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1 Introduction

The Large Hadron Collider (LHC) presents an unprecedented opportunity to study a wide
range of observables involving Higgs bosons, electroweak bosons, top quarks, and hadronic
jets with remarkable accuracy. Through precise experimental measurements, we can directly
probe the fundamental interactions of elementary particles at short distances, pushing the
boundaries of our knowledge and gaining valuable insights into the fundamental forces
governing the universe.

The exploration of LHC physics holds immense significance, especially in the absence
of new particle discoveries. Scrutinizing LHC data with high precision allows us to detect
even the slightest deviations from the predictions of the Standard Model (SM), which can
profoundly impact our understanding of the natural world. Such small deviations have the
potential to revolutionize our knowledge and steer us towards physics beyond the Standard
Model, making precision phenomenology a critical aspect of the quest for new physics.

With the expected dataset from the High-Luminosity LHC, statistical uncertainties
for many observables are likely to become negligible, enabling experimental accuracy at
the percent level. Achieving similar percent-level accuracy for theoretical predictions
necessitates further developments in fixed-order calculations, parton distribution functions,
parton showers, and non-perturbative effect modeling. Ongoing progress in all of these
areas will be crucial to meet the experimental precision that will be achieved at the LHC.

In recent years there has been enormous progress in fixed-order calculations, with many
processes known to next-to-next-to-leading order (NNLO) in the strong-coupling expansion,
and a few at next-to-next-to-next-to-leading order (N3LO). Achieving such higher-order
calculations demands careful attention due to the intricate interplay between real and
virtual corrections across phase spaces with different multiplicity final states [2, 3]. Implicit
infrared divergences emerge due to unresolved real emissions, such as soft or collinear
radiation. These divergences can only be canceled out by explicit poles arising from virtual
graphs, achieved through integration over the relevant unresolved phase space. Currently,
infrared subtraction schemes are considered one of the most elegant solutions to handle
these subtleties, and ensure consistent and precise results.

Next-to-leading order (NLO) subtraction schemes such as Catani-Seymour dipole
subtraction [4–6] and FKS subtraction [7, 8] appeared in the mid-1990’s and have been fully
developed for general collider processes. Both have been automated [9–11] and combined
with automated one-loop matrix-element generators [12, 13] to produce efficient parton-level
event generators for fully-differential high-multiplicity processes. NLO matching schemes
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such as MC@NLO [14] and POWHEG [15, 16] have also been developed which combine the
NLO fixed-order calculations with all-order parton-shower resummation to produce state-of-
the-art multi-purpose event generators [12, 17–20]. Other methods have been established,
notably the Nagy-Soper scheme [21, 22], and others continue to be developed [23–25].
However, in the main, NLO subtraction is considered to be a solved problem.

At NNLO, the pattern of cancellation of infrared divergences across the different-
multiplicity final states is much more complicated. Following on from pioneering work
by Anastasiou, Petriello and Melnikov [26] and Frixione [27], several subtraction schemes
have been devised to compute the NNLO corrections to fully differential exclusive cross
sections. Notable schemes include Antenna subtraction [28–30], qT -subtraction [31], Sector-
Improved Residue subtraction [32, 33], Nested soft-collinear subtraction [34], ColorFullNNLO
subtraction [35–37] and Local Analytic subtraction [38]. Other subtraction schemes continue
to be developed [39, 40], while some ideas such as Projection-to-Born (P2B) [41] sidestep
the need for a general subtraction scheme. P2B computes the NNLO corrections to fully
differential exclusive cross sections related to a final state X by combining the NLO
calculation for differential cross sections for X + j final states with the NNLO corrections
to the inclusive cross section for final state X. Because of the large increase in complexity
compared to NLO, the implementation of these methods is currently done one process at a
time. They do not straightforwardly scale to higher multiplicities. Work is therefore being
done to extend or improve or automate these schemes, see for example [1, 42–44].

At N3LO, inclusive cross sections [45–55], as well as more differential calculations, have
started to emerge [56–66], the latter mainly for 2→ 1 processes via the use of the Projection-
to-Born method [41] or qT-slicing techniques [31] to promote established NNLO calculations
to N3LO. The pattern of cancellation of infrared divergences across the different-multiplicity
final states will be even more complicated than at NNLO making the construction of a more
general subtraction scheme challenging. The relevant infrared limits have been studied; the
triple unresolved limits of tree amplitudes [67–71], the double unresolved limits of one-loop
amplitudes [72–77], and the single unresolved limits of two-loop amplitudes [78–82] have all
been studied and could in principle lead to an N3LO subtraction scheme. We note that the
first steps towards an N3LO antenna subtraction scheme have been taken in refs. [83–85].
Nevertheless, at the moment, calculations for higher multiplicities are currently hindered
by the lack of process-independent N3LO subtraction schemes.

The Antenna subtraction scheme is a highly successful method for fully-differential
NNLO calculations in perturbative QCD. It was initially proposed for massless partons
in electron-positron annihilation at NNLO [28, 29, 86, 87] and then extended to treat
initial-state radiation with initial-state hadrons at NLO [88] and later at NNLO [30, 89–
93]. Moreover, the framework has been applied to heavy particle production [94–101] and
adapted to antenna-shower algorithms [102–107] enabling higher-order corrections [108]
and the first approaches to fully-differential NNLO matching [109]. It is based around
tree antennae for single (X0

3 ) and double (X0
4 ) radiation, and one-loop antennae for single

radiation (X1
3 ). Combinations of these three types of antennae, together with a wide-angle

soft term, are sufficient to build subtraction terms at NNLO. A particular feature is that
the single unresolved X0

3 antenna are heavily reused in constructing NNLO subtraction
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terms. Simplifying and streamlining the X0
3 antenna will have a knock on effect at NNLO

and beyond.
In its original formulation, the antennae were constructed from simple matrix elements

which have the desired infrared singularities. By construction, the factorisation properties
of matrix elements guaranteed that the subtraction term would match the infrared limit of
the full matrix element. The direct extraction of antenna functions from matrix elements
elegantly bypassed the complexities of combining subtraction terms for various multiple-soft
and/or collinear limits. However, this approach gave rise to two issues.

Firstly, when dealing with double-real radiation antenna functions derived from matrix
elements, it was challenging to unequivocally identify the hard radiators, especially for
partonic configurations involving gluons. To address this, sub-antenna functions were
introduced. Unfortunately, constructing sub-antenna functions at NNLO proved to be
extremely cumbersome, often leading to unphysical denominators that hindered analytic
integration. In many cases, only the analytic integrals for the full antenna functions
were available. Consequently, assembling antenna-subtraction terms necessitated a process
where sub-antenna functions were combined to reconstruct the full antenna functions
before integration.

Secondly, NNLO antenna functions could contain spurious limits, necessitating the use
of explicit counter terms to remove them. This introduced further spurious singularities,
creating a chain of cross-dependent subtraction terms that lacked any connection to the
actual singularity structure of the underlying process.

To overcome these challenges and streamline the antenna-subtraction scheme, refs. [1, 42]
introduced a set of design principles to algorithmically construct antenna functions for
final-state particles directly from the relevant infrared limits, while properly accounting
for the overlap between different limits. The algorithm applied to antenna with final-state
particles ensures that

I. each antenna function has exactly two hard particles (“radiators”) which cannot
become unresolved;

II. each antenna function captures all (multi-)soft limits of its unresolved particles;

III. where appropriate, (multi-)collinear and mixed soft and collinear limits are decomposed
over “neighbouring” antennae;

IV. antenna functions do not contain any spurious (unphysical) limits;

V. antenna functions only contain singular factors corresponding to physical propagators;
and

VI. where appropriate, antenna functions obey physical symmetry relations (such as line
reversal).

The iterative algorithm for constructing real radiation antenna functions for massless
partons with a particular set of soft and/or collinear singular limits pertaining to the two
hard radiators is described in detail in refs. [1, 42]. It relies on:
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• a list of “target functions”, which in the following we will denote by Li, which capture
the behaviour of the colour-ordered matrix element squared in the given unresolved
limit and are taken as input to the algorithm,

• a set of “down-projectors” P↓i which maps the invariants of the full phase space into
the subspace relevant for limit Li,

• a set of “up-projectors” P↑i which restores the full antenna phase space. Note that
the down-projectors P↓i and up-projectors P↑i are typically not inverse to each other,
as down-projectors destroy information about less-singular and finite pieces.

In this paper we want to generalise this algorithm to include the cases when one or both
of the hard radiators are in the initial state. These are the initial-final and initial-initial
antenna respectively. We focus on the single unresolved (NLO) antenna functions for
massless partons.

The paper is structured as follows. In section 2 we classify the various types of initial-
final and initial-initial antennae needed for NLO calculations. We introduce the appropriate
ingredients for the algorithm in 3, defining the relevant limits and their associated P↓ and
P↑ operators. Sections 4 and 5 give explicit forms for the initial-final and initial-initial
antennae, as well as their analytic integration over the appropriate phase space. At each
stage, we compare with the antennae derived from matrix elements [88]. Finally, we conclude
and give an outlook on further work in section 7.

2 NLO antennae with particles in the initial state

In the antenna subtraction scheme, antenna functions are used to subtract specific sets of
unresolved singularities, so that a typical subtraction term has the form

Xℓ
n+2(ih

1 , i3, . . . , in+2, ih
2)
∣∣∣M(. . . , Ih

1 , Ih
2 , . . .)

∣∣∣2 , (2.1)

where Xℓ
n+2 represents an ℓ-loop, (n + 2)-particle antenna, ih

1 and ih
2 represent the hard

radiators, and i3 to in+2 denote the n unresolved particles. As the hard radiators may either
be in the initial or in the final-state, final-final (FF), initial-final (IF), and initial-initial
(II) configurations need to be considered in general. M is the reduced matrix element,
with n fewer particles and where Ih

1 and Ih
2 represent the particles obtained through an

appropriate mapping,

{pi1 , pi3 , . . . , pi2} 7→ {pI1 , pI2} (2.2)

with pµ
i representing the four-momentum of particle i. At NLO, antennae have n = 1 and

ℓ = 0, at NNLO one needs antennae with n = 2, ℓ = 0 and with n = 1, ℓ = 1, while at
N3LO, one needs antennae with n = 3, ℓ = 0, with n = 2, ℓ = 1 and with n = 1, ℓ = 2. In
the original formulation of the antenna scheme, the antennae were constructed from simple
matrix elements which have the desired singularities. By construction, the factorisation
properties of matrix elements guaranteed that the subtraction term would match the

– 4 –



J
H
E
P
1
2
(
2
0
2
3
)
1
7
1

infrared limit of the full matrix element. As mentioned in the Introduction, we focus on the
tree-level single unresolved antenna for massless partons. The extension to massive partons
is straightforward.

