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Abstract: Photonspheres, curved hypersurfaces on which massless particles can perform
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that the innermost light rings of spherically symmetric hairy black-hole spacetimes whose
external matter fields are characterized by a traceless energy-momentum tensor cannot be
located arbitrarily close to the central black hole. In particular, we reveal the physically
interesting fact that the non-linearly coupled Einstein-matter field equations set the lower
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of the outermost black-hole horizon.
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1 Introduction

Theoretical [1–7] as well as observational [8] studies have recently established the fact that
closed light rings exist in the external spacetime regions of generic black holes. It has
long been known that the presence of null circular geodesics in highly curved spacetimes
has many implications on the physical and mathematical properties of the corresponding
central black holes [1–29].

For instance, the unstable circular motions of massless fields along closed null rings
determine the characteristic relaxation timescale of a perturbed black-hole spacetime in the
short wavelength (eikonal) regime [9–17]. In addition, the optical appearance of a black hole
to far away asymptotic observers is influenced by the presence of a light ring in the highly
curved near-horizon region [18–20]. Moreover, as measured by asymptotic observers, the
equatorial null circular geodesic determines the shortest possible orbital period around a
central non-vacuum black hole [21, 22].

Intriguingly, it has also been proved [5, 11–15, 23, 24] that the innermost light ring of a
non-trivial (non-vacuum) black-hole spacetime determines the non-linear spatial behavior
of the supported hair. In particular, it has been revealed, using the non-linearly coupled
Einstein-matter field equations, that the non-linear behavior of external hairy configurations
which have a non-positive energy-momentum trace must extend beyond the null circular
geodesic that characterizes the curved black-hole spacetime [5, 11–15, 23, 24].

Motivated by the well established fact that null circular geodesics (closed light rings)
are an important ingredient of generic black-hole spacetimes [1–8], in the present paper we
raise the following physically intriguing question: how close can the innermost light ring
of a central black hole be to its outer horizon?

This is a seemingly simple question but, to the best of our knowledge, in the physics
literature there is no general (model-independent) answer to it which is rigorously based
on the Einstein equations.

In the present compact paper we shall reveal the fact that, for spherically symmetric hairy
black-hole spacetimes whose supported field configurations are characterized by a traceless
energy-momentum tensor, the non-linearly coupled Einstein-matter field equations provide
an explicit quantitative answer to this physically important question. In particular, we shall
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explicitly prove that the radii of light rings in spherically symmetric traceless hairy black-hole
spacetimes are bounded from below by the functional relation

rγ ≥ 6
5rH, (1.1)

where rH is the radius of the outermost horizon.
It is worth noting that our theorem, to be presented below, is valid for the canonical

family of colored black-hole spacetimes that characterize the non-linearly coupled Einstein-
Yang-Mills (EYM) field theory (see [30]1 and references therein). In particular, it is worth
emphasizing the fact that the highly non-linear character of the coupled Einstein-Yang-Mills
field equations has restricted most former studies of this physically important field theory to
the numerical regime. It is therefore of physical interest to reveal, using purely analytical
techniques, some of the generic physical characteristics of this highly non-linear field theory.
This is one of the main goals of the present paper.

2 Description of the system

We shall study, using analytical techniques, the radial locations of compact photonspheres
(closed light rings) in spherically symmetric hairy black-hole spacetimes which are described
by the curved line element [21, 27–29]2

ds2 = −e−2δµdt2 + µ−1dr2 + r2(dθ2 + sin2 θdϕ2), (2.1)

where {t, r, θ, ϕ} are the Schwarzschild-like coordinates of the spacetime.
The radial functional behaviors of the matter-dependent metric functions µ = µ(r)

and δ = δ(r) are determined by the non-linearly coupled Einstein-matter field equations
Gµ

ν = 8πT µ
ν [21, 27–29]:

dµ

dr
= −8πrρ + 1 − µ

r
(2.2)

and
dδ

dr
= −4πr(ρ + p)

µ
, (2.3)

where the radially-dependent matter functions [31]

ρ ≡ −T t
t , p ≡ T r

r , pT ≡ T θ
θ = T ϕ

ϕ (2.4)

in the differential equations (2.2) and (2.3) are respectively the energy density, the radial
pressure, and the tangential pressure of the external matter configurations in the non-trivial
(non-vacuum) black-hole spacetime (2.1).

