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1 Introduction

The study of the Weak Gravity Conjecture (WGC) [1, 2] — a prototype for the broader
Swampland Program [3, 4] — has led to a number of educated guesses about the structure
of quantum gravity that have so far been successfully tested in many examples.

One such prediction is that higher-derivative corrections to the low-energy effective
action decrease the mass of extremal black holes at fixed charge [5].1 This can be motivated

1Extremal black holes are here defined as the lightest static, spherically-symmetric, black holes of given
electric and magnetic charges. All black holes in this paper are assumed to be static and spherically-
symmetric.
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in part by the sublattice and tower versions of the Weak Gravity Conjecture (WGC) [6, 7],
which require a tower of states of arbitrarily large charge, each with charge-to-mass ratio at
least as large as that of a parametrically heavy extremal black hole. In perturbative string
theory, the lightest states are well described by string oscillation modes, and thus the tools
of perturbative string theory can be used to gather evidence for the WGC [6, 8]. However,
as sufficiently excited strings collapse into black holes, the heavier states required by these
conjectures cannot be probed in the same way. Instead, the conjectures then hinge on the
spectrum of charged black holes, and in particular whether higher-derivative corrections
make them lighter (or, at least, not heavier) at fixed charge.

The Repulsive Force Conjecture (RFC) [9–12] is a close relative of the WGC that
requires the existence self-repulsive states, i.e., states that exert a repulsive or vanishing
long-range force on their identical copy (called a “self-force”) when separated from it by
a parametrically large distance. As with the WGC, the light string excitations satisfy a
stronger sublattice/tower version of the RFC [8, 12], but as before highly excited strings
collapse into black holes, hence for heavier states the conjectures hinge on the self-forces of
charged black holes. In particular, at the two-derivative level static, spherically-symmetric
extremal black holes have the remarkable property that their self-force vanishes (see,
e.g., [13]), hence higher-derivative corrections must make them self-repulsive (or, at least,
not self-attractive) to satisfy the sublattice/tower RFC.

Though less directly connected to an existing swampland conjecture, it has also been
suggested [14] that higher-derivative corrections to the black hole entropy should be non-
negative, ostensibly because derivative corrections represent the effects of heavy modes and
the possibility of exciting these modes leads to a larger number of microstates.

The effect of higher-derivative corrections on extremal black holes has been studied
most thoroughly in the absence of moduli (i.e., scalar fields with vanishing potential), where
the WGC and RFC become the same. The four-derivative corrections to electrically-charged
Reissner-Nordström black holes were obtained in [5], and generalized to solutions with
arbitrarily many gauge fields in [15]. Similar calculations were done for Kerr black holes
in [16–18], and for black holes in non-asymptotically-flat backgrounds such as AdS in [18].2

Discussions and calculations of entropy corrections can be found in [14, 21–25].
On the other hand, well-understood string compactifications do have moduli. Previous

works have largely focused on the case where a single dilaton modulus is present, beginning
with [26], where the extremal mass corrections were calculated in heterotic string theory,
and [5], where these corrections were shown to decrease the mass and generate a repulsive
self-force on extremal black holes. A more general bottom-up analysis of dilatonic couplings
was carried out in [24], where four-dimensional dyonic black holes were also considered.

Unfortunately, electrically-charged extremal black holes coupled to a dilaton modulus
are “small”, in that the corresponding solution to the two-derivative effective action has
a horizon of vanishing surface area. What actually occurs near the horizon of a small
black hole depends on curvature corrections that are arbitrarily high order, hence it is
a UV-sensitive question that cannot be answered using the low-energy effective action

2See also [19, 20] for related calculations leveraging dualities.
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alone, even when supplemented by its low-order derivative corrections.3 For this reason, in
this paper we focus on corrections to “large” black holes — black holes with horizons of
nonvanishing area. Note that large, extremal black holes necessarily have zero temperature.

Extremal black holes with dilatonic couplings can be “large” when they are dyonically
charged. However, dyonic charge only exists in four dimensions, whereas to our knowledge
complete string-theory-derived four-derivative effective actions have only been computed in
high dimensions, see for example [27] for the ten-dimensional heterotic case. While these
couplings can be dimensionally reduced as in, e.g., [28–30], there are potentially important
subtleties in this procedure. For instance, as discussed in [31, 32], Kaluza-Klein (KK)
reducing eleven-dimensional M-theory on a circle or torus and integrating out the massive
KK modes at one loop generates further derivative corrections beyond those present in the
eleven-dimensional effective action. Thus, it is not sufficient to just dimensionally reduce
the four-derivative terms in the ten-dimensional effective action — one must also integrate
out the KK-modes, or at least argue that their contributions are less important than the
dimensionally-reduced derivative corrections. To our knowledge, this has yet to be done
in the literature, nor have the corrections been obtained directly from the compactified
worldsheet sigma model.

In the absence of this crucial string theory input, in this paper we focus on the problem
of determining the mass, self-force, and entropy corrections to large extremal black holes
once the four-derivative effective action is known. In this context, we are able to provide a
very general answer, assuming only that the solution is static and spherically-symmetric.
The formulas we obtain hold for black holes with arbitrarily many gauge fields and moduli,
arbitrary four-derivative operators, and arbitrary couplings between the moduli and gauge
fields, as long as the extremal two-derivative solutions have horizons with non-vanishing
surface area. Using these formulas requires only the original two-derivative solution along
with the four-derivative effective action and its functional first-derivatives (such as the
stress tensor). In particular, the derivative corrected solution is not needed. The mass and
force corrections can be expressed even more simply, depending only on the four-derivative
Lagrangian density evaluated on the two-derivative solution.

As a preview, by a direct attack on the equations of motion, we find the following
explicit formulas for the corrections to the mass, entropy and self-force of an extremal black
hole of fixed charge (held at fixed, zero temperature):

δM = −α′Vd−2

∫ ∞

rh

(
Thd

t
t + FAtr

δShd
δFAtr

)
Rd−2

√
|gttgrr|dr, (1.1a)

δS = 2πα′Vd−2

[
− Rd

(d− 3)2
(
Thd

t
t + FAtr

δShd
δFAtr

)
+Rd−2 δShd

δRtrtr

]
r=rh

, (1.1b)

δF̂self = −2α′V 2
d−2

∫ ∞

rh

(
(d− 2)Thd

r
r + Thd

i
i

)
R2d−5|gtt|

√
grrdr. (1.1c)

3Similar points were made in, e.g., [21]. Note that the analysis of [26], referenced in [5], is at string-tree-
level, where derivative corrections are fortuitously insensitive to the singular horizon. This insensitivity does
not, however, extend to string-loop corrections since the dilaton is infinite on the horizon, so the derivative
expansion is not under control, see section 4.3 for further discussion.
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Here α′ is a formal derivative-expansion parameter in the action S = S2 + α′Shd, Thd is
the stress tensor associated to Shd where Thd

i
i =

∑d−2
i=1 Thd

i
i denotes the partial trace over

angular directions, Vd−2 is the unit (d − 2)-sphere volume, and F̂self is the rationalized
coefficient of the long-range self-force, Fself(r) = F̂self

Vd−2
r̂

rd−2 + . . .. The functional derivatives
with respect to FAµν and Rµνρσ are normalized as

δShd =
∫
ddx

√
−g

[1
2
δShd
δFAµν

δFAµν +
1
4

δS

δRµνρσ
δRµνρσ

]
, (1.2)

each one having the same symmetries as the tensor in question. The corrections are
to be evaluated by substituting the uncorrected extremal black hole solution, with the
spherically-symmetric metric

ds2 = gttdt
2 + grrdr

2 +R(r)2dΩ2, (1.3)

into (1.1c)–(1.1b) and evaluating the radial integral (in the mass and force cases) or taking
the near-horizon limit r → rh (in the entropy case).

In fact, the mass and entropy corrections can be more simply expressed in terms of the
higher-derivative Lagrangian density Lhd itself (with Shd =

∫
ddx

√
−gLhd)4

δM = −α′Vd−2

∫ ∞

rh

LhdRd−2
√
|gttgrr|dr, (1.4a)

δS = − 2πα′

(d− 3)2Vd−2RdLhd

∣∣∣∣
r=rh

. (1.4b)

These formulas — which we arrive at indirectly — are so simple and elegant that there is
very likely some general principle underlying them, but we leave this interesting question to
future work.

Note that both of our mass formulas were previously derived in the absence of moduli
but generalized to 4d rotating black holes, see [17] in the case of (1.1a) and [33, 34] in
the case of (1.4a). We know of no previous work on these formulas in the presence of
moduli. Likewise, the entropy and force formulas (1.1b), (1.1c), and (1.4b) are completely
new results to our knowledge.

Using these formulas, we show that the extremal force, mass, and entropy corrections
depend on the four-derivative operators in independent ways, and it is possible to have
the mass, self-force, and entropy corrections all take on arbitrary signs relative to each
other. This agrees with some previous results in the literature. For example, in [28] it
was shown that extremal mass and extremal force corrections can take different signs.
However, it seems naively in tension with the results of [14, 35], where it was shown that
the entropy correction at fixed mass and charge is positive near extremality if and only
if the extremal mass correction is negative. The resolution is that the extremal entropy
correction (1.1b), (1.4b) is not the same as the entropy correction at fixed mass and charge
near extremality, as previously argued in [36]. Indeed, the latter generally diverges whereas

4Unlike (1.1a), we have only proven (1.4a) under simplifying assumptions that are valid up to four-
derivative order, see section 2.7 for details, but we strongly suspect that it holds in general.
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the former is finite.5 Per the general results of [35] (which we reproduce here), the divergent
portion is fixed by the extremal mass correction. Thus, the positivity (or not) of the
extremal entropy correction (1.1b), (1.4b) remains an interesting and relatively unexplored
question, whereas the positivity of the entropy correction at fixed mass and charge near
extremality is completely equivalent to the negativity of the extremal mass correction.

Our paper is structured as follows. In section 2, we derive the force, mass, and entropy
correction formulas for static, spherically-symmetric extremal black holes. In section 3,
we show that the extremal mass and entropy corrections are a priori independent and
explain how this can be consistent with the general result of [35] relating the extremal mass
correction to the entropy correction at fixed mass and charge near extremality. In section 4
we illustrate our method by examining a few specific examples and comparing with existing
results in the literature. We conclude by highlighting a few interesting directions for future
research in section 5. In appendix A we derive a minimal basis of independent four-derivative
operators in the presence of moduli and arbitrarily many gauge fields. Appendices B and C
contain a few formulas that are helpful for computing the corrections in specific examples.

2 Self-force, mass, and entropy corrections

We now compute the leading derivative corrections to the self-force, mass, and entropy of
non-rotating extremal black holes. We assume that the black holes in question are static
and spherically-symmetric — as in familiar examples of non-rotating, extremal black hole
solutions6 — and that the cosmological constant vanishes. For simplicity, we also initially
assume that the black holes carry only electric charge, even though magnetic and dyonic
charges are also possible in four-dimensions. As we argue later, our final results generalize
without any modifications to the dyonic/magnetic case.

Note that, since we require both the corrected and uncorrected black hole solutions to
be extremal, all of the corrections calculated below are evaluated at fixed, zero temperature
(as well as at fixed charge). In particular, the entropy correction at fixed, zero temperature
computed in section 2.5 differs considerably from the near-extremal entropy correction at
fixed mass considered in, e.g., [14, 35], see section 3 for further discussion.

2.1 The low-energy effective action

Since we are interested in static, spherically-symmetric, electrically-charged black hole
solutions, at the two-derivative level we can restrict our attention to an effective action of
the form

S=
∫
ddx

√
−gL2, L2=

1
2κ2R− 1

2Gab(ϕ)∇ϕ
a ·∇ϕb− 1

2fAB(ϕ)F
A ·FB, (2.1)

5To be precise, the quantity that diverges is δS
δα′

∣∣
M,Q

as M → Mext. As demonstrated numerically
in [36], at least in the case without moduli this arises from a fixed M correction δS|M,Q that scales with the
square-root of the higher-derivative couplings

√
α′ at extremality.

6We know of no theorem that non-rotating extremal black hole solutions must be static and spherically
symmetry at the two-derivative level, much less accounting for derivative corrections, so it would be
interesting — if technically very difficult — to relax this assumption.
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as argued in [13], where p-form dot product is defined as Gp · Hp ≡ 1
p!G

µ1...µpHµ1...µp ,
a = 1, . . . , nϕ label the moduli, A = 1, . . . , nA label a Cartan subalgebra of the gauge
algebra and Gab(ϕ) and fAB(ϕ) are, respectively, the metric on moduli space and the
(moduli-dependent) gauge kinetic matrix. Note that (2.1) omits all charged and/or fermionic
fields — which can be consistently truncated — as well as all massive fields — which have
been integrated out.7 Also absent are fields and couplings that have no effect on static
spherically-symmetric black hole backgrounds, such as higher-form gauge fields and their
Chern-Simons couplings.

We now consider higher-derivative corrections to (2.1):

L = L2 + α′Lhd + . . . , (2.2)

where Lhd contains the leading higher-derivative corrections and α′ is a formal order-counting
parameter of negative mass dimension — notationally inspired but not necessarily related to
α′ in string theory. Lhd encodes the infrared consequences of a wide variety of UV physics,
such as massive particles, extra dimensions, stringy physics, etc. The particular nature of
this UV physics will not matter for our analysis, except that in the case of massive particles
we assume that none of them become massless in a part of the moduli space visited by the
black hole solution in question; otherwise, the extra massless particles must be incorporated
into the action to maintain control of the effective field theory, an extra step that is beyond
the scope of this paper.

Typically Lhd consists of four-derivative operators, but our general formulae will not
depend on this. For illustration, as shown in equation (A.33) of appendix A, the four-
derivative operators that correct the mass and self-force of static spherically-symmetric
electrically-charged black hole solutions can be put into the following form:

Lhd = aABCD(ϕ)(FA · FB)(FC · FD) + 1
4aAB(ϕ)F

A
µνF

B
ρσR

µνρσ + a(ϕ)RGB

+ aabcd(ϕ)(∇ϕa · ∇ϕb)(∇ϕc · ∇ϕd) + aABab(ϕ)(∇ϕa · ∇ϕb)(FA · FB), (2.3)

up to total derivatives, field redefinitions, and combinations of operators that have no effect
on static spherically-symmetric electrically-charged black hole solutions, where RGB ≡
RµνρσR

µνρσ − 4RµνRµν +R2 is the Gauss-Bonnet term and aABCD(ϕ), aAB(ϕ), etc., are
a priori general functions of the moduli. Thus, the set of effective operators relevant to
problem at hand is both rich and enumerable; however, our results will not depend on Lhd
taking the form (2.3).