The tree-level three particle antenna for particles of type a, b and c in the final-state is
denoted by X0

3 (ah, b, ch). The antenna describes the infrared singularities when particle b is
unresolved: the soft b singularity (if it exists), as well as (parts of) the collinear singularities
a||b and b||c.

The two hard “radiators”, ah and ch, cannot become unresolved. Therefore, the antenna
should not contain singularities when a or c are soft or when a||c.

To see how this happens, let us focus on the soft c singularity. The argument for soft a

is similar.
The soft c singularity is avoided by including only the parts of the bc splitting function

that are not singular when c is soft. We denote this as b||ch, and divide up the collinear
splitting function across two antennae, X0

3 (ah, b, ch) and X0
3 (bh, c, dh), such that the full

collinear limit is recovered. In this case, the full b||c collinear limit would be obtained by
two subtraction terms,

X0
3 (ah, b, ch)

∣∣∣M(. . . , Ah, Ch, . . .)
∣∣∣2 + X0

3 (bh, c, dh)
∣∣∣M(. . . , Bh, Dh, . . .)

∣∣∣2 . (2.3)

Here {Ah, Ch} and {Bh, Dh} are obtained by applying the antenna mapping to {ah, b, ch}
and {bh, c, dh} respectively.

We note that when particles are written in order of colour connection, X0
3 (ah, b, ch)

will contain the required soft singularities ∼ 1/sabsbc, as well as the collinear singularities
1/sab and 1/sbc, while avoiding the 1/sac collinear singularity.

The full list of final-final antennae is given in table 1 in the form X0
3 (ih

a, jb, kh
c ) where i,

j and k represent the momenta of particles a, b and c respectively. There are five distinct
antenna configurations corresponding to the colour-connected strings for the qgq̄, qgg,
qQ̄Q, ggg and gQ̄Q particle assignments. Noting that under charge conjugation and colour
line-reversal

X0
3 (kh

c̄ , jb̄, ih
ā) = X0

3 (ih
a, jb, kh

c ), (2.4)

these antenna also describe ggq̄, Q̄Qq̄ and Q̄Qg colour-connected strings. Expressions for
each of these antennae together with the integrals over the final-final antenna phase space
are given in ref. [1]. Frequently, we drop explicit reference to the particle labels in favour of
a specific choice of X according to table 1.

We obtain antennae with initial-state particles by crossing one (or two) of the particles
into the initial state. We denote initial-state particles with a hat, noting that the crossing
should also be applied to the final-state particle such that, for example, îQ denotes an
initial-state anti-quark.

We define antennae of Type 1 by crossing one (or two) of the hard radiators into the
initial state. There are two initial-final configurations,

X0
3 (â, b, ch), X0

3 (ah, b, ĉ),
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Final-Final Antennae

A0
3(ih, j, kh) ≡ X0

3 (ih
q , jg, kh

q̄ )
D0

3(ih, j, kh) ≡ X0
3 (ih

q , jg, kh
g ) ≡ X0

3 (kh
g , jg, ih

q̄ )
E0

3(ih, j, kh) ≡ X0
3 (ih

q , jQ̄, kh
Q) ≡ X0

3 (kh
Q̄

, jQ, ih
q̄ )

F 0
3 (ih, j, kh) ≡ X0

3 (ih
g , jg, kh

g )
G0

3(ih, j, kh) ≡ X0
3 (ih

g , jQ̄, kh
Q) ≡ X0

3 (kh
Q̄

, jQ, ih
g )

Table 1. Identification of Final-Final X0
3 antenna according to the particle type. These antennae

only contain singular limits when the particle with momentum j is unresolved. The antenna
configurations in the third column are related to the functions in the first column by charge-
conjugation as in eq. (2.4).

and one initial-initial case,
X0

3 (â, b, ĉ).

Just as for final-final antennae, these antennae potentially have singularities when b is soft,
or when b is collinear with either of the hard radiators.

We define antennae of Type 2 by crossing the unresolved particle into the initial state.
For initial-initial antenna, we also cross one of the hard radiators into the initial state.
We ensure that the number of hard radiators is two. There are two configurations for the
initial-final,

X0
3 (ah, b̂, c), X0

3 (a, b̂, ch),

and two for the initial-initial cases,

X0
3 (â, b̂, c), X0

3 (a, b̂, ĉ)

respectively. These antennae do not have any soft singularities. They have no singularities
when b̂ is collinear to the other hard radiator (â or ĉ), but do potentially have singularities
when b̂ is collinear with the unresolved particle (c or a).

One needs to be careful about how the antenna mapping affects the identity of the
initial-state particles. We therefore discriminate between two cases:

1. The particle type resulting from clustering an initial-state and final-state particle is
the same as the particle type in the initial state, i.e. âb→ â. For example, q̂g → q̂.
We label this type of antenna as Identity Preserving (IP).

2. The particle type resulting from clustering an initial-state and final-state particle is
different from the particle type in the initial state, i.e. âb→ ĉ. For example, ĝq → q̂

or q̂q̄ → g. We label this type of antenna as Identity Changing (IC). Each antenna
should include at most one identity change.

We further arrange that Type 1 antennae are IP, while Type 2 antennae are IC. As
an example, consider the subtraction term for a particular colour-ordered matrix element
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with particle ĉ in the initial state, |M(. . . , a, b, ĉ, d, e, . . .)|2. Focussing on the colour-string
triplets, abĉ, bĉd, ĉde that contain collinear singularities associated with either b||ĉ or ĉ||d,
there are four possible contributions.

1. soft b, IP(b||ĉ)
X0

3 (ah, b, ĉ)
∣∣∣M(. . . , Ah, Ĉh, d, e, . . .)

∣∣∣2
This term would contribute if the particle type of bĉ is the same as ĉ. It would
describe the soft b singularity and the IP b||ĉ collinear singularity. In this case, we
would include the full b||ĉ splitting function (since initial particle c cannot be soft).
Note that this contribution also contains the ah||b singularity.

2. IC(b||ĉ)
X0

3 (b, ĉ, dh)
∣∣∣M(. . . , a, B̂h, Dh, e, . . .)

∣∣∣2
This term would contribute if the particle type of bĉ (B̂) is NOT the same as ĉ. It
would describe IC b||ĉ collinear singularity. This term contains NO ĉ||dh singularity.

3. IC(ĉ||d)
X0

3 (bh, ĉ, d)
∣∣∣M(. . . , a, Bh, D̂h, e, . . .)

∣∣∣2
This term would contribute if the particle type of ĉd (D̂) is NOT the same as ĉ. It
would describe IC ĉ||d collinear singularity. This term contains NO bh||ĉ singularity.

4. soft d, IP(ĉ||d)
X0

3 (ĉ, d, eh)
∣∣∣M(. . . , a, b, Ĉh, Eh, . . .)

∣∣∣2
This term would contribute if the particle type of ĉd (Ĉ) is the same as ĉ. It would
describe the soft d singularity and the IP ĉ||d collinear singularity. In this case, we
would include the full ĉ||d splitting function (since initial particle c cannot be soft).
Note that this contribution also contains the d||eh singularity.

The identification of the Initial-Final antennae according to particle type is listed in
table 2. As for the Final-Final antennae, we drop explicit reference to the particle labels in
favour of a specific choice of X according to table 2. We systematically use the momentum
set {̂i, j, kh} with the initial momentum î, hard radiator with momentum kh, and the
unresolved particle with momentum j. This means that soft singularities are characterised
by 1/sijsjk and collinear singularities by 1/sij and 1/sjk in the IP antenna, while the IC
antenna only have singularities proportional to 1/sij . Since the initial-state particles cannot
be soft, we will also drop the superscript h on the initial-state (hatted) momenta.

The identification of the Initial-Initial antennae according to particle type is listed in
table 3. As usual, we drop explicit reference to the particle labels in favour of a specific
choice of X according to table 3. We systematically use the momentum set {̂i, j, k̂} with
the initial momenta î and k̂ and the unresolved particle carries momentum j. This means
that soft singularities are characterised by 1/sijsjk and collinear singularities by 1/sij and
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Initial-Final Antennae

Identity preserving
A0

3,q (̂i, j, kh) ≡ X0
3 (̂iq, jg, kh

q̄ ) ≡ X0
3 (kh

q , jg, îq̄)
D0

3,q (̂i, j, kh) ≡ X0
3 (̂iq, jg, kh

g ) ≡ X0
3 (kh

g , jg, îq̄)
E0

3,q (̂i, j, kh) ≡ X0
3 (̂iq, jQ̄, kh

Q) ≡ X0
3 (kh

Q̄
, jQ, îq̄)

D0
3,g(kh, j, î) ≡ X0

3 (kh
q , jg, îg) ≡ X0

3 (̂ig, jg, kh
q̄ )

F 0
3,g (̂i, j, kh) ≡ X0

3 (̂ig, jg, kh
g ) ≡ X0

3 (kh
g , jg, îg)

G0
3,g (̂i, j, kh) ≡ X0

3 (̂ig, jQ̄, kh
Q) ≡ X0

3 (kh
Q̄

, jQ, îg)
Identity changing
A0

3,g→q(j, î, kh) ≡ X0
3 (jq, îg, kh

q̄ ) ≡ X0
3 (kh

q , îg, jq̄)
D0

3,g→q(j, î, kh) ≡ X0
3 (jq, îg, kh

g ) ≡ X0
3 (kh

g , îg, jq̄)
E0

3,Q→g(kh, î, j) ≡ X0
3 (kh

q , îQ̄, jQ) ≡ X0
3 (jQ̄, îQ, kh

q̄ )
G0

3,Q→g(kh, î, j) ≡ X0
3 (kh

g , îQ̄, jQ) ≡ X0
3 (jQ̄, îQ, kh

g )

Table 2. Identification of the Initial-Final X0
3 antenna according to the particle type. These

antennae only contain singular limits when the particle with momentum j is unresolved. The
initial-state particle carries momentum i. The particle assignments in functions in the first column
are by convention equal to those in the second column. The antenna configurations in the third
column are related to the functions in the first column by charge-conjugation as in eq. (2.4).

