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1 Introduction

While much of quantum gravity remains shrouded in mystery, some corners of the landscape
are relatively well understood. Asymptotic regimes of known moduli spaces appear to
display universal behavior, which has led to the development of a number of quantum
gravity conjectures (known as Swampland conjectures) regarding such behavior. The oldest
of these is the Distance Conjecture of Ooguri and Vafa [1], which states:

The Distance Conjecture. Let M be the moduli space of a quantum gravity theory
in d ≥ 4 dimensions, parametrized by vacuum expectation values of massless scalar fields.
Fixing a point p0 ∈ M, the theory at a point p ∈ M sufficiently far away in the moduli space
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has an infinite tower of light particles, each with mass in Planck units (κ2
d = M2−d

Pl;d = 1)
scaling as

m(p) ∼ exp(−αd(p, p0)) as d(p, p0) → ∞ , (1.1)

where d(p, p0) is the length of the shortest geodesic in M between p and p0, and α > 0 is
some order-one number.

This conjecture has been extensively tested in a plethora of string theory compactifica-
tions [2–14] and plays a key role in the Swampland program [15–18], which aims to deter-
mine the constraints that any EFT must satisfy to be UV completed in quantum gravity.

Significant effort has been invested in sharpening and refining the Distance Conjecture,
both as a means to test it more stringently as well as to expand its consequences. One
notable refinement of the Distance Conjecture, proposed by [19], constrains the microscopic
nature of the tower of states:1

The Emergent String Conjecture. Every infinite-distance limit in the moduli space
of a quantum gravity theory is either an emergent string limit (featuring a fundamental
string with a weakly coupled tower of string oscillator modes) or a decompactification limit
(featuring a tower of Kaluza-Klein modes).

The Emergent String Conjecture is supported by all known string theory examples in
flat space [23–27] and holographic AdS compactifications [28–30], though it needs to be
slightly modified to account for the non-holographic AdS cases where infinite-distance limits
associated to free points in the dual conformal manifold feature a tower of higher spin
operators that are not necessarily dual to the fundamental string (see [29]).

Another notable refinement of the Distance Conjecture, proposed by [31], places a
sharp lower bound on the possible values of the exponential rate α in (1.1):

The Sharpened Distance Conjecture. The Distance Conjecture remains true with the
added requirement that

α ≥ 1√
d− 2

, (1.2)

where d is the spacetime dimension.

In fact, the sharpened Distance Conjecture and the Emergent String Conjecture are closely
related, since αosc = 1√

d−2 is precisely the exponential rate of the tower of oscillator modes
of a perturbative fundamental string, whereas Kaluza-Klein (KK) modes typically have a
larger exponential rate.

More concretely, the exponential rate for a KK tower in a toroidal compactification is
given by (see, e.g., [31])

α
(n)
KK =

√
d+ n− 2
n(d− 2) , (1.3)

1Substantial work has also been done on a different class of refinements constraining the distance
travelled before light towers appears, see [3, 9, 20–22], but we will not discuss these conjectures further in
the present work.
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where d is the space-time dimension and n the number of decompactifying dimensions,
which is indeed larger than αosc = 1√

d−2 for d > 2.
Since (1.3) applies equally to the overall volume modulus of an arbitrary Ricci-flat man-

ifold, it is tempting to conclude that αosc and α(n)
KK are the only possible values for α compat-

ible with the Emergent String Conjecture.2 However, we will see that this is incorrect, since
the exponential rate of a KK tower can differ and possibly become smaller than (1.3) when
the compactification metric is not a direct product but instead involves warping. Warped
compactifications have been extensively studied in the context of string theory, but have not
been discussed yet in the context of the Distance Conjecture to the best of our knowledge.

In this paper, we will explore the Emergent String Conjecture and the sharpened
Distance Conjecture in the moduli space of N = 1 supersymmetric string theories in
nine dimensions, which arise from heterotic string theory compactified on a circle. Our
results are consistent with both conjectures provided that we clarify the Emergent String
Conjecture in an important way: some infinite-distance limits in moduli space do not
lead to either an emergent tensionless string or a higher-dimensional vacuum, but rather
to a higher-dimensional running solution. In other words, the decompactification limits
specified by the Emergent String Conjecture may or may not lead to vacuum solutions of
the higher-dimensional theory. The decompactification limit of Type I′ string theory in
nine dimensions with a nontrivial dilaton profile is a prototypical example of the latter.

Nonetheless, we will show in simple examples that these running solutions still feature
Kaluza-Klein towers which satisfy the Distance Conjecture with α ≥ 1√

d−2 , consistent
with the sharpened Distance Conjecture of [31]. This is made possible by the fact that
the corresponding Kaluza-Klein modes are not BPS and consequently their masses are
a rather complicated function of moduli space position, so the exponential rate changes
depending on the asymptotic geodesic trajectory that bring us to infinite distance. By
careful computation, we determine this function and show that the exponential rate for
the KK tower can get as small as 5

2
√

7 in these nine dimensional examples, which is still
compatible with the bound α ≥ 1√

d−2 = 1√
7 in d = 9, but does not correspond to one of

the special values (1.3) for any integer n.
We will also show that these nine dimensional compactifications satisfy a “convex

hull” version of the Scalar Weak Gravity Conjecture (SWGC) [31–34] (reviewed below in
section 2). This is especially remarkable in light of the aforementioned moduli-dependence
of the masses of the non-BPS particles, which implies that the convex hull varies as a
function of the moduli. We will further see that the Distance Conjecture itself resembles
a convex hull condition in each asymptotic region of moduli space (as proposed previously
in [33] under the name of the Convex Hull Distance Conjecture), but this requires different
convex hulls in different region of moduli space that do not obviously combine into a single
global picture.

2To be precise, these α values are associated to certain “pure” emergent string and/or decompactification
limits; there are often “mixed” limits that continuously interpolate between these, which have intermediate
values α as well. A sharper statement would be that |ζ⃗| as defined in section 2 remains fixed at one of
these special values for each tower satisfying the Distance Conjecture. We will show, however, that even
this is false.
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The remainder of this paper is structured as follows: in section 2, we review the
sharpened Distance Conjecture and the Convex Hull SWGC, introducing the machinery
we will need for our subsequent analysis and applying it to Type II string theory on a circle
as a warm-up example. In section 3.1, we take a first look at heterotic string theory on
a circle, noting how the self-T-duality of the theory leads to a puzzle. In section 3.2, we
review how decompactification limits of Type I′ string theory introduce new complications,
leading to ten-dimensional running solutions. We then explicitly compute the spectrum of
Kaluza-Klein modes for Type I′ string theory on a circle and show how this resolves the
puzzle mentioned above in a manner consistent with the sharpened Distance Conjecture
and the SWGC (leaving the details of the calculation to appendices A–C). In section 4
we extend our analysis to other nine-dimensional theories of lower rank, thereby checking
the Distance Conjecture and its various refinements in a wide range of 9d theories with
sixteen supercharges. In section 5, we conclude by summarizing our results and highlighting
interesting directions for future research.

2 The distance conjecture and convex hulls

Consider a theory in d dimensions with a set of massless scalar fields (moduli) ϕi weakly
coupled to gravity, with action given by

S = Md−2
Pl;d

∫
ddx

√
−h

(
R

2 − 1
2Gij∂µϕ

i∂µϕj + . . .

)
, (2.1)

where Gij is the field space metric and the geodesic field distance is given in Planck units by

d(ϕ0, ϕ) =
∫ ϕ

ϕ0

√
Gijdϕidϕj . (2.2)

According to the Distance Conjecture, there will be a tower of particles that becomes
exponentially light at every infinite-distance limit in this moduli space. To understand
precisely how this occurs as a function of the moduli, it is convenient to define the scalar
charge-to-mass vector of a particle of mass m as

ζi ≡ − ∂

∂ϕi
logm, (2.3)

following, e.g., [31, 33], where the derivative is evaluated with the d-dimensional Planck
mass held fixed. Associated to the moduli-space one-form ζi there is a dot product ζ2 =
ζ⃗ · ζ⃗ ≡ Gijζiζj defined by the inverse of the metric on moduli space Gij . In practice, we
pick an n-bein ei

ae
j
bδ

ab = Gij and write ζa = ei
aζi in orthonormal components, which has

the advantage that the dot product of ζ⃗ vectors is the Cartesian dot product, but at the
expense of having to choose a frame at each point in moduli space.

To understand why ζ⃗ is the scalar charge-to-mass ratio, note that the moduli mediate
long-range forces between particles whose masses depend their vacuum expectation values.
The strength of these interactions is proportional to ∂ϕim, as can be read off from the
Lagrangian expanded about a given point in the moduli space

L ⊃ m2(ϕ)χ2 = (m2
0 + 2m0(∂ϕim)ϕi)χ2 + . . . . (2.4)
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Thus, by direct analogy with gauge charges, µi = −∂ϕim are the scalar charges (the sign
being purely conventional) and µi

m = −∂ϕi logm = ζi is the vector of scalar charge-to-mass
ratios.

Now consider the vicinity of some infinite-distance locus, commonly known as an
asymptotic region. Given a particle that is exponentially light in accordance with the
Distance Conjecture (1.1), the exponential rate at which its mass decreases is given by the
projection of the scalar charge-to-mass vector ζ⃗ along the corresponding geodesic trajectory
approaching the infinite-distance limit, i.e.

α = ζ⃗ · τ̂ , (2.5)

where τ̂a = ea
i

∂λϕi(λ)
∥∂λϕ⃗∥

is the normalized tangent vector to the asymptotic geodesic trajectory

ϕ⃗(λ).
On the other hand, working by analogy to the Weak Gravity Conjecture [35] and

motivated by the connection to scalar forces, reference [32] proposed a Scalar Weak Gravity
Conjecture (SWGC), as follows:

Scalar Weak Gravity Conjecture. In a quantum gravity theory with massless scalar
fields (2.1), at every point in moduli space there exists a state with sufficiently large scalar
charge-to-mass ratio |ζ⃗| ≥ αmin for some order-one constant αmin.3

The SWGC is a local statement in moduli space, as it only involves the first derivatives of
the masses of states with respect to the moduli fields. Comparing with (2.5), it is evident
that there is some connection between this conjecture and the Distance Conjecture, see,
e.g., [2, 32, 33]. For instance, the Distance Conjecture implies that a tower version of the
SWGC holds at least asymptotically, with αmin equal to the minimum allowed exponential
rate (believed to be 1√

d−2 per the sharpened Distance Conjecture [31]). Conversely, given a
tower of particles satisfying the SWGC with this value of αmin, |ζ⃗| ≥ αmin is the exponential
rate at which the tower becomes light along its own gradient flow trajectory (i.e. ∂λϕ

i ∝
−∂im(ϕ)), and we recover the Distance Conjecture for this particular asymptotic limit.

However, even in its tower form, the original version of the SWGC is too weak to make
a useful connection with the Distance Conjecture in theories with multiple moduli, since
only one particle/tower is required by the conjecture, and this is not enough to satisfy
the Distance Conjecture in all possible asymptotic limits. To address this weakness, the
conjecture has to be strengthened with some kind of convex hull condition to account for
the various directions in which different asymptotic limits lie.

As discussed below, there have been two notable attempts to do so [31, 33], with differ-
ent strengths and weaknesses. The first of these — the Convex Hull Distance Conjecture

3More specifically, reference [32] required the existence of some (possibly higher dimensional) state upon
which the scalar force would act more strongly than the gravitational force. Further refinements along these
lines were proposed in [36–40]. In this paper, we are instead interested in the case where the state is a
particle and αmin is fixed not by a force condition but by its relationship to the exponential rate in the
(sharpened) Distance Conjecture.
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— relies on certain global properties of the moduli space in asymptotic limits and straight-
forwardly implies the Distance Conjecture. By contrast, the second — the (sharpened)
Convex Hull SWGC — is a purely local statement like the original SWGC, relying on
few preconditions, but it requires us to consider of both light and heavy towers and the
connection to the Distance Conjecture is non-trivial (see, e.g., [34]).

To introduce these conjectures, first note that in the presence of multiple moduli
fields, there can be asymptotic geodesics (say, with normalized tangent vector τ̂) that are
not parallel to the scalar charge-to-mass vector ζ⃗ of any tower. When this happens, the
exponential rate αmax(τ̂) of the leading (i.e., lightest) tower along such a geodesic will be
given as in (2.5) by the maximum value of ζ⃗ · τ̂ among the different towers that exist in
this asymptotic regime. Thus, the Distance Conjecture holds with minimum rate αmin if
and only if we have αmax(τ̂) ≥ αmin for all asymptotic directions τ̂ .4

In all examples checked so far in the literature [12, 31, 33, 41], the convex hull of
the ζ⃗-vectors of the towers that become light remains unchanged as we move in a given
asymptotic region of the moduli space, even if the individual ζ⃗-vectors move. When this
happens, the Distance Conjecture can be reformulated as in [33] as the following convex
hull condition:

Convex Hull Distance Conjecture. In any given asymptotic region of a quantum grav-
ity theory, the outside boundary of the convex hull generated by the ζ⃗-vectors (2.5) of all
light towers must remain outside the ball of radius αmin in the range of directions defining
the asymptotic region.

This formulation of the Distance Conjecture is powerful because it encodes global infor-
mation about the different infinite-distance limits in a given asymptotic region rather than
each asymptotic geodesic independently.5 We will see that it also captures the information
needed to derive the weakly coupled dual description that emerges at infinite field distance.

However, it is not obvious at all whether this formulation of the Distance Conjecture
makes sense when the convex hull of the ζ⃗-vectors of the towers changes as we move in the
moduli space. When this happens, it is useful to consider a closely related statement that
makes sense locally at any point in moduli space rather than in an entire asymptotic region:

Convex Hull SWGC. In a quantum gravity theory with massless scalar fields (2.1), at
every point in moduli space, the convex hull generated by the ζ⃗-vectors (2.5) of all massive

4The general procedure followed in this paper is to choose a slice of the tangent space of the moduli
space which has dimension equal to the codimension of the infinite-distance loci. This way all radial vectors
in the slice correspond to tangent vectors of geodesics approaching the infinite-distance loci. However, it is
also interesting to analyze higher dimensional slices such that not all the vectors are associated to geodesics,
and use the convex hull condition as a criterium to select what trajectories could become geodesics in the
IR upon adding a scalar potential. This has been used to put constraints on the scalar potential from using
only the Distance Conjecture (see [33]).

5It can also be used to either predict the existence of new light towers of states in an EFT or to
constrain the possible trajectories along which the Distance Conjecture is satisfied, and therefore, the level
of non-geodesicity that should be allowed in the asymptotic valleys of the scalar potential [33].
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states contains a ball of radius αmin centered at the origin of the scalar charge-to-mass
vector space.

This conjecture has been extensively discussed and tested in [31] with the specific choice
αmin = 1√

d−2 (as motivated by the sharpened Distance Conjecture). Note that the Convex
Hull SWGC (applied to towers of states) differs from the Convex Hull Distance Conjecture
because it involves both light and heavy states, and is required to hold everywhere in
moduli space. In the remainder of this paper, we will refer to the Convex Hull SWGC as
simply the SWGC; the reader should take care not to confuse this with the related but
distinct version of the SWGC originally proposed in [32].