Our analysis of the effects of these operators will be semiclassical. As argued in [34, 37],
one-loop effects can be important or even dominant in the four-dimensional case, so our
results must be treated with caution in d = 4.

2.2 Black hole ansatz and equations of motion

A general static spherically-symmetric electrically-charged black hole solution takes the form

ds2 = −e2ψ(r)f(r)dt2 + e−
2
d−3ψ(r)

[
dr2

f(r) + r2dΩ2
d−2

]
,

7Moreover, we assume that all massless neutral scalar fields are moduli, hence V (ϕ) = 0. A massless,
neutral scalar field with a non-vanishing potential would have a similar effect on black hole solutions to the
derivative corrections that we study, but requires a separate analysis.
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FA = FAtr (r)dt ∧ dr, (2.4)

ϕa = ϕa(r),

where dΩ2
d−2 is the round metric of unit radius on the transverse Sd−2 and we choose the

same gauge as in, e.g., [13], without yet making use of the equations of motion.
The equations of motion for the gauge-fields read

d ⋆ FA = 0, dFA = 0, where FA = fABF
B − α′ δShd

δFA
, (2.5)

where δShd
δFA

is the covariant functional derivative of Shd =
∫
ddx

√
−gLhd, defined via the

functional variation

δShd =
∫
ddx

√
−g δFA · δShd

δFA
=
∫
ddx

√
−g 1

2δF
A
µν

δShd
δFAµν

, (2.6)

and we assume that Lhd depends only on the field strength FA, not directly on the gauge
potential AA.8

Using spherical symmetry, the tr component of FA is completely fixed by ψ and the
electric charge of the black hole QA:

QA =
∮
Sd−2

⋆FA, =⇒ FAtr = − QAe
2ψ

Vd−2rd−2 , (2.7)

where Vd−2 = 2π
d−1

2

Γ( d−1
2 ) is the area of a unit-radius Sd−2 sphere. Thus, we obtain9

FA = fAB
(
− QBe

2ψ

Vd−2rd−2 + α′ δShd
δFBtr

)
dt ∧ dr, (2.8)

where fAB(ϕ) denotes the inverse of the gauge kinetic matrix fAB(ϕ).
The moduli equations of motion and Einstein equations are

∇2ϕa + Γabc(∂ϕb · ∂ϕc) = Gab
(1
2fAB,bF

A · FB − α′ δShd
δϕb

)
,

Rµν −
1
2gµνR = κ2Tµν = κ2

(
Gab∂µϕ

a ◦ ∂νϕb + fABF
A
µ ◦ FBν + α′Thd

µν

)
,

(2.9)

where Gab(ϕ) denotes the inverse of the metric on moduli space Gab(ϕ) and10

Γabc ≡
1
2G

ad(Gbd,c +Gcd,b −Gbc,d), Thd
µν ≡ −2δShd

δgµν
,

ωµ ◦ χν ≡ ωµ · χν −
1
2gµνω · χ, ωµ · χν ≡ 1

p!ωµν1...νpχν
ν1...νp ,

(2.10)

for arbitrary (p+ 1)-forms ω and χ.
8In particular, this excludes higher-derivative Chern-Simons terms, see appendix A for a justification for

this omission.
9Note that while FA ∝ dt∧ dr is required by spherical symmetry in d > 4, in 4d spherical symmetry also

permits an angular sin θdθ∧dϕ component. However, this vanishes when the magnetic charge QAm =
∮
Sd−2 F2

vanishes, as assumed in this section.
10As before, functional derivatives are defined covariantly, so that δShd =

∫
ddx

√
−g δShd

δgµν
δgµν +∫

ddx
√
−g δShd

δϕa
δϕa. In general, writing the functional derivatives of Shd in terms of ordinary deriva-

tives of Lhd requires integration by parts, e.g., δShd
δϕa

= ∂Lhd
∂ϕa

−∇µ
∂Lhd

∂(∇µϕa) in the case where Lhd contains no
second derivatives of ϕa.

– 7 –
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Applying the ansatz (2.4) and computing the associated Ricci tensor, we obtain:

1
rd−2 (r

d−2fϕ′a)′+fΓa
bcϕ

′bϕ′c = e−
2ψ
d−3Gab

(1
2fAB,bF

A ·FB−α′ δShd

δϕb

)
, (2.11a)

1
r2d−5

(
rd−2

[
rd−3(1−f)

]′)′
=−2κ2e−

2ψ
d−3

(
T r

r +
1

d−2T
i
i

)
, (2.11b)

1
rd−2

[
rd−2fψ′+(d−3)rd−3(1−f)

]′
=−d−3

d−2κ
2e−

2ψ
d−3 (T t

t +T r
r ), (2.11c)

ψ′ [fψ′+f ′]+ (d−3)2

r2 (1−f)− d−3
r

f ′ =−2d−3
d−2κ

2e−
2ψ
d−3T r

r , (2.11d)

where primes denote r-derivatives, T = Tµµ , and T ii =
∑d−2
i=1 T

i
i denotes the partial trace of

Tµν over the angular directions.
To simplify these equations, it is convenient to define the inverse radial variable

z ≡ 1
(d− 3)Vd−2rd−3 ⇒ dz = − 1

Vd−2rd−2dr, (2.12)

as well as the function

χ(z) ≡ 1− f

z
⇔ f = 1− zχ(z). (2.13)

In terms of these, the equations of motion become

d

dz
(fϕ̇a) + fΓabcϕ̇bϕ̇c = e2ψA2Gab

(1
2fAB,bF

A · FB − α′ δShd
δϕb

)
, (2.14a)

χ̈ = −2kNe2ψA2

(d− 3)z
(
(d− 2)T rr + T ii

)
, (2.14b)

d

dz

(
fψ̇ − χ

)
= −kNe2ψA2(T tt + T rr

)
, (2.14c)

ψ̇
[
fψ̇ + ḟ

]
− χ̇ = −2kNe2ψA2 T rr , (2.14d)

where dots denote z-derivatives,

A(z) ≡ Vd−2r
d−2e−

d−2
d−3ψ (2.15)

is the z-dependent area of the Sd−2, and

kN ≡ d− 3
d− 2κ

2 (2.16)

is the rationalized Newtonian force constant. Note that (2.14d) is a constraint equation at
leading order in the derivative expansion: differentiating it gives a linear combination of
the other equations.

To study the event horizon, we rewrite the metric in infalling coordinates:

ds2 = − F (ρ)dv2

R(ρ)2(d−3) +
2dvdρ

(d− 3)R(ρ)d−4 +R(ρ)2dΩ2
d−2, (2.17)

where ρ ≡ rd−3, R(ρ) ≡ re−
ψ
d−3 , and F (ρ) ≡ r2(d−3)f(r). Thus, a smooth horizon requires

F (ρ) → 0 at finite ρ = ρh with R(ρ) remaining finite and non-zero. There is a residual

– 8 –
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gauge symmetry shifting ρ by a constant while holding the form of R(ρ) and F (ρ) fixed,
so the value of ρh is thus far meaningless. By contrast, F ′(ρh) ≥ 0 is a gauge-invariant
characteristic of the horizon. In particular, the product of the surface gravity gh times
the horizon area Ah is readily found to be ghAh = d−3

2 Vd−2F
′(ρh), so F ′(ρh) = 0 is the

(quasi)extremal case in the terminology of [13], whereas F ′(ρh) > 0 is the subextremal case.
While in principle we can proceed in any gauge, it will be very convenient to make

the gauge choice ρh = F ′(ρh), so that ρh ≥ 0 with ρh → 0 in the (quasi)extremal limit. In
terms of r and f(r), this becomes11

f(rh) = 0, f ′(rh) =
d− 3
rh

, (2.18)

where rh is the outer horizon radius and (quasi)extremality corresponds to rh → 0. In
terms of z and χ, the gauge condition is

χ(zh) =
1
zh
, χ̇(zh) = 0, (2.19)

where zh = 1
(d−3)Vd−2r

d−3
h

, and (quasi)extremality corresponds to zh → ∞.
Note that the above gauge choice can be restated as

ghAh = 1
2zh

, (2.20)

relating the surface gravity gh and horizon area Ah to the coordinate location of the
horizon z = zh.

2.3 Self-force corrections

We first observe that T rr + 1
d−2T

i
i = α′(Thd

r
r + 1

d−2Thd
i
i) since the two-derivative action (2.1)

makes no contribution to this particular combination. Thus, using the boundary condi-
tions (2.19) and the appropriate Green’s function, we solve (2.14b) to obtain

χ(z)= 1
zh

− 2α′kN
d−3

∫ z

zh

(
z

z′
−1
)
e2ψ(z

′)A2(z′)
(
(d−2)Thd

r
r(z′)+Thd

i
i(z′)

)
dz′. (2.21)

In particular, due to the explicit appearance of α′ in the second term, this equation fixes
the order-α′ correction to χ(z) in terms of the functional form of Lhd along with the
leading-order fields.

To relate this to the long-range part of the force between identical electrically-charged
black holes, note that the latter takes the form [13]

Fself(r) =
F̂self
Vd−2

r̂
rd−2 + . . . , F̂self = fAB∞ QAQB −Gab∞µaµb − kNM

2, (2.22)

where fAB∞ = fAB(ϕ∞), Gab∞ = Gab(ϕ∞) for ϕa∞ = ϕa(r = ∞) the vacuum at spatial infinity,
M is the mass of the black hole, and µa is the “scalar charge”,

µa ≡
∂M

∂ϕa∞
, (2.23)

11In the quasiextremal case we obtain the boundary condition f(r = 0) = finite instead.
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i.e., the derivative of the mass of the black hole with respect to the values of the scalar field
at spatial infinity. Equivalently, µa determines the long-range behavior of the scalar fields,

ϕa = ϕa∞ − Gab∞µb
(d− 3)Vd−2rd−3 + . . . (2.24)

so that µa = −G∞
abϕ̇

b
∞.12

Evaluating (2.14d) at spatial infinity, we obtain

ψ̇∞
[
ψ̇∞ − χ∞

]
− χ̇∞ = kNf

AB
∞ QAQB − kNG

∞
abϕ̇

a
∞ϕ̇

b
∞. (2.25)

Note that the contributions to (2.14d) involving α′Thd
r
r have all dropped out because they

invariably fall off too quickly as r → ∞.
Using, e.g., the formulae in [38], we obtain the ADM mass

M = 1
kN

(1
2χ∞ − ψ̇∞

)
. (2.26)

Thus, (2.25) becomes

F̂self = fAB∞ QAQB −Gab∞µaµb − kNM
2 = − 1

kN

(
χ̇∞ + 1

4χ
2
∞

)
. (2.27)

Specializing to the (quasi)extremal case, we obtain

χ∞ = −2α′kN
d− 3

∫ ∞

0
e2ψA2

(
(d− 2)Thd

r
r + Thd

i
i

)
dz, (2.28a)

χ̇∞ = 2α′kN
d− 3

∫ ∞

0

e2ψA2

z

(
(d− 2)Thd

r
r + Thd

i
i

)
dz, (2.28b)

using (2.21). Thus, the self-force coefficient of a quasiextremal solution is

F̂self = −2α′V 2
d−2

∫ ∞

0

(
(d− 2)Thd

r
r + Thd

i
i

)
e−

2ψ
d−3 r2d−5dr +O(α′2). (2.29)

This vanishes at leading order in the derivative expansion, as first shown in [13]. Using
R = re−

ψ
d−3 from (1.3), we can rewrite the force formula in the alternative way:

F̂self = −2α′V 2
d−2

∫ ∞

rh

(
(d− 2)Thd

r
r + Thd

i
i

)
R2d−5|gtt|

√
grrdr +O(α′2). (2.30)

2.4 Mass corrections

Let M(ϕ) be the mass of an extremal black hole of fixed charge at two-derivative order,
expressed as a function of the asymptotic values of the moduli, and define

Q2(ϕ) ≡ fAB(ϕ)QAQB. (2.31)
12The derivation of this relation between the scalar charge and the long range scalar fields can be found in,

e.g., [13] section 4.1, at the two-derivative level. In fact, the argument is unchanged by derivative corrections,
whose contributions to the probe particle action are velocity-dependent and whose contributions to the
linearized backreaction fall off more rapidly than the leading-order 1/rd−3 contributions.
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This mass function M(ϕ) satisfies the condition

Q2(ϕ) = kNM2(ϕ) +Gab(ϕ)M,a(ϕ)M,b(ϕ), (2.32)

related to the vanishing of the long-range self-force at two-derivative order. Moreover, the
two-derivative extremal solution is an M(ϕ) gradient flow, solving

ψ̇ = −kNeψM, ϕ̇a = −eψGabM,b. (2.33)

The function M(ϕ) is also known as the “fake-superpotential” [39–43]; it can be calculated
systematically by solving (2.32), see, e.g., [2] for a review.

To quantify the change in the solution due to derivative corrections, we define

X ≡ fψ̇ + kN
√
feψM, Y a ≡ fϕ̇a +

√
feψGabM,b, (2.34)

where the particular powers of f are chosen for future convenience. Since extremal so-
lutions satisfy f = 1 at two-derivative order, X = Y a = 0 for extremal two-derivative
solutions per (2.33). Thus, for extremal derivative-corrected solutions, X and Y a are O(α′).
Eliminating ψ̇∞ in favor of X∞, the ADM mass (2.26) becomes:

M = M+ 1
kN

(1
2χ∞ −X∞

)
. (2.35)

Thus, δM = 1
kN

(
1
2χ∞ −X∞

)
evaluated on a derivative-corrected extremal solution is the

extremal mass correction we are interested in.
To determine this combination, consider the tt component of the Einstein equations (a

linear combination of (2.14c) and (2.14d)), which takes the form:

1
2 χ̇− d

dz

(
fψ̇
)
+ 1

2 ψ̇
[
fψ̇ + ḟ

]
= kNe

2ψA2 T tt . (2.36)

Eliminating ψ̇ in favor of X, we obtain

1
2 χ̇− Ẋ + X2 +Xḟ

2f = 1
2k

2
Ne

2ψM2 − kN
√
feψM,aϕ̇

a + kNe
2ψA2 T tt . (2.37)

Rewriting M2 using (2.32) and then eliminating M,a in terms of Y a and ϕ̇a using (2.34),
we find:

1
2 χ̇−Ẋ+X2+Xḟ+kNGabY aY b

2f = 1
2kN (e

2ψQ2+fGabϕ̇aϕ̇b)+kNe2ψA2T tt . (2.38)

To make use of this expression, note that the last term on the left-hand-side is O(α′2) for
an extremal solution. Since X vanishes on the horizon,13 as does χ in the quasiextremal
case, we conclude that

δM = 1
kN

[1
2χ∞−X∞

]
=−

∫ ∞

0

[1
2e

2ψQ2+1
2fGabϕ̇

aϕ̇b+e2ψA2T tt

]
dz+O(α′2). (2.39)

13This follows from f(zh) = 0 in the nonextremal case and from f → finite and zeψ → finite as z → ∞ in
the quasiextremal case.

