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1 Introduction

In gauge and gravity theories, Feynman diagrams give rise to tensor integrals. Practical
computations are often organised by first projecting these tensor integrals onto scalar
integrals. For the latter, powerful integration by parts methods [1–3] can be employed,
reducing them to linear combinations of a smaller set of master integrals.

Passarino and Veltman introduced a general technique for the reduction of tensor
integrals to scalar integrals in their seminal publication of ref. [4]. Their method has found
countless applications since its invention. However, it involves inverting systems of equations
which rapidly become intractable as the rank of the tensors increases. This poses a challenge
for computations of scattering amplitudes for processes with a large number of external
particles and at high loop orders.

Various techniques have been developed as alternatives to the Passarino-Veltman
method. At one-loop, the symmetric structure of tensor integrals has enabled the de-
velopment of very efficient reduction methods [5–10]. In addition, at one-loop, a refined
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understanding of the integrand structure of gauge theory amplitudes [11–25] has revo-
lutionised their reduction to master integrals both at a conceptual and at a practical
level. An ambitious research programme at two loops has already lead to remarkable
breakthroughs [26–34]. The aforementioned tensor integral and amplitude reduction meth-
ods, not only achieve a reduction to scalar integrals, but they also achieve a reduction to
master integrals.

Other methods which cast arbitrary tensor integrals as generic scalar integrals (that,
in turn, need to be further reduced with integration by parts or other methods to master
integrals) exploit the functional form of momentum and parametric representations [35, 36]
of tensor integrals. For amplitudes, methods to select external states of definite helicity can
be very efficient, as it has been shown in the recent works of ref. [37] and refs. [38, 39]. For
unpolarised scattering, one can avoid a reduction of tensors to scalar integrals by computing
squared amplitudes summed over spins and polarisations of external particles, as they
appear in cross-sections.

The Passarino-Veltman method has been superseded by all such other methods in a
broad range of applications within particle physics phenomenology. For instance, as far
as we are aware, no direct computation of tensor integrals in amplitudes for scattering
processes involving four or more external particles has been pursued with a Passarino-
Veltman reduction beyond one loop. Such challenging computations have been carried
out with alternative methods (see, for example, [40–45]). However, we will show that the
Passarino-Veltman method can be simplified. We believe that the improved method is
competitive for cutting-edge multi-loop computations in perturbation theory.

An efficient Passarino-Veltman reduction method is valuable for a wide range of
applications. This method can be used to disentangle loop integrations and spinor algebra,
with the possibility of carrying out integrals fully in D = 4 − 2ϵ dimensions. This, in
turn, enables the treatment of four or D-dimensional external states and γ5 in various
prescriptions and regularization schemes flexibly. With the Passarino-Veltman method,
one can tackle tensor integrals that do not necessarily originate from contractions with
spin gamma matrices. Such tensor integrals emerge, for example, in asymptotic expansions
around various kinematic limits, such as small momenta. Tensor integrals also emerge in
fields of physics beyond particle physics (see an example in the evaluation of cosmological
correlators for the Large Scale Structure of the universe in ref. [46]).

In this article, we present a closed-form solution to the inversion problem in the
Passarino-Veltman reduction. Our derivation is based on the observation that all possible
tensor structures which may emerge in the tensor reduction of a general tensor integral can
be identified through a properly defined ordering of operators associated with tensor indices.
We project tensor integrals onto scalar integrals with a compact formula that comprises
three structures:

1. Metric tensors which are transverse to external momenta.

2. Tensors which are orthogonal to products of transverse metric tensors. These have
been introduced in ref. [47] for the tensor reduction of multi-loop tadpole integrals.
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3. Linear combinations of momenta that are orthogonal to the external momenta. This
construction was originally developed by van Neerven and Vermaseren in ref. [48]
for the reduction of four-dimensional one-loop integrals with five or more external
particles to box integrals. More recently, it has been invoked in methods for reduction
to master integrals of one-loop amplitudes, see for example refs. [14, 24], and two-loop
amplitudes with the method of ref. [26]. It has also been used for the projection to
helicity amplitudes in ref. [38].

All terms of the projection are generated efficiently in a closed form, with operations
analogous to contractions in applying Wick’s theorem for the time-ordering of bosonic free
field operators.

Our method provides an analytical solution to the large set of equations in the Passarino-
Veltman system. This tensor reduction technique is universally applicable, being identical
for all integrals with the same tensor rank and external momenta. Moreover, it remains
independent of other integral-specific characteristics, such as the integral’s topology, at
fixed rank and number of external momenta.

Our article is organised as follows. In section 2, we describe the relation between
conventionally used tensor elements, which form a basis for the Passarino-Veltman reduction,
and an ordering of operators that we attribute to the tensor indices. In section 3, we
introduce a metric that is transverse to the space of external momenta and dual elements
for external momentum vectors and products of transverse metrics. With these ingredients,
we build two dual bases which we use for the tensor reduction. We present our main
result for the Passarino-Veltman reduction of generic tensor integrals in closed form in
section 4. In section 5, we demonstrate the application of our formula to tensors up to
rank seven, corresponding to QCD Feynman diagrams with four external partons through
a perturbative order of three loops. Finally, we summarise our work and present our
conclusions in section 6.

2 Algebraic analogy of tensor reduction and the application of Wick’s
theorem in ordering operators

A general tensor loop integral of rank R in D space-time dimensions has the form

Iµ1...µR ≡
∫

dDk1 . . . dDkL τµ1...µR ({ki}) f
(
{ki}, p1, . . . , pNp

)
. (2.1)

f is a scalar function which depends on Np independent external momenta pi, and τ is
a rank-R tensor which is a linear combination of products of the loop momenta. It can
be easily seen, for example [36] in Feynman or Schwinger parameter representations, that
tensor integrals can be written as a superposition of all independent rank-R tensors which
can be built by multiplying external momentum vectors and/or the metric. Generically,
we write

Iµ1...µR =
∑

a

Ia T µ1...µR
a

(
ηαβ , pα

i

)
. (2.2)

The tensors T µ1...µR
a represent all such independent possible tensors of rank R of the metric

and external momenta. The coefficients Ia are scalar integrals which are amenable to further
reduction with techniques such as integration by parts [1–3].
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Expressing the tensor integral as a superposition of scalar integrals and deriving the
coefficients Ia is an often daunting linear algebra task. For a rank-R tensor and Np
independent external momenta, tensor reduction generates

Ntensors =
⌊R

2 ⌋∑
n=0

R!
2n n!(R − 2n)! NR−2n

p (2.3)

terms in total, where ⌊x⌋ = max{m ∈ Z|m ≤ x} is the floor function. For example, in
two-loop 2 → 2 scattering amplitudes we require R = 5, Np = 3, which results in 558 terms.
For R = 6, Np = 4 in 2 → 3 two-loop processes we have 8671 terms and, by adding one more
loop, for R = 8, Np = 4 we have 240809 terms. In regular Passarino-Veltman reduction, this
produces a system of Ntensors equations that requires the inversion of an Ntensors × Ntensors
matrix in order to derive the coefficients Ia.

There is an algebraic way to list all the tensor elements (products of metric tensors
and external momentum vectors) which appear in the typical basis of Passarino-Veltman
reduction. For concreteness, let us consider the outcome of tensor reduction of a rank-4
tensor integral. This has the form

Iµ1µ2µ3µ4 =
Np∑

i1,i2,i3,i4=1
c

(0)
i1i2i3i4

pµ1
i1

pµ2
i2

pµ3
i3

pµ4
i4

+ ηµ1µ2

Np∑
i3,i4=1

c
(12)
i3i4

pµ3
i3

pµ4
i4

+ ηµ1µ3

Np∑
i2,i4=1

c
(13)
i2i4

pµ2
i2

pµ4
i4

+ ηµ1µ4

Np∑
i2,i3=1

c
(14)
i2i3

pµ2
i2

pµ3
i3

+ ηµ2µ3

Np∑
i1,i4=1

c
(23)
i1i4

pµ1
i1

pµ4
i4

+ ηµ2µ4

Np∑
i1,i3=1

c
(24)
i1i3

pµ1
i1

pµ3
i3

+ ηµ3µ4

Np∑
i1,i2=1

c
(34)
i1i2

pµ1
i1

pµ2
i2

+ c(12,34)ηµ1µ2ηµ3µ4 + c(13,24)ηµ1µ3ηµ2µ4 + c(14,23)ηµ1µ4ηµ2µ3 . (2.4)

We would like to generate the list of all tensors{
pµ1

i1
pµ2

i2
pµ3

i3
pµ4

i4
, pµ1

i1
pµ2

i2
ηµ3µ4 , . . . , ηµ1µ2ηµ3µ4 , . . .

