂Φ̇†Φ+ c.c = qϕ

e
hs(r)

(
δψ̇ − qϕhs(r)a0

)
+ . . . , (A.39)

which is normalized so that Q =
∫
j0 ∈ qϕZ, as we will see. (A.39) measures the charge

density at distance r ≳ Rcloud, since we are working in the effective intermediate energy
description of the line, where only the tail of the screening cloud is visible.

From (A.38) we derive the equations of motion for δψ and a0:

−∂2δψ + qϕȧ0hs(r)−m2δψ = 0 ,
∇2a0 + qϕhs(r)(δψ̇ − qϕhs(r)a0) = 0 .

(A.40)

In what follows we will need three nontrivial solutions of the equations (A.40). The first is
given by:

δψ ∝ hs(r) , a0 = 0 . (A.41)

This solution clearly corresponds to an infinitesimal U(1) rotation of the scalar profile (A.37).
To find the other, we set δψ = ȧ0 = 0 and consider the radial equation for a0:

1
r2
∂r
(
r2∂ra0

)
= q2ϕh

2
s(r)a0 . (A.42)

This equation can be solved numerically. It admits two solutions, which can be distinguished
by their behavior for r ≪ m−1:

a
(1)
0 (r) mr→0∼ 1

rδ
, a

(2)
0 (r) mr→0∼ 1

r1−δ
, (A.43)

where

δ = 1
2 + 1

2

√
1 + q2ϕ

e4v2

4π2 > 1 , (A.44)

so that a(1)0 is singular and a(2)0 is regular for r → 0. The solutions in (A.43) are exact in the
massless limit. For rm≫ 1, both solutions take the asymptotic form a(i)(r) ∼ c

(i)
1 + c

(i)
2 /r,

where c(i)1 and c(i)2 are constants.55 We will not need the explicit expressions for a(1)0 (r) and
a
(2)
0 (r) in what follows.
55Note that c(i)

1 can be removed by a large gauge transformation involving δψ.
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For our purposes it is more convenient to consider the two nontrivial solutions of (A.42)
in terms of two linear combinations of the modes a(1)0 (r) and a

(2)
0 (r) in (A.43). The first

linear combination is such that the gauge field has no electric flux on the cutoff surface
R0 ≳ Rcloud for the effective defect field theory description. (R0 is not to be confused with
the UV cutoff r0.) We call this the normalizable solution. This is formally written as

a
(nor)
0 (r) = α1R

δ−1
0 a

(1)
0 (r) + α2R

−δ
0 a

(2)
0 (r) such that 4πr2∂ra(nor)0 (r)|r=R0 = 0 ,

(A.45)
where α1/α2 = (δ − 1)/δ for R0m≪ 1. Without loss of generality, we normalize α1 and α2
in (A.45) so that

lim
r→∞

4πr2∂ra(nor)0 (r) = −1 , (A.46)

which because of Gauss’s law (A.42) implies

4πq2ϕ
∫ ∞

R0
dr r2h2s(r)a

(nor)
0 (r) = −1 . (A.47)

Importantly for what follows, when we take the massless limit m → 0 at fixed r/R0, we
have α2 ∝ α1 → 0 for the integral in (A.47) to converge.

For future purposes we also define another linear combination ã0(r) of the solu-
tions (A.43) which has the same flux at r = R0 and at infinity:

4πr2∂rã0(r)|r=R0 = lim
r→∞

4πr2∂rã0(r) = −1 , (A.48)

that, because of Gauss’s law (A.42), imply

4πq2ϕ
∫ ∞

R0
dr r2h2s(r)ã0(r) = 0 . (A.49)

Explicitly this solution reads

ã0(r) = β1R
δ−1
0 a

(1)
0 (r) + β2R

−δ
0 a

(2)
0 (r) , (A.50)

where for R0m ≪ 1 we have β1 = α1 + 1/(4δπ) and β2 = α2. Therefore in the massless
limit ã0(r) ∝ a(1)(r), which is regular at infinity.

We plot the schematic form of the dimensionless electric flux r2Ftr associated with
the solutions above in figures 13a and 13b. In the normalizable solution a(nor)(r), the flux
continuously increases until distances r ∼ 1/m, at which it becomes constant. For the
solution ã(r) instead the electric flux first decreases, reaching a minimum, and then it starts
rising and asymptotically approaches a constant value. It is important to stress that the
distance at which the electric flux reaches its minimum increases as we make the mass
smaller, rmin ∼ 1/m, and it drifts to infinity in the massless limit.

When quantizing the theory, the two solutions (A.41) and (A.45) provide the zero-modes
inside the decomposition of the fields δψ and a0

δψ(t, x) = hs(r) x̂+ wave-modes ,

a0(t, x) = eqϕ a
(nor)
0 (r) p̂+ wave-modes .

(A.51)
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Figure 13. The electric flux r2E = r2Ftr associated with the solutions a(nor)
0 (r) (figure 13a)

and ã(r) (figure 13b) for different values of the mass m (in units of the cutoff R0). These plots were
obtained by setting qϕe2v

4π = 1.

To bypass the full quantization of the system (which would require solving also for the wave
modes) and directly find the commutation relation between x̂ and p̂, we impose the charge
action on Φ:

[Q,Φ] = qϕΦ =⇒ [δψ,Q] = iqϕhs(r) , (A.52)

where we linearized around the solution (A.36). From (A.39) and (A.47) we read the
charge operator

Q = −
4πq2ϕ
e

∫ ∞

R0
dr r2h2s(r)a0(t, r) = qϕp̂ . (A.53)

We conclude that at quantum level the operators x̂ and p̂ form a canonical pair

[x̂, p̂] = i. (A.54)

Remarkably, the decomposition (A.51) and the commutation relation (A.54) are all we
need to construct solitonic states with the properly quantized charge. Explicitly, we notice
that the phase of Φ is a compact field. When linearizing around the background (A.36),
this implies that x̂ is defined only modulo 2π in (A.51). Therefore, calling |0⟩ the state
such that p̂|0⟩ = 0, we can construct the following quantum states

|n⟩ = einx̂|0⟩ for n ∈ N . (A.55)

(A.54) implies that
p̂|n⟩ = n|n⟩ , (A.56)

and therefore, using (A.53) we conclude that the states |n⟩ have quantized values for the
gauge charge in units of qϕ

Q|n⟩ = nqϕ|n⟩ . (A.57)

(A.57) implies that the screeneing cloud for the state |n⟩ has an extra qϕn units of charge
with respect to the ground state, which fully screens the Wilson line. The expectation value
of the gauge field and the charge density are similarly computed from (A.39) and (A.51).
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Note that to linear order there is no difference in the expectation value of the scalar field
profile between a state |n⟩ and |0⟩; this is no longer true at higher orders.

We are finally ready to address the issue of screening of Wilson lines with charge /∈ qϕN.
To this aim, consider a Wilson line with charge q + δq, with q/qϕ ∈ N and δq an O(1)
correction, δq ≪ q. We model this setup by perturbing the scalar IR defect previously
analyzed via the following term

δSD = −δq
∫
dtA0 . (A.58)

This term induces a classical profile for the gauge field in addition to the quantized part.
Thus (A.51) is modified to:

δψ(t, x) = hs(r) x̂+ wave-modes ,

a0(t, x) = eqϕa
(nor)
0 (r) p̂+ e δq ã0(r) + wave-modes .