Initial-Initial Antennae

Identity preserving
A0

3,qq̄ (̂i, j, k̂) ≡ X0
3 (̂iq, jg, k̂q̄)

D0
3,qg (̂i, j, k̂) ≡ X0

3 (̂iq, jg, k̂g) ≡ X0
3 (k̂g, jg, îq̄)

F 0
3,gg (̂i, j, k̂) ≡ X0

3 (̂ig, jg, k̂g)
Identity changing
A0

3,qg→qq̄ (̂i, k̂, j) ≡ X0
3 (̂iq, k̂g, jq̄) ≡ X0

3 (jq, k̂g, îq̄)
D0

3,gg→gq (̂i, k̂, j) ≡ X0
3 (jq, k̂g, îg) ≡ X0

3 (̂ig, k̂g, jq̄)
E0

3,qQ→qg (̂i, k̂, j) ≡ X0
3 (̂iq, k̂Q̄, jQ) ≡ X0

3 (jQ̄, k̂Q, îq̄)
G0

3,gQ→gg (̂i, k̂, j) ≡ X0
3 (̂ig, k̂Q̄, jQ) ≡ X0

3 (jg, k̂Q, îq̄)

Table 3. Identification of the Initial-Initial X0
3 antenna according to the particle type. These

antennae only contain singular limits when the particle with momentum j is unresolved. The
initial-state particles carry momenta i and k. The antenna configurations in the third column are
related to the functions in the first column by charge-conjugation as in eq. (2.4).
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1/sjk in the IP antenna, while the IC antenna only have singularities proportional to 1/sjk.
As for the IF antennae, since the initial-state particles cannot be soft, we will also drop the
superscript h on the initial-state (hatted) momenta.

3 Building the antennae

A core part of our algorithm is the definition of down-projectors into singular limits with
corresponding up-projectors into the full phase space. In each step of the construction, down-
projectors are needed to identify the overlap of the so-far constructed antenna function with
the target function of the respective unresolved limit, whereas up-projectors are required to
re-express the subtracted target function in terms of antenna invariants. In this way, the
full (accumulated) antenna function can be expressed solely in terms of n-particle invariants,
and is therefore valid in the full phase space. By choosing the up-projectors judiciously, the
antenna function can furthermore be expressed exclusively in terms of physical propagators.
As alluded to above, down-projectors P↓ and up-projectors P↑ are not required to be inverse
to each other.

The primary objective of the algorithm is to construct antenna functions for
(multiple-)real radiation that encompass singular limits associated with precisely two hard
radiators, along with an arbitrary number of additional particles allowed to remain unre-
solved. To achieve this goal, each limit is specified by a “target function”, denoted as Li.
These target functions are crucial in capturing the behavior of the color-ordered matrix
element squared under the specified unresolved limit, and serve as input for the algorithm.
For the three-particle antennae constructed in this paper, the relevant limits are:

• soft final-state particle,

• two final-state particles are collinear,

• a final-state particle is collinear with an initial-state particle.

It is the third case that is new in this paper.
Although the target functions might encompass process-dependent azimuthal terms, for

the sake of simplicity, we will focus solely on azimuthally-averaged functions as in ref. [88].
This is not necessarily a limitation, and one could in principle include the azimuthal terms
if desired.

Note that we use the Lorentz-invariant definition of the invariants,

si...n = (pi + . . . + pn)2. (3.1)

For final-final configurations, all invariants are positive. However, under crossing, pi → −pi

for IF and {pi → −pi, pk → −pk} for II, so some of the invariants become negative:

IF : sij < 0, sjk > 0, sik < 0, sijk < 0, (3.2)
II : sij < 0, sjk < 0, sik > 0, sijk > 0. (3.3)
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3.1 The soft projectors

The soft down-projector given in ref. [1] is defined by the mapping

S↓j :


sij → λsij

sjk → λsjk

sijk → sik

(3.4)

and we keep only terms of order λ−2. The corresponding S↑j is just the trivial mapping
which leaves all variables unchanged. The unresolved soft particle must always be in the
final state. However, the hard radiators i and k may be in either the final or the initial state.
Crossing from the final to the initial state does not affect the power counting. Therefore
this is the only soft projector we will need.

The only particle that produces a non-trivial limit is the gluon, where the relevant soft
limit is the eikonal factor

Sg(ih, jg, kh) ≡ 2sik

sijsjk
. (3.5)

Under crossing, the eikonal factor is unchanged,

Sg (̂i, jg, kh) = Sg (̂i, jg, k̂) = Sg(ih, jg, kh). (3.6)

3.2 The collinear projectors

3.2.1 FF: both collinear particles in final state

When the unresolved final-state particle j becomes collinear to a final-state hard radiator
particle i, the collinear projectors are given by ref. [1]

CF F,↓
ij :



sij → λsij

sik → (1− xj)(sik + sjk)
sjk → xj(sik + sjk)
sijk → (sik + sjk)

(3.7)

where we only keep terms of order λ−1. The momentum fraction xj = sjk

sik+sjk
is defined with

respect to the spectator third particle in the antenna k. The corresponding up-projector is

CF F,↑
ij :


xj →

sjk

sijk

(1− xj)→ sik
sijk

sik + sjk → sijk.

(3.8)

The projectors when j becomes collinear to the final-state hard radiator particle k are
obtained by exchanging the roles of i and k,

CF F,↑
kj = CF F,↑

ij i↔ k, (3.9)

CF F,↓
kj = CF F,↓

ij i↔ k. (3.10)
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In the final-final collinear case, the relevant limits are given by the splitting functions
Pab(ih, j), which are not singular in the limit where the hard radiator a becomes soft, and
are related to the usual spin-averaged splitting functions, cf. [110, 111], by,

Pqg(ih, j) = 1
sij

Pqg(xj) (3.11)

Pqg(i, jh) = 0, (3.12)

Pqq̄(ih, j) = 1
sij

Pqq̄(xj), (3.13)

Pqq̄(i, jh) = 1
sij

Pqq̄(1− xj), (3.14)

Pgg(ih, j) = 1
sij

P sub
gg (xj) (3.15)

Pgg(i, jh) = 1
sij

P sub
gg (1− xj) (3.16)

with

Pqg(xj) =
(
2(1− xj)

xj
+ (1− ϵ)xj

)
, (3.17)

Pqq̄(xj) =
(
1− 2(1− xj)xj

(1− ϵ)

)
= Pqq̄(1− xj), (3.18)

P sub
gg (xj) =

(
2(1− xj)

xj
+ xj(1− xj)

)
, (3.19)

and
P sub

gg (xj) + P sub
gg (1− xj) ≡ Pgg(xj). (3.20)

Azimuthal spin correlations. In general, the collinear limits of matrix elements will
contain spin correlations, and hence are accurately reproduced using spin-dependent splitting
functions. For example, the spin dependent gluon splitting function is [4],

P µν
gg (xj) = 2

[
−gµν

(
xj

1− xj
+ 1− xj

xj

)
− 2(1− ϵ)xj(1− xj)

kµ
⊥kν
⊥

k2
⊥

]
, (3.21)

where k⊥ represents the momentum transverse to the collinear direction. The spin-averaged
splitting functions that we use to build the antenna are obtained by integrating these
spin-dependent splitting functions over the azimuthal angle of the plane containing the
collinear particles with respect to the collinear direction. This means that in a point-by-point
check, the subtraction terms based on the spin-averaged splitting functions will not correctly
reproduce the azimuthal terms present in the matrix elements.

However, we note that the angular terms related to each other by a rotation of the
system of unresolved partons precisely cancel [29, 112]. It can be shown that the angular
terms are proportional to cos(2ϕ + α) where ϕ is the azimuthal angle around the collinear
direction. Therefore by combining two phase space points with azimuthal angles ϕ and
ϕ+π/2 and all other coordinates equal, the azimuthal correlations drop out. When particles
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i and j are in the final state, this can be achieved by rotating particles i and j by π/2
about the collinear direction. In initial-final configurations produced when pµ

i → pµ + pµ
j for

i = 1, 2 and with i||j and p2 = 0, the phase space points are again be related by azimuthal
rotations of π/2. This has the consequence of rotating pµ

i off the beam axis and therefore
has to be compensated by a Lorentz boost. Once this averaging takes place, the collinear
limit will be accurately described by the spin-averaged splitting function. We verify this
claim in section 6.

3.2.2 Mixed initial/final collinear limit

If we have a final-state parton with momentum pj becoming collinear with an initial-state
hard radiator with momentum pi, then

pj → zjpi,

pij := (pi − pj)→ (1− zj)pi,

sik →
sijk

(1− zj)
,

sjk → −
zjsijk

(1− zj)
.

(3.22)

In this case, the relevant limits are given by the splitting functions

Pgq←Q(̂i, j) = −1
sij

Pgq←Q(zj), (3.23)

Pqg←Q(̂i, j) = −1
sij

Pqg←Q(zj), (3.24)

Pqq̄←G(̂i, j) = −1
sij

Pqq̄←G(zj), (3.25)

Pgg←G(̂i, j) = −1
sij

Pgg←G(zj), (3.26)

and
Pab←c(j, î) = Pba←c(̂i, j) (3.27)

with

Pgq←Q(zj) =
1

(1− zj)(1− ϵ)Pqg(1− zj) =
2zj

(1− zj)2(1− ϵ) + 1, (3.28)

Pqg←Q(zj) =
1

(1− zj)
Pqg(zj) =

2
zj

+ (1− ϵ)zj

(1− zj)
, (3.29)

Pqq̄←G(zj) =
(1− ϵ)
(1− zj)

Pqq̄(zj) =
(1− ϵ)
(1− zj)

− 2zj , (3.30)

Pgg←G(zj) =
1

(1− zj)
Pgg(zj) =

2
zj

+ 2zj

(1− zj)2 + 2zj . (3.31)

Here Pab←C is the splitting of the initial-state C into parton a entering the hard process
and parton b radiated. We note that zj = −sjk/sik. When the spectator particle k is in
the initial state, then sik can never be small. However, if k is in the final state, then sik
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may be small, and we have to avoid introducing fake singularities in this limit. This can
happen when we encounter either of the Pqq̄←G or Pgg←G splitting functions. Therefore, we
generate mappings that discriminate between the two cases (IF) when k is in the final state
and (II) when k is in the initial state.