The goal of this paper is precisely to consider examples in which the ζ⃗-vectors change
dramatically as we move in the moduli space and to determine the fate of the various con-
jectures described above. In particular, we will explore in detail the case of heterotic string
theory compactified on a circle, where we will see that the ζ⃗-vectors of certain non-BPS
towers are highly moduli-dependent in regions of the moduli space corresponding to warped
compactifications. Interestingly, we will see that all the above conjectures still hold in a
non-trivial way with αmin = 1√

d−2 . Moreover, we will see that in each asymptotic region,
the Distance Conjecture will still resemble a convex hull condition, but will require different
convex hulls in different regions that do not obviously combine into any single global picture.

To illustrate our examples, we will employ two different types of plots. The first of
these is the SWGC plot, where we plot the various ζ⃗-vectors of towers of states and draw
their convex hull. An example of a SWGC plot is illustrated in figure 1a, where the towers
are indicated by red dots and the convex hull is indicated by the light blue region. The
SWGC plot is defined at any fixed point in moduli space, and can change as we move from
point to point. The second plot is the max-α plot, where we plot the exponential rate
αmax(τ̂) of the leading tower as a function of the asymptotic direction τ̂ . We illustrate
a max-α plot in figure 1b, with the function αmax(τ̂) plotted in blue. Notice that the
exponential rate of a given tower is a function α(θ) of the angle θ between ζ⃗ and τ , and
is given by a sphere of radius |ζ⃗|/2 that goes through the point ζ⃗ and the origin, so that
α(θ) varies between 0 and |ζ⃗|. The max-α plot is defined globally in the moduli space, and
doesn’t depend on any reference point.

2.1 Example: Type IIB on a circle

As an illustrative example, we consider the case of Type IIB string theory compactified on
a circle. This theory was previously shown to satisfy the sharpened Distance Conjecture
and the SWGC in [31], and it will serve as a useful warmup for our primary case of interest,
namely heterotic string theory on a circle.

For simplicity, we will set the Type IIB axion C0 to vanish. Upon compactification to
nine dimensions, this leaves a flat two-dimensional moduli space parametrized by the 10D
dilaton Φ = log gs and the radius RIIB of the circle. We define a canonically normalized
dilaton by setting ϕ = −

√
2Φ (we include a minus sign so that large ϕ corresponds to weak

IIB string coupling) and radion ρ =
√

8
7 logRIIB. The 9d action can be obtained from

dimensionally reducing the Einstein-dilaton part of the 10d Type IIB effective action as
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(a) Convex Hull SWGC Plot. (b) Max-α Plot.

Figure 1. (a) Convex hull of the scalar charge-to-mass vectors. The Convex Hull SWGC holds
that this convex hull must contain the ball of radius αmin, which we take to be 1√

d−2 in this paper.
Points at which the boundary of the convex hull meets the boundary of the sphere correspond to
points at which the SWGC is saturated, and in known examples these points are always populated
by towers of string oscillator modes. (b) Exponential rate αmax(τ̂) (in blue arcs) of the leading
tower in the direction τ̂ . We can see that αmax(τ̂) ≥ αmin if and only if the convex hull of ζ⃗-
vectors of towers contains the ball of radius αmin. Each of the bubbles correspond to regions of
asymptotic directions in the moduli space with different leading towers, with the boundary between
them corresponding to directions along which two or more towers decay at the same rate.

follows:

SIIB ⊃ 1
2κ2

10

∫
d10x

√
−Ge−ϕ/

√
2
{
RG + 2∂Mϕ∂Mϕ

}
= 1

2κ2
9

∫
d9x

√
−g

{
Rg − (∂ϕ)2 − 8

7(∂ logRIIB)2
}

= 1
2κ2

9

∫
d9x

√
−g

{
Rg − (∂ϕ)2 − (∂ρ)2

}
, (2.6)

where GMN and gµν are respectively the 10-dimensional string frame and the 9-dimensional
Einstein frame metrics.

Type IIB string theory in ten dimensions features a fundamental string whose tension
is given by

T =
2πM2

Pl;10
(4π)1/4 exp

(
− ϕ√

2

)
. (2.7)

There is also a D-string with tension given by

T̃ =
2πM2

Pl;10
(4π)1/4 exp

(
+ ϕ√

2

)
. (2.8)

Upon dimensional reduction, each of these strings gives rise to a tower of string oscillator
modes as well as a tower of string winding modes. The former towers have characteristic
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mass scales

mosc = 2πMPl;9
(4π)1/7 exp

(
− ϕ√

8
− ρ√

56

)
, m̃D-osc = 2πMPl;9

(4π)1/7 exp
(

+ ϕ√
8
− ρ√

56

)
, (2.9)

while the latter towers have characteristic mass scales

mw = 2πMPl;9
(4π)1/7 exp

(
− ϕ√

2
+ 3ρ√

14

)
, m̃D-w = 2πMPl;9

(4π)1/7 exp
(

+ ϕ√
2

+ 3ρ√
14

)
, (2.10)

There is also a tower of Kaluza-Klein modes with associated mass scale

mKK = 2πMPl;9
(4π)1/7 exp

(
−
√

8
7ρ
)
. (2.11)

These five towers of particles yield scalar charge-to-mass vectors given by

ζ⃗osc =
( 1√

8
,

1√
56

)
, ζ⃗D-osc =

(
− 1√

8
,

1√
56

)
ζ⃗w =

( 1√
2
,− 3√

14

)
, ζ⃗D-w =

(
− 1√

2
,− 3√

14

)
(2.12)

ζ⃗KK =
(

0,
√

8
7

)
.

Notably, these vectors are independent of the vacuum expectation values of the dilaton
and the radion, so they do not change as we move in the moduli space. Relatedly, all of
the particles in these towers are BPS. The scalar charge-to-mass ratio of the KK modes
and winding modes becomes

|ζ⃗KK| = |ζ⃗w| = |ζ⃗D-w| =
√

8
7 (2.13)

as expected from decompactifying one extra dimension [31], while

|ζ⃗osc| = |ζ⃗D-osc| = 1√
7

(2.14)

corresponds to the expected result for the oscillation modes of a critical perturbative
string [31].

These five scalar charge-to-mass vectors (and their convex hull) are plotted in figure 2.
One can see that the convex hull contains the ball of radius 1√

d−2 , ensuring that the SWGC
is satisfied along these directions in moduli space. The points of tangency, where the convex
hull condition is only marginally satisfied, correspond to emergent string limits.

Figure 3 depicts the function αmax(τ̂) corresponding to the exponential rate of the
leading light tower along each asymptotic geodesics moving in each direction τ̂ . As dis-
cussed above, the sharpened Distance Conjecture requires αmax(τ̂) ≥ 1√

d−2 for all τ̂ , which
is equivalent to the statement that αmax(τ̂) must lie outside the ball of radius 1√

d−2 for all
τ̂ . This is indeed satisfied in our example. It is no coincidence that the region bounded by
αmax(τ̂) here strictly contains the convex hull of the generators, shown in figure 2.
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Figure 2. Convex hull of the scalar charge-to-mass vectors for Type IIB string theory on a circle.
The convex hull generated by the Kaluza-Klein modes, the fundamental string winding modes, and
the D-string winding modes contains the ball of radius 1√

d−2 (gray), ensuring that the SWGC is
satisfied. The five different duality frames of the radion-coupling moduli space are coloured depicted
in different shades, with the vertical axis corresponding with the self-dual line.

Figures 2 and 3 also depict the various duality frames in the theory as a function of
location in moduli space. The region with ϕ > 0, ρ > 1√

7ϕ corresponds to weakly-coupled
Type IIB string theory compactified on a large circle,6 as does the S-dual region with ϕ < 0,
ρ > − 1√

7ϕ. The region with − 3√
7ϕ < ρ < 1√

7ϕ admits a (T-dual) description as Type IIA
string theory compactified on a large circle, as does the region with 3√

7ϕ < ρ < − 1√
7ϕ.

Finally, the region with ρ < 3√
7ϕ and ρ < − 3√

7ϕ is described by 11-dimensional M-theory
compactified on T 2. In summary, the dilaton-radion moduli space is divided into five
duality frames: two of Type IIA, two of Type IIB, and one of M-theory.

Within each duality frame, an infinite-distance limit with αmax(τ̂) > 1√
d−2 corresponds

to a decompactification limit of the corresponding string/M-theory. Meanwhile, a limit with
αmax(τ̂) = 1√

d−2 corresponds to an emergent string limit. Every infinite-distance limit falls
into one of these two categories, as predicted by the Emergent String Conjecture. Notably,
the scalar charge-to-mass vectors are located precisely at the interfaces between the different
duality frames, so that we have as many leading towers as boundaries between different
duality frames.

This concludes our brief review of Type II string theory in nine dimensions. In what
follows, we will carry out a similar analysis for heterotic string theory in nine dimensions,
and we will see that the story is far more subtle due to the importance of non-BPS particles.

6Here, a large circle is one whose Kaluza-Klein scale mKK is lighter than the string scale, ms.
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Figure 3. Max-α hull for Type IIB string theory on a circle (blue). Because this hull contains the
ball of radius 1√

d−2 (shaded gray), every infinite-distance limit in the dilaton-radion plane features
a tower of particles with α ≥ 1√

d−2 . Limits with αmax = 1√
d−2 represent emergent string limits,

while limits with α > 1√
d−2 represent decompactification limits in some duality frame. There are

five duality frames in the dilaton-radion plane, two of Type IIB string theory (shaded red), two of
Type IIA string theory (shaded purple), and one of M-theory (shaded yellow). The red vertical
line depcts the Type IIB self S-dual line. This extends to the M-theory frame, corresponding to
decompactifying opposite cycles.

3 Heterotic string theory in nine dimensions

In this section, we test the sharpened Distance Conjecture in the moduli space of heterotic
string theory compactified on a circle to nine dimensions, a theory with 16 supercharges
and r = 17 vector multiplets. This theory has an 18-dimensional moduli space of the form

M = M̂ × R, M̂ = SO(17, 1;Z)\SO(17, 1)/SO(17), (3.1)

where R parametrizes the dilaton and the Narain moduli space M̂ parametrizes the radius
of the circle and the 16 Wilson lines for the heterotic gauge fields.

We will be primarily interested in two particular slices of this moduli space, depicted in
figure 4, obtained by compactifying either the SO(32) or E8×E8 ten-dimensional heterotic
theory on a circle with all Wilson lines turned off.7 Each slice is two dimensional and
flat, so it is parametrized by two moduli which we take, without loss of generality, to be

7Note that there is an additional slice with SO(32) enhanced gauge symmetry, obtained by turning on
a Wilson line in the Z2 center of the global gauge group Spin(32)/Z2. We will comment briefly on this
additional slice below in section 4.
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Figure 4. Relevant SO(32) and E8 × E8 slices of the moduli space of the N = 1 9-dimensional
theory with r = 17, parametrized by the canonically normalized heterotic 10-dimensional dilaton
and radion, ϕ and ρ. The regions best described by heterotic, type I′, and type I string theories,
as well as M-theory, are respectively colored green, blue, orange and yellow. The self-dual line is
depicted in red, with ρ = 1√

7ϕ. The boundaries between the different regions have the same direction
as several of the towers depicted in figures 9a and 9b. Note: the above color code for the different
duality frames will be used in later figures throughout this paper, though we will omit the labels.

the heterotic dilaton ϕ (as in section 2.1, ϕ = −
√

2 log gs, so that the weak coupling limit
corresponds to ϕ≫ 1) and the radion ρ associated to the heterotic circle compactification
(both being canonically normalized).

Depending on the values taken by these fields, the theory is best described by different
dual descriptions, so we can split the moduli space into different duality frames associated
to the different weakly coupled (perturbative) descriptions that arise asymptotically (see
figure 4). Starting in the heterotic frame in the upper right-hand side corner of the plots in
figure 4, we can move to smaller values of the radion and dilaton and reconstruct the other
duality frames by performing a series of T- and S-dualities. A very detailed description of
all these dualities can be found in [42]. As the heterotic dilaton ϕ decreases (i.e., as we go
to larger values for the coupling gs), the theory is better described by its S-dual theory,
which is Type I on a circle for the case of SO(32) or M-theory on a torus for the case of
E8 × E8. If we then also decrease the radius, it is convenient to perform a T-duality and
describe the theory in terms of Type I′ on a circle. Moreover, these slices of the moduli
space are self-dual, which means that they exhibit a self-dual line below which the moduli
space is a copy of the moduli space above. In the above coordinates, the self-dual line
occurs at ρ = 1√

7ϕ (red line in figure 4), where the Kaluza-Klein photon enhances to an
SU(2) gauge symmetry. This self-duality corresponds to a T-duality in the heterotic frame.
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3.1 A puzzle in the SO(32) slice of the moduli space

We begin by analyzing the different tower of states that emerge in the subspace of the
moduli space which has SO(32) gauge symmetry.

This theory features (among others) a tower of BPS Kaluza-Klein modes, a tower of
heterotic string oscillator modes, and a tower of BPS heterotic string winding modes. These
have the same dilaton and radion dependence as the Kaluza-Klein modes, fundamental
string oscillator modes, and the fundamental string winding modes in Type II string theory
discussed above, i.e.,

ζ⃗osc,h =
( 1√

8
,

1√
56

)
, ζ⃗w,h =

( 1√
2
,− 3√

14

)
, ζ⃗KK,h =

(
0,
√

8
7

)
. (3.2)

The SO(32) heterotic string is S-dual to Type I string theory. Thus, the strongly coupled
regime of the heterotic string features a tower of Type I string oscillator modes and Type I
string winding modes, with moduli dependence matching that of the D-string in Type IIB
string theory, i.e.,

ζ⃗osc,I =
(
− 1√

8
,

1√
56

)
, ζ⃗w,I =

(
− 1√

2
,− 3√

14

)
. (3.3)

Further, as mentioned above, heterotic string theory has the property of self-T-duality; a
circle compactification of SO(32) heterotic string theory with Wilson lines turned off is
T-dual to another SO(32) heterotic string theory, under which Kaluza-Klein modes and
winding modes of the heterotic string theory exchange. This implies the existence of a dual
phase of Type I string theory, with particles whose scalar charge-to-mass vectors are related
to those of the original Type I phase by reflection across the self-duality line, ρ = 1√

7ϕ:

ζ⃗osc,I(dual) =
(
− 1√

32
,− 5√

224

)
, ζ⃗w,I(dual) =

(
− 3√

8
,

1√
56

)
. (3.4)

These scalar charge-to-mass vectors are plotted in figure 5.
Here, a puzzle presents itself: figure 5 (left-hand plot) suggests that along the infinite-

distance geodesic with ρ→ ∞, ρ/ϕ = − 1√
7 (i.e. with tangent vector parallel to ζ⃗osc,I), the

lightest tower of particles should be the tower of winding modes associated with the dual
Type I string. In reality, however, we know that this limit is actually an emergent string
limit well described by perturbative Type I string theory on a circle, which means that the
lightest tower of particles is the tower of Type I string oscillator modes, with α = 1√

7 . Our
naive picture is wrong!