(A.59)

where ã0(r) is the solution (A.48) which has the same flux at r = R0 and r → ∞ (cf. (A.48)
and figure 13b); by Gauss’s law thus, ã0(r) does not contribute to the total charge of the
cloud. It does however contribute to the electric flux, which for r ≫ m−1 on a state |n⟩ is
given by

lim
r→∞

4πr2∂ra0(r)|n⟩ = −e (qϕn+ δq) |n⟩ . (A.60)

From (A.60) we conclude that when δq = 0 mod qϕ, the flux is fully screened on the
state | − δq/qϕ⟩. This state is obviously the energetically favored one. The expectation
value of the gauge field on this state reads

⟨a0(r)⟩ = δq e
[
ã0(r)− a

(nor)
0 (r)

]
= e δq

4πδR
δ−1
0 a

(1)
0 (r) , (A.61)

where a(1)0 (r) is the mode which is singular for rm≪ 1 in (A.43). In figure 14 we show the
behavior of the resulting electric field (normalized by r to be dimensionless); as expected
the field vanishes at large distances. For rm≪ 1 the flux decays as a power law according
to (A.43).

For δq ̸= 0 mod qϕ, instead, (A.60) implies that the electric flux cannot be fully
screened by the scalar field, in agreement with our expectation. In this case we expect
the ground state to be given by the state in which the maximal possible amount of charge
has been screened at infinity,56 at least for sufficiently small m. The expectation value of
the gauge field on this state is a linear combinations of the two modes a(1)0 (r) and a

(2)
0 (r)

in (A.43):

⟨a0(r)⟩ = e (δq − nqϕ) ã0(r) + nqϕ
[
ã0(r)− a

(nor)
0 (r)

]
= e

[
δq

4πδ + α1(δq − nqϕ)
]
Rδ−1

0 a
(1)
0 (r) + e α2(δq − nqϕ)R−δ

0 a
(2)
0 (r) .

(A.62)

As evident from the plot 13b, the term e (δq − nqϕ) ã0(r) leads to a nontrivial electric field
which can be measured at large distances r ≫ 1/m.

56For instance, we expect a Wilson line of supercritical odd charge q > 0 interacting with a charge 2 scalar
field to flow to a (positive) charge 1 Wilson line at distances r ≫ 1/m.
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Figure 14. A log-log plot of the electric flux E = r2Ftr associated with the solution ã0(r)−a(nor)
0 (r)

which describes the screened electric field for δq mod qϕ = 0. The plot corresponds to qϕe2v
4π = 1.

We close this section with some comments on the massless limit, taken as m→ 0 for
fixed r/R0. For a line such that q = 0 mod qϕ, this limit is smooth. Indeed in this case the
expectation value of the gauge field is given by (A.61), which for m = 0 reduces exactly to
the expression in (A.43), in agreement with the discussion in sections 2.3 and 2.4. For q ̸= 0
mod qϕ the gauge field (A.62) admits also a contribution proportional to a(2)0 (r). However,
according to the discussion below (A.45), the coefficients α1 and α2 become infinitesimal in
the massless limit. Thus from (A.61) and (A.62) we conclude that the electric flux, and
more in general the screening cloud, do not depend on the value of q mod qϕ for r ≪ m−1.
Indeed, as already commented, figure 13b shows that the electric flux constantly decreases
for r ≪ 1/m. Physically this behavior is due to the fact that the scalar wave-function is
delocalized over distances of the order of the Compton wavelength. It is thus necessary to
make measurements at r ≳ m−1 to see the effects of the quantization of the U(1) charge
of the matter field. In the massless limit, the wave-function can be spread over arbitrary
distances and it is possible to store fractional units of charge at r → ∞.57 This is not
in contradiction with the general theorem proven in section 2.6, since the defect remains
nontrivial at all scales also in the massless limit due to the conformal one-point function for
the scalar field (A.36).

The same general discussion remains true upon including a quartic coupling, which only
modifies the expressions for the solutions in (A.43). In particular analogous conclusions
are found for massive scalars, and Wilson lines charged under the one-form symmetry lead
a remnant Coulomb field at large distances. In the massless limit, one finds again the
screening cloud does not depend on the value of q mod qϕ. As remarked in section 2.6,
this raises a small puzzle, since the analysis in section 2.4 shows that all Wilson lines flow
logarithmically to a trivial one in the double-scaling limit. We plan to analyze this issue
further in future work.

57This is the physical meaning of (A.62) in the massless limit, since α2 is infinitesimal while the solution
a(2)(r) ∼ rδ grows with the distance.
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B Details on fermionic QED4

B.1 Defect propagator and double-trace deformation for subcritical charge

In this section we compute the propagator of the defect operator α for the theory (3.19)
at the alternate quantization fixed point. We then use this result to compute the exact
propagator in the presence of a double-trace deformation as in (3.46). We argue that such
a propagator does not have a tachyon pole.

We start by computing the propagator at f = 0. We consider the action in Euclidean
signature

S =
∫

AdS2
d2x

√
g ψ̄

(↔
/∇AdS2 − gγ0 +m

)
ψ , (B.1)

where the Euclidean gamma matrices are given by γ0 = σ1 and γ1 = σ3.
To extract the propagator we pursue the generating function approach as in ap-

pendix A.1. We consider the theory with Dirichlet boundary conditions in terms of the
modes (3.26),

β(τ) = m+ ν

ν
J(τ) , β̄(τ) = m+ ν

ν
J̄(τ) , (B.2)

where J is an external Grassmanian function, which is interpreted as an external source.
The action is stationary with Dirichlet boundary conditions of the form (B.2) if we add the
following boundary term:58

Sbdry = ν

m+ ν

∫
dτ
[
ᾱ(τ)β(τ) + β̄(τ)α(τ)

]
=
∫
dτ
[
ᾱ(τ)J(τ) + J̄(τ)α(τ)

]
, (B.3)

where in the last step we used the Dirichlet conditions (B.2).
Importantly, the fact that the bulk action is linear in derivatives implies that the on-shell

action coincides with the boundary term (B.3). We may thus follow the GKPW prescription
as in appendix A.1 and interpret the theory with Dirichlet boundary conditions (B.2) as
the deformation of the alternate fixed point by a complex source J for α [137, 138]. Then
the propagator for the boundary field α at the alternate quantization fixed point is59

⟨α(ω)ᾱ(ω′)⟩f=0 = 2πδ(ω − ω′)G(0)
α (ω) , G(0)

α (ω) = −
[
∂α(ω)
∂J(ω) +

∂ᾱ(ω)
∂J̄(ω)

]
, (B.4)

where similarly to (A.6), α is obtained from the boundary limit (cf. (3.25)) of a regular
solution of the bulk equations of motion with boundary condition (B.2) for r → 0. The
Fourier transform is defined according to

α(τ) =
∫
dω

2π e
−iωτα(ω) , ᾱ(τ) =

∫
dω

2π e
iωτ ᾱ(ω) , (B.5)

and similarly for J(τ), J̄(τ).
58This is just the Euclidean version of the term (3.31) in the limit r0 → 0; note however that its

interpretation is now different, as we are imposing Dirichlet conditions, rather than minimizing the action
for arbitrary values of the fluctuations.