(IF) spectator in final state. The Initial-Final collinear down-projector when particles
î and j are collinear and the spectator k is in the final state is given by

CIF,↓
îj

:



sij → λsij

sik → 1
(1−zj)(sik + sjk)

sjk → −
zj

(1−zj)(sik + sjk)
sijk → (sik + sjk)

(3.32)

where we only keep terms of order λ−1. The corresponding up-projector is given by

CIF,↑
îj

:



zj

(1−zj) → −
sjk

sijk

1
(1−zj) →

sik
sijk

1
zj
→ − sik

sjk

zj → −
sjk

sik+sij

(sik + sjk)→ sijk,

(3.33)

where we have regulated any potential singularity when sik → 0 with sij . This occurs
whenever the limit involves the Pqq̄←G or Pgg←G splitting functions. In practice, this means
that contributions like 1/sijsik are split across two separate antenna by partial fractioning,

1
sijsik

→ 1
sij(sik + sij)

+ 1
sik(sik + sij)

. (3.34)

When the two final-state particles j and k are collinear, the corresponding projectors
are

CIF,↓
kj ≡ CF F,↓

kj , (3.35)

CIF,↑
kj ≡ CF F,↑

kj . (3.36)

(II) spectator in initial state. When the spectator particle is in the initial state, the
down-projector is the same,

CII,↓
îj

= CIF,↓
îj

(3.37)

but because sik can never be small, we do not have to be concerned by the appearance of
1/sik in the up-projector, and we define

CII,↑
îj

:


(1− zj)→ sijk

sik

zj → −
sjk

sik

(sik + sjk)→ sijk.

(3.38)
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The projectors when j becomes collinear to the initial-state hard radiator particle k

are obtained by exchanging the roles of i and k,

CII,↓
k̂j

= CII,↓
îj

i↔ k, (3.39)

CII,↑
k̂j

= CII,↑
îj

i↔ k. (3.40)

3.3 Algorithm for initial-final antennae

At NLO, we want to construct the initial-final three-particle antenna. There are two types
— identity-preserving and identity-changing.

The identity-preserving antenna functions are denoted by X0
3 (̂ih

a, jb, kh
c ), where the

particle types are denoted by a, b, and c, which carry four-momenta î, j, and k respectively.
Particles a and c should be hard, and the antenna functions must have the correct limits
when particle b is unresolved.

The identity-preserving antenna functions are characterised by three limits: the b soft
limit, the initial-final collinear limit between particles â and b, and the final-final collinear
limit between particles ch and b. We systematically start from the most singular limit, and
build the list of target functions from single-soft and simple-collinear limits,

L1(̂i, j, kh) = Sb(̂i, j, kh), (3.41)
L2(̂i, j, kh) = Pab←a(̂i, j), (3.42)
L3(̂i, j, kh) = Pcb(kh, j). (3.43)

From these limits, we can then construct the antenna by applying the algorithm in
three steps

X0
3;1(̂i, j, kh) = S↑jL1(̂i, j, kh)

X0
3;2(̂i, j, kh) = CIF,↑

îj
(L2(̂i, j, kh)−CIF,↓

îj
X0

3;1(̂i, j, kh)) + X0
3;1(̂i, j, kh)

X0
3;3(̂i, j, kh) = CIF,↑

kj (L3(̂i, j, kh)−CIF,↓
kj X0

3;2(̂i, j, kh)) + X0
3;2(̂i, j, kh)

(3.44)

and then take
X0

3 (̂i, j, kh) ≡ X0
3;3(̂i, j, kh). (3.45)

In particular, this guarantees that

S↓jX0
3 (̂i, j, kh) = L1(̂i, j, kh),

CIF,↓
îj

X0
3 (̂i, j, kh) = L2(̂i, j, kh),

CIF,↓
kj X0

3 (̂i, j, kh) = L3(̂i, j, kh).

(3.46)

Similar equations apply to the identity-preserving X0
3 (kh, j, î) antennae.

The identity-changing antenna functions are denoted by X0
3 (ja, îb, kh

c ), where the
particle types a, b, and c now carry four-momenta j, î, and k respectively. X0

3 (ja, îb, kh
c ) is

characterised by only one non-zero limit: the initial-final collinear limit between particles a

and b̂. Therefore,

L1(j, î, kh) = Pba←A(̂i, j), (3.47)
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and

X0
3 (j, î, kh) ≡ CIF,↑

îj
L1(j, î, kh). (3.48)

Similar equations apply to the identity-changing X0
3 (kh, î, j) antennae.

We use the antenna mapping given in ref. [88] to absorb the unresolved momentum j

into the residual on-shell hard radiators Î and K,

{̂i, j, kh} → {Î , K}.

The invariant mass of the antenna is sijk = s
ÎK
≡ −Q2. The identity-preserving and

identity-changing antennae integrated over the Initial-Final antenna phase space [88, 113]
are given respectively by,

X 0
3 (sÎK

, xi) =
(−s

ÎK

µ2

)−ϵ eϵγ

2Γ(1− ϵ)

(1− xi

xi

)−ϵ ∫ 1

0
dy(1− y)−ϵy−ϵQ2X0

3 , (3.49)

where
xi =

sijk

sik + sij
, y = sik

sik + sij
(3.50)

and
sjk = Q2(1− xi)

xi
, sij = −Q2(1− y)

xi
, sik = −Q2y

xi
. (3.51)

3.4 Algorithm for initial-initial antennae

Initial-initial antennae follow a similar pattern with both identity-preserving and identity-
changing antennae.

The identity-preserving antenna functions are denoted by X0
3 (̂ia, jb, k̂c), where the

particle types are denoted by a, b, and c, which carry four-momenta î, j, and k̂ respectively.
They are characterised by three limits: the b soft limit, the initial-final collinear limit
between particles â and b, and the initial-final collinear limit between particles ĉ and b.

We systematically start from the most singular limit, and build the list of target
functions from single-soft and identity-preserving simple-collinear limits,

L1(̂i, j, k̂) = Sb(̂i, j, k̂), (3.52)
L2(̂i, j, k̂) = Pab←a(̂i, j), (3.53)
L3(̂i, j, k̂) = Pcb←c(k̂, j). (3.54)

From these limits, we can then construct the antenna by applying the algorithm

X0
3;1(̂i, j, k̂) = S↑jL1(̂i, j, k̂)

X0
3;2(̂i, j, k̂) = CII,↑

îj
(L2(̂i, j, k̂)−CII,↓

îj
X0

3;1(̂i, j, k̂)) + X0
3;1(̂i, j, k̂)

X0
3;3(̂i, j, k̂) = CII,↑

k̂j
(L3(̂i, j, k̂)−CII,↓

k̂j
X0

3;2(̂i, j, k̂)) + X0
3;2(̂i, j, k̂)

(3.55)

and then
X0

3 (̂i, j, k̂) = X0
3;3(̂i, j, k̂). (3.56)
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In particular, this guarantees that

S↓jX0
3 (̂i, j, k̂) = L1(̂i, j, k̂)

CII,↓
îj

X0
3 (̂i, j, k̂) = L2(̂i, j, k̂)

CII,↓
k̂j

X0
3 (̂i, j, k̂) = L3(̂i, j, k̂).

(3.57)

Similar equations apply to the identity-preserving X0
3 (k̂, j, î) antennae.

The identity-changing initial-initial antenna functions are denoted by, X0
3 (̂ia, k̂b, jc),

where the particle types a, b, and c now carry four-momenta î, k̂, and j respectively.
X0

3 (̂ia, k̂b, jc) is characterised by only one non-zero limit: the initial-final collinear limit
between particles c and b̂. Therefore,

L1(̂i, k̂, j) = Pbc←C(k̂, j), (3.58)

and

X0
3 (̂i, k̂, j) ≡ CII,↑

k̂j
L1(̂i, k̂, j). (3.59)

Similar equations apply to the identity-changing X0
3 (j, k̂, î) antennae.

We use the antenna mapping given in ref. [88] to absorb the unresolved momentum j

into the residual on-shell hard radiators Î and K̂,

{̂i, j, k̂} → {Î , K̂}.

The invariant mass of the antenna is sijk = s
ÎK̂
≡ Q2. The identity-preserving and identity-

changing antennae integrated over the Initial-Initial antenna phase space [88] are given
by

X 0
3 (sÎK̂

, xi, xk) =
(

s
ÎK̂

µ2

)−ϵ eϵγ

Γ(1− ϵ)J (xi, xk)Q2 X0
3 , (3.60)

where

J (xi, xk) =
xixk(1 + xixk)
(xi + xk)2 (1− xi)−ϵ(1− xk)−ϵ

((1 + xi)(1 + xk)
(xi + xk)2

)−ϵ

(3.61)

with

xi =
√

Q2(sik + sjk)
sik(sij + sik)

, xk =
√

Q2(sij + sik)
sik(sik + sjk)

, (3.62)

and

sijk =Q2, sik =
Q2

xixk
, sij =−Q2 (1−x2

k)
xk(xi+xk)

, sjk =−Q2 (1−x2
i )

xi(xi+xk)
. (3.63)

– 16 –



J
H
E
P
1
2
(
2
0
2
3
)
1
7
1

4 Initial-final antennae

In this section, we apply the algorithm outlined in section 3.3 to construct X0
3 antennae

with initial-final kinematics from the relevant limits and compare them with the antennae
derived from matrix elements given in ref. [88], denoted by X0, OLD

3 . We expect that the
new X0

3 antennae will only differ from the X0, OLD
3 antenna by terms that are not singular

at any point in phase space, or by terms that vanish as ϵ→ 0. In this case, we expect that
the integrated antennae X 0

3 differ from the corresponding integrated antenna X 0, OLD
3 by

terms of O
(
ϵ0) and/or by terms that are regular as xi → 1 (i.e. not distributions).

As indicated in table 2, there are six distinct IP initial-final antennae and four distinct
IC antennae, each accounting for two particle assignments. We note that each Final-Final
antenna configuration gives rise to four Initial-Final antennae — two of Type 1 and two
of Type 2. Therefore, the eight Final-Final configurations listed in table 1 give rise to
thirty-two Initial-Final configurations. Twenty IF configurations are listed in table 2. The
remaining twelve configurations are not needed. They fall into three classes:

1. X0
3 (gh, ĝ, g), X0

3 (g, ĝ, gh), X0
3 (qh, ĝ, g), X0

3 (g, ĝ, q̄h)
The ĝ||g collinear limits are fully contained in the F 0

3,g and D0
3,g antennae.

2. X0
3 (qh, Q̄, Q̂), X0

3 (
̂̄Q, Q, q̄h), X0

3 (gh, Q̄, Q̂), X0
3 (
̂̄Q, Q, gh)

These are IC configurations describing the QQ̄ collinear limit. This limit is entirely
described by the E0

3,Q→g and G0
3,Q→g antennae.

3. X0
3 (q, ̂̄Q, Qh), X0

3 (Q̄h, Q̂, q̄), X0
3 (g, ̂̄Q, Qh), X0

3 (Q̄h, Q̂, g)
The two hard radiators can never be collinear, so these antennae vanish.

When the antenna is built from limits that are simply obtained by crossing, then we
expect that the antenna is also obtained by crossing. This is not always the case for IC
antenna (which only contain one limit) or for IP antenna which contain two collinear gluons.
As discussed earlier, the full final-final g||g collinear limit is obtained by combining two
antenna, one with the gh||g limit and one with the g||gh limit. However, the ĝ||g collinear
limit is contained in a single antenna. Antennae where one of the two colour-connected
gluons is crossed to the initial state are therefore not obtained by crossing.