In fact, we can argue that the decompactification limit associated to the Type I winding
modes is obstructed in certain regimes. To see this, it is more convenient to switch to the
T-dual theory of Type I, which is Type I′. The regime of validity of the Type I′ region
is 1√

7ϕ ≤ ρ ≤ − 1√
7ϕ with ϕ < 0 from the perspective of the heterotic variables, which is

equivalent to weak coupling and small radius for Type I. The Type I′ theory is an orientifold
of Type IIA on a circle, and has two orientifold planes O8− sitting at the endpoints of an
interval, together with 16 D8-branes to cancel the D-brane charge. The background which
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Figure 5. Two naive (i.e., incorrect) convex hulls of the scalar charge-to-mass vectors in SO(32)
heterotic string theory. The left convex hull is incompatible with the fact that a tensionless Type
I string emerges in the limit ϕ → −∞, ρ/ϕ = − 1√

7 . The right convex hull is incompatible with
the existence of the Type I winding/Type I′ KK modes and requires an unidentified mystery tower
(shown in orange). The resolution to this puzzle lies in the fact that the scalar charge-to-mass ratio
vector for Type I winding/Type I′ KK modes varies as a non-trivial function of moduli space, as
we will see in section 3.2.

is dual to Type I with no Wilson lines (i.e. such that the gauge group is SO(32)) has all
the D8-branes sitting on top of one of the orientifolds. The Type I′ string coupling then
grows as we go from this orientifold to the other one. Hence, for a given value of the
Type I′ string coupling near the O8− +D8′s, there is maximum value for the length of the
interval, as otherwise the string coupling would diverge at some regular point in between
the orientifolds. Thus, the decompactification limit is obstructed unless we also send the
Type I′ string coupling to zero fast enough. The limiting case occurs if we move along the
self T-dual line, for which the string coupling diverges precisely at the location of the O8−

without the branes.8 This implies, in particular, that the theory does not decompactify
if we move along an asymptotic geodesic whose tangent vector is parallel to ζ⃗I-osc, as this
would correspond to increasing the radius but also increasing the string coupling from the
Type I′ perspective (recall that winding modes of Type I are dual to KK modes of Type
I′). In particular, this means that the tower of dual Type I winding states do not exist
along the asymptotic trajectory in the direction of ζ⃗I-osc.

Taking this reasoning into account, we could plot a new convex hull including only
the BPS states and the string oscillator modes while ignoring the Type I winding modes
(see figure 5, right-hand plot). However, this convex hull would not contain the ball of
radius 1√

d−2 unless there is a new mystery tower with ζ⃗ =
(
− 2

3
√

2 ,−
2

3
√

14

)
(orange point

in figure 5, right-hand plot). If we were to take this mystery tower seriously, it would

8The diverging coupling at the O8− leads to the enhanced SU(2) gauge symmetry along the self-dual
line, as described in [42].
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Figure 6. Sketch of the O8-(O8+16 D8) brane-orientifold configuration needed to obtain the
SO(32) gauge group in Type I′, as well as the dilaton profile for B > 0.

have |ζ⃗| = 4
3
√

7 , which by (1.3) is equal to the exponential rate of a Kaluza-Klein tower
for a decompactification to an 18-dimensional vacuum. However, this convex hull is also
incorrect, since it is well known that the resolution of taking the infinite-distance limit along
the self-dual line is not a new 18 dimensional vacuum, but a running solution of Type I′

in 10 dimensions. As explained above, this corresponds to the limiting case in which the
string coupling diverges in one of the orientifolds, and we simply recover 10 dimensional
massive Type IIA with a running dilaton in the decompactification limit.

In what follows, we will explain how the apparent contradiction is resolved due to the
fact that the Type I winding modes are not BPS and their scalar charge-to-mass vectors
vary across moduli space. Furthermore, the fact that we are decompactifying to a warped,
running solution will also change the result for the scalar charge to mass ratio of the KK
towers, deviating from the unwarped result of |ζ⃗KK| =

√
8
7 , (2.13).

3.2 The resolution: sliding and decompactification to a running solution

To begin resolving the puzzle outlined in the previous section, we will focus on one of the
Type I′ regions of moduli space (shaded blue in figure 9a). Taking an infinite-distance limit
ϕ→ −∞ with fixed 1√

7ϕ ≤ ρ ≤ − 1√
7ϕ corresponds to a decompactification limit of weakly

coupled Type I′ string theory to ten dimensions. However, as we now review, such a decom-
pactification limit leads not to a ten-dimensional vacuum, but rather to a running solution.

As explained in [43] and rederived in appendix A.1, type I′ theory compactified on a
interval x9 ∈ [0, 2π], with two orientifolds located at its extremes, x9

O8 = 0, 2π, and 16
D8-branes located at {x9

i }16
i=1 ⊂ [0, 2π] (see figure 6) results in a warped metric GMN =
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Ω2(x9)ηMN and running dilaton gs,I′ = eΦI′ (x9) given by

eΦI′ (x9) = z(x9)−5/6 Ω(x9) = Cz(x9)−1/6, (3.5)

with

z(x9) =
√

180
41 (α′

I′)2µ8C

{
B +

∫ x9

x9
0

16∑
i=1

τδ(τ − x9
i )dτ −

(∫ x9

0

16∑
i=1

δ(τ − x9
i )dτ − 8

)
x9
}
.

(3.6)
Here, µ8 is the coupling to the 9-form potential, and ν0, given by F10 ∧ ⋆F10 = ⋆ν2

0 is
proportional to the Romans mass of the massive Type IIA theory that arises between the
D8-branes. As explained in appendix A.1, the expression of z(x9) greatly simplifies for the
brane configuration leading to the SO(32) and E8 × E8 gauge sectors. In this first case,

zSO(32)(x9) =
√

180
41 (α′

I′)2µ8C(B + 8x9), with B > 0 .

For later convenience, it is useful to define the dimensionless quantities Ω̂ = Ω(α′
I′)−1/2

and Ĉ = C(α′
I′)−1/2, so that Ĉ, B are both dimensionless fields, and z(x9) ∼ Ĉ(B + 8x9)

up to global numerical factors.
This non-trivial warping and dilaton background is important because it modifies the

masses (and therefore the scalar charge-to-mass ratio) of the Type I′ Kaluza-Klein modes.
We have seen previously that circle reduction of a 10-dimensional vacuum solution leads
to Kaluza-Klein modes whose masses scale with the radion ρ as

mKK ∼ exp
(
−
√

8
7ρ
)
, (3.7)

which implies ∂ρ logmKK = −
√

8
7 everywhere in moduli space.

In the case of Type I′ string theory at hand, however, this simple calculation no longer
applies. Instead, the moduli dependence of the Kaluza-Klein mass must be computed via
a careful dimensional reduction of the 10-dimensional theory, which requires an explicit
computation of the Laplacian spectrum taking into account the non-trivial warping. We
present the computation in detail in appendix B, while here we only show the final result
for the Type I′ KK mass:

mKK,I′ =
(∫ 2π

0
dx9Ω̂8e−2Φ̂I′

)−1/7
MPl;9. (3.8)

This is valid for both the SO(32) and E8 × E8 slices of moduli space.
As derived in appendix A, the oscillator modes of the Type I′SO(32) string have a mass

of order

mosc,I′ =
(∫ 2π

0
dx9Ω̂2

)1/4 (∫ 2π

0
dx9Ω̂8e−2ΦI′

)−11/28( 16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9

i

)1/2

MPl;9 (3.9)

As a side remark, let us mention that this decompactification limit was also recently dis-
cussed in [44] to argue from the bottom-up that this asymptotic limit in the 9d supergrav-
ity moduli space should correspond to decompactifying to Type I′ string theory, although
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their estimation of the KK mass and string scale disagree with our results. Eqs. (25)
and (26) of [44] imply mKK,I′ ∼ C−25/24 and mosc,I′ ∼ C−5/24, while the correct result is
mKK,I′ ∼ C−25/21 and mosc,I′ ∼ C−5/14, which are obtained after plugging (3.5) into our
results for the masses above (see e.g. B.2). In any case, this does not change the fact that
the KK mass is lighter than the string mass along the self-dual line, so the qualitative
results of [44] remain unchanged.

In order to plot the convex hull of all states, we also need to express the BPS masses
in the (B,C) variables. This can be done by identifying the 9-dimensional actions and
the microscopic interpretation of the BPS states from both the heterotic and Type I′

perspectives. This is done in appendix A, and the result for the heterotic radius and the
heterotic dilaton in terms of the warping factor is given by

Rh ∼
(∫ 2π

0
dx9Ω̂2

)−1 (∫ 2π

0
dx9Ω̂8e−2Φ̂I′

)1/7
M−1

Pl;9 (3.10)

gh ∼
√

2
π

(∫ 2π

0
dx9Ω̂2

)−1/2 (∫ 2π

0
dx9Ω̂8e−2ΦI′

)3/2( 16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9

i

)−2

(3.11)

This, together with the relation between the string scales mosc,h = g
1/2
h mosc,I′ , is enough to

obtain the BPS heterotic KK and winding modes, mKK,h = R−1
h and mw,h = m2

osc,hRh, in
terms of the (B,C) fields. The explicit expressions are presented in the appendices in A.2
and A.3.

The final piece of information that we need to compute the scalar charge-to-mass ratios
is the moduli space metric Gab. This can be either computed from dimensionally reducing
the 10-dimensional Type I′ action, or more easily, by imposing that the scalar charge-to-
mass ratio of the BPS heterotic states which are purely KK or winding should remain fixed
at any point of the moduli space. The field space metric is computed using both methods
in appendix C, which combined with the final expression for the different tower masses in
terms of B and C (see appendix C.2) and using (2.3), leads to the following result for the
scalar charge to mass ratio vectors in the flat coordinates9 (ϕB, ϕC) ∈ R>0 × R:

ζ⃗osc,I′ =
(1

4 ,
3

4
√

7

)
, ζ⃗KK,h =

(
1,− 1√

7

)
,

ζ⃗osc,h =
(

0,− 1√
7

)
, ζ⃗w,h =

(
−1,− 1√

7

)
, (3.13)

9As obtained in appendix C.1, {ϕB , ϕC} are flat coordinates such that ds2
MSO(32)

= dϕ2
B + dϕ2

C given
by (C.14)

ϕC = 10
3
√

7
log C + 5

2
√

7
log
[
(B + 16π)4/3 − B4/3]

ϕB = 1
2 log (B + 16π)2/3 + B2/3

(B + 16π)2/3 − B2/3 ,

with the peculiarity that the sliding will occur in the ϕB direction, and with the ϕC axis corresponding
with the self-dual line. Any other flat frame will be related by a O(2) transfromation.
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while for the Type I′ KK mode we have a slightly more complicated expression

ζ⃗KK,I′ =
(
−3

2

[ 2√
1 − e−4ϕB

+ 1
]−1

,
5

2
√

7

)

=


(
−3

2
√
ϕB + O(ϕB), 5

2
√

7

)
for ϕB ≪ 1,(

−1
2 + 1

6e
−4ϕB + O

(
e−8ϕB

)
, 5

2
√

7

)
for ϕB ≫ 1.

(3.14)

This formula (see (3.16) for its expression in the (ϕ, ρ) flat frame) is one of the most
important results of this paper. Unlike the previous towers, the scalar charge-to-mass ratio
of the Type I′ KK modes change as move in the moduli space, in such a way that ζ⃗KK,I′

slides continuously along a segment of length 1
2 in the ϕB (equivalently B) direction of

the tangent space of the moduli space. In doing so, it interpolates between the unwarped
result

(
−1

2 ,
5

2
√

7

)
when ϕB, B → ∞ and the highly warped result

(
0, 5

2
√

7

)
at the self-dual

line when ϕB, B → 0.
Since the above scalar charge to mass ratio is given in the flat coordinates (ϕB, ϕC),

we still need to make a change of coordinates to write them in terms of the flat frame
associated to the heterotic dilaton and radius, in order to compare the results with figure 5.
The flat frames for the tangent spaces in different coordinates are simply related by an O(2)
transformation. Knowing that in this case the Jacobian matrix of the coordinate change
is positive definite, said transformation will be part of SO(2), that is, a rotation. We can
determine the transformation matrix Mϑ by imposing that ζ⃗KK,h =

(
0,
√

8
7

)
in the (ϕ, ρ)

flat frame (see (3.2)), which leads to the rotation angle ϑ = arccos
(
− 1

2
√

2

)
, and therefore

Mϑ =

− 1
2
√

2 −
√

7
8√

7
8 − 1

2
√

2

 , (3.15)

which finally allows us to write ζ⃗KK,I′ from (3.14) in the (ϕ, ρ) flat frame:

ζ⃗KK,I′ =
(
− 5

4
√

2
+ 3

4
√

2

[
1 + 2√

1 − e−4ϕB

]−1
,− 5

4
√

14
− 3

4

√
7
2

[
1 + 2√

1 − e−4ϕB

]−1
)

=


(

−5
4
√

2 + 3
4
√

2
√
ϕB,

−5
4
√

14 − 3
4

√
7
2
√
ϕB

)
+ O (ϕB) for ϕB ≪ 1,(

− 1√
2 − 1

12
√

2e
−4ϕB ,− 3√

14 + 1
12

√
7
2e

−4ϕB

)
+ O

(
e−8ϕB

)
for ϕB ≫ 1 .

(3.16)

The final result for the scalar charge-to-mass ratios of the towers in the heterotic
variables is plotted in figure 7. The upshot of this result is that the scalar charge-to-mass
vector representing the Type I′ Kaluza-Klein modes varies continuously as a function of
the moduli, sliding along the black dashed line in figure 7 on one side of the self-dual line.
Similarly, the Kaluza-Klein modes of the dual Type I′ string slide along the black dashed
line on the other side.10 This implies that the convex hull of the towers indeed changes as
we me move in the moduli space.

10The fate of the states when one crosses the self dual line is not entirely clear from our analysis. It may
be that the two towers of states are one and the same, or that one tower becomes unstable at the self-dual
line and decays into the other.
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Figure 7. Convex hulls in the two asymptotic limits for B in the I′SO(32) regions. The convex
hull for the limit B → ∞ is shown in blue; this corresponds to the limit of the I′SO(32) string with
no warping. The convex hull for the analogous zero-warping limit of the dual I′SO(32) string is
shown in yellow. The convex hull for the limit B → 0 limit is shown in green; this corresponds to
decompactification to the 10-dimensional running solution. The sliding segment is depicted by a
black dashed line. Note that the heterotic towers remain fixed in any limit.

A crucial consequence of the formula (3.14) is that the sliding of ζ⃗KK,I′ occurs entirely
as a function of the flat coordinate ϕB, which has the interpretation as the perpendicular
distance to the self-dual line. Thus, if we move along any asymptotic geodesic that is
not parallel to the self-dual line, ϕB will grow arbitrarily large as we move towards the
asymptotic region, and ζ⃗KK,I′ will approach the unwarped result

(
−1

2 ,
5

2
√

7

)
exponentially

quickly. If we are only interested in tracking the dependence of the exponential rate as a
function of direction, then, the sliding will happen instantaneously right as our asymptotic
geodesic becomes parallel to the self-dual line, as depicted in figure 8.

However, there is a two-parameter family of asymptotic geodesics, parametrized by
both the direction as well as the “impact parameter,” or the initial displacement in the
perpendicular direction. While for most geodesics the impact parameter will not affect
the value of ζ⃗KK,I′ in the asymptotic regime, for geodesics parallel to the self-dual line we
see that the value of ζ⃗KK,I′ depends very strongly on the impact parameter (in this case,
ϕB), even asymptotically, as depicted in the left part of figure 8. We can see that there is
an order-of-limits issue regarding the asymptotic value of ζ⃗KK,I′ : the limits of taking our
geodesic parallel to the self-dual line and moving infinitely far along our geodesic do not
commute.
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Figure 8. Sketch of the behavior of the convex hull (which is defined in the tangent space,
TpMSO(32)) for points along trajectories moving to different limits of the SO(32) slice of the moduli
space, MSO(32), parameterized by the canonically normalized heterotic (ϕ, ρ). Note that in the
Type I and Heterotic regions the convex hull is the same as in the unwarped limit of the Type I′
region (i.e. B, ϕB → ∞), which is also the same shape as in the Type IIB string compactification
on a circle, figure 2. For fixed ϕB , the tangent vector is parallel to the self-dual line, but the
shape of the convex-hull depends on the distance to it, given by ϕB . As we move closer, the
figure is deformed by the sliding of the Type I′ KK scalar charge-to-mass vector sliding, while still
containing the 1√

d−2 radius ball.