59G
(0)
α (ω) is the sum of α(ω) with J(ω) stripped off, and similarly for ᾱ(ω), just like in the scalar

case (A.6). Here we have to write the expression a bit differently from the scalar case, since we are dealing
with Grassmannian quantities.
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To find the value of α(ω) to be used in (B.4) we thus need to solve the Euclidean
Dirac-Coulomb equation for ψ(τ, r) = e−iωτψ(r):[

(−iωr − g) γ0 +
(
r∂r −

1
2

)
γ1 +m

]
ψ = 0 . (B.6)

We set

ψ =


1
2(ψ1 + ψ2)
i

2(ψ1 − ψ2)

 , (B.7)

so that (B.6) reduces to

r∂rψ1 +
(
rω − ig − 1

2

)
ψ1 +mψ2 = 0 , (B.8)

r∂rψ2 +mψ1 +
(
ig − rω − 1

2

)
ψ2 = 0 . (B.9)

Using (B.9) to solve for ψ1 in terms of ψ2 and ∂rψ2, we find

ψ1 =
1
2m [(1 + 2rω − 2ig)ψ2 − 2r∂rψ2] , (B.10)

and (B.8) reduces to

−r2∂2rψ2 +
[
m2 − (g + irω)2 + rω − 1

4

]
ψ2 = 0 . (B.11)

The most general solution to this equation is a linear combination of Whittaker W functions

ψ2 = c1Wig− 1
2 ,ν

(2rω) + c2W 1
2−ig,ν

(−2rω) . (B.12)

In the following we focus on ω > 0. From Wx,y(z)
z→∞∝ e−z/2, we infer that regularity

implies that we need to set c2 = 0 in (B.12). Comparing (B.7) with (3.25), we find that
the r → 0 limit of ψ2 can be written as

ψ2
r→0∼ 2(g + iν)

ν +m− ig
βr

1
2+ν + 2m

ν +m− ig
αr

1
2−ν . (B.13)

We thus extract α and β by comparing with the expansion of the Whittaker’s function (A.11).
Performing the same steps also for ψ̄, we eventually find

α(ω)
β(ω) = ᾱ(ω)

β̄(ω)
= iω−2ν Γ(2ν)Γ (1− ig − ν)

m22νΓ(−2ν)Γ (−ig + ν) , ω > 0 . (B.14)

Note that ᾱ/β̄ ̸= α†/β† on the solution. The propagator then follows from (B.4):60

G(0)
α (ω) = −2iω−2ν ν/m

m+ ν

Γ(2ν)Γ (1− ig − ν)
22νΓ(−2ν)Γ (−ig + ν) , ω > 0 . (B.15)

60Note that the result (B.15) cannot be straightforwardly continued to ω < 0, since the fermion propagator
is discontinuous at ω = 0.
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For future purposes, we study the imaginary part of (B.15) for g > 0 and 0 < ν < 1/2.
First note that for g = 0, we find G

(0)
α (ω) = iω−2ν |c| where |c| > 0 is a constant. More

generally, we find that for g > 0 and 0 < ν < 1/2 the propagator (B.15) always has a
positive imaginary part for Re(ω) > 0:

Im(
[
G(0)
α (|ω|eiλ)

]
) > 0 for − π

2 ≤ λ ≤ π

2 . (B.16)

We now consider a double-trace defect deformation as in (3.46). The exact Euclidean
propagator in this case can be obtained from (B.15) by resumming the perturbative series
in f as in (A.18):

⟨α(ω)ᾱ(ω′)⟩ = 2πδ(ω − ω′)Gα(ω) , Gα(ω) =
G

(0)
α (ω)

1 + fG
(0)
α (ω)

. (B.17)

The retarded propagator Gα,R is obtained by analytically continuing the Euclidean ex-
pression from ω > 0 as in (A.19). Then the property (B.16) implies that the retarded
propagator analytically continued on the upper half plane Im(ω) > 0 has no singularities
irrespectively of the sign of f . In particular, there is no tachyon pole, differently than in
the scalar setup analyzed in appendix A.1. The expansion of (B.17) for ω/|f | 1

2ν ≪ 1 takes
qualitatively the same form for both signs of f , corresponding (up to a contact term) to an
operator of scaling dimension ∆ = 1

2 + ν.61 In conclusion, the defect fermionic propagator
does not display any pathology.

We also comment that, by numerically studying G(0)
α (ω) for m = 1 and m = 1/2, and g

such that 0 < ν < 1/2, we found that the imaginary part Im(
[
G

(0)
α (|ω|eiλ)

]
) admits zeroes

for λ = π
2 + δm,g where δm,g > 0 is a numerically small number. For instance for m = 1 and

g = 0.9 we find δm,g ≃ 0.0016, while for g ≪ 1 and arbitrary m we find δm,g ≃ g2π. Such a
zero of the imaginary part implies a pole in the second sheet for the double-trace deformed
propagator (B.17) at f < 0, for Re(ω) < 0 and Im(ω) < 0. As commented in footnote 34,
we expect the imaginary value of ω on this pole to be associated with the lifetime of the
unstable vacuum after a negative double-trace defect deformation is suddenly turned on. It
would be interesting to investigate this connection further.

B.2 Massive Dirac-Coulomb equation for subcritical charge

In this section we study the AdS2 Dirac-Coulomb equation for the model (3.19) in the
presence of the deformation (3.48):[

i
(
/∂ − i /A

)
−m± i rγ3M

]
ψ(±)(t, r) = 0 , (B.18)

where m > 0, M > 0, A0 = g/r with g > 0 and we work in Lorentzian signature with the
gamma matrices given by (3.20) and (3.9). Note that the mass term M does not modify
the near-boundary behavior (3.25).

61Note however that the propagator differs by a sign in both cases, hinting at a change in nature between
creation and annihilation operators and thus at a screening mechanism; we analyze this mechanism in
section 3.3.
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We are interested in finding bound states, i.e. solutions of (B.18) with energy ω such
that M2 > ω2. To this aim we follow [60] and set

ψ(±)(t, r) =
√
re−iωt

 e− ρ
2
√
M ∓ ω

(
Φ(±)
2 (ρ)± Φ(±)

1 (ρ)
)

e−
ρ
2
√
M ± ω

(
Φ(±)
1 (ρ)∓ Φ(±)

2 (ρ)
)
 , (B.19)

where we defined
ρ = 2λr , λ ≡

√
M2 − ω2 . (B.20)

Using (B.19), (B.18) reduces to

∂ρΦ(±)
1 +

(
gω

ρ
√
M2 − ω2

− 1
)
Φ(±)
1 +

(
gM

λ
±m

)
Φ(±)
2 = 0 , (B.21)

∂ρΦ(±)
2 −

(
gM

λ
∓m

)
Φ(±)
1 − gω

ρλ
Φ(±)
2 = 0 . (B.22)

Solving (B.22) for Φ(±)
1 as

Φ(±)
1 = λρ∂ρΦ(±)

2 − gΦ(±)
2 ω

gM ∓mλ
, (B.23)

we recast (B.21) in the form

ρ∂2ρΦ
(±)
2 + (1− ρ)∂ρΦ(±)

2 +
(
gω

λ
− ν

ρ

)
Φ(±)
2 = 0 , (B.24)

where ν =
√
m2 − g2. The solution of (B.24) that is regular for ρ → ∞ (with ρ > 0) is

written in terms of a confluent hypergeometric function

Φ(±)
2 (ρ) ∝ ρνU

(
ν − gω

λ
, 1 + 2ν; ρ

)
. (B.25)

We want to find the quantization condition on ω for the most general linear boundary
condition on the modes (3.25):

β/α = m+ ν

ν
f = sgn(f)µ2ν , (B.26)

where we defined µ =
(
m+ν
ν |f |

)1/(2ν)
> 0 as the mass scale associated with the double-trace

perturbation. We are particularly interested in the consequences of a negative f in (B.26),
but we will study both signs for generality.