– 11 –



J
H
E
P
1
2
(
2
0
2
3
)
1
7
4

The first two terms on the right-hand-side cancel the leading order contributions to
T tt , leaving:

δM = −α′Vd−2

∫ ∞

0

(
Thd

t
t + FAtr

δShd
δFAtr

)
e−

2ψ
d−3 rd−2dr +O(α′2). (2.40)

Using R = re−
ψ
d−3 from (1.3), we can rewrite the mass formula in the alternative way

that suggests a covariant generalization:

δM = −α′Vd−2

∫ ∞

rh

(
Thd

t
t + FAtr

δShd
δFAtr

)
Rd−2

√
|gttgrr|dr +O(α′2). (2.41)

This matches a covariant formula that was derived for Reissner-Nordström black holes (i.e.,
without moduli) in [17], compared with which our result is both more general (allowing for
arbitrary moduli) and less general (requiring spherical symmetry).

2.5 Entropy corrections

Corrections to black hole entropies induced by higher-derivative operators were previously
studied in certain contexts in, e.g., [14, 22, 25, 44]. In this subsection, we use the attractor
mechanism [21, 45–48] to compute the entropy correction to spherically-symmetric extremal
black holes in general effective field theories with moduli.

The Iyer-Wald entropy S [49] is defined as

S ≡ −2π
∫
Σ

1
4

δS

δRµνρσ
ϵµνϵρσdAd−2, (2.42)

where Σh is the event horizon, ϵµν is binormal to Σh with ϵµνϵµν = −2, dAd−2 is the volume-
form on the event horizon, and the functional derivative with respect to the Riemann tensor
is defined by

δS =
∫
ddx

√
−g14

δS

δRµνρσ
δRµνρσ , (2.43)

where δS
δRµνρσ

has the same symmetries as the Riemann tensor.
In our gauge ϵµν =

√
−gttgrr

(
δtµδ

r
ν − δrµδ

t
ν

)
. Thus, performing the integral using

spherical symmetry we obtain

S = 2πAh
δS

δRtrtr

∣∣∣∣
r=rh

, (2.44)

where Ah is the area of the event horizon. In particular, at two-derivative order,

δS2
δRmnpq

= 1
κ2

(δpmδqn − δpnδ
q
m), (2.45)

due to the Einstein-Hilbert action S2 = 1
2κ2

∫
ddx

√
−gR+ . . ., so at leading order,

S(0) = 2πA(0)
h

κ2
, (2.46)

where A(0)
h is the leading-order horizon area.

– 12 –



J
H
E
P
1
2
(
2
0
2
3
)
1
7
4

Continuing to the next order, one finds

S = S(0) + 2π
κ2
δAh + 2πα′A

(0)
h

δShd
δRtrtr

∣∣∣∣
r=rh

+O(α′2), (2.47)

so there are two types corrections: (1) those arising from derivative corrections to the
horizon area δAh and (2) those arising from operators in the higher-derivative action that
involve the Riemann tensor.

The area correction via the attractor mechanism. To find the area correction δAh
we use the attractor mechanism [21, 45–48]. Define

x(z) ≡ ψ(z) + log z. (2.48)

The area of the horizon is related to xh ≡ limz→∞ x(z) by (see also (2.15))

Ah = Vd−2[(d− 3)Vd−2e
xh ]−

d−2
d−3 . (2.49)

In terms of x, the uncorrected versions of (2.14a) and (2.14c) are

ϕ̈a + Γabcϕ̇bϕ̇c =
1
2z2G

ab(ϕ)Q2
,be

2x, (when no corrections), (2.50a)

ẍ = 1
z2

(
kNQ

2e2x − 1
)
, (when no corrections). (2.50b)

Looking back at the infalling metric (2.17), we see that a smooth, extremal horizon requires
x and f to be smooth functions of ρ = rd−3 at ρ = 0, and ϕa must be as well if the moduli
are smooth at the horizon. Expressed in terms of z ∝ 1/ρ, any such function F (z) must
have a finite limit Fh ≡ limz→∞ F (z), whereas its nth derivative F (n)(z) must fall off faster
than 1/zn.

In particular xh ≡ limz→∞ x(z) must be finite, whereas zẋ and z2ẍ tend to zero as
z → ∞, and likewise for ϕah, zϕ̇a and z2ϕ̈a. Thus, multiplying (2.50) by z2 and taking the
z → ∞ limit,

Q2
,a(ϕh) = 0, Q2(ϕh) = (kNe2xh)−1, (when no corrections). (2.51)

These equations both fix the values of the moduli at the event horizon ϕah (with some
ambiguity when Q2(ϕ) has multiple critical points) and also determine the horizon area of
the resulting extremal solution.

We now examine how derivative corrections modify this attractor argument. In terms
of x, the equations of motion (2.14) can be rewritten as

z2
d

dz
(fϕ̇a) + fΓabczϕ̇bzϕ̇c = e2xA2Gab

(1
2fAB,bF

A · FB − α′ δShd
δϕb

)
, (2.52a)

z3
d2

dz2

(1− f

z

)
= −2kNe2xA2

d− 3
(
(d− 2)T rr + T ii

)
, (2.52b)

z2
d

dz

(
fẋ− 1

z

)
= −kNe2xA2(T tt + T rr ), (2.52c)

f
(
z2ẍ− z2ẋ2 + 2zẋ

)
= kNe

2xA2(T rr − T tt ), (2.52d)
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where the last equation is a linear combination of (2.14c) and (2.14d). Consider the z → ∞
limit of the equations (2.52), requiring that f → fh, x → xh, and ϕa → ϕah, with nth
derivatives of these quantities falling off faster than 1/zn. After a bit of rearranging, we
obtain the following attractor equations

Q2
,a(ϕh) = 2α′A2

h

[
δShd
δϕa

+ fABf
AC
,a FBtr

δShd
δFCtr

]
r=rh

, (2.53a)

fh = 1 + α′κ2e2xhA2
h

[
Thd

r
r +

1
d− 2Thd

i
i

]
r=rh

, (2.53b)

Q2(ϕh) =
1

kNe2xh
+ α′A2

h

[
Thd

t
t + Thd

r
r + 2FAtr

δShd
δFAtr

]
r=rh

, (2.53c)

0 =
[
Thd

r
r − Thd

t
t

]
r=rh

. (2.53d)

Equation (2.53c) tells us how xh, which is related to the area of the black hole by (2.49),
depends on the value of Q2(ϕ) at the horizon. Meanwhile, (2.53a) governs the values that
the moduli must take at the event horizon. Note that while (2.53b) likewise fixes fh (which
is not needed in our present calculation), (2.53d) at first glance appears to constrain the
two-derivative solution itself in a manner that depends on the higher-derivative corrections.
In fact, (2.53d) is identically true because the near-horizon geometry of a large black hole
at two-derivative order is AdS2 × Sd−2, and the symmetries thereof require Tµν ∝ δµν along
the AdS2.

In principle, the corrected horizon area is determined by first solving (2.53a) to determine
the values of the moduli at the horizon ϕah = (ϕah)(0) + δϕah, then substituting these values
into (2.53c) to fix xh, then applying (2.49) to obtain the horizon area Ah. However, Taylor
expanding Q2(ϕh) about the leading-order attractor point ϕ(0)h , one finds

Q2(ϕh) = Q2(ϕ(0)h ) + 1
2δϕ

aδϕbQ2
,ab(ϕ

(0)
h ) + . . . , (2.54)

where terms linear in δϕa vanish due to the leading-order attractor equation Q2
,a(ϕ

(0)
h ) = 0,

see (2.51). Thus, since δϕa is O(α′) per (2.53a), the leading correction to Q2(ϕh) is O(α′2).
As a consequence, expanding (2.53c) to linear order in α′ yields

0 = − 2
kNe2xh

δxh + α′A2
h

[
Thd

t
t + Thd

r
r + 2FAtr

δShd
δFAtr

]
r=rh

+O(α′2) . (2.55)

Applying (2.49) to eliminate xh in favor of Ah, we obtain

δAh
Ah

= −d− 2
d− 3δxh = − α′κ2R2

h

(d− 3)2
[
Thd

t
t + FAtr

δShd
δFAtr

]
r=rh

+O(α′2), (2.56)

where Rh =
[ Ah
Vd−2

] 1
d−2 is the curvature radius of the horizon and we use (2.53d) to eliminate

Thd
r
r in favor of Thd

t
t.

Substituting this into (2.47), we obtain the extremal entropy correction

δS =2πα′Vd−2

[
− Rd

(d−3)2
(
Thd

t
t+FAtr

δShd
δFAtr

)
+Rd−2 δShd

δRtrtr

]
r=rh

+O(α′2). (2.57)
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2.6 The dyonic case

In four dimensions, static, spherically-symmetric black holes can be dyonic, carrying both
electric and magnetic charge. In our preceding analysis, we assumed that only electric
charge was present. We now examine the four-dimensional dyonic case, showing that our
final results (2.30), (2.41), and (2.57) are unchanged.

Firstly, because of the presence of magnetic charge, we can no longer neglect moduli-
dependent θ terms in the two-derivative effective action of the form

Sθ =
1

8π2
∫
θAB(ϕ)FA ∧ FB . (2.58)

Accounting for such θ terms, the gauge-field equations of motion become

d⋆FA=0, dFA=0, where FA= fABF
B+θAB⋆FB−α′ δShd

δFA
. (2.59)

The conserved electric and magnetic charges are thus14

Q
(e)
A =

∮
S2
⋆FA, QA(m) =

1
2π

∮
S2
FA. (2.60)

Spherical symmetry then implies that

⋆FA = (⋆FA)trdt ∧ dr +Q
(e)
A

sin θdθ ∧ dφ
4π , (2.61a)

FA = FAtrdt ∧ dr +QA(m)
sin θdθ ∧ dφ

2 , (2.61b)

where θ, φ are the standard coordinates on S2 and V2 = 4π is its volume. Eliminating FA
in favor of FA, we obtain

FA = fAB
[
−
(
Q

(e)
B + θBC

2π QC(m)

)
e2ψ

4πr2 + α′ δShd
δFBtr

]
dt ∧ dr +QA(m)

sin θdθ ∧ dφ
2 . (2.62)

Note that this reduces to (2.8) upon setting QA(m) = 0.
Apart from this modification to the form of FAµν , the Einstein equations are unchanged

from before — since the θ terms do not couple to the metric — whereas the moduli equations
of motion become

d

dz
(fϕ̇a)+fΓabcϕ̇bϕ̇c= e2ψA2Gab

(1
2fAB,bF

A ·FB+ 1
8π2 θAB,bF

A ·⋆FB−α′ δShd
δϕb

)
,

(2.63)
rather than (2.14a).

We can then proceed exactly as before until we reach (2.25), which now reads

ψ̇∞
[
ψ̇∞ − χ∞

]
− χ̇∞ = kNQ

2(ϕ)− kNG
∞
abϕ̇

a
∞ϕ̇

b
∞, (2.64)

14To be precise, these are the Page charges (see, e.g., [50]), which are quantized and conserved, but not
invariant under large gauge transformations (in this case, constant shifts of θAB(ϕ) by amounts that leave
the quantum theory unchanged).
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where

Q2(ϕ)≡ fAB(ϕ)
[
Q

(e)
A + θAC(ϕ)

2π QC(m)

][
Q

(e)
B + θBD(ϕ)

2π QD(m)

]
+4π2fAB(ϕ)QA(m)Q

B
(m) .

(2.65)
The extra terms are precisely those appearing in the coefficient of the self-force

F̂self = Q2(ϕ∞)−Gab∞µaµb − kNM
2 , (2.66)

see, e.g., [13] for details, so we still obtain

F̂self = −2α′V 2
2

∫ ∞

rh

(
2Thd

r
r + Thd

i
i

)
R3|gtt|

√
grrdr +O(α′2), (2.67)

in an identical manner to before.
Likewise, the calculation of the mass correction proceeds identically through (2.39). To

obtain our final answer from here, we plug in the explicit form of Q2(ϕ) and T tt ; each has
extra terms in the dyonic case, but these extra terms fortuitously cancel,15 leading once
again to

δM = −α′V2

∫ ∞

rh

(
Thd

t
t + FAtr

δShd
δFAtr

)
R2
√
|gttgrr|dr +O(α′2). (2.68)

Note that, unlike in the electric case, FAtr δShd
δFAtr

̸= 1
2F

A
µν

δShd
δFAµν

, so it is important to write the
formula in this particular form.

The entropy calculation is likewise virtually unchanged, and we again find

δS = −2πα′V2R4
h

[
Thd

t
t + FAtr

δShd
δFAtr

+Rtrtr
δShd
δRtrtr

]
r=rh

+O(α′2), (2.69)

just as before.

2.7 Further simplifications

In fact, the mass and entropy correction formulas (2.41) and (2.57) can be further simplified,
as follows. First, notice that for the independent three and four-derivative operators
classified in appendix A (see also appendix C for useful formulas), Thd

t
t + FAtr

δShd
δFAtr

is always
equal to the Lagrangian density Lhd when evaluated in a spherically symmetric background,
except for operators involving the Riemann tensor.

To generalize this observation, we begin by assuming that Lhd depends on the metric,
∇µϕ

a, FAµν , and Rµνρσ, but not on higher covariant derivatives thereof. Thus, the variation
in Lhd as these constituents are varied is16

δLhd = ∂Lhd
∂gµν

δgµν +
∂Lhd
∂∇µϕa

δ∇µϕ
a + 1

2
∂Lhd
∂FAµν

δFAµν +
1
4
∂Lhd
∂Rµαβγ

δRµαβγ , (2.70)

15This cancellation can be traced back to the fact that the two-derivative portions of T tt and T rr depend
on FA in exactly the same way.