4.1 Identity-preserving initial-final antennae

As indicated in table 2, there are six identity-preserving antenna: three quark-initiated and
three gluon-initiated.

4.1.1 A0
3,q(îq, jg, kh

q̄ )

Bulding the antenna iteratively according to eq. (3.44) using the list of limits in eq. (3.41),
we find that the three-parton tree-level antenna function with quark-antiquark parents is
given (to all orders in ϵ) by

A0
3,q (̂iq, jg, kh

q̄ ) =
2sik

sijsjk
+ sij(1− ϵ)

sjksijk
+ sjk(1− ϵ)

sijsijk
. (4.1)
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Comparing our result to the corresponding antenna function A0, OLD
3,q derived from matrix

elements given in ref. [88], we find agreement to O (ϵ),

A0, OLD
3,q (̂iq, jg, kq) = A0

3,q (̂iq, jg, kh
q̄ ) +O (ϵ) . (4.2)

We also observe that eq. (4.1) can also be obtained by crossing the A0
3 antenna for final-final

kinematics given in ref. [1].
Integrating eq. (4.1) over the initial-final antenna phase space yields,

A0
3,q(sÎK

, xi) = − 2I(1)
qq̄ (ϵ, s

ÎK
)δ(1− xi) +

(−s
ÎK

µ2

)−ϵ (
− 1
2ϵ

p(0)
qq (xi)

+
(
7
4 −

π2

6

)
δ(1− xi)−

3
4D0(xi) +D1(xi) +

3− xi

2

− 1 + xi

2 log(1− xi)−
1 + x2

i

2(1− xi)
log(xi)

)
+O (ϵ) .

(4.3)

where I(1)
qq̄ is the Catani infrared singularity operator listed in appendix A, p

(0)
qq (x) is the

colour ordered splitting kernel given in appendix B, and we have introduced the distributions

Dn(x) =
( logn(1− x)

1− x

)
+

. (4.4)

Once we correct for the typo (flipped sign on the non-singular part) in ref. [88], this agrees
with the expression for A0, OLD

3,q up to O (ϵ).

4.1.2 D0
3,q(îq, jg, kh

g )

The D0
3,q (̂iq, jg, kh

g ) antenna has singular limits when the unresolved gluon becomes soft, or
becomes collinear to either the initial-state hard radiator quark or final-state hard radiator
gluon. Using the algorithm, we obtain the antenna

D0
3,q (̂iq, jg, kh

g ) =
2sik

sijsjk
+ (1− ϵ)sjk

sijsijk
+ sijsik

sjks2
ijk

. (4.5)

We observe that eq. (4.5) can also be obtained by crossing the D0
3 antenna for final-final

kinematics given in ref. [1]. Compared to the antenna derived from the matrix elements for
neutralino decay in ref. [88] where either gluon could be soft, we find that

D0, OLD
3,q (̂iq, jg, kg) = D0

3,q (̂iq, jg, kh
g ) + D0

3,q (̂iq, kg, jh
g )

+ 4sjk

s2
ijk

+ 5sij

s2
ijk

+ 5sik

s2
ijk

+O (ϵ) .
(4.6)

Apart from the doubling up of antenna due to the requirement that one of the final-
state gluons is hard, the remaining terms like sij/sijk are not singular at any point in
phase space.
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Integrating eq. (4.5) over the initial-final antenna phase space yields

D0
3,q(sÎK

, xi) = − 2I(1)
qg (ϵ, s

ÎK
)δ(1− xi) +

(−s
ÎK

µ2

)−ϵ (
− 1
2ϵ

p(0)
qq (xi)

+
(
67
36 −

π2

6

)
δ(1− xi)−

11
12D0(xi) +D1(xi) +

1
12xi

+ 3− xi

2

− 1 + xi

2 log(1− xi)−
1 + x2

i

2(1− xi)
log(xi)

)
+O (ϵ) .

(4.7)

As expected, this agrees with half of the expression in ref. [88] for D0, OLD
3,q up to non-singular

terms (i.e. terms that are regular as xi → 1) at O
(
ϵ0).

4.1.3 E0
3,q(îq, jQ̄, kh

Q)

The quark-initiated three quark antenna E0
3,q (̂iq, jQ̄, kh

Q) has no soft limit as the unresolved
particle is a quark, but does have a limit when that quark becomes collinear to the final-state
hard anti-quark of the same type. There is no corresponding collinear singularity with the
initial-state quark. Using the algorithm, we obtain the antenna

E0
3,q (̂iq, jQ̄, kh

Q) =
1

sjk
− 2sijsik

sjks2
ijk(1− ϵ) . (4.8)

We observe that eq. (4.8) can also be obtained by crossing the E0
3 antenna for final-final

kinematics given in ref. [1]. Compared to the antenna derived from matrix elements given
in ref. [88], we find that

E0, OLD
3,q (̂iq, jQ̄, kQ) = E0

3,q (̂iq, jQ̄, kh
Q)−

sjk

s2
ijk

− sik

s2
ijk

− sij

s2
ijk

+O (ϵ) . (4.9)

We find agreement up to O (ϵ) plus terms that are not singular at any point in phase space
such as sij/s2

ijk.
Integrating eq. (4.8) over the initial-final antenna phase space yields

E0
3,q(sÎK

, xi) = − 4I(1)
qg,F (ϵ, s

ÎK
)δ(1− xi)

+
(−s

ÎK

µ2

)−ϵ (
−5
9δ(1− xi) +

1
3D0(xi)−

1
6xi
− 1

2

)
+O (ϵ) ,

(4.10)

which agrees with the expression in ref. [88] for E0, OLD
3,q (after correcting a typo D1 → D0)

up to non-singular terms at O
(
ϵ0).

4.1.4 D0
3,g(kh

q , jg, îg)

For the gluon-initiated qgg antenna, D0
3,g(kh

q , jg, îg), there are limits when gluon j goes
collinear to either the initial-state hard gluon or the final-state hard quark. We find

D0
3,g(kh

q , jg, îg) =
2sik

sijsjk
+ 2siksjk

s2
ijksij

+ sij(1− ϵ)
sjksijk

+ 2sjk

sij(sik + sij)
. (4.11)
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This is the first antenna involving the Pgg←G splitting function, and the term proportional to
the momentum fraction zj produces the term with (sik+sij) in the denominator. Comparing
with the antenna derived from matrix elements given in ref. [88], we find that

D0, OLD
3,g (kq, jg, îg) = D0

3,g(kh
q , jg, îg) +

7sjk

s2
ijk

+ 5sij

s2
ijk

+ 5sik

s2
ijk

+O (ϵ) (4.12)

and observe that agree up to terms of O (ϵ) and terms that are not singular over the whole
of phase space. Note that this antenna cannot be obtained by crossing the D0

3 antenna for
final-final kinematics given in ref. [1] because this antenna contains the full îg, jg collinear
limit. Note also the presence of the sik + sij denominator. This is to avoid potential
singularities as sik → 0 and is generated by partial fractioning. The partner term appears
in the flavour-changing D0

3,g→q(jq, îg, kh
g ) antenna discussed in section 4.2.2. A similar split

was also performed in ref. [88].
Integrating eq. (4.11) over the initial-final antenna phase space yields

D0
3,g(sÎK

, xi) = − 2I(1)
qg (ϵ, s

ÎK
)δ(1− xi) +

(−s
ÎK

µ2

)−ϵ (
− 1
2ϵ

p(0)
gg (xi)

+ 2− 1
xi

+D1(xi)−
3
4D0(xi) +

(
7
4 −

π2

6

)
δ(1− xi)

− (1− xi + x2
i )2

xi(1− xi)
log(xi) +

1− 2xi + x2
i − x3

i

xi
log(1− xi)

)
+O (ϵ) ,

(4.13)

which agrees with the expression in ref. [88] up to non-singular terms at O
(
ϵ0).

4.1.5 F 0
3,g(îg, jg, kh

g )

For the three gluon antenna F 0
3,g (̂ih

g , jg, kh
g ), we have limits when the unresolved gluon goes

soft, and when it goes collinear with either the initial-state gluon or final-state hard gluon.
We find

F 0
3,g (̂ig, jg, kh

g ) =
2sik

sijsjk
+ 2siksjk

s2
ijksij

+ sijsik

s2
ijksjk

+ 2sjk

sij(sik + sij)
(4.14)

once again reflecting the presence of the Pgg←G splitting function. Note that this antenna
cannot be obtained by crossing the F 0

3 antenna for final-final kinematics given in ref. [1]
because this antenna contains the full îg, jg collinear limit. Compared to the matrix-element
derived antenna given in ref. [88], where either of the final-state gluons could be soft, we
find that

F 0, OLD
3,g (̂ig, jg, kg) = F 0

3,g (̂ig, jg, kh
g ) + F 0

3,g (̂ig, kg, jh
g )

+ 8sjk

s2
ijk

+ 8sij

s2
ijk

+ 8sik

s2
ijk

+O (ϵ) .
(4.15)

The differences are finite when ϵ→ 0 and are not singular anywhere in phase space.
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Integrating eq. (4.14) over the initial-final antenna phase space yields,

F0
3,g(sÎK

, xi) = − 2I(1)
gg (ϵ, s

ÎK
)δ(1− xi) +

(−s
ÎK

µ2

)−ϵ (
− 1
2ϵ

p(0)
gg (xi)

+
(
67
36 −

π2

6

)
δ(1− xi) +D1(xi)−

11
12D0(xi) + 2− 11

12xi

+ (1− 2xi + x2
i − x3

i )
xi

log(1− xi)−
(1− xi + x2

i )2

xi(1− xi)
log(xi)

)
+O (ϵ) .

(4.16)

As expected, this agrees with half of the expression in ref. [88] for F0, OLD
3,g up to non-singular

terms at O
(
ϵ0).

4.1.6 G0
3,g(îg, jQ̄, kh

Q)

The gluon-initiated antenna function G0
3,g (̂ig, jQ̄, kh

Q) has the same limits as the quark-
initiated antenna E0

3,q (̂ih
q , jQ̄, kh

Q), which means using the algorithm we obtain the same
result for both. We find

G0
3,g (̂ig, jQ̄, kh

Q) =
1

sjk
− 2sijsik

sjks2
ijk(1− ϵ) . (4.17)

We observe that eq. (4.17) can also be obtained by crossing the G0
3 antenna for final-final

kinematics given in ref. [1]. The antenna derived from matrix elements [88] is related to
G0

3,g by

G0, OLD
3,g (̂ig, jQ̄, kQ) = G0

3,g (̂ig, jQ̄, kh
Q)−

sjk

s2
ijk

− 2sik

s2
ijk

− 2sij

s2
ijk

+O (ϵ) (4.18)

and we see they agree up to non-singular terms at O
(
ϵ0) as we would expect.