To proceed, we compare the solution (B.19) and (B.26) to rewrite the small ρ expansion
of Φ(±)

2 in terms of α and β

Φ(±)
2

ρ→0∼ β

(
ρ

2
√
M2 − ω2

)ν [ g

2(m+ ν)
√
M ± ω

∓ 1
2
√
M ∓ ω

]

+ α

(
ρ

2
√
M2 − ω2

)−ν
[

1
2
√
M ± ω

∓ g

2 (m+ ν)
√
M ∓ ω

]
.

(B.27)
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Using the expansion of the confluent hypergeometric function,

U(x, 1 + y; z) z→0∼ z−y
Γ(y)
Γ(x) +

Γ(−y)
Γ(x− y) , (B.28)

we extract the ratio α/β from the comparison of (B.25) and (B.27):

β(±)

α(±) =
4νλ2ν(M ∓ ω)[g(M ± ω)∓ λ(ν +m)]Γ(−2ν)Γ

(
1 + ν − gω

λ

)
Γ(2ν)Γ

(
−ν − gω

λ

)
[(νm+ ν2)M2 ±M (g2ω − νgλ)−mω(νω + gλ)−m2ω2] .

(B.29)
Using (B.29), the boundary condition (B.26) provides a condition on ω from which we

infer the energies ωn of the bound states. Let us state the results for f = 0 and f → +∞:

• f → +∞: this sets α = 0, corresponding to standard quantization. We find

ωn = M√
1 + g2

(n+ν)2

, (B.30)

where n = 1, 2, . . . for (δ) = + and n = 0, 1, 2, . . . for (δ) = −. (B.30) agrees with the
well known result for the relativistic Hydrogen atom [60].

• f = 0: this sets β = 0, corresponding to alternate quantization. We find

ωn = M(n− ν)√
(n− ν)2 + g2

, (B.31)

where again n = 1, 2, . . . for (δ) = + and n = 0, 1, 2, . . . for (δ) = −. Note that
ω0 = − ν

mM is negative. (B.31) is a new result to the best of our knowledge.

Increasing the coupling f from 0 to ∞ smoothly transforms the spectrum (B.31) into (B.30).
For a sufficiently negative f < 0 we instead encounter an interesting phenomenon: as we
increase µ in (B.26) the lowest bound state eventually reaches ω = −M and then dives into
the continuum part of the spectrum. To see this, we look for a solution of (B.26) with
ω ≃ −M . We expand the ratio (B.29) as:

β(±)

α(±) = (gM)2ν
[
−c(±)

1 + c
(±)
2

ω +M

Mg2
+O

(
(ω +M)2
M2g4

)]
, (B.32)

where we defined the following coefficients

c
(±)
1 = π 22ν(m± ν)

g sin (2πν) Γ(2ν)Γ(1 + 2ν) , (B.33)

c
(±)
2 = c

(±)
1

ν

3
(
1− 4ν2 + 6m2 ∓ 3m

)
. (B.34)

Importantly, they are both positive for 0 < ν < 1/2:62 c
(±)
1 > 0 and c

(±)
2 > 0. Note also

that c(+)
1 > c

(−)
1 . We define the critical value for µ as:

µ(±)
c ≡ gM

[
c
(±)
1

] 1
2ν . (B.35)

62To see this one needs to use ν =
√
m2 − g2 and remember that we assumed m > 0 and g > 0 everywhere.
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For f < 0 and µ = µ
(±)
c − δµ with 0 < δµ≪ gM we can use the expansion (B.32) to solve

for the energy of the lowest bound state:

ω ≃ −M
{
1− 2δµ

M

ν g

c
(±)
2

[
c
(±)
1

]1− 1
2ν

}
. (B.36)

(B.36) clearly shows that as we lower δµ to 0 the energy eventually becomes −M , at which
point we have a completely delocalized bound state solution. This solution is sometimes
referred to as a diving state [60]. As we discuss in subsection 3.3, this phenomenon implies
that one unit of charge is screened in the vacuum for µ > µc. Note that µ(+)

c > µ
(−)
c , as

it could have been intuitively expected since the lowest energy mode, n = 0, is absent
from (B.31) for (δ) = +; therefore it takes a stronger perturbation for (δ) = + than for
(δ) = − to make the lowest bound state join the negative continuum part of the spectrum.

B.3 Massive Dirac-Coulomb equation for supercritical charge

In this section we solve for the diving states of the massive Dirac-Coulomb equation (B.18)
in the presence of the gauge field

A0 =


g

r0
for r < r0

g

r
for r ≥ r0 ,

(B.37)

where g > m > 0. We will be interested in the limit 1/r0 ≫M and ν̃ =
√
g2 −m2 ≪ 1.

The equation for ψ(±)(t, r) = e−iωtψ
(±)
< (r) for r < r0 reads[

r

(
ω + g

r0

)
γ0 + i

(
r∂r −

1
2

)
γ1 −m± irγ3M

]
ψ
(±)
< (r) = 0 . (B.38)

In the limit of interest −ω ≃M ≪ g/r0, the above reduces to[
i

(
r∂r −

1
2

)
γ1 −m+ r

g

r0
γ0
]
ψ
(±)
< (r) ≃ 0 , (B.39)

whose solutions satisfying standard boundary conditions (3.68) for r → 0 are

ψ
(±)
< (r) ∝


rJm+ 1

2

(
gr

r0

)
rJm− 1

2

(
gr

r0

)
 . (B.40)

The important conclusion for us is that the ratio between the two components at r = r0 is
independent of ω and M (cf. (3.22) for the notation):

χ
(±)
< (r)
ξ
(±)
< (r)

≃
Jm+ 1

2
(g)

Jm− 1
2
(g) ≡ Rg . (B.41)

A different potential for r < r0 might change the value of Rg, which would however remain
approximately independent of ω and M . For m = 1 we have Rg = 1/g − cot(g).
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The solution ψ(±)(t, r) = e−iωtψ
(±)
> (r) for r > r0 is obtained as in appendix B.2 and

can be found by replacing ν → iν̃ in (B.23) and (B.25). The boundary condition arises
from the requirement of continuity at r = r0, which leads to

χ
(±)
> (r0)
ξ
(±)
> (r0)

= χ
(±)
< (r0)
ξ
(±)
< (r0)

≃ Rg . (B.42)

For63 ωg ≪ 1/r0, we can express the outer solutions χ(±)
> (r0) and ξ

(±)
> (r0) using the small

r mode expansion (3.64) and write the boundary condition (B.42) as

β

α
= gRg −m− iν̃

g −mRg − iν̃Rg
r−i2ν̃0 , (B.43)

which in particular implies |α| = |β|. Proceeding as in the previous section, we find that
the ratio β(±)/α(±) for the solution ψ

(±)
> (r) at ω = −M reads

β(±)

α(±) = (m± iν̃) Γ(−2iν̃)
gΓ(2iν̃) (2Mg)2iν̃ . (B.44)

We conclude that the condition to have a bound state with energy ω = −M reads

(2Mgr0)2iν̃ = e2iν̃η
(±)

, (B.45)

where we defined the following real quantity for convenience

η(±) = 1
2iν̃ log

[
g (m− gRg + iν̃) Γ(2iν̃)

(m± iν̃) (g −mRg − iν̃Rg) Γ(−2iν̃)

]

= Rg + 1
2m(Rg − 1) ∓

1
2m − 2γE +O

(
ν̃2
)
,

(B.46)

where γE is the Euler-Mascheroni constant. For us it is only relevant that η(±) does not
depend on ν̃ for ν̃ ≪ 1/2. The condition (B.45) can be conveniently written as

ν̃ log(2Mgr0) = ν̃η(±) − πn , n = 1, 2, . . . , (B.47)

where we excluded n ≤ 0 since the approximations leading to (B.43) break down for
Mr0 ≳ O(1).64 The result (B.47) agrees with the classic analysis by Pomeranchuk and
Smorodinsky [21].