With the dependence of ζ⃗KK,I′ on our asymptotic trajectory in hand, let us now derive
the αmax-plot which provides the value of the exponential rate for the lightest tower for
every asymptotic geodesic of the moduli space. For the purposes of computing the αmax as a
function of direction in the Type I′ phases of moduli space, we can imagine that the Kaluza-
Klein scalar charge-to-mass vector jumps discontinuously from ζ⃗KK,I′ = (− 1√

2 ,−
3√
14) to

ζ⃗KK,I′(dual) = (− 3√
8 ,

1√
56) as one crosses from one Type I′ phase into the other. Note that

for geodesics parallel to the self-duality line, i.e., with ρ1 = 1√
7ϕ1 < 0, we have αmax = 5√

28
independently of the values of ϕ0 and ρ0. This independence is a bit surprising given the
nontrivial sliding of the Type I′ Kaluza-Klein modes’ scalar charge-to-mass vector that
occurs as ϕ0 and ρ0 are shifted, but this shifting turns out to have no effect on αmax for
the simple reason that the self-duality line is orthogonal to the line segment on which the
sliding occurs, as can be seen from figure 7.

The result of all this is the max-α hull shown in figure 9a. Clearly, the sharpened
Distance Conjecture is satisfied, as αmax ≥ 1√

d−2 in every direction in the dilaton-radion
plane. The limits in which this bound is saturated correspond to the three emergent string
limits, one of which is a heterotic string limit, the other two of which are Type I string
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(a) SO(32). (b) E8 × E8.

Figure 9. Max-α hull for SO(32) and E8 × E8 heterotic string theories on a circle. Everywhere
except the Type I′SO(32) region, the arc of the hull is determined by the ζ⃗-vector of the tower
contained in said arc. In the Type I′SO(32) regions, however, the leading tower is more subtle: in
the Type I′SO(32) region above the self-dual line, the leading tower is the Type I′-KK tower whose
ζ⃗-vector is located below the self dual-line. In the dual I′SO(32) region below the self dual line, the
leading tower is the Type I′-KK tower located above the line.

limits. Our initial puzzle is resolved: the Type I′ KK modes exist as long as we stay in
one Type I′ region, but do not obstruct the other Type I emergent string limit since their
scalar charge-to-mass vector varies as a function of moduli space.

An interesting consequence of our results is that the maximum value of the exponen-
tial rate for the Type I′ KK tower occurs precisely along the self-dual and it is smaller
than the naive unwarped result, αmax = 5√

28 <
√

8
7 . Hence, one has to be careful when

assuming (1.3) for a KK tower. This raises an obvious question: how small the can the
exponential rate of a KK tower become if decompactifying to a running solution? Could it
get even smaller than the one corresponding to the fundamental string oscillator modes?
If so, this would violate the sharpened Distance Conjecture but not the Emergent String
Conjecture, which in particular shows that the latter conjecture does not necessarily imply
the former. Clearly, in the case under consideration, this does not happen, and the sharp-
ened Distance Conjecture is still satisfied in a non-trivial way, but this possibility opens
interesting avenues to explore in the future.

3.3 The E8 × E8 slice of moduli space

A similar analysis to that presented above can be carried out for E8 × E8 heterotic string
theory on a circle. Recall that the different duality frames arising at different regions of
the moduli space were shown in figure 4. Once again, this moduli space features a pair
of Type I′ phases, which are related to each other by the self-T-duality of the E8 × E8
heterotic string. To get the E8 gauge group in this theory, we need to put 7 D8-branes
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on an orientifold plane, and one D8-brane away from it, precisely at a distance that will
maintain the infinite string coupling at the O8− plane, as explained in [42]. If we do this at
both ends, we get the vacuum of type I′ string theory that is dual to the heterotic E8 ×E8
string with no Wilson line turned on. We will see that the Kaluza-Klein modes for the two
Type I′ phases will again slide along a line segment between (− 3√

8 ,
1√
56) and (− 1√

2 ,−
3√
14)

as a function of position in moduli space. However, they will slide in the opposite direction
from the case of the SO(32) slice previously considered!

The dimensional reduction of the Type I′ theory is analogous to the case of SO(32),
with the exception that the warping and dilaton running along the compact direction are
now given in terms of the zE8×E8(x9) functions by

zE8×E8(x9) ∼


Ĉx9 if 0 ≤ x9 ≤ B

ĈB if B ≤ x9 ≤ 2π −B

Ĉ(2π − x9) if 2π −B ≤ x9 ≤ 2π
, (3.17)

where, in the Type I′ frame, B denotes the location, at x9 = B , 2π − B, of the two D8-
branes which are not located in the O8-planes. Note that here B ∈ [0, π], so that the
two corresponding limits are: B → 0, which corresponds with a low warping limit and a
E8 ×E8 → SO(16)×SO(16) enhancement, and B → π where the two bulk branes coincide
in the middle of the interval, leading to the enhancement E8×E8 → E8×E8×SU(2) along
the self-dual line [42].

In the same way as in the SO(32) slice, the Type I′ KK tower mass is given by (3.8),
with Ω̂ and eΦ̂I′ given in terms of zE8×E8(x9) this time. Furthermore, as computed in
appendix A, the oscillator modes of the Type I′E8×E8

string read

mE8×E8
osc,I′ ∼

(∫ 2π−B

0
dx9Ω̂2

)−1/4 (∫ 2π

0
dx9Ω̂8e−2ΦI′

)−1/7( 16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9

i

)1/4

MPl;9

(3.18)
In order to obtain BPS masses in terms of the (B,C) variables, we can identify the

heterotic winding modes (which are wrapping M2-branes from the M-theory perspective)
with the Type I′ string wrapping the interval, with endpoints at xI = 0, 2π − B (i.e. the
Type I′ string is stretched between one O8-plane and the D8-brane located further away
in the interval,11 as in figure 10). This way, mw,h = Rh

2πα′
h

= mw,I′ . Using this, we obtain
(see appendix A.2) the following expression of the heterotic radius and dilaton,

Rh ∼
(∫ 2π−B

0
dx9Ω̂2

)(∫ 2π

0
dx9Ω̂8e−2ΦI′

)−6/7( 16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9

i

)
M−1

Pl;9 (3.19)

gh ∼
(∫ 2π−B

0
dx9Ω̂2

)1/2 (∫ 2π

0
dx9Ω̂8e−2ΦI′

)( 16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9

i

)−3/2

, (3.20)

11This identification of the heterotic winding states in the Type I′ description can be derived by matching
charges of the states under the E8 ×E8 ×U(1)×U(1) gauge symmetry preserved at a generic point of this
slice of moduli space.
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Figure 10. Sketch of the (O8+7 D8)-D8-D8-(O8+7 D8) brane-orientifold configuration needed
to obtain the E8 × E8 gauge group in Type I′. The two stacks of seven D8-branes are located at
the orientifolds at x9 = 0, 2π, with the other two branes at x9 = B 2π − B, such that the string
coupling eΦI′ diverges at each O8− plane. The string identified with the heterotic winding states
in the Type I′ description is also depicted, stretching from one orientifold to the D8-brane located
further from it along the interval.

The final result for the BPS states, mw,h and mKK,h ∼ R−1
h , is given in (A.34c) and (A.34d).

Finally, using the field space metric of the E8×E8 slice of the moduli space (see appendix C),
we can compute the scalar charge to mass ratio vectors of the above states in the flat
(ϕB, ϕC) ∈ R>0 × R frame,12 as done in appendix C.2. All the towers have the same
expression as the SO(32) slice, i.e. (3.13), except for the Type I′ KK tower, which reads

ζ⃗KK,I′ =
(1

2 − 2
1 + 3e2ϕB

,
5

2
√

7

)

=


(

1
2 − 2

3e
−2ϕB + O

(
e−4ϕB

)
, 5

2
√

7

)
for ϕB → ∞,(

3
4ϕB + O

(
ϕ2

B

)
, 5

2
√

7

)
for ϕB ∼ 0,

(3.22)

In this case, it interpolates between
(
0, 5

2
√

7

)
(highly warped along self-dual line) and(

1
2 ,

5
2
√

7

)
(unwarped), again solely as a function of the perpendicular distance to the self-

dual line. The change of coordinates between (ϕB, ϕC) and (ρ, ϕ) has positive-definite
12The same way as in the SO(32) case, we have ds2

ME8×E8
= dϕ2

B + dϕ2
C , given by (C.17a)

ϕC = 10
3
√

7
log C + 5

6
√

7
log
[
B(4π − B)3]

ϕB = −1
2 log 3B

4π − B
,

again with the sliding only happening in the ϕB direction and ϕC axis being the self-dual line.
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Jacobian, and the SO(2) transformation is again given by ϑ = arccos
(
− 1

2
√

2

)
. The same

way as in the SO(32) case, in the (ϕ, ρ) flat frame, we obtain

ζ⃗KK,I′ =
(
− 5

4
√

2
− 3

4
√

2
e2ϕB − 1
3e2ϕB + 1 ,−

5
4
√

14
+ 3

4

√
7
2
e2ϕB − 1
3e2ϕB + 1

)

=


(
− 3

2
√

2 + 1
3
√

2e
−2ϕB , 1

2
√

14 − 1
3

√
7
2e

−2ϕB

)
+ O

(
e−4ϕB

)
for ϕB → ∞,(

− 5
4
√

2 − 3
8
√

2ϕB,− 5
4
√

14 + 3
8

√
7
2ϕB

)
+ O

(
ϕ2

B

)
for ϕB ∼ 0.

(3.23)

The result for the SWGC convex hull is shown in figure 11. The Type I′ KK modes
again slide following the dashed black line. A key difference between E8 × E8 heterotic
string theory and its SO(32) counterpart, however, is that the position of Type I′ KK scalar
charge-to-mass vector approaches the value (− 1√

2 ,−
3√
14) in the bottom Type I′ phase in

figure 11, whereas it approaches the value (− 3√
8 ,

1√
56) in the top Type I′ phase (the SO(32)

case has top ↔ bottom). Hence, as we move along the blue arrow in figure 11, the convex
hull is given by the blue triangle, while the yellow triangle arises when moving along the
yellow arrow in the bottom Type I′ phase. As a result, these Kaluza-Klein modes obstruct
the Type I′ emergent string limits,13 so there is only one emergent string limit in this moduli
space, namely, the emergent heterotic string limit. On the contrary, the unwarped decom-
pactification limit is not obstructed if we move along the direction of ζ⃗KK,I′ =

(
1
2 ,

5
2
√

7

)
.

The result of this analysis for the Distance Conjecture is the max-α hull shown in
figure 9b. Even if the towers are located at the same places than for SO(32), the nature
of the leading tower dominating along some of the asymptotic limits is different. Since the
emergent string limit is obstructed, the yellow region now corresponds to decompactifying
two dimensions (to M-theory). In the Type I′ blue region, we still decompactify to a 10-
dimensional running solution (thereby the sliding of the KK modes), but only a finite region
of the interval exhibits a non-vanishing Romans mass. The sharpened Distance Conjecture
is satisfied, as the exponential rate of the leading tower satisfies αmax ≥ 1√

d−2 in every
direction, and saturation occurs only in the emergent string limit.

3.4 The SO(16) × SO(16) slice of moduli space

For the sake of completeness, we consider one final slice of the moduli space of heterotic
string theory compactified on S1 to 9d: the slice with enhanced SO(16) × SO(16) gauge
symmetry. From the Type I′ point of view, this corresponds [42] to having 8 D8-branes
on each O8− plane located at the endpoints of the interval S1/Z2. By (3.6), we have
z(x9) ∝ BC, so there is no warping and the dilaton is constant along the interval. In this
case gI′ ∼ B−5/6C−5/6 and Ω ∼ B−5/6C1/6, which implies that every point of moduli space
has the same moduli space metric, and the scalar charge-to-mass vectors of the various
towers do not slide.

13This nicely reproduces the string theory expectations. From the string theory perspective, weak cou-
pling implies moving the isolated D8’s closer to each other, so there is a lower bound for the string coupling
that gets saturated when the two D8’s coincide at the middle of the interval. Hence, we cannot take the weak
coupling limit while keeping the radius of the interval fixed, so the Type I′ emergent string limit is obstructed.
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Figure 11. Convex hulls in the two asymptotic limits for B in the I′E8×E8
regions. The convex

hull for the limit B → 0 is shown in blue; this corresponds to the limit of the I′E8×E8
string with no

warping and large string coupling between the O8’s. The convex hull for the analogous zero-warping,
large coupling limit of the dual I′E8×E8

string is shown in yellow. The convex hull for the limit
B → π limit is shown in green; this corresponds to decompactification to the 10-dimensional running
solution. The sliding segment is depicted by a black dashed line. As in the SO(32) case, the heterotic
towers remain fixed in any limit. Note that the Type I′ emergent string limits are always obstructed.

Starting from this Type I′SO(16)×SO(16) frame, we can cover the entire two-dimensional
slice of moduli space by a sequence of dualities [43, 45–48]. First, this Type I′ string theory
is T-dual to Type I string theory with Wilson lines that break the gauge symmetry to
SO(16)× SO(16). As in section 3.1, this is S-dual to SO(32) heterotic string theory on S1,
again with Wilson lines preserving the SO(16) × SO(16) subgroup. This is in turn T-dual
to E8 × E8 heterotic string theory on S1 with Wilson lines preserving SO(16) × SO(16)
(recall that is the maximal common subgroup of SO(32) and E8 × E8). Finally, as in
section 3.3, the E8 ×E8 heterotic string can be related via the Hořava-Witten construction
to M-theory on S1/Z2 × S1, again with the Wilson lines on S1 breaking E8 to SO(16).
From the initial 9-dimensional Type I′ on S1/Z2 point of view, the 10d bulk theory is Type
IIA, which in the strong coupling limit can be lifted to M-theory by growing an additional
S1, thus completing the duality chain. The different regions, parametrized in terms of the
canonically normalized SO(32) heterotic dilaton and radion, are depicted in figure 12.

Figure 12 also depicts the scalar charge-to-mass vectors of the relevant towers of the
theory. Beginning in SO(32) heterotic string frame, we first have the KK modes (located
on the ρ axis) and the heterotic string oscillation modes (located on in the self-T-dual line),
as well as the winding modes of the SO(32) theory. Crossing to the Type I frame, we have
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Figure 12. The convex hull of the scalar charge-to-mass vectors for the SO(16) × SO(16) slice of
9d heterotic moduli space, given in terms of the canonically normalized dilaton and radion of the
SO(32) heterotic string. It is evident that the convex hull contains the ball of radius 1√

d−2 = 1√
7 .

Note that this figure is essentially identical to figure 2, but in this case the towers of Type I
oscillation modes and winding modes are not BPS.

the Type I KK and winding modes at each side of the T-duality line, along which the Type
I string tower is located. The mass expressions in terms of {ϕ, ρ} and coordinates of the
ζ⃗I vectors in this SO(32) heterotic frame are the same as in (2.9)–(2.12), so the resulting
convex hull, depicted in figure 12, is the same as the Type IIB case shown in figure 2.
Notably, the convex hull remains unchanged as we move in the moduli space, which is
possible because the heterotic theory is not self-T-dual in this slice of moduli space, so the
convex hull is not symmetric under the T-dual heterotic line.

