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1 Introduction

Exactly marginal operators play a special rôle in local Conformal Field Theory (CFT):
one can use them to deform the original theory without breaking spacetime symmetries
and reach infinite families of CFTs related by the tuning of associated coupling constants.
These span the so-called conformal manifold, and are not uncommon in four dimensions and
lower. Supersymmetry is however usually required in order to protect marginal operators
against unwanted quantum corrections and maintain a vanishing beta-function, see e.g.
references [1–4] for early works.

While there are examples of non-supersymmetric conformal manifolds in two dimensions
related to the compact free boson and its toroidal orbifold generalizations, to the best
of our knowledge all well-established examples in higher dimensions are supersymmetric.
Furthermore, the possible types of supersymmetry-preserving exactly marginal deformations
being severely restricted by representation theory, supersymmetric conformal manifolds
cannot exist in dimensions greater than four, see reference [5] for an exhaustive analysis.
Recently, there has been a growing effort to study conformal manifolds via various techniques
in supersymmetric theories [6–13], as well as with methods not relying on such additional
structures [14–20].
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Conformal manifolds can allow for special points where a sector of the CFT decouples
from the rest of the spectrum and becomes free. At these points, an infinite tower of
higher-spin operators become conserved currents, and the conformal symmetry enlarges
to an infinite-dimensional higher-spin algebra.1 These symmetry-enhanced points, dubbed
higher-spin (HS) points, can tell us much about the underlying physics, as it was shown
that the converse is also true: the presence of a higher-spin symmetry always implies that at
least part of the theory is free. First shown in d = 3 by Maldacena and Zhiboedov [21], this
theorem was swiftly generalized to arbitrary dimensions [22–27]. Moreover, a direct corollary
is that the presence of a single higher-spin conserved current is a sufficient condition to
obtain infinite tower of such operators, as it is essentially a consequence of the closure of
the commutation relations of the algebra generators. Hunting for an operator becoming a
conserved current in a certain limit can therefore help us find dual descriptions in terms of
a weakly-coupled sector.

A conformal manifold comes furthermore equipped with the Zamolodchikov metric,
defined from the two-point function of the marginal operators. The properties of correlators
in unitary theories then ensure that it has the expected properties of a metric, and enables
one to define a notion of distance between different CFTs related by marginal deformations.

Given both the potential presence of symmetry-enhanced points and the ability to
measure distances between theories, it is worthwhile to find universal features of conformal
manifolds, perhaps relating them. For instance, one can ask about those CFTs that lie at
infinite distance from generic points. It is then natural to expect that they correspond to
physically-distinguished theories. Such special cases occur, for example, at points where there
is a symmetry enhancement. In particular, one may wonder whether there is a connection
between infinite distances and higher-spin enhancements in the conformal manifold.

Through the AdS/CFT correspondence, questions about universal properties of CFTs
are very much in the spirit of the Swampland Program [28], see e.g. references [29–32] for
reviews. In the bulk, the conformal manifold maps to the space of vacuum expectation
values of massless scalar fields, i.e. the moduli space of the gravity theory. Within the scope
of the Swampland Program, considerable effort has been recently spent with the goal of
probing and studying the structure of these spaces, and a number of conjectures pointing
to universal behaviors have been formulated. On the field-theory side, this can serve as a
guide to find universal properties of conformal manifolds.

For instance, with the advent of the AdS/CFT correspondence the importance of
HS points was promptly recognized, for instance in the duality between vector models
and gravitational theories of higher-spin fields [33] and its generalizations, see e.g. refer-
ence [34] for a review. Moreover, the breaking of this symmetry in N = 4 super-Yang-Mills
can be understood holographically as realizing the Pantagruelic Higgs mechanism (“La
Grande Bouffe”) responsible for giving a mass to higher-spin fields in the AdS5 × S5 bulk
theory [35–37].

In the same vein, there is a prominent Swampland conjecture pointing to universal
behaviors of infinite-distance points in the moduli space: the Swampland Distance Con-
jecture [38]. It states that as one approaches a point that is at infinite distance from the

1By higher-spin operators, we will always mean operators transforming in the ℓ-traceless-symmetric
representation of the Lorentz group.
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interior, an infinite tower of states become massless, and does so exponentially fast with
the distance, i.e. Mtower ∼ e−αG·dist in Planck units. These points are further expected to
occur as special limits, and are related either to a decompactification, where the tower
corresponds Kaluza-Klein modes, or a limit for which a fundamental string becomes weakly
coupled, a proposal called the Emergent String Conjecture [39].

The Swampland Distance Conjecture enjoys a large body of evidence in string theory
compactifications leading to flat space backgrounds, in particular in supersymmetric se-
tups [38–60]. Despite the amount of support in favor of the conjecture, one could worry that
it is merely coming from two lamppost effects: string theory and supersymmetry. It is how-
ever challenging to go beyond these regimes due to the lack of a general framework describing
any theory of quantum gravity, and the lack of technical tools in non-supersymmetric setups.

A promising way out is the holographic approach. This framework is a priori indepen-
dent of string theory, and there are powerful, non-perturbative, approaches in the conformal
toolkit to go beyond supersymmetry. In this way, not only can the Swampland Program
serve as guidance for questions related to conformal field theories, but methods such as the
conformal bootstrap can help in the gathering of evidence for Swampland conjectures going
beyond lamppost effects. This “holographic Swampland Program” has in fact already bore
fruits when applied to the absence of global symmetries in quantum gravity [61, 62] the Weak
Gravity Conjecture [63–71], moduli stabilization, and the scale-separation problem [72–78].

For the Distance Conjecture this approach originated in references [79, 80]. There,
it was found that in large classes of supersymmetric CFTs (SCFTs) the Swampland
Distance Conjecture is naturally realized in the conformal manifold as one approaches a
higher-spin point. The prototypical example is that of four-dimensional N = 2 SCFTs,
for which marginal couplings correspond to complexified gauge parameters. Around the
weak-coupling point, τ → i∞, the Zamolodchikov metric turns out to be approximately
hyperbolic, χτ τ̄ ∼ (Imτ)−2 [81]. The geodesic distance growing logarithmically with τ ,
the free point is at infinite distance. Combined with the fact that HS currents have an
anomalous dimension given at one loop by γ = ∆−∆free ∼ (Imτ)−1, they become conserved
exponentially fast with the Zamolodchikov distance.

This process is natural in supersymmetric gauge theories and leads to the intriguing
possibility that it is in fact the general mechanism behind the Swampland Distance Conjec-
ture from an holographic perspective. In reference [80], this expectation was encapsulated
in the CFT Distance Conjecture.

CFT distance conjecture: given the conformal manifold of a local CFT in d > 2,

Conjecture I: all higher-spin (HS) points are at infinite distance;

Conjecture II: all CFTs at infinite distance are HS points;

Conjecture III: the anomalous dimensions of the higher-spin operators becoming
conserved currents at the HS point go to zero exponentially fast with the geodesic
distance:

γ = ∆−∆free ∼ e−αχdistχ . (1.1)
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The distances are computed with respect to the Zamolodchikov metric, and the coefficient
αχ is expected to be related to the central charge of the theory, CT . In particular,

√
CT αχ

should at least of order one [79, 80]. By local CFT, we further mean theories whose spectrum
include the energy-momentum tensor. This condition is very relevant from the Swampland
perspective, since it translates to dynamical gravity in the bulk. Moreover, this conjecture
relies on the conformal manifold being parameterized by exactly marginal operators, which is
required to have a well-defined notion of distance in terms of the Zamolodchikov metric. For
instance, there are theories without local energy-momentum tensor that preserve conformal
invariance for any value of a continuous parameter, but that do not have an associated
local marginal operator, see e.g. references [82, 83].

Furthermore, note that the conjecture does not claim that any CFT should have a
conformal manifold. For instance, in five and six dimensions, there are no supersymmetry-
preserving marginal deformations, and it is believed that all 5d and 6d CFTs are supersym-
metric isolated points. In addition, it is not required that all conformal manifolds must
contain infinite-distance points. There are indeed known cases of compact conformal mani-
folds [10], and superpotential deformations in N = 1 four-dimensional SCFTs are expected
to always lead to finite distances [3, 8, 80]. Due to the close resemblance between 4d N = 1
and 3d N = 2 SCFTs, it is further predicted that conformal manifold of three-dimensional
theories should always be compact [80].

In two dimensions the status of the conjecture is unclear, as both the global conformal
groups and the Virasoro algebra always admits higher-spin currents. Moreover, there also
exists HS algebras that are finitely generated. A possible extension of the CFT Distance
Conjecture in two dimensions could come from the fact that limiting points where the scalar
gap vanishes, ∆ → 0, are at infinite distance [80]. Indeed, it was similarly conjectured
that the converse is also true [84, 85]. Due to these complications, we will however restrict
ourselves to cases where the spacetime dimension is d > 2.

As discussed above, the evidence for the conjecture mainly comes from SCFTs. Despite
this, as stated the CFT Distance Conjecture does not make any assumption on the existence
of supersymmetry nor does it differentiate between dimensions. This suggests that the
mechanism behind this feature of conformal manifolds should not rely on supersymmetry,
regardless of whether there are conformal manifold associated with non-supersymmetric
CFTs. If this is to be the case, there should exist a way to prove at least part of the
conjecture in a way that is independent of the dimension and without assuming additional
ingredients. This is quite reminiscent of many of the tools used in the study of CFTs. A
celebrated example is the set of equations constraining the form of the conformal block
expansion of four-point functions — the keystone of the modern conformal bootstrap —
which vary continuously with the dimension [86, 87]. Supersymmetry then merely imposes
additional selection rules between the blocks. In the context of the holographic Swampland
program, a general result in this direction can be found in references [88, 89], where infinite
distance limits have been linked to the factorization of correlators in the theory. For instance,
this happens at HS points that contain a scalar operator saturating the unitarity bound,
∆ = (d − 2)/2, and thus corresponding to a free scalar field.

In this work, we will show that it is indeed possible to prove for Conjecture I in such a
way, i.e., only assuming that the CFT is local and possesses a conformal manifold. The
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crux of our argument relies on the constraints imposed by HS symmetry on correlators
involving higher-spin currents.

We will use that, away from a given reference CFT, the changes in the physical data can
be tracked in terms of conformal perturbation theory [90]. For instance, scaling dimensions
can be obtained from three-point functions involving a relevant operator deforming the
theory. Such techniques have been for instance utilized to explore the space of theories
beyond the conformal regime and (re)discover new fixed points, see e.g. references [91–96]
for recent advances in that direction.

Here, we will focus on exactly marginal deformations to travel in the conformal manifold,
where changes in the conformal dimensions away from a reference point are encoded in three-
point functions involving marginal operators. Deforming away from the HS point we can
then compute anomalous dimensions at leading order and relate them to the Zamolodchikov
distance in a way that does not require a Lagrangian description, or a precise microscopic
description of the marginal operators, only their existence.

1.1 Sketch of the proof

As our proof will invoke conformal correlators involving higher-spin operators, as well as
sometimes technical properties of higher-spin algebras and the induced conservation relations,
we now summarize the steps needed to prove the first part of the CFT Distance conjecture,
namely that all higher-spin (HS) points are at infinite distance in the conformal manifold.

The relevant data, the conformal dimension ∆ℓ of spin-ℓ operators Jℓ, is encoded in
their two-point functions. Choosing a trajectory corresponding to a coordinate t in the
conformal manifold M, one can use conformal perturbation theory to show that ∆ℓ(t) is
controlled by the following differential equation [17]:

d∆ℓ

dt
= −CJJO(t) , (1.2)

where CJJO is a specific combination of the coefficients appearing in the correlator ⟨JℓJℓO⟩.
Since the coefficients of the three-point functions are related to those appearing in Operator
Product Expansions (OPEs), we will often use a shorthand, and refer to CJJO as the “OPE
combination”.

The behavior of the anomalous dimensions near a reference point of M therefore
depends on how CJJO varies in that neighborhood. In particular, if for any marginal
operator O with properly normalized two-point function, we have CJJO ∼ γ1+a with a ≥ 0
close to a HS point, then the above differential equation implies the anomalous dimension
vanishes at distχ ∼ t → ∞. That is, the HS point is at infinite distance from any other point.