}
(2.5)

in the right-hand side of eq. (2.4).
We consider all independent vectors pµa

i and we associate to their sum an index operator
a which indicates the index µa,

Np∑
i=1

pµa
i → a . (2.6)

This assignment defines an ordering of the indices µa. Explicitly,

Np∑
i=1

pµ1
i → 1 ,

Np∑
i=1

pµ2
i → 2 , etc. (2.7)

We now attribute to the index operators a commutator

[a, b] ≡ ab = ηµaµb (2.8)
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and an ordering operation
T (a1a2 · · · ) , (2.9)

where, using the commutation of eq. (2.8), we bring operators ai with a larger tensor-index
label to the left, in front of operators with a smaller tensor-index label. For example,

T (1234) = T (2134) + 12 T (34)

= T (2314) + 13 T (24) + 12 (43) + 12 34

= T (2341) + 14 T (23) + 13 (42) + 1324

+12 (43) + 12 34
= . . .

= (4321) + 12 (43) + 13 (42) + 23 (41)

+14 (32) + 24 (31) + 34 (21)

+12 34 + 13 24 + 14 23 . (2.10)

The last equation is the sum of all rank-4 tensors in the list of eq. (2.5), as it can be seen
by substituting the contractions as metric tensors and index operators with the sum of
momentum vectors. Generally, we can use the ordering,

T (12 · · ·R) , (2.11)

to sum up all the elements of the basis in which we can express a tensor integral Iµ1µ2...µR

of rank R.
In the following sections, inspired by the combinatorial resemblance of tensor reduction

and the ordering of operators with Wick contractions, we will go one step further. We will
develop a new ordering operation which will yield the full answer for tensor reduction. That
is, we will obtain the sum of all the basis tensor-elements weighted with the correct scalar
integral coefficients (such as the c(X)

... coefficients which appear in the right-hand side of
eq. (2.4)).

3 Tensor reduction and dual bases

Our starting point is to construct two complete bases of tensors, B = {T µ1...µR
a } and

⟨B⟩ = {⟨Ta⟩µ1...µR}, which are dual, satisfying the property

⟨Ta⟩ · Tb ≡ ⟨Ta⟩µ1...µR Tb,µ1...µR
= δab . (3.1)

The two bases do not need to be, and we will not take them to be, individually orthonormal.
In what follows, we will present an explicit construction of the dual bases. Assuming

their existence, the reduction of tensor integrals takes a simple form. Indeed, by contracting
both sides of eq. (2.2) with ⟨Tb⟩ we can determine the scalar coefficients Ib. We obtain

Iµ1...µR = Iα1...αR

∑
a

⟨Ta⟩α1...αR T µ1...µR
a . (3.2)
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Alternatively, we can also write

Iµ1...µR = Iα1...αR

∑
a

T α1...αR
a ⟨Ta⟩µ1...µR . (3.3)

Notice that on the right-hand side of eqs. (3.2)–(3.3) the tensor indices of the integral are
contracted and the tensor integral is reduced to scalar integrals.

We will now build the dual bases which are needed for materialising eq. (3.2) and eq. (3.3).

3.1 Dual tensors for products of external momenta

Let us first start with a basis of Np external momentum vectors pµ
i , i = 1 . . . Np. To

find their dual, we adopt the method of van Neerven and Vermaseren in ref. [48] (see,
also, section 3 of ref. [24] for a elucidating variation of the formalism). We first form the
symmetric Np × Np matrix of scalar products,

Πij ≡ pi · pj , (3.4)

and, with linear algebra methods, we find the inverse matrix ∆ij ,

Np∑
k=1

Πik∆kj = δij . (3.5)

The linear combinations

⟨pi⟩µ ≡
Np∑
j=1

∆ij pµ
j (3.6)

are dual to pi in the sense of eq. (3.1). Indeed,

pi · ⟨pj⟩ =
Np∑
k=1

∆kj pi · pk =
Np∑
k=1

Πik∆kj = δij . (3.7)

We note that
∆ij = ⟨pi⟩ · ⟨pj⟩ . (3.8)

We can now easily extend the construction to products of momenta. For a rank-R
tensor product of momentum vectors

T µ1...µR
p = pi1

µ1 . . . pµR
iR

, (3.9)

we construct its dual tensor as the product of the duals of momentum vectors

⟨Tp⟩µ1...µR =
〈
pi1

µ1 . . . pµR
iR

〉
= ⟨pi1⟩

µ1 . . . ⟨piR⟩
µR , (3.10)

which satisfies
Tp,µ1...µR ⟨Tp⟩µ1...µR = 1 . (3.11)

The tensor T µ1...µRp is annihilated by any other product of R vectors ⟨pi⟩µ than ⟨Tp⟩µ1...µR .
However, it is not annihilated by contractions with the metric tensor, such that the condition
in eq. (3.1) is not fulfilled. To resolve this issue we construct metric tensors as well as their
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duals, which are transverse to the external momenta. It will be useful to form a rank-2
tensor from the external momenta pi and their orthogonal momenta ⟨pi⟩,

uµν ≡
Np∑
i=1

pµ
i ⟨pi⟩ν =

Np∑
i,j=1

∆ijpµ
i pν

j , (3.12)

which acts as the unity in the space of external momenta. Indeed, we have that

pk,µuµν =
Np∑

i,j=1
∆ij pi · pk pν

j =
Np∑
j

δjkpν
j = pν

k . (3.13)

For this reason, we will refer to uµν as the unit tensor. The natural choice for a metric
transverse to external momenta is the tensor obtained by subtracting u from the metric,

ηµν
⊥ ≡ ηµν − uµν . (3.14)

Explicitly, we have that
ηµν
⊥ pi,µ = ηµν

⊥ ⟨p⟩i,µ = 0. (3.15)

In addition, the transverse metric satisfies

ηµν
⊥ η⊥,ν

ρ = ηµρ
⊥ (3.16)

and the dimensionality of the transverse metric is

D⊥ ≡ ηµν
⊥ η⊥,µν = D − Np, (3.17)

where Np is the number of independent external momenta.

3.2 Dual tensors for products of transverse metrics

While the transverse metric tensor and products of it are orthogonal to all external momenta
and their duals, they are not orthogonal to other metric products. We will now construct
dual elements ⟨Ta⟩ for tensors Ta which are products of the transverse metric tensor,

T µ1...µR
metric = ηµ1µ2

⊥ . . . η
µR−1µR

⊥ . (3.18)

Our procedure is analogous to the method in ref. [47] for tensor loop integrals with no
external momenta.

At even rank R, the set of independent tensors of the form of eq. (3.18) contains

Nmetric = R!
2R/2(R/2)!

(3.19)

elements. For rank two, there is only one tensor we can form, ηµ1µ2
⊥ . We trivially write its

dual element in the orthogonal basis,

〈
ηµ1µ2
⊥

〉
= ηµ1µ2

⊥
D⊥

, (3.20)
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satisfying
η⊥,µ1µ2

〈
ηµ1µ2
⊥

〉
= 1 . (3.21)

At rank four, we find three independent tensors{
ηµ1µ2
⊥ ηµ3µ4

⊥ , ηµ1µ3
⊥ ηµ2µ4

⊥ , ηµ1µ4
⊥ ηµ2µ3

⊥
}

. (3.22)

To construct the dual tensors in the orthogonal basis, we write an ansatz〈
ηµ1µ2
⊥ ηµ3µ4

⊥
〉

= a ηµ1µ2
⊥ ηµ3µ4

⊥ + b
(
ηµ1µ3
⊥ ηµ2µ4

⊥ + ηµ1µ4
⊥ ηµ2µ3

⊥
)

, (3.23)

in which we have used the µ1 ↔ µ2 and µ3 ↔ µ4 and (µ1, µ2) ↔ (µ3, µ4) symmetry. We
determine the a, b coefficients from the requirements〈

ηµ1µ2
⊥ ηµ3µ4

⊥
〉

η⊥,µ1µ2η⊥,µ3µ4 = 1
〈
ηµ1µ2
⊥ ηµ3µ4

⊥
〉

η⊥,µ1µ3η⊥,µ2µ4 = 0 . (3.24)

We obtain 〈
ηµ1µ2
⊥ ηµ3µ4

⊥
〉

= D⊥ + 1
D⊥(D⊥ − 1)(D⊥ + 2) ηµ1µ2

⊥ ηµ3µ4
⊥

− 1
D⊥(D⊥ − 1)(D⊥ + 2)

(
ηµ1µ3
⊥ ηµ2µ4

⊥ + ηµ1µ4
⊥ ηµ2µ3

⊥
)

. (3.25)

Similarly, we can construct the elements of the dual basis for lengthier products. The
construction for the dual basis of rank six and eight is described in appendix A. The dual
basis for the metric tensors up to rank fourteen are available in the supplementary material
attached to this paper, where the coefficients are calculated using Form [49–51]. These
suffice, for example, for the tensors which emerge in QCD Feynman diagrams with four
external partons at six loops.