Integrating eq. (4.14) over the initial-final antenna phase space yields,

G0
3,g(sÎK

, xi) = − 4I(1)
qg,F (ϵ, s

ÎK
)δ(1− xi)

+
(−s

ÎK

µ2

)−ϵ (
−5
9δ(1− xi) +

1
3D0(xi)−

1
6xi
− 1

2

)
+O (ϵ)

(4.19)

which agrees with eq. (4.10). After correcting for typos, this also agrees with the expression
in ref. [88] for G0, OLD

3,g up to non-singular terms at O
(
ϵ0).

4.2 Identity-changing initial-final antennae

As indicated in table 2, there are four identity-changing antenna: two describing gluon to
quark transitions and two describing quark to gluon transitions.

4.2.1 A0
3,g→q(jq, îg, kh

q̄ )

For the identity-changing A0
3,g→q(jq, îg, kh

q̄ ) antenna, the gluon is in the initial state and
when it becomes collinear with the final-state quark, the identity of the initial state changes.
This is the only limit in this antenna, and is controlled by the Pqq̄←G splitting function

– 21 –



J
H
E
P
1
2
(
2
0
2
3
)
1
7
1

where the term proportional to the momentum fraction zj produces a term in the antenna
with (sik + sij) in the denominator. We find

A0
3,g→q(jq, îg, kh

q̄ ) = −
(1− ϵ)sik

sijsijk
− 2sjk

sij(sik + sij)
. (4.20)

The antenna derived from matrix elements in ref. [88] contains limits when the initial-state
gluon is collinear with the final-state quark and the final-state anti-quark. Therefore, we
find that

A0, OLD
3,g→q (jq, îg, kq̄) = A0

3,g→q(jq, îg, kh
q̄ ) + A0

3,g→q(kq̄, îg, jh
q ) +O (ϵ) . (4.21)

Integrating eq. (4.20) over the initial-final antenna phase space yields

A0
3,g→q(sÎK

, xi) =
(−s

ÎK

µ2

)−ϵ (
− 1
2ϵ

p(0)
qg (xi)−

(1
2 − xi + x2

i

)
log

(
xi

1− xi

))
+O (ϵ) .

(4.22)
After correcting for typos, this agrees with half of the expression in ref. [88] for A0, OLD

3,g→q up
to non-singular terms at O

(
ϵ0).

4.2.2 D0
3,g→q(jq, îg, kh

g )

The identity-changing antenna function D0
3,g→q(jq, îg, kh

g ) only has one collinear limit, when
the final-state quark is collinear with the initial-state gluon. This is the same limit as the
A0

3,g→q(jq, îg, kh
q̄ ) antenna, and therefore the algorithm produces the same result,

D0
3,g→q(jq, îg, kh

g ) = −
(1− ϵ)sik

sijsijk
− 2sjk

sij(sik + sij)
. (4.23)

This agrees with the antenna given in ref. [88] up to non-singular terms,

D0, OLD
3,g→q (jq, îg, kg) = D0

3,g→q(jq, îg, kh
g ) +

sik

s2
ijk

+ 2sjk

s2
ijk

+O (ϵ) . (4.24)

Integrating eq. (4.23) over the initial-final antenna phase space yields

D0
3,g→q(sÎK

, xi) =
(−s

ÎK

µ2

)−ϵ (
− 1
2ϵ

p(0)
qg (xi)−

(1
2 − xi + x2

i

)
log

(
xi

1− xi

))
+O (ϵ) ,

(4.25)
which agrees with the expression in ref. [88] for D0, OLD

3,g→q up to non-singular terms at O
(
ϵ0).

4.2.3 E0
3,Q→g(kh

q , îQ̄, jQ)

For the E0
3,Q→g(kh

q , îQ̄, jQ) identity-changing antenna, there is only one limit when the
quarks of the same identity become collinear and form a gluon. Using the algorithm, we
obtain

E0
3,Q→g(kh

q , îQ̄, jQ) = −
1

sij
+ 2siksjk

sijs2
ijk(1− ϵ) (4.26)
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which agrees up to O (ϵ) and non singular terms with the antenna given in ref. [88]. The
same result could be obtained by crossing the E0

3(k, i, j) antenna for final-final kinematics
given in ref. [1].

E0, OLD
3,Q→g (kq, îQ̄, jQ) = E0

3,Q→g(kh
q , îQ̄, jQ) +

sjk

s2
ijk

+ sik

s2
ijk

+ sij

s2
ijk

+O (ϵ) . (4.27)

Integrating eq. (4.26) over the initial-final antenna phase space yields

E0
3,Q→g(sÎK

, xi) =
(−s

ÎK

µ2

)−ϵ
(
− 1
2ϵ

p(0)
gq (xi) + 2− 2

xi
+ (2− 2xi + x2

i )
2xi

log
(1− xi

xi

))
+O (ϵ) ,

(4.28)

which, after fixing typos, agrees with the result for E0, OLD
3,Q→g given in ref. [88] up to non-singular

terms at O
(
ϵ0).

4.2.4 G0
3,Q→g(kh

g , îQ̄, jQ)

The G0
3,Q→g(kh

g , îQ̄, jQ) identity-changing antenna function has the same limit when the
two same flavour quarks become collinear as the E0

3,Q→g(kh
q , îQ̄, jQ) antenna. Therefore, we

find that the two antennae are equivalent,

G0
3,Q→g(kh

g , îQ̄, jQ) = −
1

sij
+ 2siksjk

sijs2
ijk(1− ϵ) . (4.29)

The same result could be obtained by crossing the G0
3 antenna for final-final kinematics

given in ref. [1].
Comparing with the antenna given in ref. [88],

G0, OLD
3,Q→g(kg, îQ̄, jQ) = G0

3,Q→g(kh
g , îQ̄, jQ) +

sij

s2
ijk

+ 2sik

s2
ijk

+ 2sjk

s2
ijk

+O (ϵ) (4.30)

we see that they agree up to up to O (ϵ) and non singular terms.
Integrating eq. (4.29) over the initial-final antenna phase space yields

G0
3,Q→g(sÎK

, xi) =
(−s

ÎK

µ2

)−ϵ
(
− 1
2ϵ

p(0)
gq (xi) + 2− 2

xi
+ (2− 2xi + x2

i )
2xi

log
(1− xi

xi

))
+O (ϵ) ,

(4.31)

which agrees with the result for G0, OLD
3,Q→g given in ref. [88] up to non-singular terms at O

(
ϵ0).

5 Initial-initial antennae

In this section, we apply the algorithm outlined in section 3.4 to construct X0
3 antennae

with initial-initial kinematics from the relevant limits and compare them with the antennae
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derived from matrix elements given in ref. [88], denoted by X0, OLD
3 . We expect that the

new X0
3 antennae will only differ from the X0, OLD

3 antenna by terms that are not singular
at any point in phase space, or by terms that vanish as ϵ→ 0. In this case, we expect that
the integrated antennae X 0

3 differ from the corresponding integrated antenna X 0, OLD
3 by

terms of O
(
ϵ0).

As indicated in table 3, there are three distinct IP initial-final antennae and four distinct
IC antennae. We note that each Final-Final antenna configuration gives rise to three Initial-
Initial antennae — one of Type 1 and two of Type 2. Therefore, the eight Final-Final
configurations listed in table 1 give rise to twenty-four Initial-Initial configurations. Twelve
configurations are listed in table 3. The remaining twelve configurations are not needed.
They fall into three classes:

1. X0
3 (ĝ, ĝ, g), X0

3 (g, ĝ, ĝ), X0
3 (q̂, ĝ, g), X0

3 (g, ĝ, ̂̄q)
The ĝ||g collinear limits are fully contained in the F 0

3,gg and D0
3,qg antennae.

2. X0
3 (q̂, Q̄, Q̂), X0

3 (
̂̄Q, Q, ̂̄q), X0

3 (ĝ, Q̄, Q̂), X0
3 (
̂̄Q, Q, ĝ)

These are IC configurations describing the QQ̄ collinear limit. This limit is entirely
described by the E0

3,qQ→qg and G0
3,gQ→gg antennae.

3. X0
3 (q, ̂̄Q, Q̂), X0

3 (
̂̄Q, Q̂, q̄), X0

3 (g, ̂̄Q, Q̂), X0
3 (
̂̄Q, Q̂, g)

The two hard radiators can never be collinear, so these antenna vanish.

As in the Initial-Final case, when the antenna is built from limits that are simply
obtained by crossing, then we expect that the antenna is also obtained by crossing. This is
not always the case for IC antenna (which only have one limit) or for IP antennae which
contain a collinear gh||g limit. As discussed earlier, the full final-final g||g collinear limit is
obtained by combining two antenna, one with the gh||g limit and one with the g||gh limit.
However, the ĝ||g collinear limit is contained in a single antenna. Antennae containing
partonic configurations where one of the two colour connected gluons is crossed to the initial
state are therefore not obtained by crossing.

5.1 Identity-preserving initial-initial antennae

As indicated in table 3, there are three identity-preserving antenna.

5.1.1 A0
3,qq̄(îq, jg, k̂q̄)

The qgq̄ antenna with the quark and antiquark in the initial state has limits when the gluon
is soft, or collinear with either of the initial-state particles. Using the algorithm, we obtain

A0
3,qq̄ (̂iq, jg, k̂q̄) =

2sik

sijsjk
+ sjk(1− ϵ)

sijsijk
+ sij(1− ϵ)

sjksijk
(5.1)

which agrees with the antenna given in ref. [88] up to O (ϵ),

A0, OLD
3,qq̄ (̂iq, jg, k̂q̄) = A0

3,qq̄ (̂iq, jg, k̂q̄) +O (ϵ) . (5.2)

We also observe that eq. (5.1) can also be obtained by crossing the A0
3 antenna for final-final

kinematics given in ref. [1].
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Integrating eq. (5.1) over the initial-initial antenna phase space yields

A0
3,qq̄(sÎK̂

,xi,xk)=−I(1)
qq̄ (ϵ,s

ÎK̂
)δ(1−xi)δ(1−xk)+

(
s

ÎK̂

µ2

)−ϵ(
− 1
2ϵ

p(0)
qq (xi)δ(1−xk)

+δ(1−xi)D1(xk)+
π2

4 δ(1−xi)δ(1−xk)+
1
2D0(xi)D0(xk)−

1+xk

2 D0(xi)

+

(1−xi)2+(1−xi)2 log
(

2
1−x2

i

)
−2x2

i log
(

1+xi

2

)
2(1−xi)

δ(1−xk)

+Y1(xi,xk)−Y1(xi,1)−Y1(1,xk)+Y1(1,1)
2(1−xi)(1−xk)

+(xi↔xk)
)
+O (ϵ) , (5.3)

where

Y1(xi, xk) =
(1 + xixk)(2xixk(xi + xk)2 + x2

k(1− x2
i )2 + x2

i (1− x2
k)2)

(xi + xk)2(1 + xi)(1 + xk)
. (5.4)

Note that the last term in eq. (5.3) is clearly regular as xi → 1 or xk → 1. We also note
that eq. (5.3) agrees with the result given in ref. [88] to O (ϵ).