To show this we introduce an expansion parameter g, related to the coordinate t,
measuring the breaking of the conservation equation for the HS currents — that is, the
divergence no longer vanishes:

∂ · Jℓ = g Kℓ−1 , (1.3)

where Kℓ−1 is a spin-(ℓ − 1) operator that depend on the microscopic details of theory,
and has conformal dimension ∆ = d − 1 + ℓ at the higher-spin point. This will allow us to
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compute the OPE combination as a perturbative series in g of the form

CJJO = C
(0)
JJO + C

(1)
JJO g + C

(2)
JJO g2 + · · · . (1.4)

Most importantly, this can be rewritten in terms of quantities evaluated at the HS point
using Anselmi’s trick [97]: by taking different numbers of divergences on ⟨JℓJℓO⟩, and
employing the broken Ward identity given in equation (1.3), each coefficient in the expansion
above gets naturally related to three-point functions involving different numbers of the
operator Kℓ, evaluated at the higher-spin point:

CJJO = CHS
JJO + CHS

JKO g + CHS
KKO g2 + · · · . (1.5)

Here CJKO and CKKO denote certain linear combinations of the OPE coefficients appearing
in the correlators ⟨JℓKℓ−1O⟩ and ⟨Kℓ−1Kℓ−1O⟩, respectively.

Using the constraints imposed by HS symmetry on these correlators, we will show that
CHS

JJO = 0 = CHS
JKO for any marginal operator. The first non-trivial contribution to CJJO

therefore comes at order g2 or higher. An application of Anselmi’s trick on the two-point
functions of Jℓ is furthermore well known to show that at leading order we have the relation
γ ∼ g2, and we finally obtain that in the neighborhood of a HS point, we must indeed have:

CJJO ∼ γ1+a with a ≥ 0 , (1.6)

for any marginal operator. We then conclude that any point of the conformal manifold
with a higher-spin symmetry must be at infinite distance.

The rest of this work fills in the details and is organized as follow: in section 2, we
review the structure of two- and three-point correlators involving higher-spin operators as
well as conformal perturbation theory, and give a criterion to decide whether a point of the
conformal manifold is at finite or infinite distance. In section 3 we show that HS points are
at infinite distance following the procedure sketched above, relegating the more technical
computations to the appendices. In section 4 we briefly discuss the fate of points where a
new flavor conserved current appear in the spectrum. We give our conclusions in section 5.

2 Distances from conformal perturbation theory

To characterize limiting behavior in the conformal manifold, we need to understand how the
relevant conformal data changes under marginal deformations. For our purpose this is the
conformal dimension ∆ℓ of higher-spin operators, as HS points are characterized by a tower
of operators saturating unitarity bounds. As we will review in this section, the changes
are encoded in an evolution equation relating the conformal dimension to the coefficients
of a particular set of three-point functions. This is possible due to the severe constraints
imposed by conformal symmetry, which completely fixes the kinematic structure of the
three-point functions up to these coefficients.

In this section, we review those constraints, as well as how correlators vary under
conformal perturbation theory. Working in the neighborhood of a reference point of the
conformal manifold, this will then enable us to find a criterion allowing us to decide whether
a point is at finite or infinite distance.
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2.1 Spinning conformal correlators

The central objects of this work are higher-spin (HS) operators Jℓ becoming conserved
currents at the HS point. Away from this special point they develop an anomalous dimension
and are no longer conserved, but remain conformal primaries transforming in the ℓ-traceless-
symmetric representation of the d-dimensional Lorentz group, i.e. spin-ℓ operators. When
studying such operators, it is convenient to use an index-free notation by contracting all
Lorentz indices with polarization vectors, ξµ:2

Jℓ(x, ξ) = Jℓ, µ1...µℓ
ξµ1 · · · ξµℓ . (2.1)

The structure of correlators involving higher-spin operators was studied in detail in
references [98, 99], where it was shown that the tensor structures allowed by conformal
invariance can be constructed out of simple building blocks. For instance, the two-point
function of two spinning operators is constrained to have the following form:

⟨Jℓ(x1, ξ1)Jℓ(x2, ξ2)⟩ =
H12(x12; ξ1, ξ2)ℓ

|x12|2τ
, (2.2)

where we defined xij = xi − xj , and we use a convention where the denominator is given in
terms of the twist:

τ = ∆ℓ − ℓ . (2.3)

In this case, there is only a single kinematic function, H12, respecting conformal covariance.
It is related to the well-known spin-one projector appearing e.g. in scattering amplitudes
involving gauge bosons, and its explicit expression can be found in equation (B.1). Note
that we will be working in an orthonormal basis for a given spin ℓ, thereby fixing the
prefactor of the two-point functions to one.

On the other hand, three-point functions involving a priori different spins, which we
will refer to as a type-(ℓ1, ℓ2, ℓ3) correlators, have more than a single kinematic structure
allowed by symmetry, and can be constructed out of six different building blocks [99]. In
this work, we will only deal with type-(ℓ, ℓ, 0) and type-(ℓ, ℓ − 1, 0) correlators, leading to a
simplification of the allowed structures, as they can be constructed out of only on three
building blocks. These include the aforementioned kinematic function H12, as well two
additional blocks, denoted V1 , V2. Their precise form in terms of spacetime coordinates
and polarization vectors will be relevant only in a few technical steps performed in the
appendices. In the main text, we will only need to know that they allow us to construct a
basis of conformally-covariant structures, and we have therefore relegated their definitions
to appendix B.

As we will see shortly, a key rôle will be played by the three-point functions of two higher-
spin operators and a marginal operator O. This is a type-(ℓ, ℓ, 0) correlator, generically
taking the following form:

⟨Jℓ(x1, ξ1)Jℓ(x2, ξ2)O(x3)⟩ =
ℓ∑

n=0
C n

JJO Θn(xi; ξ1, ξ2). (2.4)

2For the sake of clarity, we will often drop the dependence of the operators on their polarization vectors
when there are no ambiguities, leaving it implicit, e.g. Jℓ(x) = Jℓ(x, ξ).
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There are ℓ+1 independent conformal structures Θn that depend both on Lorentz coordinates
and the polarization vectors of the two higher-spin operators. In terms of the building
blocks, these conformally-covariant functions are given by

Θn(xi; ξ1, ξ2) =
Hℓ−n

12
(
V1V2

)n
|x12|τ123 |x13|τ132 |x23|τ231

, τijk = τi + τj − τk . (2.5)

The numbers C n
JJO ∈ R are related to the Operator Product Expansion (OPE) and therefore

depend on the microscopic details of the theory under consideration, and we often refer to
them as the OPE coefficients.

We will also be led to consider three-point functions of a marginal operator and two
different operators Jℓ and Kℓ−1 of adjacent spins. For those correlators of type (ℓ, ℓ − 1, 0),
one finds a very similar expression to that of equation (2.4):

⟨Jℓ(x1, ξ1)Kℓ−1(x2, ξ2)O(x3)⟩ =
ℓ−1∑
n=0

C n
JKO Θ̃n(xi; ξ1, ξ2) , (2.6)

where there are now (ℓ− 1) independent conformal structures given in terms of the building
blocks by:

Θ̃n(xi; ξ1, ξ2) =
Hℓ−n−1

12 V n+1
1 V n

2
|x12|τ123 |x13|τ132 |x23|τ231

, τijk = τi + τj − τk . (2.7)

Note that as these two cases illustrate, contrary to the usual intuition coming from
three-point functions of scalar operators where everything is fixed up to a single coefficient,
there can be more than one when dealing with spinning correlators. As we will see below,
there can however be relations between them in a given theory, and this will be one of
the ingredients of our proof. For instance, conservation conditions reduce the number of
independent conformal structures, leading to constraints on the OPE coefficients

We close by commenting on the special case where d = 3. The conformal structures
that we have reviewed are parity even. For d ≥ 4 these are all the structures that can
appear in these correlators, but in three dimensions there are ℓ and ℓ − 1 extra parity-odd
structures allowed to appear in ⟨JℓJℓO⟩ and ⟨JℓKℓ−1O⟩, respectively. Nevertheless, they
will not play any rôle in our analysis. First, parity-odd structures will not appear in
conformal perturbation theory applied to conformal dimensions, and second, there is no
mixing between parity-odd and parity-even structures in the constraints imposed by HS
symmetry. We will come back to this point in sections 2.2 and 3.1.

2.2 Conformal perturbation theory

As we will now review, the usefulness of two- and three-point functions reveals itself in the
study of conformal perturbations [90], allowing one to track the evolution of the conformal
data as the parameters of the theory are tuned. In particular, since exactly marginal
deformations do not break conformal invariance and span the conformal manifold M, we
can use conformal perturbation theory around a reference point of M to, at least formally,
follow the modifications of the conformal data as a function of the couplings.

– 8 –
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Placing ourselves at a given point, ti ∈ M we can ask how the conformal data behaves
under small variations. If a Lagrangian description is available, this amounts to consider
the deformation

Lt+δt = Lt + δtiOi , (2.8)

and a standard perturbation analysis can be performed. More generally, we need not make
any special assumptions about the reference theory — in particular, it is not necessary to
assume deformations around a Gaussian fixed point produced from a free theory. We can
also consider non-Lagrangian cases by promoting coupling constants to background sources
and work directly with the effective action W [ti(x)].

In a d-dimensional CFT, given a set of exactly marginal operators Oi and their associated
coupling constants ti, the conformal manifold is endowed with the Zamolodchikov metric,
defined as the coefficient of the two-point function of the marginal operators:3

⟨Oi(x1)Oj(x2)⟩t =
χij(t)
|x12|2d

, ∆i(t) = d , (2.9)

where ⟨· · · ⟩t indicates that the correlator is calculated at a given point of the conformal
manifold. We stress that by marginal operator, we mean an operator whose conformal
dimension is strictly fixed to that of spacetime throughout the conformal manifold and never
becomes (ir)relevant at any point of M, regardless of the mechanism protecting it against
quantum corrections.

By unitarity, χij has the properties required to be a bona fide metric, and the Zamolod-
chikov metric allows us to define distances between two points along a trajectory Γ ⊂ M:

distχ =
∫
Γ

ds , ds2 = χij dtidtj . (2.10)

This is the distance used in the CFT Distance Conjecture. Denoting the parameter of a
trajectory by t with a slight abuse of notation, the coordinates are given by ti(t), and under
small variations we have:

δti Oi = δtO , O = dti

dt
Oi . (2.11)

This makes clear that each trajectory is related to a specific combination of marginal
operators, understood as a smooth vector field in the tangent bundle of the conformal
manifold. Reversing the logic, a result that is valid for any marginal operator holds for
any trajectory in the conformal manifold. This is relevant for our analysis, as we aim to
obtain arguments that do not depend on the details of a given family of CFTs and that are
independent of the trajectory that we consider. Furthermore, from the previous equation we
see that a reparametrization of the trajectory amounts to a change in the normalization of
O. In particular, this means that if O is chosen to be properly normalized, then t is nothing
but the distance traveled along the trajectory in terms of the Zamolodchikov metric.

As previously alluded to, we are interested in the conformal dimensions of spin-ℓ
operators and their behavior along a trajectory in the conformal manifold as a function

3More precisely, the marginal operators Oi give a basis of the conformal manifold tangent bundle, and
χij are the components of the metric in such a basis. Notice that this might not be a coordinate basis. For
instance, it can be taken to be an orthonormal basis in which χij = δij .
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of the distance. In other words, we want to find the conformal dimension as a function
of t: ∆ℓ = ∆ℓ(t). This dependence is encoded in the two-point function ⟨JℓJℓ⟩. Given a
reference point, at first order in perturbation theory the variation induced by a change δt

on this correlator is given by:

⟨Jℓ(x1)Jℓ(x2)⟩t+δt = ⟨Jℓ(x1)Jℓ(x2)⟩t + δt

∫
ddy ⟨Jℓ(x1)Jℓ(x2)O(y)⟩t

∣∣∣∣
reg.

. (2.12)

In a Lagrangian theory, equation (2.12) can be understood from the path integral formu-
lation, but can also be obtained directly from a variation of the effective action W [ti(x)].
Note that the integral must be regularized to take care of the divergences appearing as
y → x1, x2, which induces a renormalization of the operators Jℓ to obtain a well-defined
quantity. This procedure is well defined, see e.g. reference [100], and can also be understood
holographically [101, 102].

Up to this point we have only used perturbation theory, but not that the deformation
is exactly marginal and therefore that the resulting two-point functions remain constrained
by conformal invariance. The variation of the correlator must thus take the generic form:

⟨Jℓ(x1)Jℓ(x2)⟩t+δt − ⟨Jℓ(x1)Jℓ(x2)⟩t = −H(x12)ℓ

|x12|2τ
2 δ∆ℓ log |x12| , (2.13)

with δ∆ℓ the change in the conformal dimension induced by δt.4 This shift is therefore
encoded in the logarithmic divergence obtained after integration of the three-point function
given in equation (2.12).

The integration over the three-point function in terms of the conformal structure of
type-(ℓ, ℓ, 0) correlators defined in equation (2.4) must be consistent with (2.12), and must
lead to the same type of divergences. This means that the shift of ∆ℓ is controlled by a
certain linear combination of the OPE coefficients, CJJO:

δ∆ℓ = −δt CJJO +O(δt2) , CJJO =
ℓ∑

n=0
wnC n

JJO . (2.14)

This was shown in reference [17], where the renormalization procedure was carefully
performed by combining the embedding formalism with dimensional regularization. The
coefficients wn — which we recall here for completeness — were found to be given by:

wn = 2π
d
2

Γ(n + 1)
Γ
(
n + d

2

) . (2.15)

Their precise values will not be relevant to us beyond the fact that, at first order in conformal
perturbation theory, the change in ∆ℓ is encoded in a particular linear combination of the
type-(ℓ, ℓ, 0) OPE coefficients, which we refer to as the OPE combination CJJO.