16Note that to define the partial derivative ∂Lhd
∂gµν

we need not only specify that ∇µϕ
a, FAµν and Rµνρσ are

held fixed, but also that (2.70) holds with ∂Lhd
∂Rµνρσ

≡ gµα ∂Lhd
∂Rανρσ

chosen to have all the symmetries of the
Riemann tensor. The reason for this subtlety is that gµαδRανρσ does not have all the symmetries of the
Riemann tensor; in particular, g(µ|αδR

α
|ν)ρσ = −δg(µ|αR

α
|ν)ρσ since δ(Rµνρσ) = δ(gµαRα|ν)ρσ) does retain all

the symmetries. Thus, adding a term symmetric in the exchange of µ, ν to ∂Lhd
∂Rµνρσ

changes ∂Lhd
∂gµν

without
altering the dependence of Lhd on the Riemann tensor.
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where partial derivatives with respect to tensor fields are defined to enjoy the same symme-
tries as the tensor field in question, and the factors of 1/2 and 1/4 reflect our normalization
conventions (so that, e.g., ∂F

A
µν

∂FBρσ
= δAB(δρµδσν−δρνδσµ)). In particular, due to general covariance17

Lhd must be invariant under an infinitesimal coordinate transformation xµ → xµ−εµνxν+· · ·
for any (1, 1) tensor field εµν , resulting in

δgµν = ερµgρν+ερνgµρ, δ∇µϕ
a= ενµ∇νϕ

a,

δFAµν = ερµF
A
ρν+ερνFAµρ, δRµαβγ =−εµρR

ρ
αβγ+ε

ρ
αR

µ
ρβγ+ε

ρ
βR

µ
αργ+εργR

µ
αβρ, (2.71)

which applied to (2.70) implies the identity

0 = 2gνρ
∂Lhd
∂gµρ

+∇νϕ
a ∂Lhd
∂∇µϕa

+ FAνρ
∂Lhd
∂FAµρ

+ 1
2R

µ
αβγ

∂Lhd
∂Rναβγ

. (2.72)

Next, we express the functional derivatives of Shd in terms of partial derivatives of Lhd,
as follows:

δShd
δ∇µϕa

= ∂Lhd
∂∇µϕa

,
δShd
δFAµν

= ∂Lhd
∂FAµν

,
δShd
δRµαβγ

= ∂Lhd
∂Rµαβγ

, (2.73a)

δShd
δgµν

= ∂Lhd
∂gµν

+ 1
2∇(ρ∇σ)

∂Lhd
∂Rρµνσ

+ 1
2g

µνLhd, (2.73b)

where to derive (2.73b), take δShd =
∫
ddx

√
−g
[∂Lhd
∂gµν

δgµν + 1
4
∂Lhd
∂Rµνρσ

δRµνρσ + 1
2g
µνδgµνLhd

]
and integrate the middle term by parts twice using δRµνρσ = ∇ρδΓµσν − ∇σδΓµρν and
δΓµνρ = 1

2g
µλ(∇νδgρλ +∇ρδgνλ −∇λδgνρ).18

Combining (2.72), (2.73a), (2.73b) and the definition of the stress tensor Tµνhd = 2 δShd
δgµν

,
we obtain:

Thd
µ
ν+∇νϕ

a δShd
δ∇µϕa

+FAνρ
δShd
δFAµρ

+1
2R

µ
αβγ

δShd
δRναβγ

+∇(ρ∇σ)
δShd
δRνρµσ

= δµνLhd. (2.74)

In the special case of spherical symmetry and the absence of Riemann couplings, we see
that this reproduces Thd

t
t + FAtr

δShd
δFAtr

= Lhd as previously noted.
We now apply the relation (2.74) to simplify the entropy correction formula (2.57).

Observe that in the near horizon limit, ϕa, FAµν and Rµνρσ are all covariantly constant. Thus,
all covariant derivatives of these quantities vanish, and we obtain[

Thd
t
t + FAtr

δShd
δFAtr

+Rtrtr
δShd
δRtrtr

]
r=rh

= Lhd|r=rh . (2.75)

In fact, even though we derived this formula by assuming the absence of higher covariant
derivatives in Lhd, it easily generalizes to include such terms because all the covariant
derivatives evaluate to zero in the near-horizon limit, as already noted.

17Here we implicitly exclude gravitational Chern-Simons terms, as justified in appendix A.
18Explicitly, δSmid = 1

2

∫
ddx

√
−g ∂Lhd

∂Rµνρσ
∇ρδΓµσν = −1

2

∫
ddx

√
−g∇ρ

∂Lhd

∂Rµνρσ
δΓµσν

= −1
2

∫
ddx

√
−g∇ρ

∂Lhd

∂Rµνρσ
∇νδgσµ = 1

2

∫
ddx

√
−g∇ν∇ρ

∂Lhd

∂Rµνρσ
δgσµ.
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Thus, using Rtrtr = − (d−3)2

R2 in the near-horizon limit (see appendix B), we obtain the
general result

δS = − 2πα′

(d− 3)2Vd−2RdLhd

∣∣∣∣
r=rh

. (2.76)

The simplicity of this answer — in contrast with the complexity of its derivation — suggests
that there is a more general principle at work. However, we leave further consideration of
this to future work.

Next, we consider the mass formula (2.41). Defining the projection tensor Πµν = δµt δ
t
ν ,

we can write the integral more coviariantly as

δM = −α′
∫
Σ
Πνµ
(
Thd

µ
ν + FAνρ

δShd
δFAµρ

)
N
√
h dd−1x, (2.77)

where the integral is taken over a spatial slice Σ from the horizon to infinity, h is the
determinant of the spatial metric and N =

√
−1/gtt is the lapse function. Applying (2.74),

this becomes:

δM = −α′
∫
Σ

[
Lhd − 1

2Π
ν
µR

µ
αβγ

δShd
δRναβγ

−Πνµ∇ρ∇σ
δShd
δSνρµσ

]
N
√
h dd−1x, (2.78)

since Πνµ∇νϕ
a = 0 and Πµν = Πνµ in a static background. Computing the second covariant

derivatives of Πµν in an extremal black hole background, one finds that19

X ρµσ
ν ∇ρ∇σΠνµ = −1

2Π
ν
µR

µ
αβγX

αβγ
ν , (2.79)

for any Xµνρσ with the symmetries of the Riemann tensor. Thus, we obtain:

δM =−α′
∫
Σ

[
Lhd+∇ρ

(
∇σΠνµ

δShd
δRνρµσ

)
−∇σ

(
Πνµ∇ρ

δShd
δRνρµσ

)]
N
√
hdd−1x

=−α′
∫
Σ
LhdN

√
hdd−1x−α′r̂α

[
∇σΠνµ

δShd
δRναµσ

−Πνµ∇ρ
δShd
δRνρµα

]
NRd−2

∣∣∣∣∣
∞

r=rh

, (2.80)

after converting the total derivatives into boundary terms,20 where r̂µ = √
grrδ

r
µ is the

radially-outwards unit vector. In fact, since the lapse function N vanishes at the horizon
and the fields fall off sufficiently rapidly at infinity, the boundary terms vanish, and we
finally obtain21

δM = −α′
∫
Σ
LhdN

√
h dd−1x = −α′Vd−2

∫ ∞

rh

LhdRd−2
√
|gttgrr|dr. (2.81)

19As a shortcut, first verify that ∇[µΠρν] = ∇[µψΠρν] by explicit computation. It immediately follows that
∇[ρ∇[µΠσ]

ν] = ∇[ρ∇[µψΠσ]
ν] +∇[µψ∇[ρψΠσ]

ν] . Then, using ∇µ∇νψ = ∂µ∂νψ − Γρµν∂ρψ and the explicit form
of the connection (see appendix B), one obtains ∇[t∇[tΠr]

r] = − 1
4R

tr
tr and ∇[t∇[tΠi]j] = − 1

4R
ti
tj , or equivalently

∇[ρ∇[µΠν]
σ] = − 1

2R
α[ν
µσ Πρ]

α .
20Note that the explicit presence of the lapse function in the measure compensates for the fact that ∇µ is

the spacetime covariant derivative.
21This formula appeared previously in [33, 34] in the four-dimensional case without moduli (but allowing

for rotation).
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Again, the simplicity of this answer suggests a more general principle at work, but we defer
further consideration of this to future work.

Unlike (2.76), it is not trivial to extend our derivation of (2.81) to Lagrangians Lhd
involving arbitrarily many covariant derivatives. Instead, we limit ourselves to a few
observations. First, note that (2.81) is correctly unchanged by adding a total derivative
to Lhd, once again because the lapse function vanishes at the horizon and the fields fall
off sufficiently rapidly at infinity. In appendix A, we show that arbitrary three and four-
derivative operators can be rewritten in terms of ∇µϕ

a, FAµν , and Rµνρσ via integration
by parts, eliminating all higher covariant derivatives. Thus, (2.81) holds to at least four-
derivative order, if not beyond.

3 On the independence of mass and entropy corrections

At first glance, the mass and entropy corrections (1.1a), (1.1b) appear to be related, especially
when written in the form (1.4a), (1.4b). This may seem to confirm the claim [14, 35] that
they are directly (anti)correlated. However, notice that a naive reading of (1.4a), (1.4b)
suggests that δM and δS should have the same sign, whereas [14, 35] argue that they have
opposite signs. As demonstrated explicitly below — and matching prior work [24] where
this point was first emphasized — this difference is because the corrections are sensitive to
whether, at fixed charge, temperature is held fixed or mass is held fixed.

3.1 Demonstration of independence

In fact, despite appearances the extremal entropy correction (1.1b), (1.4b) is independent
of the extremal mass correction (1.1a), (1.4a), in the sense that each one can have any
magnitude or sign independent of the other in a generic effective field theory.22

To show this, it suffices to compare the effect of two different four-derivative operators:

α′Lexample
hd = aabAB(ϕ)(FA ·FB)(∇ϕa ·∇ϕb)+aABCD(ϕ)(FA ·FB)(FC ·FD). (3.1)

The resulting entropy correction is easily evaluated using (1.4b):

δS = − 2π
(d− 3)2V 3

d−2R
3d−8
h

aABCD(ϕh)QAQBQCQD , (3.2)

where Rh = R(rh) is the curvature radius of the horizon, ϕah = ϕa(rh) is the attractor
point in question, and aABCD(ϕ) ≡ fAA

′(ϕ) · · · fDD′(ϕ)aA′B′C′D′(ϕ). In particular, the
F 2(∇ϕ)2 coupling does not contribute to the extremal entropy correction because the
moduli are constant in the near-horizon limit. On the other hand, the moduli are generically
not constant far from the horizon, hence F 2(∇ϕ)2 does contribute to the extremal mass
correction. Because of this, by adjusting the coefficient aabAB(ϕ) we can choose the extremal
mass correction to have any magnitude or sign, regardless of what the extremal entropy
correction is.

While the above example demonstrates that the extremal mass and entropy corrections
are independent, this independence is not limited to theories with moduli. For instance,

22See [36] for similar arguments in the special case of Reissner-Nordström black holes.
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consider the four-derivative operator

α′Lexample
hd = âAB(Rµνρσ − 2Rµρgνσ)FAµνFBρσ . (3.3)

Due to the simplified form of the Riemann tensor in the near-horizon limit (see, e.g.,
appendix B), this operator evaluates to zero in that limit and thus generates no entropy
correction. However, it does generically generate a mass correction, for instance

δM = 2(d− 3)2

(3d− 7)Vd−2Rd−1
h

âABQAQB (3.4)

in the Reissner-Nordström case, where âAB ≡ fAA
′
fBB

′
âA′B′ similar to above. This is

made possible by the additional non-vanishing Riemann tensor components (mixing the
angular and t–r directions) that appear away from the near-horizon limit.

3.2 Comparison with the literature

How can we reconcile this with the claim, due to [14, 35], that the entropy correction to a
near-extremal black hole is positive if and only if the mass correction to the same black
hole is negative?

The essential difference is that [14, 35] consider the near-extremal entropy correction
at fixed charge and fixed mass, whereas our extremal calculations are at fixed charge and
fixed (zero) temperature. Before elaborating, we first reproduce the results of [14, 35].
Since (1.1a), (1.1b) apply only to extremal black holes, this requires some additional work.

We start by combining (2.14c) and (2.14d) to obtain:

d

dz

[
fψ̇−χ

2

]
− 1
2 ψ̇
[
fψ̇+ḟ

]
= kN

2 fGabϕ̇
aϕ̇b+ kN

2 e2ψQ2(ϕ)−α′kNe
2ψA2

[
Thd

t
t+FAtr

δShd
δFAtr

]
.

(3.5)
We expand the solution about an uncorrected solution,

ψ = ψ(0) + δψ, ϕa = ϕa(0) + δϕ, f = f(0) + δf, (3.6)

where δψ(z), δϕa(z) and δf(z) are O(α′) perturbations to the solution and we hold the
charges QA fixed. Substituting into (3.5) and simplifying using the leading-order equations
of motion, we obtain

d

dz

[
fδψ̇− δχ

2 + ψ̇

2 δf−
ḟ

2 δψ−fψ̇δψ−kNfGabϕ̇
aδϕb

]
=−α′kNe

2ψA2
[
Thd

t
t+FAtr

δShd
δFAtr

]
,

(3.7)
up to O(α′2), where we omit the (0) subscripts on the leading-order solution for ease of
notation. Integrating z from 0 to zh (i.e., from r = ∞ to r = rh) gives

−δψ̇∞+ δχ∞
2 − δχ(zh)

2 + ψ̇(zh)
2 δf(zh)+

1
2zh

δψ(zh) = −α′kN

∫ zh

0
e2ψA2

[
Thd

t
t+FAtr

δShd
δFAtr

]
dz,

(3.8)
where we use f(0) = 1− z

zh
at leading order and f∞ = 1, ψ∞ = 0 to all orders, holding the

asymptotic moduli values ϕa∞ fixed.
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In our chosen gauge, the coordinate location of the horizon zh is related to the surface
gravity gh and horizon area Ah via (2.20). Thus, zh receives α′ corrections, and we must
carefully distinguish between, e.g., δψ(zh), which is δψ(z) evaluated at the leading-order
horizon z = z

(0)
h , versus the correction to the value of ψ at the horizon, which is instead

δψh = ψ(zh)− ψ(0)(z(0)h ) = δψ(zh) + ψ̇(zh)δzh, (3.9)

up to terms that are O(α′2). Along similar lines, the gauge-fixing conditions (2.18) (fh = 0,
ḟh = − 1

zh
) and (2.19) (χh = 1

zh
, χ̇h = 0) imply that

δf(zh) =
δzh
zh

, δχ(zh) = −δzh
z2h

. (3.10)

Thus, (3.8) becomes:

−δψ̇∞ + δχ∞
2 + 1

2zh

[
δψh +

δzh
zh

]
= −α′kN

∫ zh

0
e2ψA2

[
Thd

t
t + FAtr

δShd
δFAtr

]
dz, (3.11)

up to O(α′2). Using (2.49), (2.20), and (2.26), this can be rewritten as

δM − 1
κ2
ghδAh = −α′

∫ zh

0
e2ψA2

[
Thd

t
t + FAtr

δShd
δFAtr

]
dz . (3.12)

Finally, using (2.47) to relate the change in area to the change in entropy and rearranging,
we find [

δM − gh
2πδS

]
fixed Q,ϕa∞

= −α′Vd−2

∫ ∞

rh

(
Thd

t
t + FAtr

δShd
δFAtr

)
Rd−2

√
|gttgrr|dr

− α′ghAh
δShd
δRtrtr

∣∣∣∣
r=rh

+O(α′2), (3.13)

where gh is the surface gravity, related to the Hawking temperature TBH = gh
2π . Note

that the left-hand-side of (3.13) resembles the first law of black hole mechanics, but is
technically distinct from it since we are computing the change in the solution induced by
the α′ corrections, rather than varying the solution with fixed α′ corrections.