5.1.2 D0
3,qg(îq, jg, k̂g)

The qgg antenna with the quark and the colour-unconnected gluon (k) in the initial state has
limits when the colour connected gluon (j) is soft, or collinear with either of the initial-state
particles. Applying the algorithm yields

D0
3,qg (̂iq, jg, k̂g) =

2sik

sijsjk
+ sjk(1− ϵ)

sijsijk
+ 2sij

siksjk
+ 2sijsik

sjks2
ijk

. (5.5)

This antenna cannot be obtained by crossing the D0
3 antenna for final-final kinematics given

in ref. [1] because it includes the full ĝg collinear limit, rather than the ghg collinear limit.
Comparing with the antenna given in ref. [88]

D0, OLD
3,qg (̂iq, jg, k̂g) = D0

3,qg (̂iq, jg, k̂g) +
sjk

siksijk
+ 4sjk

s2
ijk

+ 5sij

s2
ijk

+ 5sik

s2
ijk

+O (ϵ) , (5.6)

we see that they agree up to O (ϵ) and non-singular terms.
Integrating eq. (5.5) over the initial-initial antenna phase space yields

D0
3,qg(sÎK̂

,xi,xk)=−2I(1)
qg (ϵ,s

ÎK̂
)δ(1−xi)δ(1−xk)+

(
s

ÎK̂

µ2

)−ϵ(
− 1
2ϵ

p(0)
qq (xi)δ(1−xk)

− 1
2ϵ

p(0)
gg (xk)δ(1−xi)+

π2

2 δ(1−xi)δ(1−xk)+δ(1−xk)D1(xi)

+δ(1−xi)D1(xk)+
(
1−xi

2 +
log( 2

1+xi
)

1−xi
− 1+xi

2 log
(2(1−xi)

1+xi

))
δ(1−xk)

+

 log( 2
1+xk

)
1−xk

−
(x3

k−x2
k+2xk−1) log

(
2(1−xk)

1+xk

)
xk

δ(1−xi)−
1+xi

2 D0(xk)

+
(
−x2

k+xk−2+
1

xk

)
D0(xi)+D0(xi)D0(xk)

Y2(xi,xk)−Y2(xi,1)−Y2(1,xk)+Y2(1,1)
(1−xi)(1−xk)

)
+O (ϵ) , (5.7)
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where

Y2(xi, xk) =
(1 + xixk)(xix

3
k(1− x2

i )2 + 2x2
i (1 + x2

i x2
k)(1− x2

k)2 + 2x2
i x2

k(xi + xk)2)
(xi + xk)2(1 + xi)(1 + xk)xixk

. (5.8)

This agrees with the result of ref. [88] up to non-singular terms at O
(
ϵ0).

5.1.3 F 0
3,gg(îg, jg, k̂g)

The ggg antenna with two colour-unconnected gluons (i and k) in the initial state has limits
when the colour connected gluon (j) is soft, or collinear with either of the initial-state
gluons. The antenna constructed from these limits is given by

F 0
3,gg (̂ig, jg, k̂g) =

2sik

sijsjk
+ 2sjk

sijsik
+ 2sjksik

sijs2
ijk

+ 2sij

siksjk
+ 2sijsik

sjks2
ijk

. (5.9)

Just as with the D0
3,qg antenna, this antenna cannot be obtained by crossing the F 0

3 antenna
for final-final kinematics given in ref. [1] because it includes the full ĝg collinear limit, rather
than the ghg collinear limit. Comparing with the antenna given in ref. [88],

F 0, OLD
3,gg (̂ig, jg, k̂g) = F 0

3,gg (̂ig, jg, k̂g) +
2sjksij

siks2
ijk

+ 8sik

s2
ijk

+ 8sjk

s2
ijk

+ 8sij

s2
ijk

+O (ϵ) (5.10)

we see that they agree up to O (ϵ) and non-singular terms.
Integrating eq. (5.9) over the initial-initial antenna phase space yields

F0
3,gg(sÎK̂

,xi,xk)=−I(1)
gg (ϵ,sÎK̂

)δ(1−xi)δ(1−xk)+
(

s
ÎK̂

µ2

)−ϵ(
− 1
2ϵ

p(0)
gg (xi)δ(1−xk)

+δ(1−xi)D1(xk)+
π2

4 δ(1−xi)δ(1−xk)

−
(

x2
k−xk+2− 1

xk

)
log
(2(1−xk)

1+xk

)
δ(1−xi)+

log
(

2
1+xk

)
1−xk

δ(1−xi)

−
(

x2
k−xk+2− 1

xk

)
D0(xi)+

1
2D0(xi)D0(xk)

+Y3(xi,xk)−Y3(xi,1)−Y3(1,xk)+Y3(1,1)
2(1−xi)(1−xk)

)
+(xi↔xk)+O (ϵ) ,

(5.11)

where

Y3(xi, xk) =
(1 + xixk)(x2

i x2
k(xi + xk)2 + 2x2

i (1 + x2
i x2

k)(1− x2
k)2)

xixk(1 + xi)(1 + xk)(xi + xk)2 + (xi ↔ xk). (5.12)

This agrees with the result of ref. [88] up to non-singular terms at O
(
ϵ0).

5.2 Identity-changing initial-initial antennae

As indicated in table 3, there are four identity-changing initial-initial antenna: two describing
quark to gluon transitions and two describing quark to gluon transitions.
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5.2.1 A0
3,qg→qq̄(îq, k̂g, jq̄)

The identity-changing qgq̄ antenna, A0
3,qg→qq̄ (̂iq, k̂g, jq̄), only has a limit when the final-state

quark is collinear with the initial-state gluon. The algorithm yields

A0
3,qg→qq̄ (̂iq, k̂g, jq̄) = −

sik(1− ϵ)
sijksjk

− 2sij

siksjk
. (5.13)

Comparing to the antenna of ref. [88]

A0, OLD
3,qg→qq̄ (̂iq, k̂g, jq̄) = A0

3,qg→qq̄ (̂iq, k̂g, jq̄)−
sjk

sijksik
+O (ϵ) , (5.14)

we see the difference is either higher order in ϵ or terms that are non-singular in phase
space like 1

sik
. In this configuration, sik cannot go to zero as both particles i and k are in

the initial state.
Integrating eq. (5.13) over the initial-initial antenna phase space yields

A0
3,qg→qq̄(sÎK̂

,xi,xk)=
(

s
ÎK̂

µ2

)−ϵ(
− 1
2ϵ

p(0)
qg (xk)δ(1−xi)+

2x2
k−2xk+1

2 D0(xi)

+
(1
2+

2x2
k−2xk+1

2 log
(2(1−xk)

1+xk

))
δ(1−xi)+

Y4(xi,xk)−Y4(1,xk)
1−xi

)
+O (ϵ) ,

(5.15)

where

Y4(xi, xk) =
xi(1 + xixk)(−2x2

i xk(1− x2
k) + (xi + xk))

(xi + xk)2(1 + xi)
. (5.16)

This agrees with the result of ref. [88] up to non-singular terms at O
(
ϵ0).

5.2.2 D0
3,gg→gq(jq, k̂g, îg)

The identity-changing D0
3,gg→gq(jq, k̂g, îg) antenna only has a limit when the final-state

quark is collinear with the adjacent initial-state gluon k. This leads to

D0
3,gg→gq(jq, k̂g, îg) = −

sik(1− ϵ)
sijksjk

− 2sij

siksjk
. (5.17)

This is precisely the same as eq. (5.13), because it has the same collinear limit in which the
initial-state particle transitions from a gluon to a quark. The corresponding antenna in
ref. [88] includes the collinear limits of the quark with either initial-state gluon, so that

D0, OLD
3,gg→gq̄(jq, îg, k̂g) = D0

3,gg→gq(jq, k̂g, îg) + D0
3,gg→gq(jq, îg, k̂g)

− 2sjksij

siks2
ijk

− 5sjk

s2
ijk

− 5sij

s2
ijk

− 4sik

s2
ijk

+O (ϵ) .
(5.18)
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Integrating eq. (5.17) over the initial-initial antenna phase space yields

D0
3,gg→gq̄(sÎK̂

,xi,xk)=
(

s
ÎK̂

µ2

)−ϵ(
− 1
2ϵ

p(0)
qg (xk)δ(1−xi)+

2x2
k−2xk+1

2 D0(xi)

+
(1
2+

2x2
k−2xk+1

2 log
(2(1−xk)

1+xk

))
δ(1−xi)+

Y4(xi,xk)−Y4(1,xk)
1−xi

)
+O (ϵ) ,

(5.19)

with Y4 given in eq. (5.16). This agrees with the result of ref. [88] up to non-singular terms
at O

(
ϵ0).

5.2.3 E0
3,qQ→qg(îq, k̂Q̄, jQ)

The identity-changing E0
3,qQ→qg (̂iq, k̂Q̄, jQ) antenna only has a limit when the final-state

quark is collinear with the initial-state quark of the same flavour, and is described by the
Pgq←Q splitting function. Applying the algorithm yields

E0
3,qQ→qg (̂iq, k̂Q̄, jQ) = −

1
sjk

+ 2siksij

sjks2
ijk(1− ϵ) . (5.20)

This is identical to the G0
3,gQ→gg antenna, since it describes the same limit. It agrees with

the antenna of ref. [88] up to O (ϵ) and non-singular terms,

E0, OLD
3,qQ→qg (̂ig, k̂Q̄, jQ) = E0

3,qQ→qg (̂ig, k̂Q̄, jQ) +
sij

s2
ijk

+ sjk

s2
ijk

+ sik

s2
ijk

+O (ϵ) . (5.21)

Eq. (5.20) can also be obtained by crossing eq. (4.26) with the exchange i← k.
Integrating eq. (5.20) over the initial-initial antenna phase space yields

E0
3,qQ→qg(sÎK̂

, xi, xk) =
(

s
ÎK̂

µ2

)−ϵ (
− 1
2ϵ

p(0)
gq (xk)δ(1− xi)

+
2xk − 2 + (2− 2xk + x2

k)log
(

2(1−xk)
1+xk

)
2xk

δ(1− xi)

+ x2
k − 2xk + 2

2xk
D0(xi) +

Y5(xi, xk)− Y5(1, xk)
(1− xi)

)
+O (ϵ) ,

(5.22)

where
Y5(xi, xk) =

(1 + xixk)(x2
i x2

k(xi + xk) + 2xi(1− x2
k))

xk(xi + xk)2(1 + xi)
. (5.23)

This agrees with the result of ref. [88] up to non-singular terms at O
(
ϵ0).