The radial metric functions {µ, δ} of the black-hole spacetime are characterized by the
horizon boundary relations [32, 33]

µ(r = rH) = 0 (2.5)
1It is worth emphasizing the fact that the EYM colored black holes are known to be unstable, see [30] and

references therein.
2We shall use natural units in which G = c = 1.
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and
δ(r = rH) < ∞; [dδ/dr]r=rH < ∞. (2.6)

In addition, the asymptotic functional relations [32, 33]

µ(r → ∞) → 1 (2.7)

and
δ(r → ∞) → 0 (2.8)

characterize the metric functions of asymptotically flat black-hole spacetimes.
Our theorem, to be presented below, is based on the assumption that the external

matter fields respect the dominant energy condition, which implies that the energy density
is positive semi-definite [32, 33],

ρ ≥ 0, (2.9)

and that it bounds from above the absolute values of the pressure components of the matter
fields [32, 33]:

|p|, |pT | ≤ ρ. (2.10)

In addition, we shall assume that the external matter fields are characterized by a traceless
energy-momentum tensor:

T = 0, (2.11)

where T = −ρ + p + 2pT . In particular, the analytically derived lower bound on the
characteristic radii of compact photonspheres [see eq. (4.1) below] would be valid for the
well-known colored black-hole spacetimes that characterize the composed Einstein-Yang-Mills
field theory [30].

Taking cognizance of the Einstein field equation (2.2), one finds the functional relation

µ(r) = 1 − 2m(r)
r

(2.12)

for the dimensionless metric function µ(r), where the radially-dependent physical parameter

m(r) = m(rH) +
∫ r

rH
4πr2ρ(r)dr (2.13)

is the gravitational mass which is contained within an external sphere of radius r ≥ rH. Here
m(rH), which is characterized by the simple relation

m(r = rH) = rH
2 , (2.14)

is the horizon mass (the mass contained within the black hole).
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3 Lower bound on the radii of light rings in spherically symmetric
traceless black-hole spacetimes

In the present section we shall address the following question: how close can a black-hole
photonsphere be to its outer horizon? Intriguingly, below we shall prove that an explicit
answer to this physically important question, which is based on the non-linearly coupled
Einstein-matter field equations, can be given for non-trivial (non-vacuum) hairy black-hole
spacetimes whose external matter fields are characterized by a traceless energy-momentum
tensor. In particular, we shall reveal the fact that the innermost light rings cannot be located
arbitrarily close to the outer horizons of the central black holes.

The radial locations of null circular geodesics (closed light rings) in spherically symmetric
hairy black-hole spacetimes are determined by the roots of the dimensionless function [23]

N (r) ≡ 3µ − 1 − 8πr2p. (3.1)

Taking cognizance of the fact that non-extremal black holes are characterized by the di-
mensionless horizon relations [32, 33]

0 ≤ 8πr2
Hρ(rH) = −8πr2

Hp(rH) < 1, (3.2)

one finds that the function (3.1) is characterized by the horizon boundary condition [see
eq. (2.5)]

N (r = rH) < 0. (3.3)

In addition, from eqs. (2.7), (2.10), (2.12), and (2.13) one deduces the asymptotic functional
behavior

r2p → 0 for r → ∞, (3.4)

which implies the simple radial behavior

N (r → ∞) → 2. (3.5)

The characteristic properties (3.3) and (3.5) of the dimensionless radial function (3.1)
guarantee the existence of an external compact sphere with the property r = rγ > rH for which

N (r = rγ) = 0 (3.6)

and [
dN
dr

]
r=rγ

≥ 0. (3.7)

The functional relations (3.6) and (3.7) determine the radial location of the innermost light ring
which characterizes the spherically symmetric non-vacuum (hairy) black-hole spacetime (2.1).

Before proceeding, it is worth emphasizing that it has recently been proved [6], using the
non-linearly coupled Einstein-matter field equations, that extermal black-hole spacetimes are
characterized by the horizon relations N (r = rH) = 0 and [dN /dr]r=rH < 0 which, together
with the asymptotic radial behavior N (r → ∞) → 2 [see eq. (3.5)] of the dimensionless
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function (3.1), guarantee that extremal black holes, like non-extremal ones, possess external
light rings (with r = rγ > rH) which are characterized by the functional properties (3.6)
and (3.7). Thus, our analysis is also valid for spherically symmetric extremal black-hole
spacetimes.