Entropy corrections at fixed mass versus fixed temperature. Using (3.13), we
can deduce several things. Firstly, in the zero temperature limit gh → 0 we recover the
extremal (i.e., fixed charge and fixed zero temperature) mass correction (1.1a). Alternately,
per (3.13), the mass correction at fixed charge and fixed entropy is given by

δM

∣∣∣∣
fixed Q,ϕa∞,S

= −α′Vd−2

∫ ∞

rh

(
Thd

t
t + FAtr

δShd
δFAtr

)
Rd−2

√
|gttgrr|dr

− α′ghAh
δShd
δRtrtr

∣∣∣∣
r=rh

+O(α′2). (3.14)

This once again reduces to the extremal mass correction (1.1a) in the zero temperature limit
gh → 0, but for a subtle reason: although fixed temperature and fixed entropy are not the
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same in general — in particular, the extremal entropy correction (at fixed, zero temperature)
is in general nonzero — the mass correction becomes insensitive to the difference in the
zero temperature limit because of the gh in front of δS in (3.13).

On the other hand, (3.13) also implies that the entropy correction at fixed charge and
fixed mass is given by

δS
∣∣∣∣
fixed Q,ϕa∞,M

= 2πα′

gh
Vd−2

∫ ∞

rh

(
Thd

t
t + FAtr

δShd
δFAtr

)
Rd−2

√
|gttgrr|dr

+ 2πα′Ah
δShd
δRtrtr

∣∣∣∣
r=rh

+O(α′2). (3.15)

This does not reduce to the extremal entropy correction (1.1b) in the zero temperature
limit; in particular, the first term diverges in this limit, whereas (1.1b) is finite. The reason
is simply that fixed mass and fixed temperature are generally distinct — the extremal mass
correction being generally nonzero — whereas the same factor of gh in front of δS in (3.13)
makes the entropy correction hypersensitive to the difference in the gh → 0 limit.23

In summary, the entropy correction near extremality depends sensitively on whether we
hold the mass or the temperature fixed (along with the charge). In our work, we computed
the correction (1.1b) to the entropy of an extremal black, holding the temperature fixed (at
zero). As shown in section 3.1, the extremal mass and entropy corrections are independent,
and their signs can be the same or different depending on the choice of effective field theory.

By contrast, [14, 35] consider the near extremal entropy correction at fixed charge and
fixed mass. Then, comparing (3.14) and (3.15), one concludes that

δM

∣∣∣∣
fixed Q,ϕa∞,S

= − gh
2πδS

∣∣∣∣
fixed Q,ϕa∞,M

, (3.16)

as first shown in [14, 35]. Thus, the extremal mass correction (being insensitive to the
distinction between fixed temperature and fixed entropy) is negative if and only if the
near-extremal entropy correction at fixed mass (and charge) is positive.

Thus, our results do not disagree with those of [14, 35]. A deeper question that we will
not attempt to answer is which notion of entropy correction is relevant in various contexts.
Arguably, the extremal entropy correction that we have calculated is a more “natural”
quantity than the near-extremal, fixed-mass entropy correction that appears in (3.16),
for instance because the former is finite whereas the latter diverges at zero temperature.

23How can a finite, extremal entropy correction emerge from (3.13)? Working at fixed temperature,

δS
∣∣∣∣
fixed Q, ϕa∞, T

= 2π
gh

[
δM

∣∣∣∣
fixed Q, ϕa∞, T

+ α′Vd−2

∫ ∞

rh

(
Thd

t
t + FAtr

δShd

δFAtr

)
Rd−2

√
|gttgrr|dr

]
+

+ 2πα′Ah
δShd

δRtrtr

∣∣∣∣
r=rh

+O(α′2).

Expanding about zero temperature and comparing with the extremal (fixed temperature) mass correction
formula (1.1a), we see that the term in brackets is O(gh), avoiding a divergence. However, to actually
reproduce the extremal entropy formula (1.1b) we would need to calculate the near-extremal mass correction
to O(gh), which is beyond the scope of this paper.
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However, when arguing that δS > 0 (as in [14]) either (or neither) notion might be the
correct, depending on the argument. Here we simply emphasize the difference without
addressing these deeper questions.

4 Examples

We now consider a few explicit examples to further illustrate our methods.

4.1 Electric Reissner-Nordström black holes

We begin with the simplest case of Einstein-Maxwell theory, with the two-derivative
effective action:

S =
∫
ddx

√
−g
( 1
2κ2d

R− 1
2e2d

F 2
)
, (4.1)

where κd and ed are the gravitational and gauge couplings of dimensions −d−2
2 and −d−4

2 ,
respectively. The (Reissner-Nordström) extremal charged black hole solutions are most
conveniently expressed in the gauge24

ds2 = −
[
1− Rd−3

h

rd−3

]
dt2 +

[
1− Rd−3

h

rd−3

]−1

dr2 + r2dΩ2
d−2, Rd−3

h ≡
√
kNed|Q|

(d− 3)Vd−2
,

F = − e2dQ

Vd−2rd−2dt ∧ dr, (4.2)

with mass M0 = ed|Q|√
kN

, where kN = d−3
d−2κ

2
d as before.

Per the results of section A.2, all possible parity-even four-derivative corrections to this
theory can be reduced to four independent couplings:25

L(4) = cGBLGB + cRF 2RµνρσFµνFρσ + c(F 2)2(F 2)2 + cF 4FµνF
νρFρσF

σµ, (4.3)

where LGB = RµνρσRµνρσ−4RµνRµν+R2 is the Gauss-Bonnet combination. Applying (1.4),
one finds the mass and entropy corrections

δM =(d−3)Vd−2Rd−5
h

[
(d−2)(d−4)cGB−

(d−3)3

3d−7

(2e2dcRF 2

kN
+
e4d[c(F 2)2+2cF 4 ]

k2N

)]
, (4.4a)

δS =2πVd−2Rd−4
h

[(d−2)[3d2−15d+16]
d−3 cGB−(d−3)2

(4e2dcRF 2

kN
+
e4d[c(F 2)2+2cF 4 ]

k2N

)]
,

(4.4b)

where Rd−3
h =

√
kNed|Q|

(d−3)Vd−2
= kNM0

(d−3)Vd−2
.

A few comments are in order. First, note that (4.4a) reproduces the results of [5],
appendix B. Second, we observe that both the mass and entropy corrections depend on
c(F 2)2 and cF 4 in the combination c(F 2)2 +2cF 4 . This is a consequence of parity and spherical
symmetry, as explained in section A.4.

24Note that, although this differs from the gauge introduced in section 2.2, since the formulas (1.1), (1.4)
are invariant under radial gauge changes we can use any convenient gauge.

25Recall that F 2 ≡ 1
2FµνF

µν in our conventions.
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On the other hand, the remaining couplings all appear in independent ways in the mass
and entropy corrections, demonstrating the general results of section 3. To illustrate this,
consider the 4d case:

δM (d=4) = − 16π2

5kNM0

(
2e24cRF 2

kN
+
e44[c(F 2)2 + 2cF 4 ]

k2N

)
, (4.5a)

δS(d=4) = 8π2
[
8cGB − 4e24cRF 2

kN
−
e44[c(F 2)2 + 2cF 4 ]

k2N

]
. (4.5b)

In particular, notice that the Gauss-Bonnet operator contributes to the entropy correction
but not the mass correction. This operator is actually topological (locally a total derivative)
in 4d, explaining its vanishing contribution to the mass correction, which depends only
on the equations of motion. On the other hand, higher-derivative topological operators
can correct the (Wald) entropy [51–54], as happens here. However, since the operators
RµνρσFµνFρσ and (F 2)2 also contribute to the mass and entropy in linearly independent
ways, the independence of the mass and entropy corrections does not rely on this subtle
point about topological operators.

With a little more effort (see the helpful formulas in appendix C), one can reproduce (4.4)
using (1.1), from which we also obtain the self-force correction

F̂self = −2(d−3)2V 2
d−2R

2(d−4)
h

[
(d−2)(d−4)cGB−

(d−3)3

3d−7

(2e2dcRF 2

kN
+
e4d[c(F 2)2+2cF 4 ]

k2N

)]
. (4.6)

In fact, the mass and force corrections are not independent in the absence of moduli, since
F̂self = e2dQ

2 − kNM
2 = −2kNM0δM + O(δM2) upon substituting in the corrected mass

M =M0 + δM . This relation indeed holds for (4.4a), (4.6).

4.2 Dyonic Reissner-Nordström black holes

We now turn to 4d dyonic Reissner-Nordström black holes, in part as a natural extension
of the above and in part as a preview of the dyonic Einstein-Maxwell dilaton black holes to
be discussed below. The leading-order solution is now

ds2 = −
[
1− Rh

r

]
dt2 +

[
1− Rh

r

]−1
dr2 + r2dΩ2

2, Rh ≡
√
kN (e2Q2

e + ẽ2Q2
m)

4π ,

F = −e
2Qe
4πr2 dt ∧ dr +

Qm sin θ
2 dθ ∧ dφ, (4.7)

with mass-squared M2
0 = e2Q2

e+ẽ2Q2
m

kN
, where for simplicity we set the theta angle to zero

and ẽ ≡ 2π/e is the magnetic gauge coupling. Defining ζ ≡
∣∣ ẽQm
eQe

∣∣, we obtain

δM = − 16π2

5kNM0

[
1 + 3ζ2

1 + ζ2
2e2cRF 2

kN
+ (1− ζ2)2

(1 + ζ2)2
e4c(F 2)2

k2N
+ 2(1 + ζ4)

(1 + ζ2)2
e4cF 4

k2N

]
, (4.8a)

δS = 8π2
8cGB − 4e2cRF 2

kN
−
[
1− ζ2

1 + ζ2

]2
e4c(F 2)2

k2N
− 2(1 + ζ4)

[1 + ζ2]2
e4cF 4

k2N

 , (4.8b)
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assuming the same four-derivative operators (4.3) are present. The self-force coefficient can
likewise be computed, and comes out to F̂self = −2kNM0δM as expected.

Note that in principle the results (4.8) can be deduced from (4.5) using electromagnetic
duality, though doing so is not completely straightforward. To illustrate this, we consider
the effect of S-duality, Q′

e = Qm, Q
′
m = −Qe, e′ = ẽ, and F ′ = 2π

e2 F̃ where F̃ ≡ − ⋆ F . This
takes ζ → 1/ζ, but also changes the coefficients of the higher-derivative operators in (4.3).
In particular

L′
(4) = c′GBL′

GB + c′RF 2RµνρσF ′
µνF

′
ρσ + c′(F 2)2(F ′2)2 + c′F 4F ′

µνF
νρ′F ′

ρσF
σµ′

= c′GBLGB +
[
e′

e

]2
c′RF 2RµνρσF̃µνF̃ρσ +

[
e′

e

]4
c′(F 2)2(F̃ 2)2 +

[
e′

e

]4
c′F 4F̃µνF̃

νρF̃ρσF̃
σµ.

(4.9)

Eliminating pairs of F̃ ’s using ΩµνρσΩαβγδ = −24δα[µδ
β
ν δ

γ
ρδ
δ
σ], we obtain

L′
(4) = c′GBLGB −

[
e′

e

]2
c′RF 2(RµνρσFµνFρσ − 4RµνF νρFµρ +RFµνFµν)

+
[
e′

e

]4
c′(F 2)2(F 2)2 +

[
e′

e

]4
c′F 4FµνF

νρFρσF
σµ. (4.10)

Next, we use the leading-order Einstein equations Rµν = κ2
4
e2

(
Fµ · Fν − 1

2gµνF
2
)

to put this
back into the form (4.3),

L′
(4) = c′GBLGB −

[
e′

e

]2
c′RF 2RµνρσFµνFρσ + 8kN

[
e′

e2

]2
c′RF 2(FµνF νρFρσF σµ − (F 2)2)

+
[
e′

e

]4
c′(F 2)2(F 2)2 +

[
e′

e

]4
c′F 4FµνF

νρFρσF
σµ, (4.11)

from which we read off

cGB = c′GB, e4c(F 2)2 = e′4c′(F 2)2 − 8kNe′2c′RF 2 ,

e2cRF 2 = −e′2c′RF 2 , e4cF 4 = e′4c′F 4 + 8kNe′2c′RF 2 .
(4.12)

One can check that, together with ζ ′ = 1/ζ, this transformation leaves (4.8) unchanged
as required.

Thus, using S-duality we can deduce the purely magnetic ζ → ∞ limit of (4.8) from
the purely electric result (4.5). However, deriving (4.8) in its entirety from (4.5) requires a
more general calculation (e.g., using a democratic approach), which we omit for the sake
of brevity.

Let us examine the special case ζ = 1 more closely (for which the electric and magnetic
fields have equal magnitude):

δM (ζ=1) = − 16π2

5kNM0

[4e2cRF 2

kN
+ e4cF 4

k2N

]
, δS(ζ=1) = 8π2

[
8cGB − 4e2cRF 2

kN
− e4cF 4

k2N

]
.

(4.13)
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We have repeatedly made the point that the extremal mass and entropy corrections are
independent, and that this independence does not depend on topological couplings such as
the 4d Gauss-Bonnet term. Nonetheless, if we ignore the Gauss-Bonnet contribution then
the linear relation δM = 2

5kNM0
δS seems to hold. What is going on here?

The answer is that we have set the parity-odd higher-derivative couplings to zero
for simplicity, even though the background we are studying is not parity invariant. Per
the analysis of appendix A, there are two additional parity-odd couplings that we should
consider, RµνρσFµνF̃ρσ and F̃µνF

νρFρσF
σµ. The latter vanishes for ζ = 1, and thus does

not contribute to either the mass or the entropy corrections. The former does contribute,
but only to the mass:

δM
(ζ=1)
RFF̃

= ±
32π2e2cRFF̃

5k2NM0
, δS(ζ=1)

RFF̃
= 0, (4.14)

where the overall sign is that in eQe = ±ẽQm. Thus, upon turning on all possible couplings,
the independence of the mass and entropy corrections is again manifest.