5.2.4 G0
3,gQ→gg(îg, k̂Q̄, jQ)

The identity-changing G0
3,gQ→gg (̂ig, k̂Q̄, jQ) antenna only has a limit when the final-state

quark is collinear with the initial-state quark of the same flavour. Applying the algo-
rithm yields

G0
3,gQ→gg (̂ig, k̂Q̄, jQ) = −

1
sjk

+ 2siksij

sjks2
ijk(1− ϵ) . (5.24)
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This is identical to the E0
3,qQ→qg antenna, since it describes the same limit and agrees with

the antenna of ref. [88] up to O (ϵ) and non-singular terms,

G0, OLD
3,gQ→gg (̂ig, k̂Q̄, jQ) = G0

3,gQ→gg (̂ig, k̂Q̄, jQ) +
sjk

s2
ijk

+ 2sij

s2
ijk

+ 2sik

s2
ijk

+O (ϵ) . (5.25)

Eq. (5.24) can also be obtained by crossing eq. (4.29) with the exchange i← k.
Integrating eq. (5.24) over the initial-initial antenna phase space yields

G0
3,gQ→gg(sÎK̂

, xi, xk) =
(

s
ÎK̂

µ2

)−ϵ (
− 1
2ϵ

p(0)
gq (xk)δ(1− xi)

+
2xk − 2 + (2− 2xk + x2

k)log
(

2(1−xk)
1+xk

)
2xk

δ(1− xi)

+ x2
k − 2xk + 2

2xk
D0(xi) +

Y5(xi, xk)− Y5(1, xk)
(1− xi)

)
+O (ϵ) ,

(5.26)

with Y5 given in eq. (5.23). This agrees with the result of ref. [88] up to non-singular terms
at O

(
ϵ0).

6 Validation

In this section we revisit our earlier assertion that the collinear limits of matrix elements can
be correctly described by the antenna functions based on spin-averaged splitting functions.
We focus on the NLO subtraction terms S for the gg → gggg and qg → gggq processes when
only three jets are visible in the final state. We consider the ratio R = |M |2/S and examine
the deviation of R from unity in the unresolved region. As we approach any unresolved
region, R should approach 1. Figure 1 shows the logarithmic distribution of the absolute
value of 1− R for both final-final and initial-final kinematics. In each case, we show the
result when two gluons are collinear (and where azimuthal effects may be expected) and
when a quark and gluon are collinear (in which case we do not expect any azimuthal effects).
The approach to the collinear limit is controlled by a variable x, such that the collinear
invariant |sij | = xs12. The smaller the value of x, the closer one approaches the collinear
limit. In all plots, the dashed lines shows the result obtained using the phase space point,
while the solid lines show the effect of combining the original phase space point with one
rotated by π/2 about the collinear direction.

Let us first focus on the lower plots. In both FF and IF configurations we observe that
the qg collinear limit is described very well. The effect of azimuthal averaging is completely
negligible. This is exactly as expected. The azimuthal terms are produced when a spin-one
gluon splits into either a qq̄ or gg pair. There are no azimuthal terms when a q splits into a
qg pair. Furthermore, we see that as x gets smaller, R gets closer to unity. The peak in the
distribution moves left by roughly one unit for each factor of 1/10 in x.

On the other hand, the upper plots show something rather different. Focussing first on
the dashed lines, which represent the subtraction term at a given phase space point, we see
that R does not approach unity for smaller values of x. In fact the subtraction term is a
poor representation of the matrix element for all x values. This is the case for both FF and
IF configurations.
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Figure 1. The deviation of the ratio R from unity is shown for two collinear gluons (upper frames)
and a collinear quark-gluon pair (lower frames) in the final-final configuration (left frames) and
initial-final configuration (right frames) for three values of the scaling parameter x. The solid
(dashed) lines show the result combining (not-combining) phase space points related by an azimuthal
rotation of π/2.

On the other hand, once the azimuthally related points are included, the subtraction
term does successfully reproduce the matrix elements. We see that the smaller the value of
x, the better the subtraction term agrees with the matrix element. Again, this is the case
for both FF and IF configurations. In fact, with this trick of combining azimuthal pairs, we
see that the gg collinear limit is better in the sense that the subtraction term is closer to
the matrix elements for the gg collinear limit than for the qg collinear limit.

7 Outlook

We have extended the algorithm for constructing real-radiation antenna functions directly
from their desired unresolved limits, as described in ref. [1], to include scenarios where
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one or both of the hard radiators are in the initial state. With this advancement, we
derived a comprehensive set of single unresolved initial-final and initial-initial antennae
for massless partons. We provide expressions for all the antennae and their integrated
forms over the relevant antenna phase space. We expect that the generalisation to massive
partons is straightforward. We demonstrated numerically that the antennae based on spin-
averaged collinear splitting functions do describe the collinear limits of single unresolved
multi-particle matrix elements, once pairs of events rotated by π/2 about the collinear
direction are combined. Our work marks a significant step towards a more streamlined
antenna subtraction scheme at NNLO and beyond, capable of calculating higher-order QCD
corrections to exclusive collider observables involving partons in the initial state.

Unlike the case when all hard radiators are in the final state, ensuring that the algorithm
only generates denominators corresponding to physical propagators becomes challenging
for initial-final antennae. Careful attention is required to avoid introducing singularities
in the antennae when the initial-state and final-state hard radiators become collinear.
This leads to the appearance of composite denominators, but it does facilitate a clear
separation between flavor-preserving and flavor-changing antennae. Nonetheless, the single
unresolved antennae presented here can be integrated analytically, which is a key feature of
the antenna-subtraction method. In all instances, we observe consistent agreement with
the single unresolved antennae presented in ref. [88], up to terms that remain finite in
the unresolved regions for the unintegrated antennae, and up to terms of O

(
ϵ0) for the

integrated antennae.
The focus of the algorithm on singular limits leads to a reduction in the number

of single unresolved antennae needed at NLO. There are 22 possible antennae listed in
tables 1, 2 and 3. For the fully differential (unintegrated) antennae, this can be reduced to
ten independent functions — four Final-Final (A0

3, D0
3, E0

3 , F 0
3 ), three Initial-Final (two

identity-preserving D0
3,g, F 0

3,g and one identity-changing A0
3,g→q) and three Initial-Initial

(two identity-preserving D0
3,qg, F 0

3,gg and one identity-changing A0
3,qg→qq̄). As listed in

table 4, the other 12 are either equivalent or can be obtained by crossing.
Once the integration over the antenna phase space is performed, then we need sixteen

functions: four Final-Final (A0
3, D0

3, E0
3 , F0

3 ), seven Initial-Final (five identity-preserving
A0

3,q, D0
3,q, E0

3,q, D0
3,g, F0

3,g and two identity-changing A0
3,g→q, E0

3,Q→g) and five Initial-
Initial (three identity-preserving A0

3,qq̄,D0
3,qg, F0

3,gg and two identity-changing A0
3,qg→qq̄

and E0
3,qQ→qg).

Since a large part of the NNLO subtraction term consists of products of X0
3 and/or X 0

3
antennae, we expect that the size of the subtraction term constructed using the new X0

3
and X 0

3 antenna will be reduced.
We anticipate that the technique presented here for building antenna functions with

radiators in the initial state directly from the required limits, along with the constructed
antenna functions, will not only simplify the antenna-subtraction framework significantly,
paving the way for full automation, but will also find applications in parton showers and their
matching to NNLO calculations. The ability to directly integrate the antennae contributes
to the versatility and efficiency of the approach, making it a valuable tool for future studies
in precision collider phenomenology.
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Final-Final Antennae
G0

3 ≡ E0
3

Initial-Final Antennae
A0

3,q crossing of A0
3

D0
3,q crossing of D0

3
E0

3,q crossing of E0
3

G0
3,g ≡ E0

3,q

D0
3,g→q ≡ A0

3,g→q

E0
3,Q→g crossing of E0

3
G0

3,Q→g ≡ E0
3,Q→g

Initial-Initial Antennae
A0

3,qq̄ crossing of A0
3

D0
3,gg→gq ≡ A0

3,qg→qq̄

E0
3,qQ→qg crossing of E0

3,Q→g

G0
3,gQ→gg ≡ E0

3,qQ→qg

Table 4. The relationship between the full set of three particle antennae and the ten indepen-
dent antennae.
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A Colour-Ordered Infrared Singularity Operators

The colour-ordered infrared singularity operators are as in [114].

I(1)
qq̄ (ϵ, s) = − eϵγ

2Γ(1− ϵ)

( 1
ϵ2 + 3

2ϵ

)
R((−s)−ϵ),

I(1)
qg (ϵ, s) = − eϵγ

2Γ(1− ϵ)

( 1
ϵ2 + 5

3ϵ

)
R((−s)−ϵ),

I(1)
gg (ϵ, s) = − eϵγ

2Γ(1− ϵ)

( 1
ϵ2 + 11

6ϵ

)
R((−s)−ϵ),

I(1)
qq̄,F (ϵ, s) = 0,

I(1)
qg,F (ϵ, s) = eϵγ

2Γ(1− ϵ)
1
6ϵ
R((−s)−ϵ),

I(1)
gg,F (ϵ, s) = eϵγ

2Γ(1− ϵ)
1
3ϵ
R((−s)−ϵ).

(A.1)
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B Colour-ordered splitting kernels

The colour ordered splitting kernels are given by [88],

p(0)
qq (x) =

3
2δ(1− x) + 2D0(x)− 1− x,

p(0)
qg (x) = 1− 2x + 2x2,

p(0)
gq (x) =

2
x
− 2 + x,

p(0)
gg (x) =

11
6 δ(1− x) + 2D0(x) +

2
x
− 4 + 2x− 2x2,

p
(0)
gg,F (x) = −

1
3δ(1− x).

(B.1)
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