Similarly, the discussion about the leading tower decay rate αmax(τ̂) along different
directions τ̂ is the same as the Type IIB case, which was discussed above in section 2.1.
Note, however, that in this case the towers of Type I string oscillation modes and winding
modes are not BPS.

4 Other nine-dimensional moduli spaces with 16 supercharges

So far, our main focus has been testing the sharpened Distance Conjecture in nine-
dimensional heterotic string theory. In this section, we will see that our results imme-
diately generalize and allow us to describe multiple additional slices of the landscape of
nine-dimensional quantum gravities with 16 supercharges. These additional slices can be
viewed as “frozen” phases of the two slices we have considered with SO(32) and E8 × E8
gauge symmetry. We again refer the reader to [42] for a detailed account of these theories.
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The first additional slice we can easily describe is the two-dimensional locus in the
moduli space of the CHL string with enhanced E8 gauge symmetry [42, 49, 50]. This theory
has r = 9 vector multiplets, and is obtained by compactifying the E8 ×E8 heterotic string
on a circle with a discrete Wilson line turned on for the gauged Z2 outer automorphism
exchanging the two copies of E8. The moduli space of this theory is identical to that of the
E8 × E8 slice we have considered previously (see figure 4), with a self-T-duality line and
duality frames given by E8 ×E8 heterotic string theory on a circle, M-theory on a Möbius
band, and an unusual variant of Type I′ string theory.

To describe this variant, recall that the E8 × E8 slice was given by a configuration of
Type I′ string theory with 7 D8-branes on each O8− plane and two additional D8-branes
placed precisely at a distance to maintain infinite string coupling on each O8−. To obtain
the E8 locus of the CHL string, one must replace one of the O8− planes and the 7 D8-
branes on top of it with an O8(−1) plane that is frozen to sit at infinite coupling. While this
replacement changes the local dynamics on the orientifold plane, it does not change the bulk
geometry whatsoever, and thus the scalar charge to mass ratio vector of the Type I′ KK
modes is again given by (3.22). As a result, the SWGC convex hulls for the E8 slice of the
CHL string moduli space will be identical to those for the corresponding point in the E8×E8
slice depicted in figure 11, and the max-α hull will be the same as that depicted in figure 9b.

The next slice we can easily describe is the two-dimensional moduli space of the asym-
metric orbifold of Type IIA string theory on a circle (AOA) by the action of (−1)FL

combined with a half-shift along the circle [42, 51, 52], a theory with r = 1 vector multi-
plets. The moduli space of this theory is again identical to that of the E8 × E8 slice, and
has a self-T-duality line as well as duality frames given by the AOA theory, M-theory on a
Klein bottle, and a configuration of Type I′ string theory. This configuration is obtained
from the E8 × E8 configuration by replacing both O8− planes and the 7 D8-branes on
each with O8(−1) planes frozen to infinite coupling, leaving behind two D8-branes in the
middle of the Type I′ interval. Again, the bulk geometry is identical to that of the E8 ×E8
configuration, and so the Type I′ KK scalar charge to mass ratios, SWGC convex hulls,
and max-α plots will be identical to those for the E8 × E8 slice considered previously.

The final slice we can easily describe is the two-dimensional moduli space of a similar
asymmetric orbifold of Type IIB string theory on a circle (AOB) by (−1)FL combined with
a half-shift [42, 51, 52], another theory with r = 1 vector multiplets. While the moduli
space of the AOA theory is identical to that of the E8 × E8 slice, the moduli space of
the AOB theory is instead identical to that of the SO(32) slice, with a self-T-duality line
and duality frames given by the AOB theory, the Dabholkar-Park background [53], and
a configuration of Type I′ string theory. This configuration is obtained by the SO(32)
configuration by replacing the O8− plane with 16 D8-branes on top of it with an O8+

plane. Just as in the previous two cases, the bulk geometry remains identical (this time
to that of the SO(32) configuration), and so the Type I′ KK scalar charge to mass ratios,
SWGC convex hulls, and max-α plots will be identical to those for the SO(32) slice (given
in (3.14), figure 7, and figure 9a respectively).

There are two additional slices of the landscape of nine-dimensional quantum gravity
with 16 supercharges, to which our results do not quite apply verbatim, but for which
we expect very similar (if not identical) results to hold. These are the additional slice
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with SO(32) gauge symmetry mentioned in Footnote 7, as well as its frozen phase, the
new string theory with r = 1 vector multiplets described in reference [54] and obtained by
turning on a discrete θ-angle in the AOB theory. These theories are very similar to the first
SO(32) slice and the AOB theory respectively, but have additional Z2 restrictions on their
charge lattices. Our expectation is that these differences will only change the prefactor of
the masses of towers of states, and not the exponential rates, so it is our expectation that
the SWGC convex hulls and max-α plots will be identical to those plotted in figure 7 and
figure 9a respectively.

5 Discussion

In this paper, we have studied several noteworthy slices of the moduli space of quantum
gravity theories in nine dimensions with 16 supercharges. Our findings have led to a striking
confirmation of the sharpened Distance Conjecture and an important clarification for the
Emergent String Conjecture. As demanded by the sharpened Distance Conjecture, every
infinite-distance limit in moduli space considered above features at least one tower of light
particles which decays with geodesic distance ϕ as m ∼ e−αϕ, with α ≥ 1√

d−2 = 1√
7 . This

bound is saturated only in emergent string limits, and is satisfied strictly in all other limits.
As demanded by the Emergent String Conjecture, all of these infinite-distance limits

represent either emergent string limits or decompactification limits. However, in the case of
the Type I′ decompactification limits, we found that the decompactification does not result
in a 10-dimensional vacuum, but rather a running solution. The running of the dilaton in a
Type I′ decompactification limit implies that the masses of the Type I′ Kaluza-Klein modes
develop a non-trivial dependence on the moduli, which we computed explicitly by a careful
dimensional reduction including the effects of a warped compactification. The possibility of
a decompactification to a non-vacuum state is an important caveat to be considered when
attempting to derive consequences from the Emergent String Conjecture (as in [55]), since
it implies a possible suppression of the exponential rate of a KK tower due to the warping
and a non-trivial variation of its value as we move in the moduli space. Given this, it is
perhaps a bit surprising that the sharpened Distance Conjecture continues to hold even in
Type I′ decompactification limits, and more generally it is not obvious that the sharpened
Distance Conjecture will remain valid once decompactifications to non-vacuum solutions
are taken into account.

We also checked a version of the Scalar Weak Gravity Conjecture (SWGC) [32, 33]
in these nine-dimensional theories, which implies a lower bound for the ratio |ζ⃗| = |∇⃗m|

m

of the gradient of the mass to the mass of the tower of states, which is commonly known
as the scalar charge-to-mass ratio. Unlike the Distance conjecture, the SWGC is a local
condition of the moduli space, and we find that it is always satisfied in the asymptotic
regimes if we take the bound to be |ζ⃗| ≥ 1√

d−2 . This holds thanks to the particular sliding
behaviour of the non-BPS states. Notice that this version of the SWGC no longer has
the interpretation of a balance of gravitational and scalar forces (as in the original SWGC
proposal [32]) since the numerical factor in the bound is different, and is instead fixed to
coincide with the lower bound of the sharpened Distance conjecture.14

14This is why such type of bound was originally refered to in [33] as the Convex Hull Distance Conjecture
and referred to in [31] as the Tower SWGC.
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Assuming that the scalar charge-to-mass ratio of the towers does not change in a
given asymptotic regime, reference [33] showed that the Distance Conjecture is satisfied
with minumum rate αmin if and only if the convex hull of the towers of states includes
the ball of radius αmin. In this paper, we find that this connection between the Distance
Conjecture and this version of the SWGC still holds in the interior of any fixed asymptotic
regime (i.e. for each of the dual regimes in figure 4), even taking into account the sliding
of the non-BPS states. This is possible thanks to the fact that the sliding of the Type
I′ KK states occurs instantaneously as a function of the asymptotic direction, and so
there is effectively no sliding as long as one considers asymptotic geodesics that have a
different asymptotic tangent vector.15 This implies that, in practice, one can draw the
max-α plot by stitching together the max-α plots of the unwarped light towers in each
region. However, the relevant light towers jump discontinuously as a function of direction
when crossing the self-dual line, as represented in figure 13. The jumping occurs in
opposite directions for the case of SO(32) or E8 × E8. As a result, the exponential rate
of the Kaluza-Klein modes matches that of an unwarped circle compactification along the
geodesics in the interiors of the Type I′ regions, even if it never reaches the unwarped rate
of
√

8
7 in the SO(32) case (recall figure 9a for the max-α plot providing the exponential

rate of the leading tower along each direction). It would be interesting to investigate
whether this relationship between the Convex Hull SWGC and the Distance Conjecture
holds more generally in any fixed asymptotic region (satisfying, therefore, the Convex Hull
Distance Conjecture of [33]), or whether there are examples where the SWGC convex hull
changes continuously as a function of asymptotic direction.

It is important to note that, while the max-α plot for each fixed asymptotic region
arises from a convex hull, the resulting figure obtained from joining piece-wise the different
convex hulls in each asymptotic regime is not a convex hull anymore, as depicted in see
figure 13. In each asymptotic regime, we draw the convex hull of the leading towers
of states, which happen to be always a straight line between the two competing towers
characterizing each asymptotic regime. In the Type I′ regime, the competing towers are
always the Type I string oscillator modes and the Type I′ KK modes, but the KK modes
jump as we cross the self-dual line. Figure 13 also nicely captures the difference between
the SO(32) and E8 ×E8 slices: even if the towers of states seem to be located at the same
places, the Type I′ KK tower which is valid in a given Type I′ regime is located at opposite
sides of the self-dual line, and the jumping occurs in opposite directions. This implies that
the pure decompactification limit (or the emergent string limit) is obstructed for SO(32)
(or E8 ×E8) respectively, since the relevant tower of states is not present when moving in
the appropriate direction. This result nicely reproduces the string theory expectations.

An interesting exercise is to check how much we could have predicted about the weakly
coupled descriptions that emerge in the infinite distance limits knowing only the towers of
states (along the lines of [55]). First of all, we want to remark that knowing the leading
tower along a particular asymptotic direction is not enough to find out the weakly coupled

15If we consider geodesics that are parallel to the self-dual line, the sliding occurs as a function of the
distance to the self-dual line.
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(a) SO(32). (b) E8 × E8.

Figure 13. Sketch of the leading towers that fulfill the Convex Hull Distance Conjecture in the
different asymptotic regions. Each facet is generated by two competing towers, each of which
becomes light in an asymptotic region. The emergent string limits are depicted in purple. The
self-dual line in the Type I′ region should be interpreted as a sort of branch cut, in the sense that
the scalar charge-to-mass ratios of the Type I′-KK towers jump depending on which side of the
self-dual line the infinite-distance limit resides. This means that the competing towers in the Type
I′ region are always the Type I′ KK modes and the string oscillator modes, but the location of these
towers changes as we cross the self-dual line.

description that emerges asymptotically. For instance, consider an asymptotic trajectory
on the upper left region of the moduli space in figure 13. The leading tower is the heterotic
KK modes for ρ > − 3√

7ϕ both in the case of SO(32) and E8 ×E8. However, the emerging
weakly coupled description is very different in the two cases, as one obtains 10d Type I
string theory in the former and 11d M-theory in the latter. Hence, in general, it is necessary
to have information about the multiple competing light towers in a given asymptotic region,
information that can be easily read from figure 13. For the SO(32) case, the upper left
(orange) region is controlled by a KK tower of one extra dimension and a tower of string
oscillator modes, so the emerging description is a string theory in 10 dimensions. Contrarily,
for E8 × E8, the upper left (yellow) region is controlled by two KK towers of one extra
dimension, so the resolution is an 11 dimensional theory (i.e., M-theory). Hence, one has to
be careful when extracting conclusions from checking individual trajectories or neglecting
the sliding of the towers in the moduli space. Let us also mention that each dual frame (or
equivalently, each face of figure 13) is characterized by a unique result of the species scale
hinting a particular weakly coupled description, as will be explored in more detail in [56–59].

One shortcoming of this work is that we have ignored periodic scalar fields, i.e., axions.
This omission can be justified on the grounds that axions do not play a role in our discussion
of the Distance Conjecture, since they may be taken to be constant along asymptotic
geodesics in these slices. However, axions do play an important role in the closely related
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Convex Hull SWGC [31, 33], the refined Distance Conjecture [20, 21], and other attempts
to extend the Distance Conjecture into the interior of moduli space [22]. Furthermore,
axions are more relevant for phenomenology than infinite-distance limits in moduli space.
To this end, it would be worthwhile to study axion couplings to matter, both in the theories
considered here and more generally.

It has been over 17 years since Ooguri and Vafa first appreciated the appearance of uni-
versal behavior in infinite-distance limits of quantum gravity moduli spaces and proposed
the celebrated Distance Conjecture. Yet even the last several years have seen remarkable
progress in our understanding of these limits. The structures underlying the Distance
Conjecture have come into focus, and the Distance Conjecture itself has attained a greater
degree of precision and rigor. After the explosive activity of the past years, it is fair to say
that we are now entering into a precision era in the Swampland program. In this paper, we
have extended this program even further, and in the process we have demonstrated that
even old and well-studied theories may hold new, important insights into old and well-
studied Swampland conjectures. We hope that this work will inspire further exploration
of uncharged territory in the Landscape and the Swampland, even more precisely.
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A Heterotic-Type I′ duality in nine dimensions

In this appendix, we rederive the background of [43]. Additionally, we compute the masses
of the 1/2 BPS heterotic winding and KK modes. We defer to appendix B to compute
the masses of KK modes of Type I′ string theory. With these masses, we will compute in
appendix C.2 the sliding of the ζ⃗-vectors for Type I′ KK modes.