Finally, note that the WGC constraint δM ⩽ 0 is more powerful when applied to the
full spectrum of dyonic black holes, rather than just electrically-charged black holes. In
particular, define the dimensionless combinations

c1 ≡
e2cRF 2

kN
, c2 ≡

e4c(F 2)2

k2N
− 4e

2cRF 2

kN
, c3 ≡

e4cF 4

k2N
+ 4e

2cRF 2

kN
. (4.15)

Then, in terms of u = 2 log ζ one finds the mass correction

δM = − 16π2

5kNM0

[(c2 + 2c3) cosh u+ 2c1 sinh u− c2]
cosh u+ 1 , (4.16)

in the absence of parity-odd couplings. This is negative semi-definite for all u iff

c2 + 2c3 ⩾ 2|c1| and
√
(c2 + 2c3)2 − 4c21 ⩾ c2. (4.17)

By comparison, only considering the electric case (u = −∞) yields the weaker constraint
c2 + 2c3 ⩾ 2c1.

These constraints will change when we include parity-odd operators. However, since
parity-odd contributions are always odd under Qm → −Qm with Qe fixed (leaving u =
log ẽ2Q2

m
e2Q2

e
also fixed) the WGC bound δM ⩽ 0 only gets harder to satisfy, and (4.17) is still

a necessary condition.

4.3 Dyonic Einstein-Maxwell-Dilaton black holes

We now generalize our discussion to the case with moduli. Perhaps the simplest two-
derivative effective field theory involving a modulus coupled a gauge field and gravity is
Einstein-Maxwell-Dilaton theory, with the action:

S =
∫
ddx

√
−g

[ 1
2κ2

(
R− 1

2α2 (∇ϕ)
2
)
− 1

2e20
e−ϕF · F

]
, (4.18)
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where ϕ is the dilaton, α > 0 is its dimensionless coupling strength, and we set ⟨ϕ⟩ = 0 in
the asymptotic vacuum by convention.

Now, however, there are two difficulties. Firstly, the electrically charged extremal black
hole solutions in this theory have vanishing horizon area, hence the derivative expansion
breaks down near the horizon and we cannot compute the corrections to their mass, entropy
and self-force in effective field theory. To overcome this difficulty, we consider 4d dyonic
black holes, for which the charge function

Q2(ϕ) = eϕe20Q
2
e + e−ϕẽ20Q

2
m, (4.19)

has a minimum at the attractor point ϕh = log ζ0 for ζ0 ≡
∣∣∣ ẽ0Qm
e0Qe

∣∣∣. Then, since Q2(ϕh) =
4π|QeQm| > 0, the horizon area is non-zero.

The second difficulty is more technical: while numerically tractable, these dyonic
solutions cannot be written in closed form except for the special cases α = 0, 1,

√
3. Note

that α = 0 is the Reissner-Nordström case, whereas α =
√
3 arises naturally in Kaluza-Klein

theory. We instead focus on α = 1, which arises naturally in string theory. The extremal
solution is then

ds2 = −e2ψdt2 + e−2ψ[dr2 + r2dΩ2
2],

F = −e
2
0Qee

2ψ+ϕ

4πr2 dt ∧ dr + Qm sin θ
2 dθ ∧ dφ,

ψ ± ϕ

2 = − log
[
1 + R±

r

]
where R± ≡

√
2kN
4π

e0|Qe|, +,
ẽ0|Qm|, −,

(4.20)

with mass M0 = |e0Qe|+|ẽ0Qm|√
2kN

.
Imposing parity for simplicity, the possible four-derivative operators take the form

L(4)= aGB(ϕ)RGB+aRF 2(ϕ)RµνρσFµνFρσ+a(F 2)2(ϕ)(F 2)2+aF 4(ϕ)FµνF νρFρσF σµ

+aF 2(∇ϕ)2(ϕ)F 2(∇ϕ)2+a(F∇ϕ)2(ϕ)FµνFµρ∇νϕ∇ρϕ+a(∇ϕ)4(ϕ)(∇ϕ)4, (4.21)

where aGB(ϕ), aRF 2(ϕ), etc., are a priori unknown functions of the moduli. The entropy
correction is easily evaluated using (1.4b):

δS = 8π2
(
8aGB(ϕh)−

4e2(ϕh)aRF 2(ϕh)
kN

− e4h(ϕh)aF 4(ϕh)
k2N

)
, (4.22)

where e2(ϕ) ≡ e20e
ϕ is the dilaton-dependent gauge coupling and ϕh = log ζ0 = log

∣∣∣ ẽ0Qm
e0Qe

∣∣∣ is
the attractor point. Note the strong similarity with (4.13). Indeed,

ζ(ϕh) =
∣∣∣∣ ẽ(ϕh)Qme(ϕh)Qe

∣∣∣∣ = 1, (4.23)

so the attractor mechanism automatically makes the electric and magnetic fields equal in
magnitude at the horizon, explaining why the entropy correction closely parallels that of
the ζ = 1 dyonic Reissner-Nordström case discussed above.
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On the other hand, to compute the mass correction we need to do a non-trivial integral
that depends on the functional form of the EFT coefficients in (4.21). For example, in the
case of the FµνF νρFρσF σµ correction this integral can be written as

δM = − 4π2e40
k3NM0

∫ ϕh

0

e−2ϕ[eϕh + 1](eϕ − 1)4(e4ϕ + e4ϕh)
(eϕh − 1)5 aF 4(ϕ)dϕ. (4.24)

Similar expressions (of varying complexity) can be written for the other operators in (4.21).
To obtain a more explicit result, we specialize to the four-derivative Lagrangian

L(4) = cGBe
−ϕLGB + c(F 2)2e−3ϕ(F 2)2 + cF 4e−3ϕFµνF

νρFρσF
σµ + cF 2(∇ϕ)2e−2ϕF 2(∇ϕ)2.

(4.25)
Here we have kept only certain terms in (4.21) for simplicity, and we have assumed a
particular ϕ dependence, with the following rationale (as in, e.g., [24]). Suppose we begin
with a four-dimensional “string-frame” action of the form

Sstr =
1

2κ2
∫
d4x

√
−ge−2Φ

[
R+ 4(∇Φ)2 − κ2

e20
F · F + cGBLGB + · · ·

]
, (4.26)

where the overall factor of e−2Φ occurs for closed strings at string tree-level. Switching to
Einstein frame:

SEin = 1
2κ2

∫
d4x

√
−g

[
R− 2(∇Φ)2 − κ2

e20
e−2ΦF · F + cGBe

−2ΦLGB + · · ·
]
. (4.27)

Identifying ϕ = 2Φ, we reproduce the ϕ-dependence seen in each term of (4.25).
To state the resulting corrections more concisely, it is convenient to define26

fp(ζ0) ≡ −p
log(ζ0) +

∑p−1
n=1

(1−ζ0)n
n

(1− ζ0)p
, (4.28)

for any positive integer p. This combination is chosen so that fp(1) = 1, cancelling the
apparent pole at ζ0 = 1. The mass correction is then27

δM = − 2π2

5kNM
1 + ζ0
ζ0

[
8(2 + 5f1 − 20f2 + 20f3 − 10f4 + 3f5)cGB

+ (1− 20f2 + 40f3 − 25f4 + 4f5)
e40c(F 2)2

k2N
+ 2(1 + 5f4 − 4f5)

e40cF 4

k2N

+ 2(1− 10f1 + 20f2 − 25f4 + 14f5)
e20cF 2(∇ϕ)2

kN

]
. (4.29)

Notice that the Gauss-Bonnet term does contribute to the mass correction, unlike in the
4d Reissner-Nordström case. This is because the dilaton-dependent prefactor renders it
non-topological.

26Alternately, fp(ζ) = pΦ(1− ζ, 1, p) in terms of the Lerch trancendent Φ(z, s, a).
27In comparison with [24], our (F 2)2 and Gauss-Bonnet corrections agree, but we obtain the opposite sign

for the F 2(∇ϕ)2 correction. The basis used in [24] does not include an F 4 term. While this can be related
to the (F · F̃ )2 term that they do include, they implicitly choose a different dilaton coupling for this term,
preventing a direct comparison of our F 4 correction with their results.
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Likewise, using (1.1c) we obtain the force correction:

F̂self =
8π2

5

[
16(1 + 10f2 − 20f3 + 15f4 − 6f5)cGB

+ (1 + 20f2 − 80f3 + 75f4 − 16f5)
e40c(F 2)2

k2N
+ 2(1− 15f4 + 16f5)

e40cF 4

k2N

+ 2(1− 20f2 + 75f4 − 56f5)
e20cF 2(∇ϕ)2

kN

]
, (4.30)

whereas the general entropy result (4.22) becomes

δS = 8π2

ζ0

(
8cGB − e40cF 4

k2N

)
. (4.31)

While these complicated functions of ζ0 ≡
∣∣∣ ẽ0Qm
e0Qe

∣∣∣ are not particularly interesting in them-
selves, we note several important features. First, for ζ0 = 1 we recover a ζ = 1 dyonic
Reissner-Nordström solution, and in particular (4.29) reduces to (4.13) with cRF 2 = 0.

Second, note that the mass, force and entropy corrections (4.29), (4.30), and (4.31) each
involve linearly-independent combinations of the couplings cGB, c(F 2)2 , cF 4 and cF 2(∇ϕ)2

for every value of ζ, except for the special case ζ = 1 where δF̂self = −2kNM0δM due to
the vanishing dilaton charge at the attractor point. Thus, for given charges at a given point
in the moduli space, all three corrections are generically independent from each other.

Of course, when viewed as functions of the moduli, the mass and force corrections are
not independent because F̂self ≡ e20Q

2
e + ẽ20Q

2
m − kNM

2 − 2κ24
(
dM
dϕ

)2 depends only on the
charges and M(ϕ). This implies certain global relations between the signs of the mass and
force corrections. For example, suppose there is a unique leading-order attractor point,
implying a single continuous family of leading-order extremal solutions as a function of the
moduli. In this case, if the force correction is positive (self-repulsive) everywhere in moduli
space it follows that the mass correction is negative (super-extremal) everywhere in moduli
space, see appendix A of [2].

To see more explicitly how the mass and force corrections are related in the present
example, we substitute M =M0 + δM into the definition of F̂self to obtain

δF̂self = −2kNM0δM − 8kN
dM0
dϕ

dδM

dϕ
. (4.32)

Note that the derivative is taken with respect to the asymptotic value of the modulus,
whereas we previously set ϕ∞ = 0 by convention. To avoid confusion, it is more convenient
to work with ϕ̂ ≡ ϕ − log ζ0, so that the attractor point is fixed at ϕ̂h = 0, whereas
ϕ̂∞ = − log ζ0 is allowed to vary. Likewise, we re-express the couplings in terms of their
fixed, horizon values

ĉGB = e−ϕhcGB, ĉ(F 2)2 = e−3ϕhc(F 2)2 , ê0 = eϕh/2e0,

ĉF 4 = e−3ϕhcF 4 , ĉF 2(∇ϕ)2 = e−2ϕhcF 2(∇ϕ)2 ,
(4.33)

and we write the leading-order mass M0 = ζ
1/2
0 +ζ−1/2

0
2 M̂0 in terms of its minimum value M̂0
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at the attractor point. In terms of these quantities, (4.29) becomes

δM = −4π2ζ1/20
5kNM̂0

[
8(2 + 5f1 − 20f2 + 20f3 − 10f4 + 3f5)ĉGB

+ (1− 20f2 + 40f3 − 25f4 + 4f5)
ê40ĉ(F 2)2

k2N
+ 2(1 + 5f4 − 4f5)

ê40ĉF 4

k2N

+ 2(1− 10f1 + 20f2 − 25f4 + 14f5)
ê20ĉF 2(∇ϕ)2

kN

]
, (4.34)

where the dependence on ϕ̂∞ is now enters entirely through ζ0 = e−ϕ̂∞ . Rewriting (4.32) as

δF̂self = −2kNM̂0ζ0
d

dζ0

[(
ζ
1/2
0 − ζ

−1/2
0

)
δM

]
, (4.35)

and applying this to (4.34), one indeed recovers (4.30).28

Third, note that in the electric limit, ζ0 → 0, the corrections all diverge:

δM→ 2π2

15kNM

(
142cGB−8

e40c(F 2)2

k2N
−36e

4
0cF 4

k2N
+9

e20cF 2(∇ϕ)2

kN

) 1
ζ0

+O(logζ0),

δS → 8π2
(
8cGB−

e40cF 4

k2N

) 1
ζ0
,

F̂self → 32π2
(
8cGB−

e40c(F 2)2

k2N
−2e

4
0cF 4

k2N
+2

e20cF 2(∇ϕ)2

kN

)
log(ζ0).

(4.36)

This is not surprising as the derivative expansion breaks down in this limit, as previously
noted. However, curiously the corrections are all finite in the magnetic limit, ζ0 → ∞:

δM → − 2π2

5kNM

(
16cGB +

e40c(F 2)2

k2N
+ 2e

4
0cF 4

k2N
+ 2

e20cF 2(∇ϕ)2

kN

)
, δS → 0,

F̂self →
8π2

5

(
16cGB +

e40c(F 2)2

k2N
+ 2e

4
0cF 4

k2N
+ 2

e20cF 2(∇ϕ)2

kN

)
.

(4.37)

This is because the “string-frame” metric eϕgµν is non-singular in this limit [24, 55], taming
the string-tree-level derivative corrections. However, since the dilaton blows up near the
horizon, “string loop” derivative corrections at not similarly tamed, and will give divergent
individual contributions, signaling that the derivative expansion does indeed break down
near the horizon.

Finally, note that it is possible to choose non-zero couplings cGB, c(F 2)2 , cF 4 , and
cF 2(∇ϕ)2 such that δM < 0, F̂self > 0 and δS > 0 for arbitrary dyonic charges. For instance,
this is the case for the couplings

cGB = α′

16κ2 , c(F 2)2 = α′

16 ·
5κ2

2e40
, cF 4 = α′

16 ·
7κ2

4e40
, cF 2(∇ϕ)2 = α′

16 ·
2
e20
, (4.38)

given in section 5.5 of [24], where we use (F · F̃ )2 = 1
4FµνF

νρFρσF
σµ − 1

2(F
2)2 to relate

their basis to ours.
28Note that this equality relies on the absence of derivative corrections to the relation ∂M

∂ϕa
= −G∞

abϕ̇
b
∞,

since ϕ̇a∞ (not ∂M
∂ϕa

) was used to derive (1.1c). While the absence of such corrections was explained in
footnote 12, we can now see that this is indeed the case in a non-trivial example.