4In general there could also be another term related to the change of the prefactor in front of the
two-point function, i.e., the normalization of the spin ℓ operator. We however take this operator to be in an
orthonormal basis at any point in the conformal manifold. This corresponds to a choice of renormalization
scheme, and will not influence out computations at the order we consider, see e.g. reference [20] for a
detailed discussion.
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Importantly, equation (2.14) is true at any point in the conformal manifold, which
allows one to exponentiate it to its differential version [19]. This gives us an evolution
equation for the conformal dimensions in the conformal manifold as we change t:

d∆ℓ

dt
= −CJJO(t) . (2.16)

A possible cross-check for the above equation is that it transforms covariantly under
reparameterization of the marginal coupling t discussed in equation (2.11), and consequently
takes into account changes in the normalization for the marginal operator O.

As commented in section 2.1, the parity-odd structures that can appear in d = 3 do not
contribute to equation (2.16). After integrating over the position of the marginal operator,
the leftover function of x1 and x2 is again parity odd. This is inconsistent with (2.13),
which is parity even, and they therefore cannot contribute to the variation of ∆ℓ.

Knowing the OPE combination CJJO(t), we can thus in principle reconstruct ∆ℓ at
every point of the trajectory specified by O via the evolution equation (2.16), and measure
the distance traveled with respect to the Zamolodchikov metric. However, this information
of course is not readily available. Usually, one may try to extract information about CJJO(t)
by also using conformal perturbation theory. For instance, at first order the evolution of
the three-point function ⟨JℓJℓO⟩ is encoded into the four-point function ⟨JℓJℓOO⟩, leading
to a similar differential equation for CJJO(t) [16, 19, 20]. However, due to presence of
this four-point function, after imposing the usual associativity constraints, one is required
to have knowledge about the conformal data of operators appearing in the various OPEs
involving O and Jℓ, substantially complicating the analysis. Furthermore, when applying
this approach one should worry about the radius of convergence of conformal perturbation
theory, since it amounts to reconstruct information of the whole conformal manifold starting
from a single point by using conformal perturbation theory. Here we take a different
approach, one more suited to distinguishing between finite and infinite distance points in
the conformal manifold.

2.3 A criterion for finite versus infinite distance

From here on, we will focus our attention on the neighborhood of a point where certain
spin-ℓ operators have dimension ∆∗

ℓ — or similarly for a locus defined by {∆ℓ(t) = ∆∗
ℓ}. As

in the previous section, we also consider a trajectory specified by a marginal operator O,
understood as a smooth vector field in the neighborhood of the point under consideration.
One can think of different choices of O as different ways of approaching this point, as
depicted in figure 1. In particular, drawing conclusions about any marginal operator in this
neighborhood is equivalent to finding properties of any trajectory approaching this point in
any possible direction.

The idea behind our criterion to characterize whether a point is at (in)finite distance
from a generic point in the interior of M is then the following: if one is able to obtain
CJJO as a function of ∆ℓ close to the point under consideration, one can recover the
behavior of the conformal dimension as a function of t in that neighborhood using the
evolution equation (2.16). As argued above, when the two-point function of O is chosen in
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Figure 1. Different trajectories, corresponding to distinct marginal operators O and O′, in a
neighborhood of the conformal manifold M leading to the same point with conformal dimension ∆∗.

an orthonormal basis, t is then interpreted as the Zamolodchikov distance traveled along
the trajectory specified by O itself. We can then use the behavior of ∆ℓ(t) as it approaches
∆∗

ℓ to learn whether this point is at finite or infinite distance along the given trajectory.
Notice however that one can only obtain non-trivial information about the traveled

distance when the conformal dimension varies along the trajectory. We hence need to
pick a spin-ℓ operator whose conformal dimension is not fixed to a specific value over the
whole conformal manifold. For instance, the energy-momentum tensor, conserved flavor
currents, and protected BPS operators in supersymmetric theories have this property, and
are therefore excluded from this analysis. We will thus assume that the higher-spin operators
are conserved only at specific points or loci of the conformal manifold.

To illustrate this idea let us start with the most trivial — but also most generic—
example, namely the case where the OPE combination can be considered constant in the
neighborhood defined by ∆∗

ℓ : CJJO → C∗
JJO ̸= 0 as ∆ℓ → ∆∗

ℓ . Defining the change in
conformal dimension as γℓ,5 the evolution equation (2.16) reduces to:

dγℓ

dt
= −C ∗

JJO +O(γℓ) , C ∗
JJO = const , γℓ = ∆ℓ −∆∗

ℓ . (2.17)

Therefore, the leading behavior in the change of conformal dimension is given simply as a
linear approximation

γℓ(t) ≃ γ0
ℓ − C ∗

JJO t , (2.18)

where we have fixed the integration constant in terms of the deviation at the point where
we put the origin of the trajectory, namely γℓ(t = 0) = γ0

ℓ . Of course, this approximation is
only valid when the deviation γℓ(t) is sufficiently small.

We have therefore obtained the solution to equation (2.16) close to γℓ = 0 when CJJO
takes a non-zero value at this point. Importantly, the solution given in equation (2.18)
reaches γℓ = 0 for finite values of t. In other words, this point is at finite distance from the
initial point t = 0 along the trajectory defined by O.

5By abuse of notation, in this section we use γℓ = ∆ℓ −∆∗
ℓ for the deviation of the conformal dimension

with respect to an arbitrary point of the conformal manifold in analogy to the usual anomalous dimension
γ = ∆−∆free. When the reference point corresponds to a free theory, ∆∗ = ∆free, as will be the case in the
next sections, the two quantities coincide.
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To summarize, we see that if at some point in the conformal manifold we have C∗
JJO ̸= 0

for a given marginal operator O, then we have found a trajectory reaching this point within
finite distance. Furthermore, finding a single trajectory for which this is true is enough to
imply that the point under consideration is a finite-distance point in the conformal manifold.

Let us now give an example for which the point is reached at infinite distance. If the
OPE coefficients grows linearly with the deviation,

CJJO(γℓ) ≃ αχ γℓ , γℓ = ∆ℓ −∆∗
ℓ , (2.19)

for some constant αχ > 0, the evolution equation discussed above is solved by an exponential.
The behavior of the deviation as it reaches zero is of the form:

γℓ = γ0
ℓ e−αχ t , (2.20)

with the integration constant again fixed by γℓ(t = 0) = γ0
ℓ . As t is again interpreted as the

distance in the conformal manifold, we have the case of a trajectory with the exponential
behavior typical of the CFT Distance Conjecture, see equation (1.1). Note that γℓ → 0
for t → ∞ regardless of the point where we place t = 0, which means that this point is
at infinite distance along the trajectory defined by the marginal operator O. However,
this does not mean that we have an infinite-distance point. Indeed, it could be that O is
associated with a highly-non-geodesic trajectory, but there exists another trajectory for
which the point can be reached within a finite distance.

To characterize whether a point where the conformal dimension is given by ∆∗
ℓ is

reached at finite distance or not along certain trajectory, let us consider a general case
where CJJO is parameterized by:6

CJJO(γℓ) ∼ γ1+a
ℓ as γℓ = ∆ℓ −∆∗

ℓ → 0 . (2.21)

Close to the reference point, and up to subleading corrections, the deviation from ∆∗
ℓ then

behaves as:

t ∼
{
log γℓ , if a = 0 ,

γ−a
ℓ , if a ̸= 0 .

(2.22)

For the same reasons as above, t measures the distance from the distance from an
arbitrary point encoded in the integration constant. The case a < 0 corresponds to a
finite distance, while a ≥ 0 is at infinite distance. For a = 0 we have not only the critical
case between finite and infinite distance, but also the one where the deviation γℓ decreases
exponentially fast with the distance, that is the one associated with the third part of the
CFT Distance Conjecture explained in the introduction. This is depicted in figure 2.

Once again, we stress that if a ≥ 0, this does not mean that the point at t = 0 is an
infinite-distance point, but could be associated with a non-geodesic trajectory and reach
the point in an seemingly infinite-distance fashion. In order to ensure that it is truly an

6This parametrization is motivated by a perturbative description valid around the point under considera-
tion, in which both CJJO and γℓ enjoy an expansion in powers of a small parameter. For instance, this will
be the case when we discuss HS points in later sections.
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(a) Finite distance. (b) Infinite distance.

Figure 2. Two different trajectories associated with a marginal operator in the neighborhood of a
point with dimension ∆∗. If the OPE combination CJJO(t) remains approximately constant in the
neighbourhood of the point, it is a finite-distance point. On the other hand, if CJJO ∼ (∆−∆∗)1+a

with a ≥ 0, it is at infinite distance from any other point.

infinite-distance point, we need to show that it is the case for any trajectory. Conversely, a
marginal operator inducing a trajectory where a point is at finite distance is sufficient to
imply it is a finite-distance point, albeit it is maybe not attained via the shortest path. We
have therefore found the following criterion.

CFT distance criterion. In a neighborhood of a point of a conformal manifold M where
higher-spin operators have conformal dimension ∆∗

ℓ , the behavior of the OPE combination
CJJO defined in equation (2.14) as γℓ = ∆ℓ −∆∗

ℓ → 0 is sufficient to decide whether it is a:7

- Finite-distance point: ∃O such that CJJO ∼ γ1+a
ℓ with a < 0 ,

- Infinite-distance point: CJJO ∼ γ1+a
ℓ with a ≥ 0 ∀O .

Note that this criterion does not depend on the precise nature of the operator Jℓ, and at
no point did we assume a specific value of ℓ, and should be valid for an conformal primary.
To apply it, we only need an operator whose conformal dimension is not constant along
the whole trajectory. Therefore, any operator for which this reasoning is applicable should
give us the same answer. In particular, there cannot be an operator placing a point at
finite distance while another predicts an infinite-distance behavior. This implies non-trivial
relations between three-point functions of the form ⟨JℓJℓO⟩ and the possible marginal
operators for the conformal manifold to make sense as a metric space.

In this section, we have discussed how to differentiate between finite- and infinite-
distance points of the conformal manifold, which typically requires understanding the
behavior of CJJO close to that point for one or potentially even all marginal operators of
the theory, an information that may be challenging to access in general. Despite this hurdle,
we can draw an interesting observation: any point where CJJO is non-vanishing for any
marginal operator is a finite-distance point. Conversely, a vanishing OPE combination is a
necessary, albeit not sufficient, condition to have an infinite-distance point.

7Even though the criterion is tailored to the behavior given in equation (2.21) close to the reference
point, a similar analysis can be performed for other parametrization.
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3 Higher-spin points are at infinite distance

Having a criterion to decide whether a point of the conformal manifold M is at infinite
distance, we now apply the procedure described in the previous section to higher-spin (HS)
points. There, (part) of the HS operators become conserved currents and the conformal
group enhances to a larger, infinite-dimensional higher-spin symmetry.

In order to apply the CFT Distance Criterion to show that HS points are at infinite
distance, we will assume that a given HS operator is never conserved everywhere in the
conformal manifold, as this can happen only if it is part of a free subsector that is completely
decoupled from the rest of the theory at all points of M. Moreover, following the discussion
at the end of the previous section, it is in principle enough to show that HS points are at
infinite distance for an operator with e.g. spin ℓ = 4; there is indeed always a spin-four
conserved current at any HS point [21–25]. While we could in principle set ℓ = 4 from now on,
we will keep the spin arbitrary and specialize to the spin-four case for illustrative purposes.

3.1 Conservation laws and higher-spin correlators

At the HS point, the anomalous dimension of the higher-spin operator vanish and its
conformal dimension saturates the unitarity bound for spin-ℓ operators: ∆ℓ = d − 2 + ℓ.
As is well known in Conformal Field Theory, when this happens the associated conformal
multiplet develops a null state corresponding to a conservation condition:

∂ · Jℓ = ∂µJℓ, µν1...µℓ
ξν2 . . . ξνℓ = 0 . (3.1)

This identity can be used to constrain correlators involving these conserved currents, as
their divergences have to vanish up to contact terms. We will often refer to this as the current-
conservation condition, and it will allow us to reduce the number of conformal structures
that can appear in a given correlator. Starting with general type-(ℓ1, ℓ2, ℓ3) correlators and
taking the divergence with respect to a HS operator, the current conservation conditions will
impose constraints on its OPE coefficients. An important observation is that the null states
associated with the divergence of conserved currents transform as spin-(ℓ − 1) conformal
primaries, see e.g. reference [99]. The current-conservation condition of a type-(ℓ1, ℓ2, ℓ3)
correlator with respect to the first current is therefore equivalent to the vanishing of a
type-(ℓ1 − 1, ℓ2, ℓ3) three-point function. As was already realized in reference [21], since
both the type-(ℓ1, ℓ2, ℓ3) and type-(ℓ1 − 1, ℓ2, ℓ3) correlators can be written in terms of the
same building blocks, see section 2.1, we can instead write the divergence as a differential
operator acting on the space of these building blocks. This considerably simplifies an
otherwise rather cumbersome computation. The precise form of this operator can be found
in reference [103], and we use it for cases of interest in appendix A.