A.1 Equations of motion for the Type I′ dilaton and warp factor

We begin by obtaining and solving the equations of motion for the massive Type I′ dilaton
ΦI′ and warp factor for the 10-dimensional string-frame metric, gI′ = Ω2η. We will consider
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them to be dependent only on the internal dimension x9 ∈ [0, 2π]. Along this interval we
consider two orientifolds located at its extremes, x9

O8 = 0, 2π, and 16 D8-branes localted
at {x9

i }16
i=1 ⊂ [0, 2π], with coupling µ8 to the 9-form potential. The bulk action (the brane

terms will only account for the “jumps” of these functions and can be studied separately)
is given by [48]

S
(bulk)
I′ = 1

2κ2
10,I′

∫
d10x

√
−gI′

{
e−2ΦI′

[
RgI′ + 4∂M ΦI′∂

M ΦI′
]

+ (α′
I′)4ν2

0

}
= 1

2κ2
10,I′

∫
d10xe−4ΦI′ (x9)Ω(x9)6

{
(α′

I′)4ν2
0e

4ΦI′ (x9)Ω(x9)4 + 4Ω(x9)2∂9e
ΦI′ (x9)

−18e2ΦI′ (x9)
[
3Ω′(x9)2 + Ω(x9)Ω′′(x9)

]}
(A.1)

where we have included an (α′
I′)2 term accompanying the Romans mass so that the F10 ∧

⋆gI′F10 = ⋆gI′ν
2
0 term has the correct units of L8. Now, the solutions to the associated

equations of motion are given by

eΦI′ (x9) = z(x9)−5/6 Ω(x9) = Cz(x9)−1/6, (A.2)

with16

z(x9) =
√

180
41 (α′

I′)2C(Bµ8 ± ν0x
9), (A.3)

with ν0 constant between branes, such that there its value has a ∆(x9
i ) = niµ8 jump at

each stack of ni 8-branes located at x9
i , resulting in ν0(2π) = ν0(0) + 16µ8. As boundary

conditions require ν0(2π) = −ν0(0) = 8µ8, we end up having

ν0(x9) = µ8

[∫ x9

0

16∑
i=1

δ(τ − x9
i )dτ − 8

]
. (A.4)

On the other hand, B and C are two functions with dimensions of 1 and L constant
between branes. Following the discussion from [43], by requiring Ω and ΦI′ to be continous,
we have that C must be constant and ∆B(x9

i ) = ∓nix
9
i , so that

B(x9) = B(x9
0) ∓

∫ x9

x9
0

16∑
i=1

τδ(τ − x9
i )dτ, (A.5)

where x9
0 is some arbitrary position of the interval, x9

0 ∈ [0, 2π] for which B(x9
0) is finite. We

will take C and B(x9
0) (in our computations simply B) as moduli. Furthermore, positivity

of the membrane tension will require taking the lower signs of the above expressions, finally
reaching the following expression:

z(x9) =
√

180
41 (α′

I′)2µ8C

{
B +

∫ x9

x9
0

16∑
i=1

τδ(τ − x9
i )dτ −

(∫ x9

0

16∑
i=1

δ(τ − x9
i )dτ − 8

)
x9
}

(A.6)
16Note that the numerical coefficient

√
180
41 we obtain is slightly different than the 3√

2 =
√

180
40 appearing

in [43]. While this difference will not have any further implication in our results, it is nonetheless an
interesting observation.
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This greatly simplifies for the SO(32), in which all the branes are located at x9
i = 2π, and

we take B = B(0), so that

zSO(32)(x9) =
√

180
41 (α′

I′)2µ8C(B + 8x9), (A.7)

with the B → 0 limit resulting in the string coupling diverging at x9 = 0, while for B → ∞
both ΦI′ and Ω are approximately constant, corresponding with the low warping limit.

For E8 ×E8 case, where we have 7 D8-branes at each O8-plane and two additional at
two points π ∓ x9

I′ , with B = B(π). If we further require the orientifold planes to have
infinite coupling, we will need to impose z(0) = z(2π) = 0, which using (A.6) amounts to
x9

I′ = π −B (so that it is only valid for B < π), and thus

zE8×E8(x9) =


√

180
41 (α′

I′)2µ8Cx
9 if 0 ≤ x9 ≤ B√

180
41 (α′

I′)2µ8CB if B ≤ x9 ≤ 2π −B√
180
41 (α′

I′)2µ8C(2π − x9) if 2π −B ≤ x9 ≤ 2π

(A.8)

As we will need to use it in the next subsection, we can obtain the 9-dimensional
Einstein metric for our theory. For this we will write said 9-dimensional metric as gµν =
D−2ηµν , with D some mass scale independent of x9 we will soon determine, so that gI′µν =
(ΩD)2 gµν . Doing this, we obtain

SI′ ⊃
1

2κ2
10,I′

∫
d10x

√
−gI′e

−2ΦI′RgI′ ⊃
1

2κ2
10,I′

∫
d9x

√
−gRgD

7
∫ 2π

0
dx9Ω8e−2ΦI′ , (A.9)

with additional terms contributing to the moduli space metric through the kinetic term
1
2Gij∂µφ

i∂µφj . Now, defining

r =
∫ 2π

0
dx9Ω8e−2ΦI′ , (A.10)

to go to Einstein frame we must use for D the following value,

D =
(
r

r0

)−1/7
r
−1/8
0 , (A.11)

where r0 is some auxiliary scale, which will not have any implication in the final result and
we just include to have dimensionally sensible expressions, we introduce to have a metric
with the correct dimensions. This way, we get

SI′ ⊃
r

1/8
0

2κ2
10,I′︸ ︷︷ ︸
1

2κ2
9,I′

∫
d9√−gRg =⇒ M7

Pl;9 = r
1/8
0

κ2
10,I′

(A.12)

so that

D−1 = r1/7r
−1/56
0 = r1/7κ

−2/7
10,I′ M

−1
Pl;9 = 27

2π(α′
I′)4/7

(∫ 2π

0
dx9Ω8e−2ΦI′

)1/7
M−1

Pl;9 (A.13)

and finally

gµν =
(
r

r0

)2/7
r

1/4
0 ηµν (A.14)
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A.2 Heterotic-Type I′ duality relations

Once we have the equations of motion associated to the Type I′ dilaton and warping,
we can obtain the heterotic and Type I′ radii and couplings in terms of the B and C

moduli, from which we can obtain the KK and winding modes, which are 1/2 BPS, and
emergent string towers of the heterotic theory. Anchoring the scalar-charge-to-mass ratios
of these 1/2 BPS masses allow us to determine how the I′ KK modes slide. The strategy
we employ is to compute the masses in heterotic string theory, and then express the masses
in terms of Type I′ string theory’s B and C fields and 9d Planck constant. Because this
derivation involves translating between I′ string theory and heterotic string theory, we keep
all dimensionful terms (such as kappas and α′’s) explicit.

We start with the following terms appearing in the heterotic 10D action [48]:

Sh ⊃ 1
2κ2

10,h

∫
d10x

√
−ghe

−2Φh

{
Rgh − α′

h
4 TrV F

2
2

}
, (A.15)

with κ2
10,h = (2π)7

2 (α′
h)4. On the other hand, we find that for the Type I′ theory in the

presence of D8-branes perpendicular to the x9 direction and located at {x9
i }16

i=1 has

SI′ ⊃
1

2κ10,I′

∫
d10x

√
−gI′e

−2ΦI′RgI′ −
(α′

I′)−5/2

8(2π)6

16∑
i=1

∫
x9=x9

i

d9x
√
−g(d)

I′ e
−ΦI′TrV F

2
2 , (A.16)

where we have expanded the DBI action for Dp-branes, with B-field set to zero

SDBI,p = −(α′)−
p+1

2

(2π)p

∫
Σp+1

dp+1xe−Φ
√
− det(g − 2πα′F2) (A.17)

up to O(α′)2 order and used that det(1 + M) = exp [Trf log(1 +M)], with Trf = 1
2TrV .

Again, κ2
10,I′ = (2π)7

2 (α′
I′)4.

We will consider that our metrics are conformally flat, with gI′MN = Ω(x9)2ηMN in
the 10-dimensional string frame, and ghµν = gI′µν = D−2ηµν (so that the 9-dimensional
Einstein frame metric is the same in both theories), with the compact dimension being
along a circle of radius Rh. For the time being, we will not assume any specific form for
the Ω and eΦI′ , only that they depend on the internal coordinate x9. In order to relate the
parameters from the two theories, we can compare their actions. We start doing so with
the gravitational terms:

S
(grav)
h = 1

2κ2
10,h

∫
d10x

√
−ghe

−2ΦhRgh

= 1
2κ2

10,h

∫
d9x

∫ 2π

0
dx9

√
−g(d)

h

√
g

(9)
h︸ ︷︷ ︸

Rh

e−2ϕh(R
g

(d)
h

+R
g

(9)
h︸ ︷︷ ︸

0

)

= 2πRhe
−2Φh

2κ2
10,h

∫
d9x

√
−g(d)

h R
g

(d)
h

(A.18)

Note that from the above we recover the usual expression for κ9,h,

1
2κ2

9,h
= 2πRhe

−2Φh

2κ2
10,h

=⇒ κ2
9,h = κ2

10,h(2πRh)−1e2Φh (A.19)
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Now, by using that κ2
9 = 2M7

Pl;9, with the Planck mass theory-independent, we have that
(using (A.13)),

(
κ10,h
κ10,I′

)2

=
(
α′

h
α′

I′

)4

= 2πRhe
−2Φh

(
1

2π

∫ 2π
0 dx9Ω

)7

∫ 2π
0 dx9Ω8e−2ΦI′

, (A.20)

which we will later use. On the other hand, from the Type I′ action,

S
(grav)
I′ = 1

2κ10,I′

∫
d10x

√
−gI′e

−2ΦI′RgI′

= 1
2κ2

10,I′

∫
d9x

∫ 2π

0
dx9

√
−g(d)

I′︸ ︷︷ ︸
Ω9D9

√
−g

(d)
I′

√
−g(9)

I′︸ ︷︷ ︸
Ω

e−2ΦI′ (R
g

(d)
I′

+R
g

(9)
I′︸ ︷︷ ︸

0

)

= D7

2κ2
10,I′

∫
d9x

√
−g(d)

h R
g

(d)
h

∫ 2π

0
dx9Ω8e−2ΦI′ , (A.21)

where we have used that in the 10-dimensional String frame, gI′µν = Ω2D2ghµν , as such,
R

g
(d)
I′

= Ω−2D−2R
g

(d)
h

(with Ω is independent of the macroscopic coordinates). Now, by
comparing the two actions, one gets

2πRhe
−2Φh =

(
α′

h
α′

I′

)4

D7
∫ 2π

0
dx9Ω8e−2ΦI′ (A.22)

On the other hand, we can relate the gauge terms of both actions, as working in an
analogous way as above

S
(gauge)
h = α′

h
8κ2

10,h

∫
d10x

√
−ghe

−2ΦhTrV G
2
2

= α′
h

8κ2
10,h

2πRhe
−2Φh

∫
d9x

√
−g(d)

h TrV F
2
2 (A.23)

S
(gauge)
I′ = (αI′)−5/2

8(2π)6

16∑
i=1

∫
x9=x9

i

d9x
√
−g(d)

I′ e
−ΦI′TrV F

2
2

= (αI′)−5/2

8(2π)6

16∑
i=1

Ω5e−ΦI′
∣∣∣
x9=x9

i

∫
d9x

√
−g(d)

h TrV F
2
2 , (A.24)

where in the last step one must take into account the use of the inverse metric to raise
indices in F2. This way, one obtains the following relation

2πRhe
−2Φh = π(α′

h)3(α′
I′)−5/2D5

16∑
i=1

Ω5e−ΦI′
∣∣∣
x9=x9

i

(A.25)

This way, one can use eqs. (A.22) and (A.25) to obtain the following value for D:

D =
√
π(α′

h)−1/2(α′
I′)3/4

√√√√∑16
i=1 Ω5e−ΦI′

∣∣
x9=x9

i∫ 2π
0 dx9Ω8e−2ΦI′

(A.26)
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One can see that, in order for eqs. (A.22) and (A.25) to make sense, we have that [D] = L−1

and [Ω] = L. The above relations are valid for both the SO(32) and E8×E8 heterotic string
theories. In order to find a third relation that allows us to obtain the expression of D, Rh

and gh, we need to identify different string states between the heterotic and Type I′ theories.
First of all, for the SO(32) theories, we have that we can identify the masses of the

heterotic KK and Type I′ winding states, which are dual and BPS. Following [43], we have
that mKK,h = R−1

h = Dmw,I′ , so that

1
Rh

= D

2παI′
2
∫ 2π

0
dx9Ω2 (A.27)

in 10-dimensional Planck units, where we have used that Ts = 1
2πα′

I′
, the area element is

dA = Ω(x9)2dx9dx0, and that we wrap the string from one orientifold to the other and back.
Now, expressions (A.22), (A.25) and (A.27) mix both heterotic and Type I′ α′ factors.

Substituting α′
h = g−1

h α′
I′ , we obtain that for the SO(32) theories,

D = 21/4(α′
I′)−1/2

(∫ 2π

0
dx9Ω̂2

)−1/4 (∫ 2π

0
dx9Ω̂8e−2ΦI′

)1/4

×
( 16∑

i=1
Ω̂5e−ΦI′

∣∣∣
x9=x9

i

)−1/2

(A.28a)

Rh = π

21/4 (α′
I′)1/2

(∫ 2π

0
dx9Ω̂2

)−3/4 (∫ 2π

0
dx9Ω̂8e−2ΦI′

)−1/4

×
( 16∑

i=1
Ω̂5e−ΦI′

∣∣∣
x9=x9

i

)1/2

(A.28b)

gh =
√

2
π

(∫ 2π

0
dx9Ω̂2

)3/2 (∫ 2π

0
dx9Ω̂8e−2ΦI′

)−2( 16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9

i

)−1/2

, (A.28c)

where we have introduced the dimensionless function Ω̂ = (α′
I′)−1/2Ω. The above expres-

sions have the expected dimensions and units. While we could try to use duality relations
to obtain the expression of the Type I′ radius and coupling, this will not be necessary.
Using (A.13) and (A.28a), we find

MPl;9 = 225/4

π
(α′

I′)−
1
2

(∫ 2π

0
dx9Ω̂2

)− 1
4
(∫ 2π

0
dx9Ω̂8e−2ΦI′

) 11
28
( 16∑

i=1
Ω̂5e−ΦI′

∣∣∣
x9=x9

i

)− 1
2
,

(A.29)
On the other hand, in the E8 × E8 case, we have that the heterotic winding (where the
winded heterotic strings at small gh and large Rh are wrapped M2-branes from M-theory
with large R9 and small R10) and Type I′ winding modes with the strings wrapped between
one O8-plane and the D8-brane located further away inside the interval at xI = 0, 2π−B

(where the winded strings are wrapping M2-branes from M-theory perspective). This way

mw,h = Rh
2πα′

h
= D

2πα′
I′

2
∫ 2π−B

0
dx9Ω2 = mw,I′ (A.30)
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From the above equation and (A.22) and (A.25) we obtain, using again that α′
h = g−1

h α′
I′ ,

D =
√

2(αI′)−1/2
(∫ 2π−B

0
dx9Ω̂2

)1/4( 16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9

i

)−1/4

(A.31a)

Rh =
√

2(α′
I′)1/2

(∫ 2π−B

0
dx9Ω̂2

)3/4 (∫ 2π

0
dx9Ω̂8e−2ΦI′

)−1

×
( 16∑

i=1
Ω̂5e−ΦI′

∣∣∣
x9=x9

i

)5/4

(A.31b)

gh = 2
π

(∫ 2π−B

0
dx9Ω̂2

)1/2 (∫ 2π

0
dx9Ω̂8e−2ΦI′

)( 16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9

i

)−3/2

, (A.31c)

as well as

MPl;9 = 213/2

π
(α′

I′)−1/2
(∫ 2π−B

0
dx9Ω̂2

)1/4(∫ 2π

0
dx9Ω̂8e−2ΦI′

)1/7( 16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9

i

)−1/4

(A.32)

A.3 Masses of BPS towers

Using the expressions obtained in the above subsection one can finally compute the expres-
sion for the mass of the different towers:

m
SO(32)
osc,I′ ∼ (α′

I′)−1/2 (A.33a)

∼
(∫ 2π

0
dx9Ω̂2

)1/4 (∫ 2π

0
dx9Ω̂8e−2ΦI′

)−11/28( 16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9

i

)1/2

MPl;9

m
SO(32)
KK,h ∼ D

παI′

∫ 2π

0
dx9Ω2 (A.33b)

∼
(∫ 2π

0
dx9Ω̂2

)(∫ 2π

0
dx9Ω̂8e−2Φ̂I′

)−1/7
MPl;9

m
SO(32)
osc,h ∼ (α′

h)−1/2 = g
1/2
h (α′

I′)−1/2 (A.33c)

∼
(∫ 2π

0
dx9Ω̂8e−2ΦI′

)−5/14( 16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9

i

)−1/2

MPl;9

m
SO(32)
w,h ∼ Rh

2πα′
h

= ghRh
2πα′

I′
(A.33d)

∼
(∫ 2π

0
dx9Ω̂2

)−1 (∫ 2π

0
dx9Ω̂8e−2ΦI′

)−6/7( 16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9

i

)−1

MPl;9,
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Similarly, the E8 × E8 towers are given by

mE8×E8
osc,I′ ∼ (α′

I′)−1/2 (A.34a)

∼
(∫ 2π−B

0
dx9Ω̂2

)−1/4 (∫ 2π

0
dx9Ω̂8e−2ΦI′

)−1/7( 16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9

i

)1/4

MPl;9

mE8×E8
KK,h ∼ 1

Rh
(A.34b)

∼
(∫ 2π−B

0
dx9Ω̂2

)−1 (∫ 2π

0
dx9Ω̂8e−2ΦI′

)6/7( 16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9

i

)−1

MPl;9

mE8×E8
osc,h ∼ (α′

h)−1/2 = g
1/2
h (α′

I′)−1/2 (A.34c)

∼
(∫ 2π

0
dx9Ω̂8e−2ΦI′

)5/14( 16∑
i=1

Ω̂5e−ΦI′
∣∣∣
x9=x9

i

)−1/2

MPl;9

mE8×E8
w,h ∼ D

πα′
I′

∫ 2π−B

0
dx9Ω2 ∼

(∫ 2π−B

0
dx9Ω̂2

)(∫ 2π

0
dx9Ω̂8e−2ΦI′

)−1/7
MPl;9 (A.34d)

We must take into account that the z(x9) has different expressions for the SO(32) and
E8 × E8, respectively given by (A.7) and (A.8).