– 30 –



J
H
E
P
1
2
(
2
0
2
3
)
1
7
4

5 Summary and Future Directions

In this paper we obtained new, general formulas for the leading derivative corrections to the
mass, entropy and self-force of extremal black holes. We also observed that these corrections
are all independent at any given position in the moduli space, complicating earlier attempts
to prove that the mass correction is negative by linking it to the entropy correction.

In principle, our results could be used to systematically study the signs of these three
corrections in actual quantum gravities, with important implications for various swampland
conjectures such as the Weak Gravity Conjecture and the Repulsive Force Conjecture.
However, an important obstacle to progress is the fact that relatively little is known about
the leading derivative corrections to the low energy effective actions of specific quantum
gravities, particularly those in less than ten dimensions. In fact, we are unaware of any
example where the mass or self-force corrections have been rigorously computed in a specific
string theory vacuum to leading non-trivial order in the derivative expansion (the result
in [5] being questionable due to string loop corrections, see footnote 3 and [21]).

Thus, an extremely interesting (if potentially challenging) direction for future research
would be to close the gap between the general effective field theory machinery developed in
this paper and actual quantum gravities, or to determine the leading derivative corrections to
extremal black holes directly using some more UV-specific tool such as worldsheet techniques.
It would also be very interesting to better understand the corrections to extremal black
holes whose horizon area vanishes at two-derivative order, though this necessarily requires
additional UV input beyond the derivative-corrected low energy effective.

While the examples discussed in section 4 have all appeared in some form in prior
works, these are far from the only examples to which our method can be applied. There are
numerous large extremal black holes in string theory (described by the attractor mechanism),
and their mass, self-force, and entropy corrections could all be computed using our method.
However, as we have just explained, the leading-order derivative corrections to these theories
are not presently known. In particular, these corrections are unknown functions of the
moduli, and the resulting mass and force corrections will depend on integrals of these
unknown functions.29 For this reason, we have limited our examples to those appearing in
the literature, because these allows us to perform cross-checks and compare with previous
works. As we have emphasized, the leading-order derivative corrections are not fully known
in these examples either.

Despite the unfortunate lack of data about curvature corrections in real quantum
gravities, this paper (1) shows precisely how the black hole corrections depend on the
(unknown) derivative corrections and (2) sets goal posts for how to make further progress:
the leading-order curvature corrections in simple but non-trivial string compactifications
need to be computed.

Finally, on a technical level it would be interesting to devise more elegant and efficient
derivations of our formulas (1.1), (1.4), and potentially to generalize them beyond static,
spherically symmetric backgrounds. For instance, the ADM formalism [56] and/or the
Iyer-Wald formalism [49, 57, 58] (as used in [17, 18]) might provide some of the necessary
tools to do so.

29By contrast, the entropy correction depends only on these functions evaluated at the attractor point.
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A Classifying three- and four-derivative operators

In this appendix, we classify the possible derivative corrections to the low-energy effective
action (2.1) up to four-derivative order.

For the sake of brevity, we only consider parity-invariant operators,30 except in the
four-dimensional case. To justify this omission, note that static, spherically symmetric
electrically charged black holes are parity invariant. Since mass, self-force, and entropy
are parity-even, this implies that parity-odd operators can only correct these quantities at
O(α′2). On the other hand, dyonic black holes in four dimensions are not parity invariant,
so parity-odd operators can correct their mass, self-force, and entropy at O(α′).

Similarly, we do not consider higher-derivative terms with a Lagrangian density that is
not gauge and/or general coordinate invariant (e.g., Chern-Simons terms). In particular,
such terms typically correspond to topological operators of the form F ∧· · ·∧F ∧R∧· · ·∧R
in one higher dimension, implying that they are parity-odd and occur only in odd dimensions.
If so, they do not contribute by the argument in the previous paragraph.

It is convenient to categorize higher derivative operators by their “derivative structure”,
i.e., the number of first derivatives, second derivatives, etc., appearing in the operator.
Specifically, writing the operator as K(ϕ)(∂(n1)ϕ1)(∂(n2)ϕ2) · · · (∂(nk)ϕk) for n1 ⩾ n2 ⩾
· · · ⩾ nk > 0, we abbreviate the derivative structure as (n1, . . . , nk). Derivative structures
can be ordered by “complexity”, where larger values of n1 are more complex, with ties
broken by the larger value of n2, further ties broken by the larger value of n3, etc. For
instance, by this classification an operator involving a third derivative is more complex than
one involving any number of second derivatives, whereas an operator involving multiple
second derivatives is more complex than one involving just one second derivative, and so on.

Since covariant operators often involve a sum of multiple derivative structures, we
label them by their most complex one, e.g., the Ricci scalar R has derivative structure
(2) (even though some terms in it involve only first derivatives) whereas F 2 has derivative
structure (1, 1).

After compiling an exhaustive list of operators at a given derivative order, we can
simplify the list in several ways:

1. We can impose the Bianchi identities:

∇[µF
A
νρ] = 0, ∇[µR

νρ
σλ] = 0, ∇[µ∇ν]ϕ

a = 0. (A.1)

2. We can replace antisymmetrized covariant derivatives acting on a tensor with the
Riemann tensor contracted with the tensor.

30For our purposes, all moduli ϕa and gauge fields AAµ have even intrinsic parity.
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3. We can integrate by parts.

4. We can impose the leading-order equations of motion:

Rµν = κ2
[
Gab∇µϕ

a∇νϕ
b + fABF

a
µ · F bν −

1
d− 2gµνfABF

A · FB
]
,

∇µ(fABFBµν) = 0,

∇2ϕa = −Γabc∇ϕb · ∇ϕc +
1
2G

abfAB,bF
A · FB. (A.2)

Since the action is not strictly on-shell, the last point requires some explanation. To be
precise, we are free to make field redefinitions involving derivatives, such as

ϕa → ϕa + α′∆ϕa, (A.3)

where ∆ϕa is some operator involving an appropriate number of derivatives. Then, to first
order in α′, the action S = S2 + α′Shd changes to

S → S2 + α′
(
Shd +

∫
ddx

√
−g∆ϕa δS2

δϕa

)
+O(α′2). (A.4)

The leading-order equations of motion are precisely δS2
δϕa = 0, so in this way we can generate

or remove higher-derivative terms that are proportional to the leading-order equations
of motion and/or (after integration by parts) derivatives of the leading-order equations
of motion.

We now proceed as follows. At each derivative order, we first list the possible operators.
Up to four-derivative order, all such operators are built from the primitive factors

1. One derivative: F and ∇ϕ,
2. Two derivatives: R,∇F , and ∇2ϕ,
3. Three derivatives: ∇R,∇2F , and ∇3ϕ,
4. Four derivatives: ∇2R,∇3F , and ∇4ϕ,

where we omit Lorentz indices for simplicity for the time being. We then apply manipulations
1–4 to eliminate more complicated derivative structures in favor of simpler ones wherever
possible. In particular, given any operator with n1 ⩾ n2+2 we can immediately simplify the
derivative structure via integration by parts, e.g., (∇2F )F → (∇F )2. Up to four-derivative
order this eliminates primitive factors containing more than two derivatives, so we need
only consider operators built from R,∇F,∇2ϕ, F,∇ϕ and arbitrary functions of the moduli.
Moreover, assuming parity, Lorentz indices must be contracted in pairs, so each operator
must contain an even total number of covariant derivatives ∇µ (since Rµνρσ and Fµν both
carry an even number of indices).

A.1 Parity-even three-derivative operators

The possible derivative structures at three-derivative order are (2, 1) and (1, 1, 1). In the for-
mer case, we have the possibilities RF, (∇F )(∇ϕ) and (∇2ϕ)F , but only (∇F )(∇ϕ) admits
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a Lorentz-invariant contraction consistent with the symmetries, specifically (∇µF
µν)(∇νϕ).

Since this can be simplified using the F equations of motion, we can reduce to the (1, 1, 1)
derivative structure, where the options are F 3 and F (∇ϕ)2. Each one admits a unique
Lorentz-invariant contraction, hence accounting for the moduli-dependent prefactors, the
complete set of independent parity-even three derivative operators is

L(even)
3 = aABC(ϕ)FAµνFBνρFCρµ + aabA(ϕ)∇µϕa∇νϕbFAµν . (A.5)

(1, 1, 1) is the simplest possible derivative structure at three-derivative order, hence no
further simplifications are possible.

A.2 Parity-even four-derivative operators

At four-derivative order, the possible derivative structures are (2, 2), (2, 1, 1), and (1, 1, 1, 1).
We deal with each in turn:

Derivative structure (2, 2). The possibilities are R2, R∇2ϕ, (∇F )(∇F ), and ∇2ϕ∇2ϕ.
All but R2 can be simplified, as follows:

1. The possible index structures for R2 are

RµνρσRµνρσ, RµνRµν , or R2. (A.6)

The latter two can be freely introduced or eliminated using the Einstein equations,
hence we can transform the first into the Gauss-Bonnet combination:

RGB ≡ RµνρσRµνρσ − 4RµνRµν +R2. (A.7)

This cannot be further simplified, although it yields a topological operator in d = 4
(i.e., an operator that is locally a total derivative) unless multiplied by a moduli-
dependent prefactor.

2. Lorentz-invariant contractions of R∇2ϕ always involves either the Ricci tensor or
the Ricci scalar, so we can transpose them to simpler derivative-structures using the
Einstein equations.

3. The possible index structures for (∇F )(∇F ) are

∇µF
µν∇ρFρν , ∇µFνρ∇µF νρ, or ∇µFνρ∇νF ρµ. (A.8)

The first can be simplified using Maxwell’s equations whereas the second can be
transposed into the third using the Bianchi identities and the third can be simplified
by using integration by parts, commutation of covariant derivatives, and Maxwell’s
equations in turn.

4. In the case of ∇2ϕ∇2ϕ, the index structure is either

(∇µ∇µϕ)(∇ν∇νϕ) or (∇µ∇νϕ)(∇µ∇νϕ). (A.9)

The first can be simplified using the moduli equations of motion, whereas the second
can be simplified using integrating by parts, commutation of covariant derivatives,
and the moduli equations of motion.
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Derivative structure (2, 1, 1). The possibilities are RF 2, R(∇ϕ)2, (∇F )(∇ϕ)F, (∇2ϕ)F 2

and ∇2ϕ(∇ϕ)2. All but RF 2 can be simplified, as follows:

1. The possible index structures for RF 2 are

RµνρσFµνFρσ, RµνFµρF
ρ
ν , or RFµνF

µν . (A.10)

The latter two can be simplified using the Einstein equations, whereas the first cannot
be simplified.

2. Lorentz-invariant index contractions of R(∇ϕ)2 always involves either the Ricci tensor
or the Ricci scalar, so we can transpose them to simpler operators using the Einstein
equations.

3. (∇F )(∇ϕ)F has the possible index structures

∇µF
µν∇ρϕFρν , ∇µFνρ∇µϕF νρ, or ∇µFνρ∇νϕFµρ. (A.11)

The first can be simplified using Maxwell’s equations, whereas the second can be
transposed into the third using the Bianchi identities and the third can be transposed
into an F 2∇2ϕ term plus a term that can be simplified using the Maxwell equations
upon integration by parts.

4. (∇2ϕ)F 2 has the possible index structures

(∇µ∇µϕ)F νρFνρ, or ∇µ∇νϕF
µρF νρ. (A.12)

The first can be simplified immediately using the moduli equations of motion. To
simplify the second, we first integrate by parts, then apply the F equations of motion
and Bianchi identities, then integrate by parts once more:

∇µ∇νϕFµρF νρ → −∇νϕ (∇µF
µρ)Fνρ −∇νϕFµρ∇µFνρ

≈ −1
2∇

νϕFµρ∇νFµρ = −1
4∇

νϕ∇ν(FµρFµρ) →
1
4(∇

2ϕ)FµρFµρ,

(A.13)

where “→” means integration by parts and “≈” means equality up to terms with a
simpler derivative structure. The final result can now be simplified using the moduli
equations of motion.

The above argument assumes that the two gauge fields are the same species. More
generally,

kAB(ϕ)∇µ∇νϕFAµρFBνρ ≈ −1
2kAB(ϕ)∇

νϕFAµρ∇νF
B
µρ (A.14)

= −1
4kAB(ϕ)∇

νϕ∇ν(FAµρFBµρ), (A.15)

where we take kAB(ϕ) = kBA(ϕ) without loss of generality due to the symmetric form
of the original operator. Thus, after a further integration by parts we can simplify
the result as before.
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5. ∇2ϕ(∇ϕ)2 has the possible index structures

(∇µ∇µϕ)(∇νϕ)(∇νϕ), or ∇µ∇νϕ∇µϕ∇νϕ. (A.16)

The first can be simplified using the moduli equations. To simplify the second, we
integrate by parts

∇µ∇νϕ∇µϕ∇νϕ = 1
2∇

µ(∇νϕ∇νϕ)∇µϕ→ −1
2(∇

νϕ∇νϕ)(∇µ∇µϕ), (A.17)

after which the moduli equations of motion can be used as before. More generally, in
the presence of multiple moduli:

kabc(ϕ)∇µ∇νϕa∇µϕ
b∇νϕ

c ≈ kabc(ϕ)∇µ
[
∇νϕa∇µϕ

b∇νϕ
c − 1

2∇µϕ
a∇νϕb∇νϕ

c
]
,

(A.18)
up to terms that can be simplified using the moduli equations of motion, where we
take kabc(ϕ) = kacb(ϕ) due to the symmetric form of the original operator. Thus, after
integration by parts we reach the simpler (1, 1, 1, 1) derivative structure.

Derivative structure (1, 1, 1, 1) and summary. The possibilities are F 4, F 2(∇ϕ)2

and (∇ϕ)4, with possible Lorentz-invariant index structures:

(FµνFµν)2, FµνF
νρFρσF

σµ, FµνF
µν∇ρϕ∇ρϕ, F µνFµρ∇νϕ∇ρϕ, and (∇µϕ∇µϕ)2.

(A.19)
As this is the simplest possible derivative structure at four-derivative order, none of these
can be simplified any further.