As already mentioned in section 2.1, we note that parity-even and -odd structures do
not mix in the current-conservation condition, as divergences preserve parity. To verify this,
one can observe that the spin changes by one when taking the divergence, and that spin-ℓ
operators acquires a sign (−1)ℓ under parity. This — together with the fact that parity-odd
structures do not contribute to equation (2.16)—allows us to ignore all allowed parity-odd
(d = 3)-structures for our purposes.
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By Noether’s theorem, the HS conserved currents also have associated conserved charges
by integrating them over a codimension-one surface Σ. Note that, contrary to the usual
flavor charges, higher-spin charges have spin and we again use polarization vectors to
contract the extra-indices. We then obtain a formal one-form that can be used to construct
the charge:8

Qℓ(ξ) =
∫
Σ

J̌ℓ(ξ) , J̌ℓ(ξ) = Jℓ, µν1...νℓ−1 ξν1 . . . ξνℓ−1dxµ . (3.2)

While the textbook approach to conserved charges involves integrating over the (d − 1)
space coordinates, the usefulness of more general surfaces and induced topological properties
of the charges have long been recognized, and have recently come in full force in the
context of higher-form symmetries [104]. Note however that the charges Qℓ(Σ, ξ) have
spin ℓ − 1 and act on (possibly-spinning) local operators and the currents transform in
ℓ-symmetric-traceless representations of the Lorentz group. While they do generalize the
notion of ordinary spin-one flavor charges, they do not correspond to the type of generalized
symmetries discussed in reference [104], which act on extended objects and the involved
currents transform in anti-symmetric spacetime representations.

The conserved charges can be also used to constrain correlators involving HS conserved
currents. Indeed, when inserted in a correlator, we must take into account contact terms —
that is, contributions at coincident points:

⟨(∂ · Jℓ)(y, ξ)Φ1(x1) · · ·Φn(xn)⟩ ∝
n∑

k=1
δ(y − xk) ⟨Φ1(x1) · · · [Q(ξ),Φk(xk)] · · ·Φn(xn)⟩ ,

(3.3)
up to a constant related to normalization, and the operators Φn are possibly spinning.
Integrating over a d-dimensional submanifold of spacetime containing only a single position
xk, we can therefore select a given commutator and reduce the number of operators appearing
in the correlator. On the other hand, using Stokes’ theorem on the l.h.s. of equation (3.3),
we can integrate the current, understood as a formal one-form as in equation (3.2), over the
codimension-one surface Σ bounding the submanifold. The charges are of course topological
and we can deform the surface as long we are not crossing over another point, in which
case we must take into account the appropriate commutator. We will refer to this as
the integrated Ward identity and it will allow us to relate the OPE coefficients in a given
correlator through properties of the HS algebra we review below.

Given the conserved charges, there is a further set of identities that one can impose on
correlators to constrain not only their OPE coefficients but also how the charges can act on
different operators. These are particularly interesting, since they allow us to impose the
coexistence of HS symmetry with other ingredients of the theory like, e.g. the presence of the
energy-momentum tensor. In fact, these constraints were crucial for the original derivation
of the theorems relating HS points to free theories [21–25]. Following reference [21], we will

8A more general construction involves contracting the (ℓ − 1) remaining indices with a conformal Killing
tensor ζ satisfying ∂(µζν1...νℓ−1) = 0. For our purpose however, it will be sufficient to consider constant
polarization vectors, which forms a subclass of those tensors. We defer to reference [23] for a review of the
construction of the space of conformal Killing tensors and the associated charges.
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call them charge-conservation identities. Given a set of operators, the idea is to consider
the correlator of their commutator with Qℓ. Since the conserved charge must annihilate the
vacuum, this correlator must vanish. This is:

0 = ⟨[Qℓ(ξ),Φ1(x1) · · ·Φ(xn)]⟩ =
n∑

k=1
⟨Φ1(x1) · · · [Qℓ(ξ),Φk(xk)] · · ·Φn(xn)⟩ . (3.4)

This can also be obtained from equation (3.3) by integrating over the entire of spacetime or
any other submanifold that does not have a boundary, and containing all the positions xk.
Using Stokes’ theorem, the result must vanish.

Using the HS algebra to further expand each commutator in equation (3.4) as a sum
over operators appearing in the various HS multiplets, one can infer a set of constraints
involving both the parameters controlling the action of Qℓ on the operators and their OPE
coefficients. In what follows, we review some of the properties of the HS algebra, give an
example of such a charge-conservation identity, and its consequences.

The commutation relations of the charges must close and generate the full higher-spin
algebra. In general, the action of the charges on an operator of twist τ = ∆− ℓ will involve
derivatives of the various fields falling inside the same higher-spin multiplet so that the
total twist is conserved. Tracking the index structure of such commutation relations can
however be cumbersome, and it is instead very convenient to focus on a particular spacetime
direction in order to simplify the index structure. Following reference [21], we will work in
light-cone coordinates:

ds2 = dx+dx− + δijdxidxj , i, j = 2, . . . , d − 1 , (3.5)

and use polarization vectors forcing the indices to be in the (x−)-direction: ξµ = δµ
−.9 To

differentiate HS operators in this regime from those with arbitrary polarizations, written
with uppercase letters, e.g. Jℓ(x, ξ), we will use lowercase letters to indicate spinning
operators whose indices all point in that direction. For instance:

jℓ = Jℓ,−···− . (3.6)

The charges are then defined in terms of the currents with the indices in that direction

Qℓ =
∫
Σ

dx−dd−2x jℓ(x) , (3.7)

where now Σ is taken as a “slab” of spacetime in the directions perpendicular to x+. For
simplicity, we will henceforth drop the dependence on the polarization of the charges
whenever the context is clear: Qℓ(δµ

−) = Qℓ.
First, since the charges have twist zero, each term appearing in commutators involving

Qℓ and an operator kℓ′ of twist τ must also have twist τ . Moreover, these can only involve
twist-τ operators kℓ′′ with all indices in the minus direction as well as x−-derivatives,

9In terms of group theory, this corresponds to consider the celebrated non-compact sl2 derivative subsector,
where the higher-weight states are the ℓ-traceless-symmetric conformal primaries. The only relevant generator
actions are then associated with derivatives of the fields in the x−direction.
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∂ = ∂
∂x− . Due to this index structure, each derivative increases the spin by one but the

twist remains unchanged. The most general formula for such a commutator is then:

[Qℓ, kℓ′ ] =
ℓ+ℓ′−1∑

ℓ′′=max(ℓ′−ℓ+1,0)
ηℓ′′ ∂ℓ+ℓ′−1−ℓ′′kℓ′′ . (3.8)

As discussed above, the coefficients ηℓ can be constrained — together with correlators
— using the charge-conservation identities, and lead to a number of useful relations [21–25].
The simplest example is obtained by acting with Qℓ on the two-point function ⟨kℓ′kℓ′′⟩.
From this, one can show that if kℓ′′ appears in [Qℓ, kℓ′ ] then kℓ′ must appear in [Qℓ, kℓ′′ ].10

Moreover, since we consider local theories, there is a spin-two conserved current
that generates conformal transformations, the energy-momentum tensor Tµν . Additional
constraints can be obtained by specifically considering charge-conservation identities on
correlators involving t2 = T−−, as they enable us to further constrain the appearance of a
given operator in commutators given in equation (3.8). For instance, since t2 is related to
the dilatation operator and charges have conformal dimension ℓ − 1, jℓ must always appear
in [Qℓ, t2]. Then, using this fact and charge-conservation identities, one can further show
that not all a priori possible conserved currents appear in [Qℓ, t2]. When ℓ = 4, one finds
that the most general form of the commutator is given by:

[Q4, t2] = α0 ∂5j0 + α1 ∂4j1 + α2 ∂3j2 + α3 ∂2j3 + α4 ∂j4 . (3.9)

By the argument above, j4 must appear in the commutator and thus α4 ̸= 0. Notice
that we do not need to assume that the energy-momentum tensor t2 is the unique spin-two
conserved current. This is, j2 is a generic spin-two conserved current, that can include
contributions from both t2, and possibly any additional spin-two conserved current. When
t2 is the unique spin-two conserved current, not all coefficients αℓ with ℓ = 0, · · · , 5 are
non-zero, and it is possible to show that α1 = 0 = α3 [21].

Restricting the possible operators appearing the various commutators will prove very
powerful. It will allow us to show that some of the three-point functions involving marginal
operators must vanish, and consequently will be crucial to prove that HS point are at
infinite distance.

3.2 Higher-spin conserved currents and marginal operators

Following the CFT Distance Criterion discussed in section 2.3, a necessary condition for
a HS point to be at infinite distance is that the OPE combination must vanish for any
marginal operator at this point: CHS

JJO = 0. We will thus now shift our focus to three-point
functions ⟨JℓJℓO⟩. Our goal is therefore to show that these correlators are always trivial,
regardless of the chosen marginal operator.

To do so, we will first use the current-conservation condition on this correlator. This
will impose constraints on the various OPE coefficients, reducing the number of allowed

10One might worry that, for τ ≥ d, there may be extra terms in the commutator in equation (3.8) of
the form □nVℓ′′ with Vℓ′′ a twist-(τ − 2n) operator. However, through a similar argument applied to the
correlator ⟨kℓ′Vℓ′′⟩, one can show that such terms cannot appear.
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conformal structure to a single one. By further using an integrated Ward identity, we will
then show that the remaining a priori independent parameter must vanish.

Let us start by imposing conservation of the higher-spin currents, see equation (3.1),
on this three-point function. Up to contact terms, we have:

∂2 · ⟨Jℓ(x1)Jℓ(x2)O(x3)⟩ = ⟨Jℓ(x1)(∂ · Jℓ)(x2)O(x3)⟩ = 0 , (3.10)

where ∂i is understood as taking the divergence with respect to the operator located at
xi. As discussed in section 3.1, the l.h.s. can be conveniently evaluated using a differential
operator in the space of building blocks H, V1, and V2. Its expression, as well as the result
for this current-conservation condition, can be found in appendix A. Here, we will simply
give a qualitative description of the procedure needed to show that at the higher-spin point,
this three-point function and the related OPE combination vanish.

As we have seen in section 2.1, for a fixed value of ℓ there are ℓ + 1 independent
type-(ℓ, ℓ, 0) conformal structures, as defined in equation (2.5). Taking the divergence as
in equation (3.10) we then obtain a linear combination of conformal structures of type
(ℓ, ℓ− 1, 0). Since there are only ℓ such structures, demanding that the resulting three-point
function vanish leads to a set of ℓ linear constraints on the ℓ + 1 OPE coefficients C n

JJO. If
these ℓ constraints are independent, we can express all the OPE coefficients in terms of a
single one, and the solution takes the form:

C n
JJO = vn C ℓ

JJO , n = 0, . . . , ℓ , (3.11)

where the components of the vector, denoted as vn ∈ R, are normalized such that vℓ = 1.
This is found by showing that the current-conservation constraint in equation (3.10) can be
viewed as a recursion relation in the space of OPE coefficients C n

JJO. In general, solving
this for arbitrary values of ℓ is difficult, but not particularly illuminating. It is on the
other hand straightforward to do it on a case-by-case basis. For instance, when ℓ = 4 the
coefficients are given by:

vn =
( −24
(d−2)d(d+2)(d+6) ,

48(d+3)
(d−2)d(d+2)(d+6) ,

72
(d−2)d(d+6) ,

−8(d+7)
(d−2)(d+6) , 1

)
.

(3.12)
However, the specific values of vn will not be relevant for our analysis, only that the
current-conservation constraint reduces the number of allowed structure from (ℓ + 1) to
only one. The details of this computation can be found in appendix A.

To see the impact of this constraint on the conformal-perturbation-theory equations,
let us write the OPE combination at the HS point after imposing the Ward identity (3.10):

CHS
JJO = Cℓ

JJO

ℓ∑
n=0

wnvn . (3.13)

While one could hope that
∑ℓ

n=0 wnvn = 0, directly showing that CHS
JJO = 0, this is

unfortunately generically not the case. We have checked this explicitly for 4 ≤ ℓ ≤ 10 in any
dimension by using the expression of coefficients wn, given in equation (2.15), and those
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of vn, obtained by solving the recursive relation obtained in appendix A.11 In fact, it is
hard to believe that there is a given spin ℓ for which it vanishes for any dimension. The
strategy is then to further show that the yet-undetermined OPE coefficient C ℓ

JJO has to
vanish. Doing so will establish that CHS

JJO = 0 — as expected — in a way that does not
depend on the precise values of vn and wn.