One can show a useful identity, that contracting the dual transverse metric of rank
R = 2n with a transverse metric η

µiµi+1
⊥ with i odd, the dual metric reduces to a dual

transverse metric of rank R − 2. For example

ηµ1µ2
⊥

〈
η⊥,µ1µ2η⊥,ρ1ρ2 . . . η⊥,ρ2n−1ρ2n

〉
=
〈
η⊥,ρ1ρ2 . . . η⊥,ρ2n−1ρ2n

〉
. (3.26)

It follows that contracting the dual transverse metric product with an arbitrary number
m transverse metrics (contained in the dual) we reduce the dual transverse metric of rank
2(n + m) to a dual of rank 2n:

ηµ1µ2
⊥ . . . η

µ2m−1µ2m

⊥
〈
η⊥,µ1µ2 . . . η⊥,µ2m−1µ2mη⊥,ρ1ρ2 . . . η⊥,ρ2n−1ρ2n

〉
=
〈
η⊥,ρ1ρ2 . . . η⊥,ρ2n−1ρ2n

〉
. (3.27)

The proof of eq. (3.27) can be found in appendix B. Note that the dual of a product of
transverse metric tensors does not factorise〈∏

i

ηµiνi
⊥

〉
̸=
∏

i

〈
ηµiνi
⊥

〉
. (3.28)
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4 Tensor reduction of a generic loop integral

We now have all ingredients to express the reduction of a generic tensor integral in a closed
form. For a generic tensor integral of rank R we have constructed two bases of tensors
which are

• a basis B = {T µ1...µR
a } consisting of all possible products of momenta pµ

i and the
transverse metric tensor ηµν

⊥ ,

• a dual basis ⟨B⟩ = {⟨Ta⟩µ1...µR} consisting of all possible products of dual momenta
⟨pi⟩µ and duals of products of transverse metric tensors

〈
ηµ1µ2
⊥ ηµ3µ4

⊥ . . .
〉
.

As an example, the basis as well as the dual basis for Np independent external momenta
and tensors of rank one is given by

B = {pµ
1 , pµ

2 , . . . , pµ
Np

} = {pµ
i }i=1...Np , (4.1)

⟨B⟩ = {⟨p1⟩µ , ⟨p2⟩µ , . . . ,
〈
pNp

〉µ} = {⟨pi⟩µ}i=1...Np ,

for rank two the bases are given by

B =
{

pµ
i pν

j

}
i,j=1...Np

∪
{
ηµν
⊥
}

, (4.2)

⟨B⟩ = {⟨pi⟩µ ⟨pj⟩ν}i,j=1...Np
∪
{〈

ηµν
⊥
〉}

,

whereas for rank three we get

B =
{

pµ
i pν

j pρ
k

}
i,j,k=1...Np

∪
{
ηµν
⊥ pρ

i , ηνρ
⊥ pµ

i , ηµρ
⊥ pν

i

}
i=1...Np

, (4.3)

⟨B⟩ = {⟨pi⟩µ ⟨pj⟩ν ⟨pk⟩ρ}i,j,k=1...Np
∪
{〈

ηµν
⊥
〉
⟨pi⟩ρ ,

〈
ηνρ
⊥
〉
⟨pi⟩µ ,

〈
ηµρ
⊥
〉
⟨pi⟩nu}

i=1...Np
.

The two bases B and ⟨B⟩ for a general rank-R tensor integral satisfy the eq. (3.1). We
can then cast a tensor integral in the forms of eq. (3.2) or eq. (3.3) using our dual bases. Let
us analyse the sum on the right-hand side of eq. (3.3), with our initial focus on the terms
that solely involve external momenta and do not include any transverse metric tensors.
We have

∑
a

T α1...αR
a ⟨Ta⟩µ1...µR =

Np∑
i1,i2,...,iR=1

pi1
α1 . . . pαR

iR

〈
pi1

µ1 . . . pµR
iR

〉
+ (η⊥ terms)

=
Np∑

i1,i2,...,iR=1
pi1

α1 . . . pαR
iR

⟨pi1⟩
µ1 . . . ⟨piR⟩

µR + (η⊥ terms)

=
R∏

k=1

Np∑
i=1

pαk
i ⟨pi⟩µk

+ (η⊥ terms)

=
R∏

k=1
uαkµk + (η⊥ terms) . (4.4)

In the above, we could collect all momentum-only dependent terms in the tensor reduction
of eq. (3.3) into a product of unit tensors uαµ.
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We now turn our attention to terms with the transverse metric. These are of the form,∑
a

T α1...αR
a ⟨Ta⟩µ1...µR

∋
2⌊R/2⌋∑

n=2

Np∑
in+1,...,iR=1

ηα1α2
⊥ · · · ηαn−1αn

⊥ p
αn+1
in+1

· · · pαR
iR

〈
ηµ1µ2
⊥ · · · ηµn−1µn

⊥ p
µn+1
in+1

· · · pµR
iR

〉

=
2⌊R/2⌋∑

n=2

Np∑
in+1,...,iR=1

ηα1α2
⊥ · · · ηαn−1αn

⊥ p
αn+1
in+1

· · · pαR
iR

〈
ηµ1µ2
⊥ · · · ηµn−1µn

⊥
〉 〈

pin+1

〉µn+1 · · · ⟨piR⟩
µR

=
2⌊R/2⌋∑

n=2
ηα1α2
⊥ · · · ηαn−1αn

⊥
〈
ηµ1µ2
⊥ · · · ηµn−1µn

⊥
〉 R∏

k=n+1
uαkµk . (4.5)

We define a product of contractions as

∏
i

uαiµiuβiνi ≡
(∏

i

ηαiβi
⊥

)〈∏
i

ηµiνi
⊥

〉
. (4.6)

With the contraction symbol of eq. (4.6), we cast the terms of eq. (4.5) as

Np∑
in+1,...,iR=1

ηα1α2
⊥ · · · ηαn−1αn

⊥ p
αn+1
in+1

· · · pαR
iR

〈
ηµ1µ2
⊥ · · · ηµn−1µn

⊥ p
µn+1
in+1

· · · pµR
iR

〉

=
n
2∏

i=1
uα2i−1µ2i−1uα2iµ2i

R∏
k=n+1

uαkµk . (4.7)

Finally, we can sum up all terms in eq. (3.3) compactly as an ordering operation of the unit
tensors uαµ. We define an ordering symbol T as

T {A1 . . . An} ≡ A1 . . . An + all contractions, (4.8)

where Ai = uαiµi . For example, for a rank-4 tensor we write

T {A1A2A3A4} ≡ A1A2A3A4 + A1A2A3A4 + A1A2A3A4 + A1A2A3A4

+A1A2A3A4 + A1A2A3A4 + A1A2A3A4

+A1A2A3A4 + A1A2A3A4 + A1A2A3A4. (4.9)

The tensor decomposition of eq. (3.3) of a generic tensor integral is written compactly as,

Iµ1...µR = Iα1...αR T
{

R∏
i=1

uαiµi

}
. (4.10)

This is the main result of this article.
Let us remark that all multiplications in the terms of the right-hand side of eq. (4.10)

are commutative. It does not matter, for example, if we have the unit tensors with indices
α1, µ1 on the right and unit tensors with indices αR, µR on the left.
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4.1 Rank-2 tensor triangle integrals with two external momenta

As an instructive example, we demonstrate the steps which lead to eq. (4.10) in the case
of a rank-2 tensor integral Iµν with two independent external legs p1, p2. Our basis of
independent tensors consists of

B =
{
pµ

1 pν
1 , pµ

1 pν
2 , pµ

2 pν
1 , pµ

2 pν
2 , ηµν

⊥
}

. (4.11)

Correspondingly, the dual basis is given by

⟨B⟩ =
{
⟨p1⟩µ ⟨p1⟩ν , ⟨p1⟩µ ⟨p2⟩ν , ⟨p2⟩µ ⟨p1⟩ν , ⟨p2⟩µ ⟨p2⟩ν ,

〈
ηµν
⊥
〉}

. (4.12)