B.4 Massless Dirac equation for supercritical charge

In this appendix we study the massless Dirac equation in the presence of a supercritical
Coulomb potential (B.37): [

i
(
/∂ − i /A

)
−m

]
ψ(t, r) = 0 , (B.48)

63This requirement arises since the expansion (3.64) holds for ωr ≪ 1.
64In practice, an additional solution for M ≃ 1/r0, intuitively corresponding to n = 0 in (B.47), may exist

for different potentials at r < r0, somewhat similarly to the negative double-trace deformation discussed in
section 3.3.
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where ψ(t, r) = e−iωtψ(r). The solution for r < r0 coincides with (B.40) (at small frequen-
cies). For r > r0 the equation in Fourier space coincides with the Euclidean equation (B.6)
up to the replacement ω → −iω. Therefore, writing the spinor as in (B.7), we obtain the
following equation for ψ2:

r2∂2rψ2 +
[1
4 −m2 + irω + (g + rω)

]
ψ2 = 0 , (B.49)

while ψ1 is given by
ψ1 =

1
2m [(1− 2ig − 2irω)ψ2 − 2r∂rψ2] . (B.50)

We first show that (B.48) admits infinitely many resonances in the negative energy
continuum. To this aim, we use the fact that the solution with purely outgoing boundary
conditions for Re(ω) < 0 reads

ψ(t,r)∝ e−iωt

 1
2mW 1

2+ig,iν̃
(−2irω)+ 1

2W− 1
2+ig,iν̃

(−2irω)
i

2mW 1
2+ig,iν̃

(−2irω)− i
2W− 1

2+ig,iν̃
(−2irω)

 for r > r0 , (B.51)

which behaves as ψ ∼ e−iωt+iωr for |rω| ≫ 1. From the expansion (A.11), we find that the
ratio between the small ωr modes (3.64) corresponding to the solution (B.51) is given by

β

α
= (−2iω)2iν̃ iΓ (−2iν̃) Γ (1− ig + iν̃)

mΓ (2iν̃) Γ (−ig − iν̃) . (B.52)

Using this expression in the boundary condition (B.43) and working at leading order in
ν̃ ≪ 1, we obtain the following condition on the frequency ω:(

−2c ωr0e−iγ̃
)2iν̃

= 1 , (B.53)

where we defined
γ̃ = π

e2πm − 1 , (B.54)

and c is an O(1) positive number given by

c = exp
[

1 +Rg
2m(Rg − 1) +

ψ(1 + im) + ψ(1− im)
2 + 2γE

]
. (B.55)

For m > log(2)
2π ≈ 0.11,65 we have 0 < γ̃ < π and (B.53) admits the following infinite family

of solutions with Re(ω) < 0:

ωn = − 1
2cr0

eiγ̃−πn/ν̃ , n = 1, 2, . . . , (B.56)

where the restriction on n arises from the requirement |ωnr0| ≪ 1, which is needed in order
to be able to use the expansion (3.64) at r = r0. The solutions (B.56) are resonances with
Re(ωn) ∼ Im(ωn) = − exp (−πn/ν̃) /r0 and correspond to poles of the retarded Green’s
function analytically continued to the second sheet. Note that by increasing m the imaginary

65This restriction applies in all the physical cases, since m0 ≥ 1/2 for d ≥ 3.
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part becomes smaller. For m = 1/2 and m = 1, as appropriate for the ℓ = 0 modes in d = 3
and d = 4, we find a numerically small imaginary part

Im(ωn) ≃ Re(ωn)×

0.14 for m = 1
2

0.006 for m = 1 .
(B.57)

The result (B.56) was previously obtained in [31].
We now find the scattering wave-functions. The most general solution of (B.49) is

ψ2 = β
2i (g − ν̃)
g + im− ν̃

(−2iω)−
1
2−iν̃M− 1

2+ig,iν̃
(−2irω)

+α 2im
g + im− ν̃

(2iω)−
1
2+iν̃M 1

2−ig,−iν̃
(2irω) ,

(B.58)

where Mx,y(z) is the Whittaker M function and ψ1 is found from (B.50):

ψ1 = β
2m

g + im− ν̃
(−2iω)−

1
2−iν̃M 1

2+ig,iν̃
(−2irω)

+α 2g − 2ν̃
g + im− ν̃

(2iω)−
1
2+iν̃M− 1

2−ig,−iν̃
(2irω) .

(B.59)

The coefficients α and β are chosen such that they precisely coincide with those in (3.64),
as can be seen using

Mx,y(z) z→0∼ z
1
2+y . (B.60)

The ratio β/α is thus determined by the boundary condition (B.43). In the following we
determine the absolute value |α| = |β| as well by demanding the orthonormality condition∫

dr
√
ggrrψ†

ω(r)ψω′(r) = (2π)δ(ω − ω′) , (B.61)

where ψω denotes the wave-function at frequency ω.
To compute the integral (B.61), we use that the Dirac equation (B.48) implies

(ω − ω′)ψ†
ω(r)ψω′(r) = i√

ggrr
∂r
[√
ggrr ψ̄ω(r)γ1ψω′(r)

]
. (B.62)

(B.62) and the continuity of the wave-functions let us express the integral (B.61) as a
boundary term ∫

dr
√
ggrrψ†

ω(r)ψω′(r) = i lim
r→∞

ψ̄ω(r)γ1ψω′(r)
r(ω − ω′)

= lim
r→∞

ψ†
1(r)ψ′

1(r)− ψ†
2(r)ψ′

2(r)
2ir(ω′ − ω) ,

(B.63)

where we used (B.7) and we have to use ω′ in the primed spinors. To evaluate the limit, we
use the following expansion of the Whittaker function

Mx,y(z) z→∞∼ ez/2z−xΓ(2y + 1)
Γ (1/2− x+ y)

[
1 +O

(1
z

)]
+ e−

z
2 (−1)x−y+ 3

2 zxΓ(2y + 1)
Γ (1/2 + x+ y)

[
1 +O

(1
z

)]
,

(B.64)
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from which we obtain

ψ1(r) r→∞∼ α r1/2+igeirω(2iω)ig−iν̃A(ω)
[
1 +O

(1
r

)]
, (B.65)

ψ2(r) r→∞∼ iβ r1/2−ige−irω(−2iω)−ig+iν̃B(ω)
[
1 +O

(1
r

)]
, (B.66)

where
A(ω) = β

α

2mΓ (1 + 2iν̃)
Γ (1 + ig + iν̃) (g + im− ν̃) − i

2(2iω)2iν̃Γ (1− 2iν̃)
Γ (ig − iν̃) (g + im− ν̃) ,

B(ω) = α

β

2mΓ (1− 2iν̃)
Γ (1− ig − iν̃) (g + im− ν̃) + i

2(−2iω)−2iν̃Γ (1 + 2iν̃)
Γ (iν̃ − ig) (g + im− ν̃) .