To show that this is the case, we now turn to the integrated Ward identity, which allows
us to reduce the correlator to a two-point function. Fixing the coordinates x2 and x3, we
can use a version of the Ward identity (3.3) applied to our case and integrate the current
over a submanifold only containing x2, and we obtain:∫

Σ

〈
J̌ℓ(x1, ξ1)Jℓ(x2, ξ2)O(x3)

〉
∝ ⟨[Qℓ(ξ1), Jℓ(x2, ξ2)]O(x3)⟩ . (3.14)

The codimension one surface Σ is the boundary of the submanifold containing x2. The
integral is then performed with respect to the first HS conserved current J̌ℓ, where the first
index is in direction normal to Σ, see equation (3.2).

As discussed above, the commutator of an operator with a conserved charge must
involve only operators of the same twist, and in this case they must therefore all have
τ = d− 2. However marginal operators have twist τ = d, and as a consequence there cannot
be any operator appearing in the commutator so that the two-point function on the r.h.s.
of equation (3.14) does not vanish, and we conclude that:

⟨[Qℓ, Jℓ(x2)]O(x3)⟩ = 0 . (3.15)

By consistency, the integral on the l.h.s. of equation (3.14) must also vanish. If we
choose Σ such that it picks the component of J̌ in the direction of ξ1, we can then expand
the correlator in terms of the conformal structures, and using equation (3.11), we can factor
out the so-far-undetermined coefficient C ℓ

JJO to obtain:

∫
Σ
⟨Jℓ(x1, ξ1)Jℓ(x2, ξ2)O(x3)⟩ = C ℓ

JJO

∫
Σ

(
ℓ∑

n=0
vn Θn(xi; ξ1, ξ2)

)
!= 0 . (3.16)

If we can find polarization vectors ξ1, ξ2 so that the integral gives a non-zero result, the
constraint coming from the integrated Ward identity can only be satisfied if C ℓ

JJO = 0, as
desired. In appendix B, we show explicitly that the integral indeed does not vanish for a
particular choice of polarization vectors. We therefore conclude that at any HS point and
for any marginal operator O, the three-point function ⟨JℓJℓO⟩ is trivial, and by extension
so is the OPE combination relevant to the CFT Distance Criterion:

CHS
JJO = 0 . (3.17)

This result is in the end not too surprising. In fact, it is known that when the two spins are
different, the OPE coefficients vanish, see e.g. references [98, 105]. For equal spin however,
the conservation condition is not enough to come to this conclusion, as one must use the
integrated Ward identity.

11For ℓ = 2, and ℓ = 3, it turns out that this quantity does vanish for d = 4 and d = 14, respectively.
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For a theory of 4d free vectors, which include N = 4 super-Yang-Mills in the free-field
limit, this result can be obtained from a direct computation by decomposing the field-
strength into (anti-)self dual components F = F+ + F−. The only non-vanishing two-point
function of the field-strength is ⟨F+F−⟩, and the HS currents and marginal operators can
be written as [106]:

Jℓ ∼ F+∂ℓF− , O ∼ F+F+ + F−F− , (3.18)

where we have been very cavalier with the index structure. By Wick’s theorem, the relevant
three-point functions then directly vanish:12

⟨(F+∂ℓF−) (F+∂ℓF−) (F+F+)⟩ = 0 = ⟨(F+∂ℓF−) (F+∂ℓF−) (F−F−)⟩ . (3.19)

As advertised, we have therefore found that the OPE combination always vanishes at
any HS point, CHS

JJO = 0. We stress that this result is not sensible to the actual numerology
of the coefficients wn and vn, but is rather a consequence of the properties of the higher-spin
symmetry.

This result shows that higher-spin points are not in the regular finite-distance class for
which CJJO ̸= 0. However, the fact that the OPE combination must vanish is a necessary
but not sufficient condition to show that these points are at infinite distance. To complete
the proof, we require information about their neighborhood, and what happens when the
higher-spin symmetry is weakly broken.

3.3 Weakly-broken higher-spin symmetries

In this section we move slightly away from the higher-spin point. This is, we assume that
the higher-spin symmetry is weakly broken by a small parameter g (related, but not to be
confused with the marginal coupling t used in conformal perturbation theory). This is, for
the divergence of the higher-spin operators we have:

∂ · Jℓ = g Kℓ−1 . (3.20)

Here, we have introduced an operator Kℓ−1 controlling the higher-spin symmetry breaking.
This operator is a primary of twist d and spin ℓ − 1 only at the HS point, i.e., at leading
order in g → 0 [97, 107, 108]. In fact, the two multiplets recombine into a larger multiplet
with primary Jℓ — which is no longer conserved due to the anomalous dimension — and
Kℓ−1 is a mere descendant of the would-be current away from the higher-spin point [109].
We take this operator to be in an orthonormal basis, also at leading order in this limit.
This in turn fixes the definition of the higher-spin symmetry breaking parameter g via
equation (3.20).

Breaking the HS symmetry, the decoupled sector is not free anymore, and Kℓ−1 can be
thought of as specifying the type of interactions that are turned on. However, we will not
assume that the CFT data enjoys an expansion in powers of g around the HS point. The
reason is that g is not necessarily the coupling constant of those interactions. For instance,
it could a priori happen that ∂ · Jℓ vanishes at tree level, and the breaking occurs only

12We thank E. Skvortsov for pointing out this very concise argument to us.
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at higher-loop orders. In this case, the CFT data would generically have an expansion
in fractional powers of g. Here, we will only assume that the CFT data remains finite
as the HS point is approached. This is closely related to the normalization of operators
such as Jℓ, Kℓ−1, and O. Normalizations in which we allow the two-point functions to
diverge as g → 0 can lead to similar, unphysical, divergences in the three-point functions.
Nevertheless, this cannot happen when operators are properly normalized. In this case the
three-point-function coefficients are physical and should remain finite in any bona fide CFT
like those associated with HS points of the conformal manifold.

As pioneered in reference [97], let us now take the double divergence of the two-
point function of two higher-spin operators, and use the broken Ward identity defined in
equation (3.20):

∂1∂2 · ⟨Jℓ(x1)Jℓ(x2)⟩ = g2 ⟨Kℓ−1(x1)Kℓ−1(x2)⟩ . (3.21)

The l.h.s. of this expression can be directly computed using the form of the two-point
function as an expansion in terms of the conformal structures, see equation (2.2). For
small anomalous dimensions, γℓ = τℓ − (d − 2) ≪ 1, it is at leading order proportional to a
spin-(ℓ− 1) two-point function [105, 110]. Since Kℓ−1 is a conformal primary for g → 0, the
r.h.s. is also proportional to the two-point function of a spin-(ℓ − 1) conformal primary in
that limit. We then conclude that, at leading order, the anomalous dimension is given by:

γℓ ∼ g2 , as g → 0 , (3.22)

where we are ignoring numerical prefactors whose precise values can be found in refer-
ences [105, 110]. In this way we see that the first contribution to the anomalous dimension of
the higher-spin operators always appears at order g2 in the higher-spin symmetry-breaking
parameter. This result is sometimes referred to as Anselmi’s trick, who first used the
broken Ward identity to simplify the computations of the anomalous dimensions of the
Konishi current and other spinning operators for four-dimensional N = 4 super-Yang-Mills
theory [97].

We can apply similar arguments to the three-point function ⟨JℓJℓO⟩. Let us first take
the divergence with respect to the second higher-spin operator and use equation (3.20):

∂2 · ⟨Jℓ(x1)Jℓ(x2)O(x3)⟩ = g ⟨Jℓ(x1)Kℓ−1(x2)O(x3)⟩ . (3.23)

As for the two-point function, at leading order the divergence of the currents matches with
the correlator of spinning primaries. Something similar happens for the three-point function
in the r.h.s., and we see that the leading-order corrections to the current-conservation
condition, which led to (3.11), are controlled by the behavior of ⟨JℓKℓ−1O⟩ close to the
HS point.

Similarly, a weakly-broken version of the integrated Ward identity goes as follows:
because of equation (3.20), the charges defined in equation (3.2) are no longer conserved,
and as a result their correlators depend on the codimension-one surface Σ. One can
however define the action of quasi-conserved charges on a given operator as the result of
the integral when the surface Σ enclosing its position shrinks to zero size [108]. This action
is constrained by twist conservation as it was the case when the symmetry was exactly
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preserved. By virtue of Stokes’ theorem, one then gets integrated Ward identities similar to
the conserved case, but with an extra contribution from the correlator where Jℓ has been
replaced by ∂ · Jℓ = gKℓ−1, integrated over the volume enclosed by Σ. As happens for the
current-conservation condition, the leading-order correction to the integrated Ward identity
for ⟨JℓJℓO⟩ is again controlled by the behavior of ⟨JℓKℓ−1O⟩ close to the HS point.

Putting these two results together and taking into account equation (3.17), we get that
for a weakly-broken HS symmetry we have

CJJO ∼ g CJKO as g → 0 , (3.24)

where CJKO is a certain linear combination of the OPE coefficients appearing in ⟨JℓKℓ−1O⟩
as defined in equation (2.6).

If CJKO is non-vanishing at the HS point, we see that the OPE combination behaves
as CJJO ∼ g when g → 0. Using equation (3.22), this would mean that at leading order, we
would have CJJO ∼ γ1/2. Following the CFT Distance Criterion discussed in section 2.3,
this would result in HS points being at finite distance with respect to the trajectory defined
by the marginal operator O. For the first part of the CFT Distance conjecture to be true,
the OPE combination CJKO must always be trivial at the HS point. We now show this is
indeed the case.

3.3.1 The correlator ⟨JℓKℓ−1O⟩ at the HS point

To show that at the higher-spin point the correlator ⟨JℓKℓ−1O⟩ vanishes, we will go through
a similar procedure to the one we used for the three-point function ⟨JℓJℓO⟩, and begin with
the current-conservation condition. We now have to take the divergence of a type-(ℓ, ℓ−1, 0)
correlator with respect to the first operator, from which we obtain a three-point function of
type-(ℓ− 1, ℓ− 1, 0). Using that Kℓ−1 is a conformal primary at this point, and as explained
in section 2.1, both correlators involve ℓ independent conformal structures. As before, this
enable us to find an homogeneous system of ℓ linear constraints for ℓ variables Cn

JKO.
If all the equations were independent, one would automatically get that Cn

JKO = 0.
Unfortunately, we have checked that the system is not closed for 2 ≤ ℓ ≤ 10 and for any d.
In general, we therefore expect that this happens for any spin and any number of spacetime
dimensions. Despite this, we show in the appendix A that the constraints can always be
used to fix most of the coefficients, and we get a similar result as for Cn

JJO:

Cn
JKO = ṽn Cℓ−1

JKO , n = 0, . . . , ℓ − 1 , (3.25)

where the components of the vector, denoted by ṽn ∈ R, are normalized such that ṽℓ−1 = 1.
In appendix A, we argue that, similarly to what we have done for the case of ⟨JℓJℓO⟩
above, the current-conservation constraint imposes a recursion relation in the space of OPE
coefficients Cn

JKO. We have not found a closed-form expression for the coefficients ṽn, but
they can easily be solved for a given spin programmatically. For instance, for ℓ = 4 it is
straightforward to check that the solution is given by:

ṽn =
( −24
(d − 2)d(d + 2) ,

36
(d − 2)d ,

−12
d − 2 , 1

)
. (3.26)
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Once again, the particular values of ṽn is not important, only that the current-conservation
condition fixes all the coefficients but one.

To show that this remaining coefficient is in fact trivial, we again need to impose the
integrated Ward identity. Starting with the analogue of equation (3.3), we integrate the
current over a manifold enclosing the point x2 with boundary Σ, and we obtain:∫

Σ

〈
J̌ℓ(x1, ξ1)Kℓ−1(x2, ξ2)O(x3)

〉
∝ ⟨[Qℓ(ξ1), Kℓ−1(x2, ξ2)]O(x3)⟩ , (3.27)

and J̌ℓ is the current with the first index in the direction normal to the surface. As we did
for the three-point function ⟨JℓJℓO⟩, taking Σ to pick the ξ1-direction, the l.h.s. can be
expanded in terms of the conformal structures. Taking into account equation (3.25), we
then have: ∫

Σ
⟨Jℓ(x1, ξ1)Kℓ−1(x2, ξ2)O(x3)⟩ = Cℓ−1

JKO

∫
Σ

(
ℓ∑

n=0
ṽnΘ̃n(xi; ξ1, ξ2)

)
. (3.28)

As discussed in appendix B, the same choice of polarization vector and surface we used for
⟨JℓJℓO⟩ again lead to a non-vanishing integral. However, a crucial difference is that the
commutator in equation (3.27) is not trivial in this case. Indeed, due to twist conservation,
only twist τ = d operators can appear in the commutator from the relation given in
equation (3.8). Since marginal operators also have twist d, it can in principle be contained
in the commutator, and we cannot conclude that the three-point function ⟨JℓKℓ−1O⟩
vanishes as in the previous subsection.