Following (3.3), the tensor integral takes the form

Iµν = Iαβ

[
pα

1 pβ
1 ⟨p1⟩µ ⟨p1⟩ν + pα

1 pβ
2 ⟨p1⟩µ ⟨p2⟩ν + pα

2 pβ
1 ⟨p2⟩µ ⟨p1⟩ν

+pα
2 pβ

2 ⟨p2⟩µ ⟨p2⟩ν + ηαβ
⊥
〈
ηµν
⊥
〉]

. (4.13)

Collecting the momentum-dependent tensors with indices α and µ as well as β and ν allows
us to rewrite the expression compactly as

Iµν = Iαβ

( 2∑
i=1

pα
i ⟨pi⟩µ

) 2∑
j=1

pβ
j ⟨pj⟩ν

+ ηαβ
⊥
〈
ηµν
⊥
〉 . (4.14)

We can now recognise the unit tensors uαµ and uβν , defined in eq. (3.12), for Np = 2
external momenta and write

Iµν = Iαβ

[
uαµuβν + ηαβ

⊥
〈
ηµν
⊥
〉]

. (4.15)

The last term corresponds to a contraction of two unit tensors

uαµuβν ≡ ηαβ
⊥
〈
ηµν
⊥
〉

= 1
D⊥

ηαβ
⊥ ηµν

⊥ , (4.16)

where, in this example, we have D⊥ = D − 2. The tensor integral can be written as

Iµν = Iαβ

[
uαµuβν + uαµuβν

]
, (4.17)

which resembles the operation of time-ordering and Wick contractions. Using the ordering
symbol defined above, we write

Iµν = IαβT
{

uαµuβν
}

. (4.18)

5 Illustrative applications

Eq. (4.10) provides an algorithmic instruction for projecting tensor integrals to scalar
integrals, in which no large matrix inversions are needed in intermediate steps. Eq. (4.10)
is a very compact expression, which includes all terms which emerge in a tensor reduction.
It is useful to be able to just write down such sizable results directly, without intermittent
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algebraic operations. As already mentioned in section 2, the number of possible tensors
Ntensors, enumerated in eq. (2.3), rises steeply with the rank of the tensor and the number
of external particles.

Still, the computational cost of merely casting the terms on the right-hand side of
eq. (4.10) is substantial. It is further increased if explicit substitutions for dual products of
transverse metric tensors, for the transverse metric in terms of the D-dimensional metric
and the dual momenta in terms of the original momenta are carried out analytically.

However, in realistic Feynman diagram computations, many explicit substitutions of
the transverse metric ηµν

⊥ in the elements of the dual basis may not be necessary. For
instance, one can use directly that ηµν

⊥ piν = 0. When the transverse metric is contracted to
a gamma matrix, it projects out its transverse components

γµ
⊥ ≡ ηµν

⊥ γν . (5.1)

We can also simplify spin-chains making use of the Clifford algebra for the transverse
components, which in conventional dimensional regularisation reads [52]{

γµ
⊥, γν} =

{
γµ
⊥, γν

⊥
}

= 2ηµν
⊥ 14×4 (5.2)

and
γµ
⊥γµ = γµ

⊥γ⊥,µ = D⊥ 14×4 . (5.3)

Also, one can make use of the property of the unit tensor, pi,µuµν = pν
i , without expanding

uµν in terms of momentum vectors.
To illustrate how eq. (4.10) may be used and to assess its practical potential, we

implemented the reduction for tensor integrals with three independent light-like external
momenta. We then applied the reduction to the analytic computation of selected Feynman
diagrams in 2 → 2 scattering amplitudes. We present these applications next.

5.1 Tensor reduction for integrals with three independent light-like momenta

We consider tensor integrals of generic rank R

Iµ1...µR (p1, p2, p3) , (5.4)

which depend on three independent light-like external momenta. We define the corresponding
Mandelstam variables as

p2
1 = p2

2 = p2
3 = 0 , 2 p1 · p2 = s , 2 p2 · p3 = −t , 2 p1 · p3 = s + t . (5.5)

The matrix of scalar products of the external momenta in our basis, Πij = pi · pj , can be
read off from eq. (5.5),

Π = 1
2

 0 s s + t

s 0 −t

s + t −t 0

 . (5.6)
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The inverse matrix can be easily calculated

∆ =


t

s(s+t)
1
s

1
s+t

1
s

s+t
s t

1
−t

1
s+t

1
−t

s
t(s+t)

 . (5.7)

The calculation of the inverse matrix ∆ is the only process-dependent inversion which
we require. Its matrix elements are the scalar products of the dual momentum vectors,
∆ij = ⟨pi⟩ · ⟨pj⟩. The dual momenta, ⟨pi⟩ , i = 1 . . . 3, can be computed from the matrix ∆
and the definition ⟨pi⟩ = ∑3

j=1 ∆ij pj . Finally, we construct the unit tensor uαµ out of the
independent external momenta p1, p2, p3,

uαν =
3∑

i=1
pα

i ⟨pi⟩ν . (5.8)

This is the main building block for creating T
{∏R

i=1 uαiµi

}
on the right-hand side of

eq. (4.10).
In the space of tensors which can be constructed out of metric and momenta products,

the T
{∏R

i=1 uαiµi

}
acts as a unity. We have written computer programmes which generate

T
{∏R

i=1 uαiµi

}
for a given rank R and set of independent external momenta. With explicit

computations in Form we have verified that indeed(
T
{

R∏
i=1

uαiµi

}
−

R∏
i=1

ηαiµi

)
Ta1,...aR (η, pi) = 0, (5.9)

for three independent external momenta and tensors up to rank five.

5.2 One-loop qq̄ → γγ amplitude

We will now apply our tensor reduction on Feynman diagrams in the scattering amplitude
for quark-antiquark annihilation to a pair of real photons,

q(p1) + q̄(p2) → γ(p3) + γ(p4) .

In parentheses we denote the momenta of the external particles, which satisfy the momentum
conservation condition

p1 + p2 = p3 + p4 (5.10)

and Mandelstam variables as given in eq. (5.6). All tensor integrals can be reduced to scalar
integrals with the expressions for T

{∏R
i=1 uαiµi

}
that we have built above.

We start by computing the hard scattering contribution to the one-loop amplitude.
We have purposefully chosen to calculate a physical amplitude, comprising of various
Feynman diagrams and counterterms, in order to show the versatility of the approach in
dealing with diverse diagrammatic topologies (tadpole, bubble, triangle and box in this
particular example).

Following ref. [53], the process-specific finite amplitude remainder may be defined as

M(1)
qq̄→γγ,finite = H(1) ({p3, ϵ3}, {p4, ϵ4}) + H(1) ({p4, ϵ4}, {p3, ϵ3}) , (5.11)
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where

H(1) ({p3, ϵ3}, {p4, ϵ4}) =

p1

p2

p3

p4

k + (1 −Rk)

p1

p2

p3

p4

k

+ (1 −Rk)

p1

p2

p3

p4

k + (1 −Rk)

p1

p2

p3

p4

k

− (1 −Rk)

p1

p2

p3

p4 k = 0

k . (5.12)

The last diagram is a form-factor counterterm and removes the infrared singularities of
the amplitude. The form-factor counterterm is obtained from the pictured Feynmnan
diagram by enclosing the part of the diagram in parentheses in between spin projector
factors given by eq. (2.4) of ref. [53] and evaluating the corresponding expression at zero
gluon momentum k = 0. Diagrams with one-loop vertex and propagator corrections have
ultraviolet singularities. They are subjected to an ultraviolet subtraction indicated by Rk.
The explicit form of the ultraviolet counterterms, is given by eq. (6.7) and eq. (6.15) of
ref. [53].

We examine first the tensor reduction steps of the box diagram which yields tensors of
the highest rank three. The diagram is written as,

p1

p2

p3

p4

k (5.13)

= −g2
sQ2

qe2 CF

∫ dkD

(2π)D

v̄(p2)γµγν/ϵ∗4γρ/ϵ∗3γσγµu(p1)
k2k2

1k2
2k2

3
kν

1kρ
2kσ

3

= −g2
sQ2

qe2 CF

∫ dkD

(2π)D

v̄(p2)γµγν/ϵ∗4γρ/ϵ∗3γσγµu(p1)
k2k2

1k2
2k2

3
k1αk2βk3γT

{
uανuβρuγσ

}
(5.14)

with
k1 = k − p2, k2 = k + p1 − p3, k3 = k + p1 . (5.15)

In the second line of eq. (5.13) we have already inserted the ordering operator of eq. (4.10)
which will project the loop momentum tensors to scalars.