(B.67)

Recall that the ratio β/α is an ω-independent phase given by (B.43). We notice that A(ω)
and B(ω) are log-periodic functions of ω

A(ω) = A(ωe±π/ν̃) , B(ω) = B(ωe±π/ν̃) , (B.68)

and that |A(ω)|2 = |B(ω)|2. We therefore find

lim
r→∞

ψ†
1(r)ψ′

1(r)− ψ†
2(r)ψ′

2(r)
2ir(ω′ − ω)

= lim
r→∞

esgn(ω)π(ν̃−g) |A(ω)|2|α|2eir(ω
′−ω) − |B(ω)|2|β|2e−ir(ω′−ω)

2i(ω′ − ω) , (B.69)

where we kept only the leading terms in the expansion for ω → ω′, as the limit clearly
vanishes (in the distributional sense) when ω ̸= ω′. Finally, using |A(ω)|2 = |B(ω)|2 and
|α|2 = |β|2, we get

lim
r→∞

ψ†
1(r)ψ′

1(r)− ψ†
2(r)ψ′

2(r)
2ir(ω′ − ω) = esgn(ω)π(ν̃−g)|A(ω)|2|β|2 lim

r→∞
sin [r(ω′ − ω)]

(ω′ − ω)
= esgn(ω)π(ν̃−g)|A(ω)|2|β|2πδ(ω − ω′) ,

(B.70)

and, from (B.63),∫
dr
√
ggrrψ†

ω(r)ψω′(r) = πesgn(ω)π(ν̃−g)|A(ω)|2|β|2δ(ω − ω′) . (B.71)

The normalization condition (B.61) is thus satisfied by setting

|β|2 = 2e−sgn(ω)π(ν̃−g)

|A(ω)|2 . (B.72)

Our result has an important consequence. Plugging (B.72) into the solutions (B.58)
and (B.59) and recalling the property (B.68), we infer

ψω(re−πn/ν̃) ≃ e−πn/(2ν̃)ψωe−πn/ν̃ (r) , n ∈ Z . (B.73)

In practice, in our calculations we assumed ωr0 ≪ 1, and thus (B.73) holds only as long as
ωr0, ωe

−πn/ν̃r0 ≪ 1. As we explain in section 3.4, (B.73) has important implications for
the screening of supercritical lines when ν̃ ≪ 1.
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C Vector boson instability

In this section, we study perturbative instabilities for the vector bosons in a SU(2) gauge
theory, in the presence of a Wilson-line in a (2s+ 1)-dimensional representation. The result
was originally derived in [74, 75].

According to the discussion in section 4, we study the fluctuations for the gauge field
in the presence a background Coulomb potential in the third direction:

A3
0 =

g2YMs

4πr . (C.1)

The equations of motion deriving from the action (4.1) are

∇µF aµν + εabcA
b
µg

µσF cσν = 0 , (C.2)

where as in sections 2 and 3 we work on AdS2 × S2, with metric

ds2 = dt2 − dr2

r2
− dΩ2

2 . (C.3)

We are interested in the equation for the fluctuations A1
µ and A2

µ. It is convenient to define
a charged W -boson as

Wµ = A1
µ + iA2

µ . (C.4)

The linearization of the equation of motion (C.2) reads

Dµ (DµWν −DνWµ)− iWµFµν = 0 , (C.5)

where we defined an Abelian covariant derivative as

DµWν = (∇µ + iA3
µ)Wν , DµDνWρ = (∇µ + iA3

µ)DνWρ , (C.6)

and Fµν = ∂µA
3
ν − ∂νA

3
µ is the Abelian field strength associated with the Coulomb poten-

tial (C.1). (C.5) is invariant under the linearized gauge transformations66

δWµ = Dµλ− λ3Wµ , δA3
µ = −∂µλ3 , (C.7)

where λ = λ1 + iλ2 and λ3 are infinitesimal parameters. λ carries the same charge as W ,
while λ3 is neutral.

To proceed, we decompose Wµ = (Wa,Wi), where a, b, c, . . . denote AdS2 indices and
i, j, k, . . . the S2 indices. (C.5) then explicitly reads

DaD
aW i +∇k∇kW i −Ri

jW
j −∇i

(
DaW

a +∇jW
j
)
= 0 , (C.8)

Db(DbW a −DaW b) +∇i∇iW a − iW bFb
a −Da∇iW

i = 0 , (C.9)

where Rµ
ν is the Ricci tensor. In the following we choose the gauge

∇iW
i = 0 , (C.10)

66To check this, one needs to use ∇µF
µν = 0.
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which leaves a residual gauge freedom δWa = Daλ with ∇iλ = 0. Using (C.10) in (C.8) we
obtain ∇i(DaW

a) = 0. We thus can use the residual freedom to further impose

DaW
a = 0 . (C.11)

The conditions (C.10) and (C.11) ensure that (C.8) and (C.9) decouple. Note that (C.11)
still leaves a residual gauge freedom of the form

δWa = Daλ for λ such that DaD
aλ = 0 . (C.12)

This will be important in what follows.
The analysis of the first equation (C.8) is straightforward. The condition (C.10) is

compatible with setting
Wi =

√
gS2 εij∇jW T , (C.13)

where W T is a scalar. Then the W T equation reduces to the Klein-Gordon equation in a
Coulomb field

(DaD
a +∇i∇i)W T = 0 . (C.14)

The analysis of section 2.1 lets us conclude that the defect scaling dimensions are given by

∆ℓ =
1
2 ± 1

2

√
1 + 4ℓ(ℓ+ 1)− g4YMs

2

4π2 for ℓ = 1, 2, . . . , (C.15)

where the ℓ = 0 mode is excluded since it does not contribute to (C.13).
To analyze (C.9) we set Wa(t, r) = e−iωtwa(r) and solve the condition (C.11) in terms

of the components wa = (w0, wr)

w0 = i
wr

ω −A3
0
. (C.16)

Decomposing Wr into spherical harmonics

wr = e−iωt
∑
ℓ,m

Yℓ,m(n̂)wℓ,m(r) , (C.17)

we obtain

r2∂2rwℓ,m + 2A3
0

A3
0 − ω

r∂rwℓ,m +
[
r2
(
ω −A3

0

)2
− ℓ(ℓ+ 1)

]
wℓ,m = 0 . (C.18)

Looking for solutions in the form wℓ,m ∼ r∆ℓ−1, we again find the same ∆ℓ as in (C.15). In
this polarization (in the AdS2 directions) the ℓ = 0 mode solution is excluded because it is
equivalent to a shift of the form (C.12).