To do so, we need to invoke an ingredient that we have not used so far, namely the
presence of the energy-momentum tensor. Indeed, assuming a local CFT is what makes the
CFT distance conjecture part of the holographic Swampland Program, as it implies the
presence of dynamical gravity in the bulk. Note that here we do not assume a weakly-coupled
gravity dual, and will only use the interplay of the energy-momentum tensor with the
higher-spin algebra. As alluded to in section 3.1, it can be used to constrain the operators
appearing in the commutators involving higher-spin charges [21].

In particular, our goal is to show that ⟨JℓKℓ−1O⟩ ̸= 0 is inconsistent with a charge-
conservation identity. We will achieve this by considering the action of Qℓ on the three-point
function ⟨T2Kℓ−1O⟩:

⟨[Qℓ, t2kℓ−1O]⟩ = ⟨[Qℓ, t2] kℓ−1O⟩+ ⟨t2 [Qℓ, kℓ−1]O⟩+ ⟨t2kℓ−1 [Qℓ,O]⟩ = 0 , (3.29)

which can be understood as integrating equation (3.3) over all of spacetime. We recall that
we use the notation — explained in section 3.1—where lowercase operators indicate that
the indices are all taken in the x−-direction, e.g. t2 = T−− for the energy-momentum tensor,
and the HS charges are defined as in equation (3.7).

Let us first discuss the action of one of these charges on the energy-momentum tensor:

[Qℓ, t2] =
ℓ∑

s=0
αs ∂ℓ+1−sjs . (3.30)
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Recall that ∂ denotes the partial derivative with respect to the x−-direction. Even though
it is allowed by twist and spin conservation, notice that we have not included jℓ+1. The
reason is that, were it to appear in the commutator then Qℓ would not be translation
invariant [21]. Note that we are not assuming uniqueness of the spin two conserved current,
in general j2 could contain contributions from both the energy-momentum tensor t2, and
any other spin-two current.

The action of Qℓ on kℓ−1 and O leads to similar expressions, see equation (3.8):

[Qℓ, kℓ−1] =
2ℓ−2∑
s=0

ηs ∂2ℓ−2−sk′
s ,

[Qℓ,O] =
ℓ−1∑
s=0

βs ∂ℓ−1−sk′
s .

(3.31)

The primed operators k′
s are there to remind us that they might be different from unprimed

operators kℓ−1 we have considered so far. Furthermore, the twist-d scalar operators k′
0

might be different from the marginal operator O we started with.
Plugging these commutators into equation (3.29), we then obtain:

ℓ∑
s=0

αs ∂ℓ+1−s
1 ⟨jskℓ−1O⟩+

2ℓ−2∑
s=0

ηs ∂2ℓ−2−s
2

〈
t2k

′
sO
〉
+

ℓ−1∑
s=0

βs ∂ℓ−1−s
3

〈
t2kℓ−1k

′
s

〉
=0 , (3.32)

where ∂i denotes the partial x−-derivative with respect to the position of the i-th operator.
Notice that the first sum contains a term with αℓ ̸= 0 and ⟨jℓkℓ−1O⟩, if the charge-
conservation identity imposes that this term must vanish, then we obtain the desired result.

Performing this analysis for general spin ℓ is quite involved, but it becomes more
manageable for ℓ = 4. In this case we have:

4∑
s=0

αs ∂5−s
1 ⟨jsk3O⟩+

6∑
s=0

ηs ∂6−s
2

〈
t2k

′
sO
〉
+

3∑
s=0

βs ∂3−s
3

〈
t2k3k

′
s

〉
= 0 . (3.33)

We then have to analyze correlators of type ⟨JsK3O⟩, ⟨T2KsO⟩ and ⟨T2K3Ks⟩. Using the
current-conservation condition and integrated Ward identities, we conclude that:

⟨JsK3O⟩ = 0 for s = 2, 3 ;
⟨T2KsO⟩ = 0 for s = 1, . . . , 6 ;
⟨T2K3Ks⟩ = 0 for s = 0 .

(3.34)

This can be shown as we did for ⟨JℓJℓO⟩: the current conservation condition reduces the
number of independent OPE coefficients to one, and the integrated Ward identity then
imposes that the remaining OPE coefficient must vanish. For the case ⟨T2K1O⟩ it is crucial
to use that T2 is the energy-momentum tensor. Only in this case Q2 is the charge generating
translations in the minus direction, Q2 = P−, which guarantees that even though allowed by
twist conservation, K1 does not appear in [Q2,O]. The results for the current-conservation
conditions and the integrals for the integrated Ward identities can be found in appendices A
and B.
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Using this, the charge-conservation condition reduces to

0 = α0 ∂5
1 ⟨jsk0O⟩+ α1 ∂4

1 ⟨j1k3O⟩+ α4 ∂1 ⟨j4k3O⟩+ η0 ∂6
2
〈
t2k

′
0O
〉

+ β1 ∂2
3
〈
t2k3k

′
1
〉
+ β2 ∂3

〈
t2k3k

′
2
〉
+ β3

〈
t2k3k

′
3
〉

.
(3.35)

The last three terms are more complicated to analyze, since the current-conservation
condition allows for more than one conformal structure. However, including them in the
charge-conservation condition becomes more manageable when coordinates are taken in
the light-cone plane, xi = (x−

i , x+
i , 0), since only one linear combination of the conformal

structures of these correlators contributes in this case.13 Moreover, the spacetime dependence
of all the conformal structures simplify drastically. Imposing this charge-conservation
condition for any x−

i and x+
i , we find that there is no solution if ⟨j4k3O⟩ ̸= 0, thus arriving

to the desired result:
⟨J4K3O⟩ = 0 . (3.36)

This concludes the analysis of the correlator ⟨JℓKℓ−1O⟩ at the HS point. At least for
the case ℓ = 4, we have been able to show that this correlator must vanish for any marginal
operator O. This in turn implies that

CHS
JKO = 0 , (3.37)

as we wanted. Following the same procedure as for ℓ = 4, we expect the same result to hold
for ℓ > 4. In fact, this has to be the case for any other HS conserved current coexisting
with J4 to generate the higher-spin algebra, otherwise the conformal manifold would stop
making sense as a metric space. We come back to this point in the next section.

3.4 Infinite distance and exponentially conserved currents

In this section, we have so far shown that by using various properties of the higher-spin
algebra, two of the three-point functions involving marginal operators and a HS current
must always be trivial at the HS point:

HS point: ⟨JℓJℓO⟩ = 0 = ⟨JℓKℓ−1O⟩ . (3.38)

Following the CFT Distance Criterion defined in section 2.3, the first term is a necessary
condition for HS points to be at infinite distance in the conformal manifold. On the other
hand, from the discussion around equation (3.23), the fact that second vanishes forbids
contributions to the OPE combination CJJO at linear order in the parameter g for a
weakly-broken HS symmetry.

By the same token, one can reach a similar conclusion for CJKO(g) away from the HS
point. Taking the divergence with respect to Jℓ and using equation (3.20) we have

∂1 · ⟨Jℓ(x1)Kℓ−1(x2)O(x3)⟩ = g ⟨Kℓ−1(x1)Kℓ−1(x2)O(x3)⟩ . (3.39)
13It is not guaranteed that this linear combination survives the current-conservation condition. However,

that would not change our results, but make them easier to derive.
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The leading order correction to the current-conservation condition for ⟨JℓKℓ−1O⟩ is con-
trolled by ⟨Kℓ−1Kℓ−1O⟩ at the HS point. The same observation can be reached for the
leading correction to the integrated Ward identity and the charge-conservation condi-
tion [108]. Similarly to what we obtained in the previous section, and taking into account
equation (3.37), we now have

CJKO ∼ g CKKO as g → 0 , (3.40)

where CKKO is again a certain linear combination of the OPE coefficients appearing in
⟨Kℓ−1Kℓ−1O⟩.

Since both Kℓ and O are assumed to be in an orthonormal basis, the correlator
⟨Kℓ−1Kℓ−1O⟩ cannot blow up as g → 0 — see the discussion below equation (3.20). In
general, we therefore have

⟨Kℓ−1Kℓ−1O⟩ ∼ g2a with a ≥ 0 as g → 0 . (3.41)

By this equation, we mean that the ℓ OPE coefficients of this correlator, Cn
KKO, have this

behavior as g → 0. Combining this with equations (3.24) and (3.40), we have

CJJO ∼ g2(1+a) with a ≥ 0 as g → 0 (3.42)

for the OPE combination controlling the conformal-perturbation-theory equation (2.16).14

Given the behavior of the anomalous dimension in equation (3.22), we finally reach
the conclusion

CJJO ∼ γ1+a
ℓ with a ≥ 0 as γℓ → 0 . (3.43)

Since we have made no assumption on the marginal operator O, this behavior is independent
of the deformation away from the higher-spin point, and is precisely the CFT Distance
Criterion for an infinite-distance point in the conformal manifold, as explained in section 2.3.
Furthermore, we have not made any assumptions on the operators Jℓ either, apart from the
fact that they become conserved at the HS point. This then shows that for local CFTs in
any dimension, the first part of the CFT Distance Conjecture is correct:

all higher-spin points are at infinite distance in the conformal manifold.

Strictly speaking, in section 3.3 we have only proven this for spin-four currents. However,
as discussed below the CFT Distance Criterion in section 2.3, it is enough to show that a
single higher-spin current places the HS point at infinite distance in the conformal manifold.
The rest of the tower should behave accordingly, and we must also have ⟨JℓKℓ−1O⟩ = 0 at
the HS point for any other current. Furthermore, since there is always a spin-four conserved
current generating the higher-spin algebra [21–25], the case ℓ = 4 suffices to establish that
any HS point is at infinite distance.

It is also interesting to elaborate more on the condition for the higher-spin currents
to become conserved exponentially with the distance. This would be the case if a = 0 in

14Strictly speaking, it could happen that the coefficients C n
JJO conspire in such a way that leading correction

vanishes for the linear combination controlling conformal perturbation theory, CJJO. Equation (3.42) would
then depend on another exponent a′ > a, but the conclusion would be unchanged.
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equation (3.43). In other words, having an exponentially conserved HS current with the
distance as the HS point is approached is linked to having:

⟨Kℓ−1Kℓ−1O⟩HS ̸= 0 . (3.44)

In particular, this does not mean that all the OPE coefficients Cn
KKO are non-vanishing as

the HS point. We only need to require this for the OPE combination CKKO controlling the
order g2 correction to CJJO. It is intriguing that the condition for the exponential behavior
precisely involves the last correction to CJJO that can be addressed using Anselmi’s trick,
i.e. the weakly-broken Ward identity (3.20).

Having ⟨Kℓ−1Kℓ−1O⟩ ̸= 0 at the infinite distance HS point might seem a bit puzzling.
Indeed, one of the corollaries of the CFT Distance Criterion is that having an operator
with non-vanishing three point function with O is generically enough to imply that the
point is at finite distance. However, let us recall that Kℓ−1 is not a conformal primary
outside the HS point, while the CFT Distance Criterion assumes this for the operator
under consideration, and equation (2.16) therefore does not apply to the descendant Kℓ−1.
The analogous equation, obtainable through conformal perturbation theory applied to this
non-primary operator, should be such that the behavior of CKKO close to the HS point
must place it at infinite distance. In fact, in our case this is guaranteed by the fact that,
when going away from the HS point, the current and Kℓ−1 recombine into a larger multiplet,
and their behavior as we approach the free point must be related.

If equation (3.44) is satisfied, then the exponential decay rate α
(ℓ)
χ appearing in equa-

tion (1.1) is controlled by the OPE combination CKKO at the HS point. Schematically,
we have:

α(ℓ)
χ ∼ ⟨Kℓ−1Kℓ−1O⟩HS , (3.45)

where the numerical coefficients and the OPE combination, CKKO, can be fixed by the
weakly-broken HS symmetry constraints. In fact, this result can be brought into a more
suggestive form. Taking an orthonormal basis for the set of marginal operators Oi and
generalizing the evolution equation (2.16) we have

∂iγℓ

γℓ
∼ ⟨Kℓ−1Kℓ−1Oi⟩HS . (3.46)

An orthonormal basis for the marginal operators corresponds to an orthonormal basis
for the tangent bundle of the conformal manifold. Therefore, equation (3.46) gives the
components of what is defined as the scalar charge-to-mass ratio vector used for the
convex-hull formulation of the Swampland Distance Conjecture [111]. This equation is
then telling us that, close to the HS point, this information is encoded in this particular
three-point function.