We now carry out the contractions as instructed by the ordering of the unit tensors,
derived in the previous section, in the integrand. The numerator of the diagram reads

k1αk2βk3γT
{

uανuβρuγσ
}

=
∑

i1i2i3

(k1 ·pi1)(k2 ·pi2)(k3 ·pi3) ⟨pi1⟩
ν ⟨pi2⟩

ρ ⟨pi3⟩
σ

+ k2
⊥

D−3
∑

j

[(k3 ·pj)ηνρ
⊥ ⟨pj⟩σ +(k2 ·pj)ησν

⊥ ⟨pj⟩ρ+(k1 ·pj)ηρσ
⊥ ⟨pj⟩ν ] ,

(5.16)
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with

k2
1,⊥ = k2

2,⊥ = k2
3,⊥ = k2

⊥

≡ ηαβ
⊥ kαkβ = k2−

∑
j1j2

⟨pj1⟩·⟨pj2⟩ k ·pj1 k ·pj2 . (5.17)

At this stage, we have projected the tensor product of loop momenta to the scalar products
k2, k ·p1, k ·p2, k ·p3 . These scalar integrals can be expressed in terms of the loop momentum
denominators of the diagram,

2k · p2 = k2 − k2
1, 2k · p1 = k2

3 − k2, 2k · p3 = k2
3 − k2

2 − 2p1 · p3 .

The resulting scalar integrals are of the form,

TP (i1, i2, i3, i4) =
∫

dDk

(2π)D

1
(k2)i1

(
k2

3
)i2 (k2

2
)i3 (k2

1
)i4

, (5.18)

with integer powers ij ≤ 1.
We have already reduced the tensor integral to scalar integrals. We can now proceed

with further simplifications pertinent to the spin and Lorentz structure of the diagram. We
substitute

ηνρ
⊥ = ηνρ − uνρ = ηνρ −

3∑
i,j=1

∆ij pν
i pρ

j (5.19)

into eq. (5.16) and express the vectors of the dual momenta ⟨pν
i ⟩ in the second line of

eq. (5.16) as linear combinations of the external momenta

⟨pµ
i ⟩ =

∑
j

∆ij pµ
j . (5.20)

The vectors p1, p2, p3 and the metric tensor are contracted with gamma matrices. We can
simplify the spin chains using the Clifford algebra, in conventional dimensional regularisation,
and that external states are on-shell,

/p1u(p1) = 0, v̄(p2) /p2 = 0, ϵ∗(p3) · p3 = 0, ϵ∗(p4) · p4 = 0. (5.21)

The polarisation vectors are transverse to reference vectors that we choose as

ϵ∗(p3) · p4 = 0, ϵ∗(p4) · p3 = 0. (5.22)

After these simplifications, the diagram is expressed in terms of the following minimal set
of spin-chains,

S1 = v̄(p2)/ϵ∗4(/p1 − /p3)/ϵ∗3u(p1),
S2 = v̄(p2)/p3u(p1),
S3 = v̄(p2)/ϵ∗3u(p1),

S4 = v̄(p2)/ϵ∗4u(p1) . (5.23)
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Our treatment of the other Feynman diagrams is analogous. Although the loop
denominators for triangle and bubble graphs depend on just two or one combinations of the
p1, p2, p3 external momenta, we can decide to treat all diagrams uniformly. For example,
the tensor loop integral in the second Feynman diagram of eq. (5.12), which is a triangle,
depends only on the

qa = p2, qb = p1 + p2 − p3,

combinations of external momenta. We could use B2 = {qa, qb} as our basis of vectors for
the tensor reduction of this particular diagram. However, it is also allowed and, perhaps,
preferred to use the bigger basis B3 = {p1, p2, p3} which we needed for the box diagram
earlier. The only disadvantage of using the extended basis B3 is that it results to scalar
integrals TP(i1, i2, i3, i4) with some negative powers of propagators ij . However, scalar
integrals with negative propagator powers can be handled with integration by parts identities
and the Laporta algorithm [3] seamlessly. In addition, beyond one loop, negative powers of
propagators (or, equivalently, irreducible scalar products in the numerators) are inevitable.

We only treat ultraviolet counterterms, denoted by Rk in eq. (5.12), separately. These
give rise to second rank tensor integrals of a tadpole topology. It is very easy to reduce
tensors of the tadpole topology in their natural basis, consisting of metrics and no external
momenta. We write∫

dDk

(2π)D

kµ1kµ

(k2 − M2)n = ⟨ηµ1µ2⟩
∫

dDk

(2π)D

k2

(k2 − M2)n . (5.24)

In the above, the dual of the metric is ⟨ηµ1µ2⟩ = ηµ1µ2
D .

At this point, we have achieved our goal of reducing all tensor integrals in the amplitude
to scalar integrals. For a complete analytic computation of the amplitude, one may
further reduce these scalar integrals to master integrals. We reduce all scalar integrals
TP(i1, i2, i3, i4) to the one-loop box and the one-loop bubble master integrals with integration
by parts identities using AIR [54],

TP(i1, i2, i3, i4) = c4(i1, i2, i3, i4) TP(1, 1, 1, 1) + c2a(i1, i2, i3, i4) TP(1, 0, 1, 0)
+ c2b(i1, i2, i3, i4) TP(0, 1, 0, 1). (5.25)

Inserting the known master integrals (see, for example, appendix C of ref. [55]), we obtain
a finite expression in D = 4 dimensions as it is anticipated. We find

H(1) ({p3, ϵ3}, {p4, ϵ4}) = −i
Q2

qe2α0
s CF

4π

1
−s − t

(
S1h

(1)
1 (s, t)

+S2

(
ϵ∗3 · ϵ∗4 h

(1)
2 (s, t) + ϵ∗3 · p1 ϵ∗4 · p2

1
s

h
(1)
3 (s, t)

)
+(S3 ϵ∗4 · p2 − S4 ϵ∗3 · p1)h(1)

4 (s, t)
)

(5.26)

with the coefficients h
(1)
i (s, t) displayed in appendix C. As a consistency verification, we

interfere the one-loop amplitude with the tree-level and obtain a result independent of our
tensor reduction.
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p1

p2

p3

p4

k

k

l − k l

Figure 1. Nf box diagram.

5.2.1 Nf contribution to the two-loop qq̄ → γγ amplitude

Our tensor reduction depends only on the rank of tensors and the external momenta of
Feynman diagrams. Thus, we can use the same reduction expressions across loop orders,
for tensors integrals with common external momenta and rank. For example, it is very
easy to extend the previous one-loop amplitude computation, and derive similarly the Nf

contribution to the finite part of the two-loop qq̄ → γγ amplitude.
We generate the Nf part of the two-loop amplitude from the corresponding one-loop

amplitude, by inserting a one-loop fermion loop in the gluon propagator. As an example,
the box diagram in the one-loop amplitude in eq. (5.12) with a quark self-energy inserted
in the gluon propagator is displayed in figure 1.

We will consider the case of massless quarks in the fermion loop. As discussed in
ref. [56], we can simplify the integrand by a first tensor reduction of the fermion-loop
subgraph (reducing tensors in the l momentum integration) and an elimination of terms in
the integrand which cancel, due to gauge invariance, in the sum of diagrams. The integrand
for the finite part of the amplitude then reads,

M(2,Nf )
qq̄→γγ,finite = H(2,Nf ) ({p3, ϵ3}, {p4, ϵ4}) + H(2,Nf ) ({p4, ϵ4}, {p3, ϵ3}) , (5.27)

with

H(2,Nf ) ({p3, ϵ3}, {p4, ϵ4}) = i g2
s TF Nf

2(D − 2)
D − 1

( 1
l2(l − k)2 − 1

(l2 − M2)2

)
×H(1) ({p3, ϵ3}, {p4, ϵ4}) . (5.28)

We now proceed to the tensor reduction of the k-momentum integrals. The H(2,Nf ) ({p3, ϵ3})
has an identical tensor numerator as H(1) ({p3, ϵ3}). Hence we reduce the tensor in H(2,Nf )

to scalar products exactly as in H(1).
After the reduction to scalar integrals, we perform a further reduction to two-loop

master integrals solving integration by parts identities, using AIR. The two-loop master
integrals are known analytically for 2 → 2 massless QCD scattering processes [57–59].
We have taken the master integral expressions from a computer readable input used in
ref. [55]. After all substitutions, we arrive at the following result for the finite Nf two-loop
qq̄ → γγ amplitude,

H(2,Nf ) ({p3, ϵ3}, {p4, ϵ4}) = 4 i

3
Q2

qe2(α0
s)2Nf TF CF

(4π)2
1

−s − t

(
S1h

(2,Nf )
1 (s, t)

+S2

(
ϵ∗3 · ϵ∗4 h

(2,Nf )
2 (s, t) + ϵ∗3 · p1 ϵ∗4 · p2

1
s

h
(2,Nf )
3 (s, t)

)
+(S3 ϵ∗4 · p2 − S4 ϵ∗3 · p1)h(2,Nf )

4 (s, t)
)

. (5.29)
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The coefficients h
(2,Nf ,j)
i (s, t) are displayed in appendix C and they are free of 1/ϵ poles, as

it is anticipated.