Taking cognizance of the Einstein equations (2.2) and (2.3) together with the characteristic
conservation equation

T µ
r;µ = 0, (3.8)

one finds the gradient relation
d

dr
(r2p) = r

2µ

[
(3µ − 1 − 8πr2p)(ρ + p) + 2µ(−ρ − p + 2pT )

]
, (3.9)

which yields the functional relation [see eqs. (2.2) and (3.1)] [34][
dN
dr

]
r=rγ

= 2
rγ

[
1 − 8πr2

γ(ρ + pT )
]
. (3.10)

Substituting eq. (3.10) into (3.7) and using the trace relation (2.11) for the external
matter fields, one obtains the relation

0 ≤ [1 − 8πr2(ρ + pT )]r=rγ = [1 − 12πr2ρ + 4πr2p]r=rγ (3.11)

which, using the dominant energy condition (2.10), yields the characteristic dimensionless
inequality

0 ≤ [1 + 16πr2p]r=rγ (3.12)

at the radial location of the black-hole innermost photonsphere. Furthermore, substituting
into (3.12) the relation (3.6), which characterizes the null circular geodesics of the black-hole
spacetime (2.1), one obtains the inequality

[6µ(r) − 1]r=rγ ≥ 0 (3.13)

which, using the functional relation (2.12), can be written in the form[
m(r)

r

]
r=rγ

≤ 5
12 . (3.14)

Finally, taking cognizance of eqs. (2.9), (2.13), (2.14), and (3.14), one obtains the series
of inequalities

rγ ≥ 12
5 m(rγ) ≥ 12

5 m(rH) = 6
5rH. (3.15)

It is interesting to point out that the canonical family of electrically charged Reissner-
Nordström black-hole spacetimes are characterized by the relations rH = M + (M2 − Q2)1/2

and rγ = 1
2 [3M + (9M2 − 8Q2)1/2] [2],3 in which case one finds that the dimensionless ratio

rγ/rH is a monotonically increasing function of the dimensionless charge-to-mass ratio |Q|/M

of the black hole from the value rγ/rH = 3/2 for Q = 0 to the value rγ/rH = 2 for the
extremal black hole with |Q| = M . Thus, charged Reissner-Nordström black-hole spacetimes
respect the analytically derived lower bound (3.15).

3Here M and Q are respectively the mass and electric charge of the Reissner-Nordström black hole.
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4 Summary

The non-linearly coupled Einstein-matter field equations of general relativity predict the
existence of compact photonspheres in the external regions of curved black-hole spacetimes.
In particular, it is well established in the physics literature that closed light rings (null circular
geodesics on which photons and gravitons can perform closed orbital motions around highly
compact astrophysical objects) are of central importance in determining the physical, mathe-
matical, and observational properties of generic (non-vacuum) black-hole spacetimes [1–29].

Motivated by the important roles that photonspheres play in the physics of black holes,
in the present paper we have addressed the following question: how close can the black-hole
innermost light ring be to the outer horizon of the corresponding central black hole? Perhaps
somewhat surprisingly, to the best of our knowledge there is no general answer to this
intriguing question in the physics literature.

Interestingly, in the present compact paper we have proved, using analytical techniques,
that an explicit answer to this physically important question can be given for spherically
symmetric black-hole spacetimes whose external hairy configurations are characterized by
a traceless energy-momentum tensor [It is worth noting that our main focus here is on
the canonical family of colored black-hole spacetimes that characterize the non-linearly
coupled Einstein-Yang-Mills field equations [30]. However, it should be emphasized that our
analytically derived results are also valid for any Einstein-matter field theory for which the
external matter fields satisfy the traceless energy-momentum condition (2.11)].

In particular, we have presented a remarkably compact theorem that reveals the physi-
cally interesting fact that the non-linearly coupled Einstein-matter field equations set the
dimensionless lower bound [see eq. (3.15)]

rγ − rH
rH

≥ 1
5 (4.1)

on the radii of photonspheres (closed light rings) in spherically symmetric4 traceless hairy
black-hole spacetimes.
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