Showing the condition given in equation (3.44) for a single spin, e.g. ℓ = 4, is not
enough to show an exponential behavior for all off them. There is a priori nothing wrong
with having an infinite-distance point for which the different HS currents become conserved
at different rates along a given trajectory in the conformal manifold. The only thing that is
required by consistency of the conformal manifold as a metric space is that γℓ(t) → 0 as
t → ∞ for all of them.
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Despite this, there might be a way of translating the result for a single spin to the
rest of the tower. The idea is to exploit a relation that we have not discussed yet. Even
though the HS symmetry-breaking parameter g is not the same as the distance t in the
conformal manifold, they are related. Indeed, having shown the exponential behavior for
the anomalous dimension of a given spin ℓ, and using equation (3.22) we get the relation:

g2ℓ ∼ e−α
(ℓ)
χ t as t → ∞ . (3.47)

Here we have added a subscript ℓ to the HS symmetry breaking parameter to make clear that
a priori one could expect the parameters to be different for the breaking of the conservation
condition of different HS operators. However, coming back to the underlying picture of
introducing an interaction with a small coupling, we indeed expect them to be related in a
power-like fashion. This is, we expect each of these conservation conditions to be broken at
a given loop order. Note however that this could be avoided if the conservation condition
for some HS currents is broken only by non-perturbative effects.

Following this reasoning, the exponential behavior for a given spin would carry over to
the others, even though the exponential decay rate might still depend on ℓ. It would be
interesting to show that, as it happens for super-Yang-Mills theories, all the HS conservation
conditions are broken at the same order, i.e, gℓ = g. In fact, it seems plausible that this
is imposed by consistency of the HS symmetry breaking, since this symmetry relates the
different HS currents. If this is case, one would not only conclude that it is enough to show
the exponential behavior for a single spin, but also that the exponential rate αχ does not
depend on ℓ and one has a full tower of HS currents becoming exponentially conserved at
the same rate.

4 Flavor enhancements at (in)finite distances

In the previous section, we have used properties of the higher-spin algebra to show that
HS points are at infinite distance. Although we focused on higher-spin currents, many
aspect of this machinery turns out to also be valid for ℓ = 1. In the conformal manifold,
this corresponds to regimes where a new conserved flavor current appears in the spectrum.
These special points need not automatically be associated with higher-spin points, nor
with infinite distances. A classical family of examples is (N = 1)-preserving deformations
of four-dimensional N = 4 super-Yang-Mills [3], where new R-symmetry currents are
accompanied with extra supercharges, see e.g. reference [112] for an analysis of the possible
multiplet recombination rules. These enhancements are associated with superpotential
deformations, and are at finite distance [80].

On the other hand, not all flavor-enhancement point are at finite distance. In N = 2
four-dimensional theories, representation-theoretic arguments show that spin-one would-
be-conserved current are in the same long multiplet as would-be higher-spin currents. At
threshold, the long multiplet then splits into (at least) two short multiplets and both
the flavor and HS currents become conserved [112–114]. The flavor-enhancement points
are therefore also higher-spin points, and always at infinite-distance in the conformal
manifold from the results of the previous section. This is related to the decomposability
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conjecture [114], stating that non-trivial N = 2 conformal manifolds can only be obtained by
performing a conformal gauging of the flavor symmetry of isolated theories. The decoupled
sector is then made out of the spectrum of free vector multiplets.

One can then ask whether a similar fate awaits more general cases, where we only
assume that there exist a neighborhood of the flavor-enhancement point such that the
broken Ward identity is valid:

∂µJµ = g K0 . (4.1)

At the point where g = 0, K0 is a scalar conformal primary with ∆ = d, but develops an
anomalous dimension elsewhere. The two operators J1 and K0 recombine into a larger
multiplet away from that point, where K0 is a conformal descendant [109].

The first step of our argument required us to show that, when g = 0, the OPE
combination vanishes: CJJO = 0. The current-conservation condition applied to the
correlator ⟨J1J1O⟩ again fixes the two OPE coefficents to be proportional to one another:

C0
JJO = 1

d
C1

JJO . (4.2)

But, contrary to cases where ℓ > 1, we cannot use the integrated Ward identity to conclude
that the remaining coefficient must vanish. Indeed, as shown in appendix A for the choice
of surface Σ discussed in section 3.2, the integral vanishes and we cannot conclude that
CJJO = 0 in this case.

It is nevertheless tempting to assume that the OPE combination should vanish at the
flavor-enhancement point. Were it not the case, taking γ0

ℓ=1 = 0 as the reference point
in equation (2.18), the anomalous dimension would become negative, γ ≃ −CJJO t < 0,
and violate unitarity bounds. Since it is at least in principle possible to deform away from
the flavor-enhancement point in the directions associated with both ±O, corresponding
to the two directions away from the point along the line parameterized by t, one of them
always lead to a violation of unitarity. A possible escape could be that somehow conformal
perturbation theory breaks down in that direction, leaving us with only a semi-infinite
critical line.

For now, let us thus assume that the OPE combination indeed vanishes: CJJO = 0. We
are then led to consider the correlator ⟨J1K0O⟩ at the point g = 0. The current-conservation
condition is automatically satisfied, and using the integrated Ward identity we obtain:∫

Σ
dxµ ⟨J1,µ(x1)K0(x2)O(x3)⟩ ∝ ⟨[Q1, K0(x2)]O(x3)⟩ . (4.3)

The integral on the l.h.s. can be expanded in terms of the single type-(1, 0, 0) conformal
structure, and, as shown in appendix B, the result is non-vanishing in any dimension.

Whether the OPE combination CJKO is trivial — and by extension whether the flavor-
enhancement point is at infinite distance via the CFT Distance Criterion — is therefore
decided by the commutator [Q1, K0]. If any of the marginal operators belong to the same
multiplet as the twist-d operator, [Q1, K0] ∼ O, then the two-point function on the r.h.s.
of equation (4.3) is non-vanishing and CJKO ̸= 0. The associated limiting point is then
at finite distance. If on the other hand none of the marginal operators share a multiplet
with K0, the r.h.s. of equation (4.3) is trivial and the flavor-enhancement point is at infinite
distance — provided that CJJO = 0 at that point, as discussed above.
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Let us note that the charge-conservation identity applied in section 3.3 for the case
of HS symmetry does not help in this case. Precisely for ℓ = 1, j1 cannot appear in
[Q1, j2], since Q1 has vanishing conformal dimension. This is the usual statement that the
energy-momentum tensor should be invariant under any global symmetry. We thus have to
set α1 = 0 in equation (3.32) and the correlator of interest ⟨j1K0O⟩ does not appear in the
charge-conservation condition.

In addition, the unitarity argument that we presented in favor of CJJO = 0 at the
flavor-enhancement point does not work either. If we have CJKO ̸= 0, then the behavior
of the OPE combination is given by CJJO ∼ g ∼ √

γ1, which leads to γ1 ∼ t2 upon using
equation (2.16). This is at finite distance, but the anomalous dimension is not linear with
the Zamolodchikov distance t, as it is the case for CJJO ̸= 0 at the flavor-enhancement
point. Therefore, this would not lead to a violation of the unitarity bound in any of the two
directions departing from the flavor-enhancement point along the line parametrized by t.

The condition we have found for the flavor-enhancement point to be at finite distance
is of course very intuitive. It is equivalent to the statement that the marginal operators
are charged under the symmetry. We could have alternatively chosen another integration
domain so that equation (4.3) is written in terms of the charges acting on O, which would
have led us to the condition [Q1,O] ∼ K0. For a deformation — marginal or not — to
preserve a symmetry the associated operator must be in the singlet representation. In
the context of R-symmetry, this was used to classify possible supersymmetry-preserving
deformations in various dimensions [3, 5, 8]. In the example of N = 4 super-Yang Mills
described above, the marginal operators are indeed charged under the extra symmetry, and
this explains why they are at finite distance.

Conversely, if none of the marginal operators are charged under the flavor symmetry,
it cannot be explicitly broken or restored. One would then expect that in the conformal
manifold this point can only be reached asymptotically and is therefore at infinite distance.
This is consistent with a flavor symmetry emerging as a sector becomes free, namely a higher-
spin point. It then begs the question of the possible existence of other flavor-enhancement
points at infinite distance. According to the second part of the CFT Distance Conjecture,
this cannot be the case, and an emerging flavor symmetry must be accompanied by a free
sector. While in 4d N = 2 SCFTs this is enforced by the superconformal algebra [112–114],
we are not aware of similar arguments in more general cases. The study of spin-one operators
and their behavior in the conformal manifold therefore seem like an avenue to test the rest
of the CFT Distance Conjecture.

5 Conclusions

A weakly-broken higher-spin symmetry imposes remarkably strong constraints on the form
of the correlators. By studying conformal perturbations close to higher-spin points, we have
harnessed it to show that these points must always be at infinite Zamolodchikov distance
in the conformal manifold, establishing part of the CFT Distance Conjecture.

In particular, we have combined two different types of perturbations. First, we have
used conformal perturbation theory to find a criterion which can be used to decide whether
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a point is at infinite distance, given in terms of the behavior of certain OPE coefficients near
the point of the conformal manifold under consideration. Furthermore, we have also utilized
the broken Ward identities appearing close to points where there is a symmetry enhancement.
Through Anselmi’s trick, this enabled us to find the leading behavior of the these coefficients
without needing to involve the details of a particular microscopic description.

Combining these two techniques have shown to be powerful as they were sufficient to
show that the first part of the CFT Distance Conjecture is indeed correct. One can then
wonder about the possibility of proving the converse, namely that infinite-distance points
can only be accompanied with a higher-spin enhancement, and whether the machinery
discussed here can be deployed to prove the rest of the conjecture. One would need to show
that the absence of the HS current at such points lead to an inconsistency, perhaps violating
the assumptions of local unitary CFTs. We expect that the CFT Distance Criterion could
help in this endeavour. We note that efforts have already been spent in that direction, as
it was recently shown using inversion formulae that singularities of the curvature of the
Zamolodchikov metric can only occur in the presence of higher-spin currents [20], or if the
CFT develops a continuum.

Concerning the third part of the conjecture — stating that the anomalous dimension
vanishes exponentially fast with the distance at higher-spin points — an analysis connected
to our results using conservation identities seems promising. We have indeed shown that
this exponential behavior happens along a given trajectory if CHS

KKO ̸= 0. Therefore, the
third part of the conjecture holds if there is always a marginal operator O such that this
OPE combination is non-vanishing at the HS point. Note that the presence of at least one
such operators with this property is enough. The presence of other marginal operators
for which CKKO → 0 as the HS point is approached would correspond to non-geodesic
trajectories that avoid an exponential behavior, and that are known to exist in the context
of the Swampland Distance Conjecture [45, 111]. It is furthermore remarkable that this
condition only requires information about the HS point, and one could hope that this
follows from the higher-spin algebra. However, the operators Kℓ−1 are not as constrained
as the related conserved currents Jℓ. A study of the associated correlators is then more
difficult without considering specific models, and we leave such analyses for future works.

We stress again that, while the evidence for the conjecture has originated from limiting
behaviors of SCFTs, our arguments have not relied on supersymmetry, and are valid across
dimensions. It would however be interesting to investigate if we can uncover new properties
of conformal manifolds by imposing this additional structure. Part of our analysis might be
simplified, and connect constraints of different spins. There are also examples of conformal
manifolds that are compact [10], and all conformal manifolds of three-dimensional CFTs
have been conjectured to be so as well [80]. It would be interesting to check ad absurdum if
assuming the presence of a broken Ward identity for the higher-spin symmetry in those
cases leads to inconsistencies. In the same vein, while we have not assumed the presence of
supercharges, we have not tackled the question of non-supersymmetric conformal manifolds,
and only required the presence of marginal operators regardless of the mechanism protecting
them against quantum corrections. While there have been hints of possible cases [115], their
existence is not yet settled.
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We have furthermore seen that for spin-one cases, some of the arguments we have used
fail, particularly to show that CHS

JJO = 0, a key ingredient of our analysis. Similarly, we
could not reach the conclusion CHS

JKO = 0. This is not a flaw but a feature, since flavor
enhancements are known to happen at both finite and infinite distance in the conformal
manifold. Our analysis leads to simple and intuitive conditions diagnosing which case
occurs. One can then ask whether the condition for having a flavor-enhancement point at
infinite distance would imply that it comes with additional HS conserved currents. This
seems to be a promising scenario for making progress towards the second part of the CFT
Distance Conjecture.