5.3 A two-loop diagram with rank-5 tensors in dimensional regularisation

The previous illustrative examples are computationally simple, as they require tensor
integrals of a relatively low rank, i.e. three. We would like to test the implementation of
eq. (4.10) on Feynman integrals with higher rank tensors. We find rank-5 tensors (the
maximum rank for 2 → 2 QCD scattering at the two-loop order) in Feynman diagrams for
the qq̄ → γγ amplitude with seven propagators. As a representative case, we examine a
Feynman diagram of a planar double-box topology together with a suitable form-factor
type of counterterm [53, 56, 60] which removes a double soft singularity as k, l → 0,

D(2)
2 =

p1

p2

p3

p4

k l − k −

p1

p2

p3

p4 k, l = 0

k l − k . (5.30)

The double-box diagram, first term on the right-hand side of eq. (5.30), yields an 1/ϵ4

pole. This pole is cancelled against the contribution of the form factor counterterm,
which is the second term on the right-hand side of eq. (5.30). This counterterm is again
obtained by enclosing the part of the diagram in parentheses in between spin projectors
and evaluating the enclosed expression at zero momenta k, l = 0. We therefore anticipate
that the combination of eq. (5.30) has a Laurent series expansion starting at the 1/ϵ3 order.
This will be a test for the correctness of our tensor reduction in this example.

The two diagrams consist of tensor integrals of rank ≤ 5 and depend on three indepen-
dent light-like momenta, p1, p2, p3. The Mandelstam variables have been defined in eq. (5.5)
and the matrix of scalar products as well as the inverse have been defined in eq. (5.6) and
eq. (5.7) respectively. We again use the choice of polarisation vectors defined in eq. (5.22).
We examine, first, the double-box diagram which yields tensors of the highest rank-5 tensor
structures more carefully. The diagram is given by
p1

p2

p3

p4

k l − k

= ig4
sQ2

qe2C2
F

∫ dkD

(2π)D

dlD

(2π)D

v̄(p2)γνγµ1γσγµ2/ϵ∗4γµ3/ϵ∗3γµ4γσγµ5γνu(p1)
k2 (l − k)2 k2

1 k2
2 k2

3 k2
4 k2

5
kµ1

1 kµ2
2 kµ3

3 kµ4
4 kµ5

5

= ig4
sQ2

qe2C2
F

∫ dkD

(2π)D

dlD

(2π)D

v̄(p2)γνγµ1γσγµ2/ϵ∗4γµ3/ϵ∗3γµ4γσγµ5γνu(p1)
k2 (l − k)2 k2

1 k2
2 k2

3 k2
4 k2

5

× k1,α1 k2,α2 k3,α3 k4,α4 k5,α5T {uµ1α1uµ2α2uµ3α3uµ4α4uµ5α5} , (5.31)

where

k1 = k − p2, k2 = l − p2, k3 = l + p1 − p3, k4 = l + p1, k5 = k + p1. (5.32)
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In the third line of eq. (5.31) we included the ordering operator defined in eq. (4.10), which
projects the tensor integral to scalar integrals. Note that we have switched the indices in
the unit tensors uµα enclosed by the ordering operator. In contrast to the one-loop case, we
have chosen here to contract the loop momentum tensors with the dual metric tensors and
dual external momentum vectors, whereas the non-dual transverse metric and momentum
tensors are getting contracted with the gamma matrices in the spin-chains. This choice
corresponds to the reduction in eq. (3.2) instead of the previously used reduction in eq. (3.3).
Our choice is motivated by computational optimisation. Now, we can proceed directly
to simplifying the spin-chains without substituting the dual tensors in terms of momenta
and metrics.

The ordering of the five unit tensors in eq. (5.31) leads to several terms such as a
product of five unit tensors, a product of three unit tensors times one transverse metric and
its dual, and so on. To enhance the performance of the code, we apply an iterative procedure
to reduce the spin-chains. We explicitly substitute only one unit tensors in terms of the
momenta and their dual momenta defined in eq. (5.8) at a time. The external momenta
from the unit tensor contracts with the gamma matrices in the spin-chains. This allows
us to simplify the spin-chains using on-shellness of the external momenta and the Clifford
algebra. We iterate this procedure, replacing one unit tensor at a time and simplifying
the spin-chains, until there are no unit tensors left. This leaves the contraction of gamma
matrices with the transverse metric tensors, which projects out the transverse component
γ⊥ defined in eq. (5.1). We can make use of the transverse Clifford algebra in eq. (5.2)
and (5.3). These simplifications lead again to the minimal set of spin-chains displayed in
eq. (5.23).

As a last step we have to reduce the loop momenta contracted with dual tensors to
scalar integrals such that they allow for reduction to master integrals with integration by
parts methods. The three scalar product structures we encounter after the insertion of the
ordering operator are given by

k1α1k2α2k3α3k4α4

〈
ηα1α2
⊥ ηα3α4

⊥
〉

k5 · ⟨p1⟩ ,

k1α1k2α2

〈
ηα1α2
⊥

〉
k3 · ⟨p1⟩ k4 · ⟨p2⟩ k5 · ⟨p3⟩ ,

k1 · ⟨p2⟩ k2 · ⟨p1⟩ k3 · ⟨p1⟩ k4 · ⟨p2⟩ k5 · ⟨p3⟩ , (5.33)

where we chose some random indices as examples. Since the metric duals are transverse to
the external momenta, we can immediately rewrite the contractions with ki, only in terms
of the loop momenta. We can simplify the three structures even further by invoking the
dual property between the external momenta and their corresponding duals, as seen in
eq. (3.7). The three scalar product structures therefore simplify to

kα1 lα2 lα3 lα4

〈
ηα1α2
⊥ ηα3α4

⊥
〉

(k · ⟨p1⟩ + 1),
kα1 lα2

〈
ηα1α2
⊥

〉
(l · ⟨p1⟩ + 1) l · ⟨p2⟩ k · ⟨p3⟩ ,

(k · ⟨p2⟩ − 1) l · ⟨p1⟩ (l · ⟨p1⟩ + 1) l · ⟨p2⟩ k · ⟨p3⟩ . (5.34)

Additionally, we include the definition of the dual transverse metrics defined in eq. (3.20)
for rank 2 and eq. (3.25) for rank 4 and substitute the definition for the transverse metric
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displayed in eq. (5.19). As a last step the dual momenta are substituted in terms of external
momenta, completing the reduction of the tensor integral to scalar integrals including the
scalar products

k2, k · p1, k · p2, k · p3, l2, l · p1, l · p2, l · p3, k · l. (5.35)

In a similar fashion as in the one-loop case, the obtained scalar integrals can be reduced
to master integrals with integration by parts using AIR [54].

The treatment of the counterterm diagram is analogous, where we keep all three external
momenta p1, p2, p3 as a basis for the tensor reduction. Expanding the master integrals in ϵ,
the sum of diagrams is given by

D(2)
2,0,0 = −i

s + t

(
α0

s

)2
e2 Q2

q C2
F

(4π)2

(
(2 S1 + 4 ϵ∗4 · p2 S3 − 4 ϵ∗3 · p1 S4) × 1

ε3 + O(ε−2)
)

, (5.36)

where we have used the minimal set of spin-chains defined in eq. (5.23). We note that the
1/ε4 pole cancels as expected. Additionally, we have verified the independence on tensor
reduction in the interference with the tree-level, as in the one-loop case.

5.4 A three-loop diagram with rank-7 tensors in dimensional regularisation

As a last example, we apply this tensor reduction approach to one three-loop diagram for
the same process (qq̄ → γγ) considered above

D(3)
3 =

p1

p2

p3

p4

k l − k q − l . (5.37)

This diagram is a rank-7 tensor integral and has the same kinematic structure as the
examples discussed above and the same choice of polarisation vectors defined in eq. (5.22).
We reduce the tensor structure analogously as in eq. (5.31). Hence, we include the ordering
operator such that the loop momenta contract with the dual momenta and metrics, whereas
the non-dual momenta and metric tensors contract with gamma matrices in the spin-chain
function. We take the same steps to simplify the spin-chain down to a minimal set of
spin-chains seen in eq. (5.23). We leave the scalar integrals in terms of the scalar products

k2, k · p1, k · p2, k · p3,

l2, l · p1, l · p2, l · p3,

q2, q · p1, q · p2, q · p3,

k · l, k · q, l · q. (5.38)

without reducing to master integrals. The tensor reduction results in the following number
of scalar integrals

D(3)
3 = g6

s e2 Q2
q C3

F

× (S1 × [1467 scalar integrals] + S2 × [2560 scalar integrals]
+S3 × [2557 scalar integrals] + S4 × [2559 scalar integrals]) (5.39)
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and was performed in TForm [50] with 16 workers in 1107.30 seconds on a common desktop.
Finally, we were able to confirm the independence on tensor reduction for the three-loop
diagram by interfering with the tree-level, as in the previous cases.