B Kaluza-Klein modes for Type I′ in nine dimensions

In this section, we compute the moduli-dependence of the scaling of the masses of the
highly-excited KK modes for Type I′ string theory in 9d, and we demonstrate a universal
formula governing the scaling. We consider both the SO(32) case and the E8 × E8 cases.
We first compute the masses of these modes from the dilaton, then the RR 1-form, and
finally show that our formulas apply to all KK modes that come from massless 9d fields.

In this section, we express everything in terms of the I′ 9d Planck mass, which we set
to 1, since this allows us see clearly the scaling of the masses in terms of the B and C fields.
Only the scaling is important in our analysis, because that determines the ζ⃗-vectors that
are computed in subsection C.2. We are free to do this here because all of our analysis is in
terms of I′ string theory, unlike the situation in appendix A where we do not set the type
I′ 9d Planck to 1 as in that case we compare I′ string theory with heterotic string theory.

B.1 Background fields

As derived in appendix A.1, the equations of motion for the 10-dimensional string frame
metric and dilaton are given by

gI′MN = Ω(x9)2ηMN , eΦ(x9) = z(x9)−5/6, Ω(x9) = Cz(x9)−1/6, (B.1a)
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where indices M,N run from 0 to 9, with

zSO(32)(x9) = z0C(B + 8x9), (B.1b)

zE8×E8(x9) =


z0Cx

9 0 ≤ x9 ≤ B

z0CB B ≤ x9 ≤ 2π −B

z0C(2π − x9) 2π −B ≤ x9 ≤ 2π,
(B.1c)

where B and C fields are dimensionless17 with z0 a numerical constant which will not be
important for the subsequent derivations. This solution is sufficient for computing the I′

KK modes.
To get the (d = 9)-dimensional theory, we integrate over the x9 direction in the 10d

action (A.1) using the backgrounds in (B.1). However, the resulting action is not in Einstein
frame. To get into Einstein frame, we must Weyl-rescale to the metric gµν (where µ and ν
run from 0 to 8), defined as

gµν =
(∫

dx9e−2ΦΩD−2
) 2

d−2
ηµν =

(∫
dx9e−2ΦΩD−2

) 2
d−2

Ω−2gI′MN . (B.2)

As we will argue below, the highly excited KK mode masses from all 10d fields will uni-
versally scale with the moduli via

mI′
KK ∼

(∫ 2π

0
dx9Ω8e−2ΦI′

)−1/7
(B.3)

B.2 I′ KK masses

KK modes from the dilaton. We now compute the ζ⃗-vectors for high-excitation KK
modes from the dilaton in I′ string theory.

The strategy we employ is as follows. First, we expand the dilaton Φ as a mode
expansion, Φ(xM ) = Φ̂(x9) +

∑
n ϕn(xµ)fn(x9), where Φ̂(x9) is a background field and the

functions fn(x9) are a basis of functions on x9. For a wise choice of fn(x9), we have that
in Einstein frame in 9d I′ string theory the modes have an action that takes the form

1
2

∫
d9x

√
−g

(
Rg −

∑
n

[
(∂ϕn)2 +m2

nϕ
2
n

])
+ . . . . (B.4)

Since this is in Einstein frame, the KK-mode masses are just mn (times the 9d I′ Planck
mass, which in the above formula is set to 1). With this mass, and also a computation of
the metric on moduli space, we can find the scalar charge-to-mass ratios of the dilaton’s
KK modes.

To find out the KK mode masses from the dilaton using the above prescription, let us
decompose the dilaton into a background and some fluctations using the following expansion
ansatz.

Φ(xM ) = Φ̂(x9) +
∑

n

ϕn(xµ)fn(x9), (B.5)

17In appendix A.1 we obtained that C had dimensions of lenght, but we can rescale it C → C(α′
I′ )−1/2

so that it becomes adimensional, resulting in z0 being a numerical factor too.
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where Φ̂(x9) is the background value of the dilaton from (B.1), ϕn are the KK modes of
the dilaton and are x9 independent, and fn is xµ-independent and a basis for functions of
x9. When we plug the ansatz (B.5) into the action (A.1), we have that the dilaton’s KK
modes ϕn appear in the action in the following way,

Sϕn ∼
∫

d10x
√
−gI′e

−2Φ̂ ∑
m,n

∇M (ϕmfm)∇M (ϕnfn). (B.6)

To find out what the masses of the dilaton’s highly-excited KK modes are in 9d, we
would the basis fn to be such that, in 9d Einstein frame, the mode expansion takes the form

Sϕn ∼
∫

d9x
√
−g

∑
n

(
(∂ϕn)2 +m2

n,KKϕ
2
n

)
. (B.7)

That is, we would like to have the kinetic and mass parts of the modes ϕn to be diagonal.
The diagonality in (B.7) does not automatically follow from (B.6). To obtain it, we need
the basis fn(x9) to be carefully chosen so that both the kinetic and mass parts of (B.7) are
diagonal. Fortunately, the following approach for finding a basis fn accomplishes this job.

Let us write the metric gI′MN in the following way,

ds2
D = eaσhµν(xα)dxµdxν + e2σh99(dx9)2, (B.8)

where hµν is x9-independent, a is some yet-to-be-determined number, and σ and h99 sat-
isfying

eασ = e2σh99 = Ω2. (B.9)

Inserting the metric (B.8) into the KK-mode action (B.6), and using the fact that ϕn

are x9-independent and fn is xµ-independent, we have that the dilaton’s KK modes are
governed by the action

Sϕn ∼
∫

dDx
√
−hdh99e

1
2 (da+2)σ ∑

m,n

(
e−aσfmfnh

µν∂µϕm∂µϕn + e−2σϕmϕnh
99∂9fm∂9fn

)
,

(B.10)
Let us have a in the ansatz (B.8) satisfy

0 = 1
2(da+ 2) − a =⇒ a = − 2

d− 2 , (B.11)

as this choice allows us to perform the following integration by parts,

Sϕn ∼
∫

dDx
√
−hdh99

∑
m,n

(
fmfnh

µν∂µϕm∂νϕn + e−2 d−1
d−2 σϕmϕnh

99∂9fm∂9fn

)
(B.12)

=
∫

dDx
√
−hdh99

∑
m,n

(
fmfnh

µν∂µϕm∂νϕn − ϕmϕnfmh
99∇9(e−2 d−1

d−2 σ∇9fn)
)
.

Now one can check that the operator

h99∇(h)
9

(
e−

d−1
d−2 σ∇(h)

9 •
)

(B.13)
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is indeed self-adjoint with respect to both the integration measures dDx
√
−hdh99 and

dx9√h99, so that its eigenvectors {fn}n are orthogonal. As a result, we define the basis fn

in (B.5) to satisfy the eigenvector equation

h99∇(h)
9

(
e−

d−1
d−2 σ∇(h)

9 fn

)
= −λ2

nfn. (B.14)

This implies that the KK-mode action (B.12) can be rewritten as

Sϕn ∼
∫

d9x
√
−hd

∑
m,n

(
hµν∂µϕm∂νϕn + λ2

nϕmϕn

) ∫
dx9√h99fmfn

=
∫

d9x
√
−hd

∑
n

(
hµν∂µϕn∂νϕn + λ2

nϕ
2
n

) ∫
dx9√h99f

2
n. (B.15)

In going from the first to second line, we used the fact that
∫

dx9√−h99fmfn ∝ δmn,
implied by the orthogonality of the {fn}n basis with respect to the dx9√−h99 measure.

To proceed, we need to find out what λn and fn are. Under the WKB approximation
(where λn is assumed to be very large), and using (B.9), we have that the eigenvalue
equation (B.14) for fn yields

−λ2
nfn ≈ ∂2

9fn + O(λn). (B.16)

That is, under the WKB λn ≫ 1 approximation, fn takes the form18

fn(x9) = cn cos(λnx
9 + kn). (B.17)

The constants cn and kn in the above equation are fixed by the boundary conditions, and
are not important for our analysis, as we are not interested in the precise nature of these
boundary conditions, just that fn has moduli-independent periodicity. The periodicity on
fn results in λn being an integer,

λn = n. (B.18)

For very large n, we thus have∫
dx9√h99f

2
n ≈ 1

2c
2
n

∫
dx9√h99, (B.19)

and thus for high excitation modes, (B.15) becomes

Sϕn ∼
∫

ddx
√
−hd

∑
n

(
hµν∂µϕn∂νϕn + n2ϕ2

n

) ∫
dx9√h99. (B.20)

The metric in (B.20) is not in Einstein frame, so we cannot interpret the coefficient
in front of ϕ2

n as being the mass. When we express the metric hµν (B.8) in terms of the
Einstein frame metric gµν (B.2), the action for the KK modes becomes

Sϕn =
∫

ddx
√
−g

∑
n

(
(∂ϕn)2 +

(∫
dx9e−2Φ̂ΩD−2

)− 2
d−2

n2ϕ2
n

)
. (B.21)

18Had we included the O(λn) term in the eigenfunction equation, an overall power of the warping factor
would appear before the cos function, not affecting the λn expression.
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Since (B.21) is in Einstein frame, we can read off the dilaton’s high-excitation KK-mode
mass,

m
(Φ)
KK =

(∫
dx9e−2Φ̂ΩD−2

)− 1
d−2

=
(∫

dx9e−2Φ̂Ω8
)− 1

7
, (B.22)

in 9d I′ Planck units.

KK modes from the RR 1-form. We now calculate the mass of the KK mode from
the RR 1-form, and this approach is similar to the calculation for the KK modes from the
dilaton. The RR 1-form is governed by the following action,

SF 2
2

= −1
2

∫
dDx

√
−gI′F

2
2 . (B.23)

We decompose the 1-form into the following basis,

AM (xµ, x9) =
∑

n

A
(n)
M (xµ)gn(x9). (B.24)

where A(n)
M are x9 independent and gn(x9) are xµ-independent. With this decomposition,

we have

FMNF
MN = FµνF

µν + 2Fµ9F
µ9F99F

99 (B.25a)

FµνF
µν =

∑
mn

F (n)
µν F

(m)µνgngm (B.25b)

Fµ9F
µ9 =

∑
mn

(
∇µA

(n)
9 −A(n)

µ ∂9 log gn

) (
∇µA9(m) −A(m)µ∂9 log gn

)
gngm (B.25c)

F99F
99 = 0. (B.25d)

For highly excited modes,

Fµ9F
µ9 ≈

∑
mn

A(n)
µ A(m)µg99∂9gn∂9gm. (B.26)

Thus, under the WKB approximation,

SF 2 = −1
2

∫
dDx

√
−gI′

∑
mn

(
F (n)

µν F
(m)µνgngm +A(n)

µ A(m)µg99∂9gn∂9gm

)
(B.27)

To proceed, consider the following metric ansatz,

ds2
D = eaςHµν(xµ)dxµdxν + e2ςH99(dx9)2, (B.28)

where Hµν(xµ) is x9-independent, and we can have this ansatz by having backgrounds ς
and H99 satisfy

eaς = e2ςH99 = Ω2. (B.29)
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Using this metric, we have

SF 2
2

= −1
2

∫
dDx

√
−HdH99e

1
2 (da+2)ς

×
∑
mn

Hµν
(
e−2aςHρσF (n)

µρ F
(m)
νσ gngm + e−(a+2)ςA(n)

µ A(m)
ν H99∂9gn∂9gm

)
.

(B.30)

If we have the ansatz (B.28) satisfy,

0 = 1
2(da+ 2) − 2a =⇒ a = − 2

d− 4 . (B.31)

then we can integrate by parts to get

SF 2 = −1
2

∫
dDx

√
−hdh99 (B.32)

×
∑
mn

Hµν
(
HρσF (n)

µρ F
(m)
νσ gngm −A(n)

µ A(m)
ν gnH

99∇(H)
9

(
e−2 d−3

d−4 ς∇(H)
9 gm

))
h
.