From the result (C.15) we conclude that the first instability is found for the ℓ = 1
modes at

s = 6π
g2YM

. (C.19)
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D Details on Wilson lines in large Nf QED3

D.1 The saddle-point equations

In this section we provide details on the calculation of the gauge field sourced by a Wilson
line in large Nf QED3, with and without a Chern-Simons term. For the sake of generality
we consider right away the action with a Chern-Simons term (5.24). We thus want to
extremize the following Euclidean effective action for the gauge field

Sq[A] = −2NfTr
[
log

(
/∂ − i /A

)]
− i

k

4π

∫
d3xεµνρAµ∂νAρ + iq

∫
dτA0 . (D.1)

To proceed we consider the ansatz

Fτr = i
E

r2
and Aθ = b = const. . (D.2)

The ansatz (D.2) is dictated by conformal invariance; for k = 0 parity demands b = 0. It
is further convenient to exploit Weyl invariance to map the theory to AdS2 × S1. The
one-loop fermion determinant naturally decomposes into a sum over the contributions of
the AdS2 KK modes, labeled by the angular momentum j ∈ 1

2 +Z, as in section 3.1:

Tr
[
log

(
/∂ − i /A

)]
AdS2×S1 = Vol(AdS2)

∑
j∈ 1

2+Z

Σj(E, b) . (D.3)

We defined Σj to be proportional to the one-loop determinant for the AdS2 Dirac operator
in a constant electric field

Vol(AdS2)Σj(E, b) = Tr
[
log

(
/∂ − i /A+ m̃j

)]
AdS2

, (D.4)

where the KK masses receive a contribution from the holonomy

m̃j = j + b . (D.5)

We factored out explicitly the AdS2 volume in (D.3) for future convenience. We will discuss
how to explicitly evaluate Σℓ and the infinite sum in (D.3) in the next section.

To conveniently write the last two terms in (D.1) we parametrize AdS2 using
global coordinates

ds2AdS2 = dσ2 + sinh2 σdϕ2 , (D.6)

and we choose the following gauge for the AdS2 gauge field

Aσ = 0 , Aϕ = i(cosh σ − 1)E =⇒ Fσϕ = iE sinh σ . (D.7)

It can be checked that (D.7) is indeed equivalent to the electric field in (D.2). Then
using (D.7) we obtain

−i k4π

∫
d3xεµνρAµ∂νAρ + iq

∫
dxµAµ = −i k2π

∫
AdS2×S1
d3xFσϕb+ iq

∫
∂AdS2
dϕAϕ

= (kbE − qE)Vol(AdS2) .

(D.8)
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We used that the AdS2 volume in global coordinates is given by

Vol(AdS2) = 2π
∫ σc

0
sinh σ = 2π

[
eσc

2 − 1 +O
(
e−σc

)]
, (D.9)

where we introduced a (large) radial cutoff σc. As explained in [51], since Vol(∂AdS2) =
πeσc +O (e−σc), the terms proportional to eσc in the action can be absorbed into a defect
cosmological constant counterterm and thus we can replace Vol(AdS2) with its well known
regulated expression Vol(AdS2)|reg = −2π [140, 141].

Overall, from (D.3) and (D.8) we obtain

Sq[A]
Vol(AdS2)

= −2Nf

∑
j∈ 1

2+Z

Σj(E, b) + k bE − q E , (D.10)

from which we obtain the saddle-point equations

2
∑

j∈ 1
2+Z

∂Σj(E, b)
∂E

= k

Nf
b− q

Nf
, (D.11)

2
∑

j∈ 1
2+Z

∂Σj(E, b)
∂b

= k

Nf
E . (D.12)

D.2 The fluctuation determinant via zeta function regularization

In this appendix we explain how to evaluate the fluctuation determinant (D.4), as well as
its derivatives in (D.11) and (D.12).

We start by commenting on two important properties of the sum in (D.11) as a function
of the holonomy b. From the definitions (D.4) and (D.5) it follows that

Σj(E, b± n) = Σj±n(E, b) for n ∈ Z . (D.13)

This implies that the sum ∑
j∈ 1

2+Z

Σj(E, b) , (D.14)

is a periodic function of b with unit period, in agreement with the discussion on integral
holonomies in section 5. Additionally, we will soon see that Σ(E, b) is an even function of
both E and b. This implies in particular∑

j∈ 1
2+Z

∂Σj(E, b)
∂b

∣∣∣∣
b=0

=
∑

j∈ 1
2+Z

∂Σj(E, b)
∂E

∣∣∣∣
E=0

= 0 . (D.15)

This ensures that (D.12) is solved by b = 0 for k = 0, as expected from parity invariance.
In general, given a solution (E, b) of (D.11) and (D.12) for certain values (k, q), this implies
that (−E, b) is a solution for (−k,−q), (E,−b) is a solution for (−k, q) and (−E,−b) solves
the equations for (k,−q).

To proceed, we express the determinant of the Dirac operator in a constant electric
field [112, 142] as an integral,

Σj(E, b) =
∫ ∞

−∞
dν µE(ν) log

(
ν2 − E2 + m̃2

j

)
, (D.16)
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where µE(ν) is the appropriate hyperbolic spectral density67

µE(ν) = P

(
ν sinh(2πν)

4π [cosh(2πν)− cosh(2πE)]

)
; (D.17)

the prefix P specifies that the pole at ν = E in the spectral density should be integrated
according to the principal value prescription. (D.16) makes it clear that the effective action
develops an imaginary part for supercritical electric fields, i.e. when E2 > m̃2

j for some j.
Below we will focus on subcritical fields, for which (D.16) is real.

Even upon taking derivatives of (D.16) with respect to E and b, both the integration
over ν and the sums in (D.11) and (D.12) do not converge. We therefore need to regulate
the calculation. We decided to use zeta function regularization. This amounts to rewriting
the fluctuation determinant in (D.3) as

Tr
[(
/∂ − i /A

)]
AdS2×S1

Vol(AdS2)
= − lim

s→0

d

ds

∑
j∈ 1

2+Z

Σ(s)
j (E, b) , (D.18)

where
Σ(s)
j (E, b) =

∫ ∞

−∞
dν

µE(ν)(
ν2 − E2 + m̃2

j

)s . (D.19)

The idea then is to compute the sum on the right hand-side of (D.18) for sufficiently large s,
so that both the integration and the sum converge, and then analytically continue the result.

In practice (D.18) and its derivatives can only be evaluated numerically. We sketch below
the strategy to evaluate the fluctuation determinant itself; the derivatives are computed
analogously.

First, we deal with the integral over ν. To this aim, we notice that the spectral density
in (D.17) admits the following asymptotic expansion for large ν

µE(ν) ∼
|ν|
4π +O

(
e−2π|ν|

)
for |ν| → ∞ . (D.20)

We therefore define a subtracted spectral density

µ̃E(ν) = µE(ν)−
|ν|
4π , (D.21)

which decays exponentially for ν → ∞. We then separate (D.19) into two contributions

Σ(s)
j (E, b) = Σ(s,1)

j (E, b) + Σ(s,2)
j (E, b) , (D.22)

where

Σ(s,1)
j (E, b) = 2

∫ ∞

0
dν

ν

4π
(
ν2 − E2 + m̃2

j

)s = −

(
m̃2
j − E2

)1−s
4π(1− s) , (D.23)

Σ(s,2)
j (E, b) = 2

∫ ∞

0
dν

µ̃E(ν)(
ν2 − E2 + m̃2

j

)s . (D.24)

67In [142] the determinant is given for an Euclidean electric field, in which case the spectral density
receives an additional discrete contribution; it can be checked that upon Wick rotating the electric field to
be real in Lorentzian signature, as in (D.2), the only effect of the discrete contribution is to introduce the
principal value prescription in (D.17).
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We evaluated the integral in (D.23) by analytically continuing the result for s > 1. Even
though we were not able to perform the integration in (D.24) in closed form, the integral
converges for arbitrary s since µ̃E(ν) = O(e−2π|ν|) for ν → ∞.