6 Conclusions

In eq. (4.10), we presented a closed-form solution to the diagonalisation problem of the
Passarino-Veltman reduction method for arbitrary tensor integrals. We derived this formula
by noticing a connection between the tensor elements appearing in a tensor reduction and
the ordering, along with associated Wick contractions, of operators that we assigned to
tensor indices.

This algebraic analogy of tensor reduction and ordering becomes a precise equality in
equation (4.10) when we choose an appropriate basis of tensor elements. To achieve this,
we adopt a tensor basis composed of independent external momenta and metric tensors
transverse to external momenta. Additionally, we construct a second dual tensor basis
that is orthogonal to the first one, combining the constructions presented in ref. [48] for
momentum vectors and ref. [47] for metric tensors.

The tensor reduction technique presented in this paper is independent of the loop order
and topology of the integral in the sense that it remains identical for all integrals with the
same tensor rank and external legs. The key advantage of our method is that it avoids large
matrix inversions, with the only requirement being finding the dual momenta of van Neerven
and Vermaseren. This significantly reduces the computational cost of tensor reduction.

Our tensor reduction formula enables the treatment of complex Feynman diagrams, even
within conventional dimensional regularisation. Extending the use of Passarino-Veltman
reduction, our method becomes competitive in cutting-edge computations. In this work, we
demonstrated its potential for QCD calculations by applying the method to diagrams with
up to three loops and four external legs, resulting in tensors of rank seven. Throughout the
article, we performed Feynman diagram computations analytically.

We are confident that equation (4.10) can be further applied in realistic calculations,
perhaps in more inventive ways. For instance, one could envisage numerical evaluations of
the multiplications of elements from the dual basis and Feynman diagrams, while scalar
integral coefficients can be determined using independent (analytic or numeric) methods.
We eagerly anticipate future applications of our method.
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A Dual transverse metrics of rank six and eight

We denote the transverse metric product of rank six as

ηµ1µ2
⊥ ηµ3µ4

⊥ ηµ5µ6
⊥ ≡ (12)(34)(56). (A.1)

At rank six we encounter 15 independent transverse metric tensors

{(12)(34)(56), (12)(35)(46), (12)(36)(45), (15)(34)(26), (16)(34)(25),
(13)(24)(56), (14)(23)(56), (13)(25)(46), (13)(45)(26), (14)(25)(36),
(14)(35)(26), (15)(23)(46), (15)(24)(36), (16)(24)(35), (16)(23)(45)} , (A.2)

with which we can write an ansatz for the dual transverse metric product

⟨(12)(34)(56)⟩ ≡
〈
ηµ1µ2
⊥ ηµ3µ4

⊥ ηµ5µ6
⊥

〉
. (A.3)

This tensor has to be invariant under several symmetry transformations such as 1 ↔ 2, 3 ↔
4, 5 ↔ 6 and (12) ↔ (34), (12) ↔ (56), (34) ↔ (56) as well as combinations thereof. For
example the term (13)(24)(56) is trivially invariant under 5 ↔ 6 but is not invariant under
1 ↔ 2 or 3 ↔ 4. The combination defined as

(1 2)(3︸ ︸ 4)(56) ≡ (13)(24)(56) + (14)(23)(56) (A.4)

is invariant under these symmetries. This implies that in the ansatz of the dual transverse
metric tensor the coefficients of these two metric tensors need to be equal. This term is still
not invariant under a symmetry transformation (12) ↔ (56) or (34) ↔ (56). Adding the
terms (1 2)(5︸ ︸ 6)(34) with the same coefficients used for (1 2)(3︸ ︸ 4)(56) solves the first issue
and still ensures the symmetries addressed above. The fully invariant combination under
all symmetry transformations is denoted as

[(1 2)(3︸ ︸ 4)(56)] ≡ (1 2)(3︸ ︸ 4)(56) + (1 2)(5︸ ︸ 6)(34) + (3 4)(5︸ ︸ 6)(12) . (A.5)

It indicates that one transverse metric tensor is the same as the original one for which we
are trying to find the dual. Similar considerations can be made for metric tensor where all
metric tensors differ from the original one. Only the sum of all these terms remain invariant
under the symmetry transformations. We denote this class as

[(1 2)(3︸ ︸ 4)(5︸ ︸ 6)] ≡(1 2)(3︸ ︸ 4)(5︸ ︸ 6) + (1 2)(3︸ ︸ 4)(5︸ ︸ 6)

=(13)(25)(46) + (13)(45)(26) + (14)(25)(36) + (14)(35)(26)
+ (15)(23)(46) + (15)(24)(36) + (16)(24)(35) + (16)(23)(45). (A.6)

In terms of the usual notation we can write an ansatz for a dual transverse metric product
of rank 6 as 〈

ηµ1µ2
⊥ ηµ3µ4

⊥ ηµ5µ6
⊥

〉
= a ηµ1µ2

⊥ ηµ3µ4
⊥ ηµ5µ6

⊥

+ b
(
ηµ1µ3
⊥ ηµ2µ4

⊥ ηµ5µ6
⊥ + . . .

)
+ c

(
ηµ1µ3
⊥ ηµ2µ5

⊥ ηµ4µ6
⊥ + . . .

)
, (A.7)
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where each class has a different coefficient. The coefficients are determined using the
orthogonality relations between the different metric tensor products of each type, such that
we find

D⊥(D⊥ − 1)(D⊥ − 2)(D⊥ + 4)(D⊥ + 2)
〈
ηµ1µ2
⊥ ηµ3µ4

⊥ ηµ5µ6
⊥

〉
=
(
D2

⊥ + 3D⊥ − 2
)

ηµ1µ2
⊥ ηµ3µ4

⊥ ηµ5µ6
⊥ (A.8)

− (D⊥ + 2)
(
ηµ1µ2
⊥ ηµ3µ5

⊥ ηµ4µ6
⊥ + ηµ1µ2

⊥ ηµ3µ6
⊥ ηµ4µ5

⊥ + ηµ3µ4
⊥ ηµ1µ5

⊥ ηµ2µ6
⊥

+ηµ3µ4
⊥ ηµ1µ6

⊥ ηµ2µ5
⊥ + ηµ5µ6

⊥ ηµ1µ3
⊥ ηµ2µ4

⊥ + ηµ5µ6
⊥ ηµ1µ4

⊥ ηµ2µ3
⊥

)
+ 2

(
ηµ1µ3
⊥ ηµ2µ5

⊥ ηµ4µ6
⊥ + ηµ1µ3

⊥ ηµ2µ6
⊥ ηµ4µ5

⊥ + ηµ1µ4
⊥ ηµ2µ6

⊥ ηµ3µ5
⊥ + ηµ1µ4

⊥ ηµ2µ5
⊥ ηµ3µ6

⊥

+ηµ1µ5
⊥ ηµ2µ3

⊥ ηµ4µ6
⊥ + ηµ1µ5

⊥ ηµ2µ4
⊥ ηµ3µ6

⊥ + ηµ1µ6
⊥ ηµ2µ3

⊥ ηµ4µ5
⊥ + ηµ1µ6

⊥ ηµ2µ4
⊥ ηµ3µ5

⊥
)

,

where we have listed the full expression with every metric tensor.
Similarly, we can construct the dual for the product of transverse metric tensors of

rank eight. The 105 independent transverse metric tensors at rank eight are grouped into
five classes w.r.t. exchanges. The class representatives are given by

[(12)(34)(56)(78)], (A.9)
[(1 2)(3︸ ︸ 4)(56)(78)], (A.10)

[(1 2)(3︸ ︸ 4)(5 6)(7︸ ︸ 8)], (A.11)

[(1 2)(3︸ ︸ 4)(5︸ ︸ 6)(78)], (A.12)

[(1 2)(3︸ ︸ 4)(5︸ ︸ 6)(7︸ ︸ 8)] . (A.13)

Each of these classes are a combination of independent transverse metric products invariant
under all symmetry transformations needed for