Note that H99∇(H)
9

[
e−2 d−3

d−4 ς∇(H)
9 •

]
is self-adjoint with respect with the measures

dDx
√
−HdH99 and dx9√H99, so eigenvectors of this operator are orthogonal with respect

to these measures. Thus, we choose our basis gm to satisfy

H99∇(H)
9

[
e−2 d−3

d−4 ς∇(H)
9 gm

]
= −λ2

mgm. (B.33)

For highly excited modes,

−λ2
ngn ≈ ∂2

9gn + O(λn) (B.34)

Imposing moduli-independent periodicity, this is satisfied by λn = n and gn(x9) =√
2 sin(nx9), and so for highly excited modes,

SF 2 = −1
2

∫
ddx

√
−Hd

(∫
dx9√H99

)∑
n

(
F (n)

µν F
(m)µν + n2A(n)

µ A(n)µ
)

h
. (B.35)

Let’s now compare with Einstein frame. Switching from Hµν (B.28) to gµν (B.2), we
get (after locally canonically normalizing the massive vector)

SF 2 = −1
2

∫
ddx

√
−g

∑
n

(
F (n)

µν F
(m)µν − n2

(∫
dx9e−2Φ̂ΩD−2

)− 2
d−2

A(n)
µ A(n)µ

)
. (B.36)

Since the above action (B.36) is in Einstein frame, we can read off the mass as

m
(A1)
KK ∼

(∫
dx9e−2Φ̂ΩD−2

)− 1
d−2

=
(∫

dx9e−2Φ̂Ω8
)− 1

7
, (B.37)

again in the appropriate 9d Planck units. This is the same as the mass of the KK mode
from the dilaton.
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Generalization to KK modes from any massless I′ field. In fact, all high-excitation
KK modes from massless fields I′ string theory have masses that scale with the moduli in
exactly the same way. In general, suppose we have, suppressing indices, some massless field
Ψ (e.g. the dilaton, a p-form, or the metric) with some number of Lorentz indices, and in
10d the action for this field is schematically (suppressing indices)

S[Ψ] ∼ 1
2

∫
d10x

√
−gI′(R+ a(Φ̂)(∂Ψ)2), (B.38)

where a(Φ̂) is some function of the dilaton.
For high excitation modes, Ψ behaves as

Ψ ∼
∑

n

ψn(xµ) sin(nx9), (B.39)

and upon integrating over x9, we have schematically

S ∼ 1
2

∫
d9x

√
−η

((∫
dx9e−2Φ̂ΩD−2

)
R+ b(ϕ)

∑
n

[
(∂ψn)2 + n2ψ2

n

])
, (B.40)

where b(ϕ) some unspecified function of the moduli and η is the Minkowski metric.
Now, note that this is not in Einstein frame. Moving to it, we obtain

S ∼ 1
2

∫
d9x

√
−g

(
R+ c(ϕ)

∑
n

[
(∂ψn)2 +

(∫
dx9e−2Φ̂ΩD−2

)− 2
d−2

n2ψ2
n

])
, (B.41)

for some unimportant function c(ϕ). This way, switching to Einstein frame causes the
kinetic term and the mass terms to always differ by a frame-switching factor, namely(∫

dx9e−2ΦΩD−2
)− 2

d−2 , due to both terms depending on different powers of the metric.
Thus, the highly excited I′ KK mode from any massless field in 10d has a mass that

satisfies a universal dependence on the moduli, given in the 9-dimensional Planck units by

mn ∼
(∫

dx9e−2Φ̂ΩD−2
)− 1

d−2
=
(∫

dx9e−2Φ̂Ω8
)− 1

7
. (B.42)

C Moduli space metric, flat coordinates and sliding

In order to compute the scalar charge-to-mass vectors associated to the different towers, we
will need the moduli space metric Gij . Because of the warping of the internal dimension, the

moduli space metric will not correspond to the usual hyperbolic metric Gij = G(0)
ij

φiφj unless
in the low warping limits. The easiest way to obtain it is by considering the expression of
scalar charge-to-mass vectors of the masses,

ζi
I = −δijea

j∂a logmI , (C.1)

and noting that is nothing but a linear transformation in TpM to the flat frame described
by normal coordinates (so that the moduli space metric is given by Gab = δab) ∂a logm→ ζi
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by the matrix δijea
j . Knowing how the elements of a basis of TpM transform will give us

the expression of δijea
j . Now, in section 3.2 it was argued that BPS states (such as the

heterotic KK and winding modes) have fixed ζ⃗I . Denoting êia = δijea
j , (ζBPS)i

J = ζi
J and

(MBPS)aI = ∂a logmI , then ê = ζBPSM
−1
BPS, and from here G = (ê⊺ê)−1. The BPS towers

mass are given in section A.3, and we can ask that in some normal coordinates of TpM
(all of them will be related by a SO(dimM) = SO(2) transformation)

ζ⃗KK,h =
(

1,− 1√
7

)
, ζ⃗w,h =

(
−1,− 1√

7

)
,

which corresponds with the expected result in the low-warping limit.
We first start with the SO(32) moduli space metric. While the full bulk moduli space

metric is slightly complicated,19 we recover the following asymptotic expression:

GSO(32)
BB =

{
1

21/372π4/3B2/3 + O(1) for B ≪ 1
22

63B2 + O(B−3) for B ≫ 1
(C.3a)

GSO(32)
CC = 100

63C2 (C.3b)

GSO(32)
BC = GSO(32)

CB = 100
63C

(B + 16π)2/3 −B2/3

(B + 16π)5/3 −B5/3 + 16πB1/3(B + 16π)1/3

=
{

25
252πC + O(C−1B1/3) for B ≪ 1

25
63CB + O(C−1B−2) for B ≫ 1

(C.3c)

We can use the above expression to obtain the geodesics of the moduli space. The
B ≫ 1 case is pretty straightforward, with geodesic equations resulting in the usual

(B,C)(λ) = (B0λ
b, C0λ

c), λ≫ 1, b > 0, (C.4)

which we could implicitly rewrite as B ∼ Cα for some α > 0. Choosing b = 0 results in a
geodesic sending C → 0, ∞ for fixed B. On the other hand, it is not difficult to show that

(B,C)(λ) = (B0, C0λ), (C.5)

also solve the geodesic equations in any point of the moduli space. This results in a
(B,C) → (B0, 0), (B0,∞) limit, corresponding to trajectories with null tangent B compo-
nent.

19The complete expression of the BB component being

GSO(32)
BB = 4

63

(
−800πB

2
3 − 50B

5
3 + 3584π2B− 1

3

)
(B + 16π)− 1

3 +
(

1792π2B− 2
3 + 25B

4
3

)
(

(B + 16π) 5
3 − B

5
3 + 16πB1/3(B + 16π)1/3

)2

+
(
25B2 + 800πB + 8192π2) (B + 16π)− 2

3(
(B + 16π) 5

3 − B
5
3 + 16πB1/3(B + 16π)1/3

)2 . (C.2)
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On the other hand, for the E8 × E8 component, the moduli space metric is given by

GE8×E8
BB = 4

(
25B2−50πB+88π2)

63B2(B−4π)2 =
{

22
63B2 +O(B−1) for B≪ 1

4
9π2 +O(π−B) for B∼π

(C.6a)

GE8×E8
CC = 100

63C2 (C.6b)

GE8×E8
BC = GE8×E8

CB = 100(B−π)
63B(B−4π)C =

{ 25
63BC +O(C−1) for B≪ 1
100(π−B)

189π2C
+O(C−1(π−B)−2) for B∼π

(C.6c)

As for the geodesics, they are analogous to the SO(32) case, with (B,C)(λ) = (B0, C0λ)
being geodesic trajectories in every point of the moduli space, and (B,C)(λ) = (B0λ

b, C0λ
c)

for the B, λ≪ 1 and b > 0, corresponding with the low warping limit.
Finally, in the two cases studied above it is not difficult to show, computing the only

independent component of the Riemann tensor in a 2-dimensional manifold, that both
moduli spaces are flat.

Another possible way of obtaining the moduli space metric is by dimensionally re-
ducing the Einstein-dilaton terms in 10-dimensional Einstein frame of the action (with
metric g̃MN = Ω2e−Φ̂I′/2ηMN ), and inspecting the kinetic terms of the massless moduli,
Gab∂µφ

i∂µφj in the lower dimensional Einstein frame.
This way, one obtains

SI′ ⊃
1

2κ2
10,I′

∫
d10x

√
−g̃

{
Rg̃ −

1
2
(
∂Φ̂I′

)2
}

= 1
2κ2

9,I′

∫
d9x

√
−g

{
Rg − Gab∂µφ

a∂µφb
}
,

(C.7)
where

Gab∂µφ
a∂µφb = 1

r

∫ 2π

0
dx9Ω8e−2Φ̂I′

7
8

[
∂ log

(
Ω8e−2Φ̂I′ r

1/7
0

r8/7

)]2

+ 1
2(∂Φ̂I′)2

+ δ
(2)
kin,

(C.8)
where δ(2)

kin is an extra, second order term, coming from the Ricci scalar reduction, given by

1
2κ2

9,I′

∫
d9x

√
−gδ(2)

kin = 1
2κ2

9,I′

∫
d9x

√
−g

{
2
r

∫ 2π

0
dx9Ω8e−2Φ̂I′∆g log

(
Ω8e−2Φ̂I′ r

1/7
0

r8/7

)}
(C.9)

In the low warping limit, the x9 integral in the above expression factorizes and the above
term vanishes, as then δ

(2)
kin corresponds to a total derivative. It can be then checked that

from (C.8) the low warping limits of (C.3) and (C.6) are recovered. However, this is not
the case for points of the moduli space for which there is warping, as the above term
does not vanish and the moduli space metric does not correspond with the expression
obtained from (C.8). We then need to integrate by parts and substract the B → ∞ or
B → 0 expressions, depending on whether we are considering the SO(32) or E8 × E8
(which correspond to a total derivative, so that we recover the appropriate B → ∞ or
B → 0 behavior), so that we can rewrite

δ
(2)
kin = δ̂ − 1√

−g lim
B→∞,0

[√
−gδ̂

]
, (C.10)
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with

δ̂=−2
r

∫ 2π

0
dx9Ω8e−2Φ̂I′


[
∂ log

(
Ω8e−2Φ̂I′ r

1/7
0

r8/7

)]2

+ 1
7∂µ log

(
r

r0

)
∂µ log

(
Ω8e−2Φ̂I′ r

1/7
0

r8/7

)
(C.11)

It can be checked that the only term in the metrics receiving contributions from δ
(2)
kin

is GBB. This way, in the SO(32) case, from this two terms we obtain that for B ≪
1, GSO(32)

BB ∼ 1
21/336π4/3B2/3 − 1

21/372π4/3B2/3 = 1
21/372π4/3B2/3 , as found in (C.3), while the

contributions from δ
(2)
kin are subleading with respect to 22

63B2 in the B ≫ 1 limit, with δ
(2)
kin

vanishing. As for the E8 × E8 case one obtains that for any value of B ∈ (0, π), now
GE8×E8

BB = 16(B−22π)(B−π)
63B2(B−4π)2 − 4(B−π)

3B(B−4π)2 = 4(25B2−50πB+88π2)
63B2(B−4π)2 , as in (C.6).

In any case, as it have been shown above, the moduli space metric is more straightfor-
wardly computed by fixing the BPS towers.

C.1 Flat coordinates

Once the explicit expression of GSO(32) and GE8×E8 is known in terms of {B,C}, we can
obtain a set of flat coordinates {ϕB, ϕC} for which GϕiΦj

= δij .
We will start with the SO(32). For this we take (C.3) and, after completing squares,

impose

ds2
MSO(32)

= 100
63

[
dC
C

+ (B + 16π)1/3 −B1/3

(B + 16π)4/3 −B4/3 dB
]2

+
[ 32π

3B1/3(B + 16π)1/3[(B + 16π)4/3 −B4/3]
dB
]2

= dϕ2
C + dϕ2

B, (C.12)

which result in the following system:

dϕC = 10
3
√

7

[
dC
C

+ (B + 16π)1/3 −B1/3

(B + 16π)4/3 −B4/3 dB
]

(C.13a)

dϕB = 32π
3B1/3(B + 16π)1/3[(B + 16π)4/3 −B4/3]

dB . (C.13b)

Note that each of the above equations are unique up to a ± sign, which we have the freedom
to choose (the relation between different flat coordinates is only a O(2) transformation
that includes reflections along some axis). The above equations can be integrated (up to
integration constants we choose to be zero) to

ϕC = 10
3
√

7
logC + 5

2
√

7
log

[
(B + 16π)4/3 −B4/3

]
(C.14a)

ϕB = 1
2 log (B + 16π)2/3 +B2/3

(B + 16π)2/3 −B2/3 , (C.14b)

with ϕc ∈ R and ϕB ∈ (0,+∞), corresponding with the B → 0 and B → ∞ limits.
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(a) SO(32). (b) E8 × E8.

Figure 14. Plot of the coordinate curves for constant B (in blue) and C (in green) in the (ϕB , ϕC)
flat chart for both the SO(32) and E8 × E8 configurations. Note that ϕC ∈ R, so that it would
continue for ϕc < 0, even though only the positive values are plotted.

On the other hand, for E8 × E8 we take (C.6) and impose

ds2
ME8×E8

= 100
63

[dC
C

+ π −B

B(4π −B)dB
]2

+
[ 2π
B(4π −B)dB

]2
= dϕ2

C + dϕ2
B, (C.15)

resulting in the following differential equations:

dϕC = 10
3
√

7

[dC
C

+ π −B

B(4π −B)dB
]

(C.16a)

dϕB = − 2π
B(4π −B)dB , (C.16b)

where here we have chosen the − sign for dϕB equation, for reasons that will become clear
soon. Upon integration (and setting constants to zero) they yield

ϕC = 10
3
√

7
logC + 5

6
√

7
log

[
B(4π −B)3

]
(C.17a)

ϕB = −1
2 log 3B

4π −B
(C.17b)

here ϕC ∈ R and ϕB ∈ (0,+∞), corresponding with the B → π and B → 0 limits. In
figure 14, the coordinate curves for B and C are depicted in teh (ϕB, ϕC) frame for SO(32)
and E8 × E8.

C.2 KK mode sliding

Once we have the expression for flat coordinates {ϕB, ϕC} in terms of B and C we can
invert the relation and rewrite the heterotic KK and winding and Type I′ KK masses in
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(a) SO(32). (b) E8 × E8.

Figure 15. The sliding of the I′ KK modes in the SO(32) and E8 × E8 cases, in terms of the
normalized ϕB and ϕC moduli. The sliding of I′ string theory’s high excitation KK mode occurs
across the dashed region. The region in gray is the ball of radius 1√

7 . Note that in this basis,
the ϕC-axis is the self-dual line. Recall that from SO(32) the limits ϕB → 0,+∞ correspond with
B → 0,+∞, while for E8 × E8, ϕB → 0,+∞ are given by B → π, 0.

terms of these expressions and see whether they remain constant as we move along moduli
space. First of all, for SO(32), we find (after some algebraic effort) from (A.33) and (B.22)

m
SO(32)
w,h ∼ e

1√
7

ΦC+ϕB (C.18a)

m
SO(32)
KK,h ∼ e

1√
7

ΦC−ϕB (C.18b)

m
SO(32)
KK,I′ ∼ (e2ϕB + 1)3/2 + (e2ϕB − 1)3/2

3e4ϕB + 1 e
3
2 ϕB− 5

2
√

7
ϕC (C.18c)

resulting in the following scalar charge-to-mass vectors in the {ϕB, ϕC} basis:

ζ⃗w,h =
(
−1,− 1√

7

)
, ζ⃗KK,h =

(
−1, 1√

7

)
,

ζ⃗KK,I′ =
(
−3

2

[ 2√
1 − e−4ϕB

+ 1
]−1

,
5

2
√

7

)
. (C.19)

We see that all of the above components are constant but ζϕB
KK,I′ , which is a monotonic

function of ϕB, with a sliding occurring from ζϕB
KK,I′ = −1

2 for ϕB = ∞ to ζϕB
KK,I′ = 0 at

ϕB = 0.
On the other hand, for E8 ×E8 we take (A.34) and (B.22) and invert (C.17a) to find

mw,h ∼ e
1√
7

ϕC+ϕB (C.20a)

mKK,h ∼ e
1√
7

ϕC−ϕB (C.20b)

mKK,I′ ∼ e
− 5

2
√

7
ϕC+ 3

2 ϕB
(
1 + 3e2ϕB

)−1
(C.20c)
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Note that now it is evident the implications of choosing the − sign in (C.16b), as this way
the mw,h and mKK,h coincide for both SO(32) and E8 ×E8. Now the scalar charge-to-mass
vectors have the following expressions:

ζ⃗w,h =
(
−1,− 1√

7

)
, ζ⃗KK,h =

(
−1,+ 1√

7

)
,

ζ⃗KK,I′ =
(1

2 − 2
1 + 3e2ϕB

,
5

2
√

7

)
. (C.21)

Here again all the components but ζϕB
KK,I′ are constant, with it being monotonic as a function

of ϕB and sliding between ζϕB
KK,I′ = 1

2 for ϕB = ∞ and ζϕB
KK,I′ = 0 for ϕB = 0. This is

depicted, for both SO(32) and E8 × E8, in figure 15.
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