Next we isolate the divergent contributions to the sum from Σ(s,1)
j (E, b) and Σ(s,2)

j (E, b).
Grouping terms with opposite spin we have

[
Σ(s,1)
j (E, b) + Σ(s,1)

−j (E, b)
]
div

= j−2s
[

j2

2π(s− 1) +
−(1− 2s)b2 − E2

2π

]
,

[
Σ(s,2)
j (E, b) + Σ(s,2)

−j (E, b)
]
div

= 4
j2s

∫ ∞

0
dν µ̃E(ν) ,

(D.25)

where the last integral can be evaluated numerically for arbitrary values of E. All we have
to do then is to write the sum we are interested in as∑
j∈ 1

2+Z

Σ(s)
j (E, b) =

∑
j>0

{[
Σ(s,1)
j (E, b) + Σ(s,1)

−j (E, b)
]
div

+
[
Σ(s,2)
j (E, b) + Σ(s,2)

−j (E, b)
]
div

}
+
∑
j>0

{
Σ(s,1)
j (E, b) + Σ(s,1)

−j (E, b)−
[
Σ(s,1)
j (E, b) + Σ(s,1)

−j (E, b)
]
div

}
+
∑
j>0

{
Σ(s,2)
j (E, b) + Σ(s,2)

−j (E, b)−
[
Σ(s,2)
j (E, b) + Σ(s,2)

−j (E, b)
]
div

}
.

(D.26)

The sum in the first line can be evaluated analytically in terms of generalized zeta functions.
The sums in the last two lines instead converge for s → 0. Therefore their contributions
to (D.18) can be straightforwardly evaluated numerically. We do not report further details.

Finally we comment that for k = b = 0 it is also simple to compute (numerically)
the determinant of the Dirac-Coulomb operator (D.3) in dimensional regularization. As
a crosscheck, we verified that the results of zeta function regularization and dimensional
regularization agree in the overlapping regime. We also checked that the numerical result is
periodic as a function of b and satisfies (D.15).

D.3 Solving the saddle-point equations

We proved in the previous section that (D.12) is always satisfied for k = b = 0. In this
case, by computing numerically the left-hand side of (D.11) for 0 < E < 1/2, we obtain the
curve q(E)/Nf ; figure 11 is obtained plotting {E, q(E)/Nf}. By studying the limit of q(E)
for E → 1/2 from below we find the result (5.22).

For nonzero k it is harder to solve (D.11) and (D.12). We instead compute the sums
on the left-hand side of (D.11) and (D.12) as a function of E and b and use the result to
read off the corresponding values of k and q. Note that different values of E and b may
correspond to the same pair (k, q), i.e. multiple saddle-points may exist for the same value
of the charge and the Chern-Simons level. This is indeed what we find.

As explained in section 5.2.3, in order to decide what the stable Wilson lines are in
the theory at hand, we carve out the region R of solutions (kR, qR) to the equations (D.11)
and (D.12) for

−1/2 < b < 1/2 ∩ |E| < 1/2− |b| , (D.27)
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(a) (b)

Figure 15. In figure 15a we plot the curve C−(x) for x = 0.4, 0.3, 0.2, 0.1, 0.05, 0.01, while in
figure 15b we show both the curves C−(x) and C+(x) for x = 0.4, 0.2, 0.01.

where the latter condition comes from the requirement of stability. By symmetry, it is
enough to focus on E > 0. To determine the boundary of the region it turns out to be
convenient to span the (E, b) plane using the curves defined by

c±(x) =
{
(E, b) such that (±1/2 + b)2 − E2 = x2 ∩ ∓b > 0

}
. (D.28)

In some sense, the curve c±(x) specifies all points in the (E, b) plane which are equidistant
from an instability of the j = ±1/2 mode. The restriction on the sign of b ensures that the
two curves do not intersect.

Let us call C±(x) the set of solutions (k, q) to (D.11) and (D.12) for the values of (E, b)
which lie on the curve c±(x). The C±(x) are thus curves on the (k, q) plane. Examples
of the curve C−(x) for different values of x are shown in figure 15a. The symmetry
properties of the equations imply that C+(x) is obtained by mirroring C−(x) around the k
axis. Interestingly for x sufficiently small the curve C−(x) intersects the k = 0 axis at two
different points. For x→ 0 the first intersection point approaches (k/Nf , q/Nf ) = (0, 1/2),68

while the second intersection point approaches the critical value determined in (5.22), namely
(k/Nf , q/Nf ) ≃ (0, 0.56). We also notice that the curves C−(x) and C+(x) intersect each
other at two other points, see figure 15b.

It can be seen by changing x from 1/2 to 0 that the curves C±(x) cover the full
region below the curve specified by the union of limx→0C−(x) and limx→0C+(x). As
figure 16a shows, as x → 0, the curve C−(x) approaches a limit that is composed of two
parts: a generic-looking curve that starts at (k/Nf , q/Nf ) ≃ (0, 0.56) and ends at the point
(k∗/Nf , q

∗/Nf ) ≃ (1/π, 0.34), and a second part that is a straight line that we conjecture
to be q/Nf = 1

2 |k|/Nf + 1
2 , see plot 16b.

By considering the union of the two curves discussed above we obtain the region R

in figure 17. Note that the region R strictly includes the one specified by |q| ≤ |k|/2 and
marked by red on the plot. Hence all physical Wilson lines correspond to at least one
perturbatively stable saddle-point.

68We determined the value of the intersection point analytically by studying the fluctuation determinant
for b→ ±1/2.
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(a) (b)

Figure 16. In figure 16a we plot the curve C−(x) as x approaches 0. In figure 16b we compare the
curve C−(x) to the line q/Nf = 1

2 |k|/Nf + 1
2 for x→ 0 and k/Nf > 0.

q
Nf
=

k

2Nf

-1.0 -0.5 0.0 0.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

k

Nf

q

Nf

(kR,qR)∈R

Figure 17. Plot of the region R specified by the solutions (kR, qR) of (5.25) for b ∈ (−1/2, 1/2)
and E < 1/2 − |b|; the plot is restricted to q > 0 since the region is symmetric for q ↔ −q. For
|k|/Nf ≳ 0.061 the boundary of R is a straight line q/Nf = 1

2 |k|/Nf + 1
2 , while for |k|/Nf ≲ 0.061

the boundary is curved (despite appearances). In red we plot the line q = |k|/2.

As explained in the main text, the points in R for which |q| > |k|/2 correspond to
additional saddle-points in the physical region |q| ≤ |k|/2. To determine the value of q to
which a saddle-point (q∗, k) with |q∗| > |k|/2 corresponds to, we simply need to perform a
shift q∗ → q∗ − kn ≡ q (which is accompanied by the shift b∗ → b∗ + n), with n ∈ Z, such
that |q| < |k|/2. Note that for each point (q∗, k) in R there is a single value of n ∈ Z such
that |q∗ − kn| < |k|/2 is in the physical region.

In practice, we consider the upper and lower boundary curves q±(k) of the region R.
We then draw the shifted curves q±(k)∓ k, q±(k)∓ 2k, q±(k)∓ 3k; the intersection of these
curves separates the physical region |q| < |k|/2 of the (q, k) plane into subregions according
to the number of saddle-points. The result of this geometrical procedure is shown in the
main text in figure 12.
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