〈
ηµ1µ2
⊥ ηµ3µ4

⊥ ηµ5µ6
⊥ ηµ7µ8

⊥
〉
. We note that the

terms in eqs. (A.11) and in (A.13) both have all pairs of indices different from the original
class. Both cases are separately invariant under all possible symmetry transformations.
Hence we will give to each class a different coefficient in the ansatz. In terms of the usual
notation we get〈

ηµ1µ2
⊥ ηµ3µ4

⊥ ηµ5µ6
⊥ ηµ7µ8

⊥
〉

= a ηµ1µ2
⊥ ηµ3µ4

⊥ ηµ5µ6
⊥ ηµ7µ8

⊥

+ b
(
ηµ1µ3
⊥ ηµ2µ4

⊥ ηµ5µ6
⊥ ηµ7µ8

⊥ + . . .
)

+ c
(
ηµ1µ3
⊥ ηµ2µ4

⊥ ηµ5µ7
⊥ ηµ6µ8

⊥ + . . .
)

+ d
(
ηµ1µ3
⊥ ηµ2µ5

⊥ ηµ4µ6
⊥ ηµ7µ8

⊥ + . . .
)

+ e
(
ηµ1µ3
⊥ ηµ2µ7

⊥ ηµ4µ6
⊥ ηµ5µ8

⊥ + . . .
)

. (A.14)

Using five contractions with each type of transverse metric tensor product leads to

a = 1
A

(D⊥ − 2) (D⊥ + 3)
(
D2

⊥ + 6D⊥ + 1
)

b = 1
A

(
−D3

⊥ − 6D2
⊥ − 3D⊥ + 6

)
,
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Class Representative Partition of R/2
[(12)(34)(56)(78)] 1+1+1+1
[(1 2)(3︸ ︸ 4)(56)(78)] 2+1+1

[(1 2)(3︸ ︸ 4)(5 6)(7︸ ︸ 8)] 2+2

[(1 2)(3︸ ︸ 4)(5︸ ︸ 6)(78)] 3+1

[(1 2)(3︸ ︸ 4)(5︸ ︸ 6)(7︸ ︸ 8)] 4

Table 1. Correspondence of class representatives and partitions of R/2 for R = 8.

c = 1
A

(
D2

⊥ + 5D⊥ + 18
)

,

d = 2
A

D⊥(D⊥ + 4),

e = 1
A

(−5D⊥ − 6) , (A.15)

with A = D⊥(D⊥ − 1)(D⊥ + 1)(D⊥ − 2)(D⊥ + 2)(D⊥ − 3)(D⊥ + 4)(D⊥ + 6). We notice
that one can establish a 1-to-1 correspondence between the unique integer partitions of
R/2 = 4 and the possible classes of exchanges between the 4 pairs of indices at rank 8, as
shown in table 1. Following this reasoning, we find 7 coefficients at rank 10 (partitions: 5,
4+1, 3+1+1, 3+2, 2+1+1+1, 2+2+1, 1+1+1+1+1), then 11 coefficients for rank 12, 15
coefficients for rank 14 and 22 coefficients for rank 16. These coefficients up to rank 14 are
available in the supplementary material attached to this paper, where the coefficients are
calculated using Form.

B Proof of transverse metric contraction

In this appendix we prove eq. (3.26) from which eq. (3.27) immediately follows. To prove
this relation we start by looking at the left hand side of eq. (3.26), which is a tensor with
free indices ρ1 . . . ρ2n and composed of building blocks η⊥,ρiρj

. We have introduced basis
and dual basis decomposition for such tensors above and can rewrite the expression using
eq. (3.3) as

ηµ1µ2
⊥

〈
η⊥,µ1µ2η⊥,ρ1ρ2 . . . η⊥,ρ2n−1ρ2n

〉
=
∑

a

ηµ1µ2
⊥

〈
η⊥,µ1µ2η⊥,α1α2 . . . η⊥,α2n−1α2n

〉
T α1...α2n

a ⟨Ta⟩ρ1...ρ2n

= ηµ1µ2
⊥

〈
η⊥,µ1µ2η⊥,α1α2 . . . η⊥,α2n−1α2n

〉
×
[
ηα1α2
⊥ . . . η

α2n−1α2n

⊥
〈
η⊥,ρ1ρ2 . . . η⊥,ρ2n−1ρ2n

〉
+
∑

σ∈2S2n
σ ̸=id

η
σ(α1)σ(α2)
⊥ . . . η

σ(α2n−1)σ(α2n)
⊥

〈
η⊥,σ(ρ1)σ(ρ2) . . . η⊥,σ(ρ2n−1)σ(ρ2n)

〉 ]
=
〈
η⊥,ρ1ρ2 . . . η⊥,ρ2n−1ρ2n

〉
, (B.1)
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where in the first step we projected onto a basis for rank 2n tensors Ta. Since the tensor only
depends on the transverse metric we can rewrite the expression as done in the second step.
We have defined a permutation group 2S2n under which the metric is not invariant. This
leads to all independent tensors appearing in the basis, except for the identity which is written
separately. In the last step we used the orthogonality conditions for the dual transverse
metrics, such that the sum vanishes and only the first term survives. All contractions
with a transverse metric not contained in the dual vanish upon contracting with the dual
transverse metric product, for instance ηµ1ρ1

⊥
〈
η⊥,µ1µ2η⊥,ρ1ρ2 . . . η⊥,ρ2n−1ρ2n

〉
= 0.

C One-loop and two-loop Nf coefficients

In this appendix, we present for completeness the components of the one-loop amplitude
and the Nf contribution to the two-loop amplitude which we computed in section 5. Our
results agree with an independent numerical computation by Dario Kermanschah based
on the method of ref. [61]. The full two-loop amplitude for qq̄ → γγ production has been
computed analytically in refs. [55, 62]. The corresponding three-loop amplitude has been
computed in ref. [63].

The one-loop amplitude coefficients for eq. (5.26) are

h
(1)
1 (s, t) = L2

y + π2 + 4Ls + 3Ly − 12, (C.1)

h
(1)
2 (s, t) = −4Ls −

(x − 1) L2
y

x2 − 2 (x − 1) Ly

x
+ 12 − (x − 1) π2

x2 , (C.2)

h
(1)
3 (s, t) =

4 (x − 1) (x + 1) L2
y

x3 − 4 (x + 2) Ly

x2 + 4 (x − 1) (x + 1) π2

x3 − 4
x

, (C.3)

h
(1)
4 (s, t) = 4Ls +

(2x + 1) (x − 1) L2
y

x2 + 2 (x − 1) Ly

x
− 14 + (2x + 1) (x − 1) π2

x2 , (C.4)

with

x = − t

s
, Ly = ln(1 − x) + iπ, Ls = ln

(
s

M2

)
− iπ. (C.5)

The coefficients of the finite Nf two-loop amplitude displayed in eq. (5.29) are

h
(2,Nf )
1 (s, t) = −63

2 − 2L2
s − Ls L2

y − 3LsLy − Ls π2 + 15Ls −
2L3

y

3

+
(5x − 4) L2

y

2x
− 2Ly π2

3 + 21Ly

2 + (9x − 4) π2

2x
, (C.6)

h
(2,Nf )
2 (s, t) = 2L2

s +
(x − 1) Ls L2

y

x2 + 2 (x − 1) LsLy

x
+ (x − 1) Ls π2

x2 − 14Ls

+
2 (x − 1) L3

y

3x2 −
7 (x − 1) L2

y

2x2 + 2 (x − 1) Ly π2

3x2 − 7 (x − 1) Ly

x

+ 29 − (8x + 21) (x − 1) π2

6x2 , (C.7)
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h
(2,Nf )
3 (s, t) = −

4 (x − 1) (x + 1) Ls L2
y

x3 + 4 (x + 2) LsLy

x2

− 4 (x − 1) (x + 1) Ls π2

x3 + 4Ls

x
−

8 (x − 1) (x + 1) L3
y

3 x3

+
2
(
9x2 + 4x − 7

)
L2

y

x3 − 8 (x − 1) (x + 1) Ly π2

3 x3 − 2 (3x + 14) Ly

x2

+ 2
(
23x2 + 4x − 21

)
π2

3 x3 − 14
x

, (C.8)

h
(2,Nf )
4 (s, t) = −2L2

s −
(2x + 1) (x − 1) Ls L2

y

x2 − 2 (x − 1) LsLy

x

− (2x + 1) (x − 1) Ls π2

x2 + 16Ls −
2 (2x + 1) (x − 1) L3

y

3x2

+
7 (2x + 1) (x − 1) L2

y

2x2 − 2 (2x + 1) (x − 1) Ly π2

3x2 + (9x − 7) Ly

x

− 36 + (50x + 21) (x − 1) π2

6x2 . (C.9)
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