Thus, accounting for moduli-dependent prefactors, the complete list of independent,
parity-even four-derivative operators is

L(even)
4 = a(ϕ)RGB + aAB(ϕ)RµνρσFAµνFBρσ + aABCD(ϕ)(FA · FB)(FC · FD)

+bABCD(ϕ)FAµνFBνρFCρσFDσµ + aABab(ϕ)(FA · FB)(∇ϕa · ∇ϕb)
+bABab(ϕ)FAµνFBµρ∇νϕ

a∇ρϕb + aabcd(ϕ)(∇ϕa · ∇ϕb)(∇ϕc · ∇ϕd). (A.20)

A.3 Parity-odd three- and four-derivative operators in d = 4

Parity-odd operators are constructed using the covariant Levi-Civita symbol Ωµ1...µd =√
−gεµ1...µd where εµ1...µd = ±1 is the usual completely antisymmetric Levi-Civita symbol.

Thus the operator must contain d completely antisymmetrized indices. Since at most two
indices of Rµνρσ can be antisymmetrized, and likewise at most one of the indices on ∇(n)ϕ

can be antisymmetrized (up to terms proportional to the Riemann tensor), parity-odd
operators not involving the gauge fields must have a derivative order at least as large as the
spacetime dimension. In particular, a complete list of such operators up to 4 derivatives in
d = 4 is31

L(odd,Rϕ)
4 = ã(ϕ)RµνρσRνµκλΩρσκλ + ãabcd(ϕ)∇µϕ

a∇νϕ
b∇ρϕ

c∇σϕ
dΩµνρσ, (A.21)

where there are no such operators at this derivative order for d > 4.
31Note that both of these operators are topological in the absence of moduli-dependent prefactors, similar

to the 4d Gauss-Bonnet term.
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For the same reason, once gauge fields are included at least one factor of Fµν must carry
an antisymmetrized index (at the four-derivative level in d ⩾ 4). Consider such an operator

O = Oν2...νd
µ Fµν1Ων1ν2...νd , (A.22)

where Oν2...νd
µ , representing the rest of the operator, is completely antisymmetric in ν2, . . . , νd.

Replacing the indicated factor of Fµν with 1
(d−2)!Ω

µνρ1...ρd−2F̃ρ1...ρd−2 gives

O = 1
(d− 2)!O

ν2...νd
µ Ωµν1ρ1...ρd−2Ων1ν2...νdF̃ρ1...ρd−2 = −(d− 1)Oµρ1...ρd−2

µ F̃ρ1...ρd−2 . (A.23)

In this way, we can rewrite the operator in terms of F̃µ1...µd−2 = −1
2Ωµ1...µd−2ρσF

ρσ contracted
with other factors, without the explicit appearance of Ωµ1···µd .

This is particularly convenient in d = 4 spacetime dimensions since F̃µν can alternately
be viewed as just another species of gauge field. Thus, reusing our parity-even results, the
list of independent three-derivative parity odd operators in four dimensions is:

L(odd)
3,d=4 = aABC(ϕ)F̃AµνFBµνFCµν + aabA(ϕ)∇µϕa∇νϕbF̃Aµν , (A.24)

where each term corresponds to a term in (A.5) with a single factor of Fµν replaced with F̃µν .
Likewise, at four-derivative order in 4d, the list of parity-odd operators involving Fµν

derived from (A.20) is:

L(odd,F )
4,d=4 = ãAB(ϕ)RµνρσF̃AµνFBρσ

+ãABCD(ϕ)(F̃A · FB)(FC · FD) + b̃ABCD(ϕ)F̃AµνFBνρFCρσFDσµ

+ãABab(ϕ)(F̃A · FB)(∇ϕa · ∇ϕb) + b̃ABab(ϕ)F̃AµνFBµρ∇νϕ
a∇ρϕb. (A.25)

In fact, unlike the parity-even case, this list can be reduced still further. Consider an
operator consisting of (F̃A ·FB) times another factor involving at least one index contraction,
i.e., of the form

O = (F̃A · FB)Oλ
λ = −1

4Ω
µνρσFAµνF

B
ρσOλ

λ. (A.26)

Then, since the complete antisymmetrization of 5 indices in d = 4 dimensions vanishes,

0=5Ω[µνρσFAµνF
B
ρσO

λ]
λ =ΩµνρσFAµνFBρσOλ

λ−2ΩµνρλFAµνFBρσOσ
λ−2ΩµλρσFAµνFBρσOν

λ,

(A.27)
and so O = F̃AρλFBρσOσ

λ + FAµνF̃
BµλOν

λ.
Two of the operators in (A.25) can be eliminated in this way, leaving the final list of

independent, parity-odd four-derivative operators in 4d:

L(odd)
4,d=4= ã(ϕ)RµνρσRνµκλΩρσκλ+ãAB(ϕ)RµνρσF̃AµνFBρσ+b̃ABCD(ϕ)F̃AµνFBνρFCρσFDσµ

+b̃ABab(ϕ)F̃AµνFBµρ∇νϕ
a∇ρϕb+ãabcd(ϕ)∇µϕ

a∇νϕ
b∇ρϕ

c∇σϕ
dΩµνρσ, (A.28)

where the first and last entries are from (A.21).
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A.4 Spherically-symmetric backgrounds

In summary, we have found the following three and four-derivative parity-even operators in
general dimension:

L(even)
3 = aABC(ϕ)FAµνFBνρFCρµ + aabA(ϕ)∇µϕa∇νϕbFAµν ,

L(even)
4 = a(ϕ)RGB + aAB(ϕ)RµνρσFAµνFBρσ + aABCD(ϕ)(FA · FB)(FC · FD)

+bABCD(ϕ)FAµνFBνρFCρσFDσµ + aABab(ϕ)(FA · FB)(∇ϕa · ∇ϕb)
+bABab(ϕ)FAµνFBµρ∇νϕ

a∇ρϕb + aabcd(ϕ)(∇ϕa · ∇ϕb)(∇ϕc · ∇ϕd), (A.29)

as well as the three and four-derivative parity-odd operators in d = 4:

L(odd)
3,d=4 = aABC(ϕ)F̃AµνFBµνFCµν + aabA(ϕ)∇µϕa∇νϕbF̃Aµν ,

L(odd)
4,d=4 = ã(ϕ)RµνρσRνµκλΩρσκλ + ãAB(ϕ)RµνρσF̃AµνFBρσ + b̃ABCD(ϕ)F̃AµνFBνρFCρσFDσµ

+ b̃ABab(ϕ)F̃AµνFBµρ∇νϕ
a∇ρϕb + ãabcd(ϕ)∇µϕ

a∇νϕ
b∇ρϕ

c∇σϕ
dΩµνρσ. (A.30)

While these operators are independent in general backgrounds, not all of them contribute
in static, spherically symmetric backgrounds. In particular, assuming parity, spherical
symmetry requires that FAtr and ∇rϕ

a are the only non-vanishing components of FAµν and
∇µϕ

a, respectively, hence evaluating the parity-even operators (A.29) on a static spherically
symmetric background we obtain:

FAµνF
BνρFCρσF

Dσµ=2(FA ·FB)(FC ·FD), FAµνFBµρ∇νϕ
a∇ρϕb=(FA ·FB)(∇ϕa ·∇ϕb),

(A.31)
where all the three-derivative operators vanish. In fact, these relations — which we have
observed at the level of the action — persist in the equations of motion and in other first
functional derivatives as well. To see why, expand perturbatively in the spherical-symmetry-
breaking components of the various fields,

S = S(0) + S
(2)
αβ δφ

αδφβ + · · · , (A.32)

where δφα are non-spherically symmetric modes (e.g., non-trivial spherical harmonics) and
the term linear in δφα is absent due to the underlying spherical symmetry of the action.
Thus, the first functional derivatives of S evaluated on a spherically symmetric background
depend only on S evaluated on a spherically symmetric background, and the relations
implied by spherical symmetric can be read off from the action itself.

Therefore, up to four-derivative order, the higher-derivative operators making indepen-
dent O(α′) contributions to static, spherically symmetric, parity-even backgrounds are

L(indep)
⩽4 = a(ϕ)RGB+aAB(ϕ)RµνρσFAµνFBρσ+aABCD(ϕ)(FA ·FB)(FC ·FD)

+aABab(ϕ)(FA ·FB)(∇ϕa ·∇ϕb)+aabcd(ϕ)(∇ϕa ·∇ϕb)(∇ϕc ·∇ϕd). (A.33)

In the case of dyonic black holes in d = 4, FAµν has two nonvanishing components: FAtr and FAθφ.
As a result, while the three-derivative operators still do not contribute, the relations (A.31)
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no longer hold. The parity-odd operators are now relevant as well. However, since the
metric and the moduli profiles still respect parity,32 only the parity-odd operators involving
F̃ can contribute. The complete list of higher-derivative operators making independent
O(α′) contributions to static, spherically symmetric dyonic 4d backgrounds is then

L(indep, dyonic)
⩽4 = a(ϕ)RGB + aAB(ϕ)RµνρσFAµνFBρσ + ãAB(ϕ)RµνρσF̃AµνFBρσ

+aABCD(ϕ)(FA · FB)(FC · FD) + bABCD(ϕ)FAµνFBνρFCρσFDσµ

+b̃ABCD(ϕ)F̃AµνFBνρFCρσFDσµ + aABab(ϕ)(FA · FB)(∇ϕa · ∇ϕb)
+bABab(ϕ)FAµνFBµρ∇νϕ

a∇ρϕb + b̃ABab(ϕ)F̃AµνFBµρ∇νϕ
a∇ρϕb

+aabcd(ϕ)(∇ϕa · ∇ϕb)(∇ϕc · ∇ϕd). (A.34)

B Riemann tensor

In this appendix, we record the connection coefficients and Riemann tensor for extremal
black holes at leading order in α′ in our ansatz. From the extremal metric ansatz

ds2 = −e2ψ(r)dt2 + e−
2
d−3ψ(r)

[
dr2 + r2dΩ2

d−2
]
, (B.1)

one obtains the non-vanishing connection coefficients

Γttr = ψ′, Γrtt = −grrgttψ′, Γrrr = − ψ′

d− 3 ,

Γrij = grrgij

(
ψ′

d− 3 − 1
r

)
, Γirj =

(
− ψ′

d− 3 + 1
r

)
δij , Γijk = γijk,

(B.2)

where γijk is the Levi-Civita connection on Sd−2. One finds the Riemann tensor

Rtrtr = −grr
(
ψ′′ + d− 2

d− 3(ψ
′)2
)
, Rtitj = grrψ′

(
ψ′

d− 3 − 1
r

)
δij ,

Rrirj = grr
(rψ′)′

r(d− 3)δ
i
j , Rijkl = grr

ψ′

d− 3

(2
r
− ψ′

d− 3

)
(δikδ

j
l − δilδ

j
k).

(B.3)

Likewise, the Ricci tensor and Ricci scalar are

Rtt = −grr (r
d−2ψ′)′

rd−2 , Rrr = grr
( (rd−2ψ′)′

rd−2(d− 3) −
d− 2
d− 3(ψ

′)2
)
,

Rij = grr
(rd−2ψ′)′

(d− 3)rd−2 δ
i
j , R = grr

( 2(rd−2ψ′)′

rd−2(d− 3) −
d− 2
d− 3(ψ

′)2
)
.

(B.4)

Near-horizon limit. In the near-horizon limit, we have

eψ = rd−3
(
Ah
Vd−2

)− d−3
d−2

, (B.5)

32In particular, dyonic black holes are related to electric black holes by electromagnetic duality, hence a
modified version of parity is still conserved by dyonic black hole backgrounds where the modification only
involves the gauge fields.
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where Ah is the horizon area. The Riemann tensor, Ricci tensor and Ricci scalar then
simplify to

Rtrtr = Rtt = Rrr = −(d− 3)2
[
Vd−2
Ah

] 2
d−2

, Rtitj = Rrirj = 0,

Rijkl =
[
Vd−2
Ah

] 2
d−2

(δikδ
j
l − δilδ

j
k), Rij = (d− 3)

[
Vd−2
Ah

] 2
d−2

δij ,

R = −(d− 3)(d− 4)
[
Vd−2
Ah

] 2
d−2

.

(B.6)

C Stress tensor, δS
δFµν

, δS
δRµνρσ

In this appendix, we record the stress tensor, δS
δFµν

, and δS
δRµνρσ

for the higher-derivative
action:

Shd =
∫
ddx

√
−gL4,

L4 = aRµνρσR̂
µνρσ + aABR

ρσαβFAρσF
B
αβ + aABCD(FA · FB)(FC · FD)

+bABCDFAµνFBνρFCρσFDσµ + aABab(FA · FB)(∇ϕa · ∇ϕb)
+bABabFAµρFBνρ∇µϕ

a∇νϕ
b + aabcd(∇ϕa · ∇ϕb)(∇ϕc · ∇ϕd),

(C.1)

where
R̂µνρσ ≡ Rµνρσ − δµρR

ν
σ + δµσR

ν
ρ + δνρR

µ
σ − δνσR

µ
ρ +

1
2(δ

µ
ρ δ

ν
σ − δµσδ

ν
ρ)R , (C.2)

and RµνρσR̂
µνρσ = RµνρσRµνρσ − 4RµνRµν + R2 is the Gauss-Bonnet density. Using the

notation ωM
n◦ ξN ≡ ωM · ξN − 1

ngMNω · ξ, one finds

Tµν = 8R̂ρµνσ∇ρ∇σa− 4aRµαβγR̂ αβγ
ν + gµνaRαβρσR̂

αβρσ

+4∇ρ∇σ(aABFAρ(µFBν)σ)+ 6aABRρσα(µFAν)αF
B
ρσ + gµνaABR

ρσαβFAρσF
B
αβ

−4aABCD(FAµ
4◦ FBν )(FC · FD)

+bABCD(−8FAµαFBαρFCρσFDσν + gµνF
Aα
βF

Bβ
ρF

Cρ
σF

Dσ
α)

−2aABab
[
(FAµ

4◦ FBν )(∇ϕa · ∇ϕb) + (FA · FB)(∇µϕ
a 4◦ ∇νϕ

b)
]

−2bABab
[
FAµρF

B
νσ∇ρϕa∇σϕb + 2FAρ(µF

Bρσ∇ν)ϕ
a∇σϕ

b − 1
2gµνF

A
αρF

Bρ
β ∇αϕa∇βϕb

]
−4aabcd(∇µϕ

a 4◦ ∇νϕ
b)(∇ϕc · ∇ϕd). (C.3)

Likewise,
δShd
δFAµν

= 4aABRµναβFBαβ + 4aABCDFBµν(FC · FD) + 8bABCDFBµρFCρσFDνσ

+2aabABFBµν(∇ϕa · ∇ϕb)− 4babABFB[µ
ρ ∇ν]ϕa∇ρϕb, (C.4)

and
δShd
δRµνρσ

= 8aR̂µνρσ + 4
3aAB[2F

AµνFBρσ−FAµρFBσν−FAµσFBνρ]. (C.5)
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