Our work falls into the broader context of the holographic Swampland Program, and
provides a step forward in the understanding of the constraints imposed by quantum gravity
through the AdS/CFT correspondence. While we have not discussed the gravity duals
of the local CFTs, our results have implications for theories of quantum gravity in AdS
backgrounds [79, 80]. A striking feature of our analysis is that it does not assume that the
families of CFTs are holographic, but only that they have an energy-momentum tensor.
This signals that the Swampland Distance Conjecture could hold beyond weakly-coupled
Einstein gravity. On more general grounds, one may wonder what constraints must be
imposed to conformal theories to address other Swampland conjectures.

Furthermore, our results lend more validity to the physical intuition that Vasiliev-type
gravity — with infinitely many massless HS fields — should be infinitely far away from
Einstein gravity, i.e. they should not be connected by small deformations [80]. They are
moreover in agreement with the Emergence proposal — see e.g. references [30, 44, 46, 116–
121] for works in this direction — which implies that points for which an infinite number
of weakly-coupled fields become massless should always be at infinite distance. It would
also be interesting to connect with the results that were obtained in references [88, 89],
by further studying how the correlators factorize, particularly when only a subsector of
the theory becomes free. In addition, further exploring conformal manifolds of local CFTs
(possibly with a weakly-coupled gravity dual) and their possible HS points might shed
some light on the fate of the Emergent String Conjecture [39] beyond flat backgrounds, see
reference [79] for an analysis of this conjecture applied to examples of AdS/CFT dual pairs
in string theory.

Finally, this work is but an example of possible synergies between conformal theories and
the Swampland Program. The Distance Conjectures have been developed by studying the
constraints on field theories imposed by quantum gravity, but have been applied to conformal
manifold independently of this origin. Other Swampland conjectures might therefore serve
as a guide for other questions on the field-theory side, and motivate particular answers.
On the other hand, conformal techniques have proven to lead to very rigorous results, and
could allow one to establish more thoroughly — or disprove — some of the more speculative
part of the program, and go beyond the current lamppost.
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A Current-conservation conditions

In section 3, we discuss the various constraints the higher-spin algebra imposes on correlators.
In particular, the Ward identity ∂ ·Jℓ = 0 can be used to relate some of the OPE coefficients
of a given three-point function involving Jℓ. As pointed out in references [21, 103], taking
the divergence of the three-point functions can be rephrased in terms of a differential
operator acting in the space of the building blocks constituting the conformal structures.
For the correlators we are considering, there are only three building blocks for the conformal
structures defined in equations (2.5) and (2.7): H12, V1 and V2 (their expressions as function
of the coordinates and polarization vectors are shown in equation (B.1)).

In all generality, the expression of the differential operator for type-(ℓ1, ℓ2, ℓ3) correlators
depends on all six building blocks, and was given in reference [103], whose conventions we
follow. For our purpose, we will always consider three-point functions involving a marginal
operator, ℓ3 = 0, which simplifies considerably the expressions we will have to deal with.
We will successively treat the two cases at hand, namely ⟨JℓJℓO⟩ and ⟨JℓKℓ−1O⟩. For
clarity, we reproduce here the conformal structure in both cases, using that Jℓ has twist
d − 2, while Kℓ−1 and O have twist d:

Θn = Pn

|x12|d−4|x13|d|x23|d
, Pn = Hℓ−n

12 (V1V2)n ,

Θ̃n = P̃n

|x12|d−2|x13|d−2|x23|d+2 , P̃n = Hℓ−n−1
12 V n+1

1 V n
2 .

(A.1)

We have denoted the numerators P and P̃, as these are the quantities on which the
differential operator discussed above is applied.

Current conservation for ⟨JℓJℓO⟩. In this case, the conservation equation leads to
the following constraint:

⟨Jℓ(x1, ξ1)(∂ ·Jℓ)(x2, ξ2)O(x3)⟩=0 ⇔ D2 ⟨Jℓ(x1, ξ1)Jℓ(x2, ξ2)O(x3)⟩=0 , (A.2)
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where the differential operator, understood as acting on the second current, reduces from
the original expression [103] to:

D2 =
D(3)

2
d − 2 +D(2)

2 + (d − 2)D(1)
2 − 2

(
δD(2)

2
d − 2 + δD(1)

2

)
, (A.3)

with

D(1)
2 = V1 ∂H12 ,

D(2)
2 = 2H12V1 ∂2

H12 + V1 ∂V1∂V2 + (H12 + 2V1V2) ∂V2∂H12 ,

D(3)
2 = 2H12 (H12 + 2V1V2) ∂V2∂2

H12 + (H12 + 2V1V2) ∂V1∂2
V2 ,

δD(1)
2 = ∂V2 − V1 ∂H12 ,

δD(2)
2 = V2 ∂2

V2 + 2H12 ∂V2∂H12 − 2V1H12 ∂2
H12 .

(A.4)

Note that we can safely ignore all terms involving building blocks that do not appear in the
type-(ℓ, ℓ, 0) conformal structures. Furthermore, in reference [103], the operator is defined
as acting on the first operator. To get to the above equation, we have exchanged the
indices 1 ↔ 2.

As explained in section 3, this operator can then be applied to each of the confor-
mal structures, Θn. The differential operator is taking care of the contribution from
the denominator by design, and we find the following relation for the numerator of a
given structure:

(d − 2)D2Pn = n2(n − 1) P̃n−2

+ n
[
d(ℓ − 2) + 2(3 + ℓ2 − 2ℓ(n + 2) + 2n2 + n)

]
P̃n−1

+ (ℓ − n)(d + 2n)(d − 4 + 2ℓ − 2n) P̃n .

(A.5)

As expected, all dependence on the building blocks can be written in terms of the numerator
of the type-(ℓ, ℓ − 1, 0) conformal structures Θ̃n, see equation (A.1). We can then plug in
those relations in the numerator of the three-point function ⟨JℓJℓO⟩:

P =
ℓ∑

n=0
C n

JJOPn . (A.6)

After shifting the sums and a bit of algebra to simplify the expression, everything can
be rewritten as a single sum:

(d−2)D2P =
ℓ−1∑
n=0

[
(n+2)2(n+1)Cn+2

JJO

+(n+1)
[
d(ℓ−2)+2(6+ℓ2−2ℓ(n+3)+2n2+5n)

]
Cn+1

JJO

+(ℓ−n)(d+2n)(d−4+2ℓ−2n)Cn
JJO

]
P̃n ,

(A.7)

where we have defined Cℓ+1
JJO = 0. Note that this is a boundary condition, as the OPE

coefficient Cn
JJO have a physical meaning only for 0 ≤ n ≤ ℓ. The current conservation
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condition then imposes that the prefactors in front of each P̃n must all vanish, leading to a
system of constraints:

A(n)Cn+2
JJO + B(n)Cn+1

JJO + D(n)Cn
JJO = 0 , n = 0, . . . , ℓ − 1 , (A.8)

where we have defined

A(n) = (n + 2)2(n + 1) ,

B(n) = (n + 1)
[
d(ℓ − 2) + 2(6 + ℓ2 − 2ℓ(n + 3) + 2n2 + 5n)

]
,

D(n) = (ℓ − n)(d + 2n)(d − 4 + 2ℓ − 2n) ,

(A.9)

and one has to keep in mind the boundary condition:

Cℓ+1
JJO = 0 . (A.10)

As discussed in the main text, this is a homogeneous system of ℓ equations for ℓ+1 variables.
For given d > 2 and ℓ ≥ 0, one can check that D(n) ̸= 0 for 0 ≤ n ≤ ℓ − 1, and we can
rewrite this as:

Cn
JJO = − 1

D(n)
(
A(n)Cn+2

JJO + B(n)Cn+1
JJO

)
, n = 0, . . . , ℓ − 1 . (A.11)

In this form, we clearly see that this is a recursion relation in the space of OPE
coefficients Cn

JJO. Using Cℓ
JJO and Cℓ+1

JJO = 0 as initial conditions and starting from
n = ℓ − 1, we can find any of the OPE coefficients as being proportional to Cℓ

JJO, and we
indeed find the result given in equation (3.11).

Notice that since A(n) ̸= 0 for 0 ≤ n ≤ ℓ − 1, we could instead have started with n = 0
and solved the system in ascending order. However, in this way Cℓ+1

JJO = 0 cannot be used
as an initial condition. This will lead to solutions in terms of C0

JJO and C1
JJO, plus the

constraint imposed by the boundary condition Cℓ+1
JJO = 0. As it is not guaranteed that

the last constraint is non-trivial, we find it more convenient to write the solution in terms
of Cn

JJO.
As advertised in section 3, given the current conservation condition for ⟨JℓJℓO⟩, we

have shown that we can always write all the OPE coefficients Cn
JJO in terms of Cℓ

JJO as in
equation (3.11). In other words, this condition reduces the number of allowed conformal
structures from ℓ + 1 to only one. For arbitrary dimension and spin, we have not found a
closed-form solution of the recursion relation. However, it can be easily solved for fixed
values programmatically, see equations (4.2) and (3.12) for ℓ = 1, 4.

Current conservation for ⟨JℓKℓ−1O⟩. Imposing the divergence of the higher-spin
current Jℓ in the case of the three-point function ⟨JℓKℓ−1O⟩ proceeds mutatis mutandis
from that of ⟨JℓJℓO⟩. The divergence is again translated into a differentiation in the space
of building blocks:

⟨(∂ ·Jℓ)(x1, ξ1)Kℓ−1(x2, ξ2)O(x3)⟩ = 0 ⇔ D1 ⟨Jℓ(x1, ξ1)Kℓ−1(x2, ξ2)O(x3)⟩ = 0 (A.12)
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The differential operator applied to the first operator is now simpler than in the previous
case, and given by [103]:

D1 =
D(3)

1
d − 2 +D(2)

1 + (d − 2)D(1)
1 , (A.13)

where we have defined each component as:

D(1)
1 = V2 ∂H12 ,

D(2)
1 = 2H12V2 ∂2

H12 + V2 ∂V1∂V2 + (H12 + 2V1V2) ∂V1∂H12 ,

D(3)
1 = 2H12 (H12 + 2V1V2) ∂V1∂2

H12 + (H12 + 2V1V2) ∂2
V1∂V2 .

(A.14)

Once again, following the procedure explained in section 3, this operator is applied
to the numerator of the correlator. The numerators P̃n of the type-(ℓ, ℓ − 1, 0) conformal
structure Θ̃n then satisfies the following relation:

(d − 2)D1P̃n = (n + 1)n2 Pn−1

+ (n + 1)
[
(ℓ − 1)(d + 2ℓ − 6)− (4ℓ − 6)n + 4n2

]
Pn

+ (ℓ − 1− n)(d + 2n)(d − 6 + 2ℓ − 2n)Pn+1 .

(A.15)

As expected, all dependence on the building blocks can be written in terms of the numerator
of type-(ℓ − 1, ℓ − 1, 0) conformal structures Pn, see equation (A.1).15 Plugging these
relations into the numerator of the full three-point function ⟨JℓKℓ−1O⟩:

P̃ =
ℓ−1∑
n=0

Cn
JKOP̃n , (A.16)

we then have

(d−2)D1P̃ =
ℓ−1∑
n=0

(n+1)n2Cn
JKOPn−1

+
ℓ−1∑
n=0

(n+1)
[
(ℓ−1)(d+2ℓ−6)−(4ℓ−6)n+4n2

]
Cn

JKOPn

+
ℓ−1∑
n=0

(ℓ−1−n)(d+2n)(d−6+2ℓ−2n)Cn
JKOPn+1 .

(A.17)

Shifting the sums, we can rewrite the sums in terms of summands containing only Pn if we
impose C−1

JKO = 0 = Cℓ
JKO. Note that this is not a constraint on the OPE coefficients, as

for type-(ℓ, ℓ − 1, 0) correlators Cn
JKO has a physical meaning only for 0 ≤ n ≤ ℓ − 1. After

a few algebraic manipulations, we find:

(d − 2)D1P̃ =
ℓ−1∑
n=0

[
(n + 2)(n + 1)2 Cn+1

JKO

+ (n + 1)
[
(ℓ − 1)(d + 2ℓ − 6)− (4ℓ − 6)n + 4n2

]
Cn

JKO

+ (ℓ − n)(d − 2 + 2n)(d − 4 + 2ℓ − 2n)Cn−1
JKO

]
Pn .

(A.18)

15Note that in equation (A.1) the conformal structures are given for spin ℓ, and one therefore needs to
substitute ℓ → ℓ − 1.
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The current-conservation condition then imposes that the prefactors of each Pn to
vanish, and we once more obtain:

Ã(n)Cn+1
JKO + B̃(n)Cn

JKO + D̃(n)Cn−1
JKO = 0 , n = 0, . . . , ℓ − 1 , (A.19)

where we have defined

Ã(n) = (n + 2)(n + 1)2 ,

B̃(n) = (n + 1)
[
(ℓ − 1)(d + 2ℓ − 6)− (4ℓ − 6)n + 4n2

]
,

D̃(n) = (ℓ − n)(d − 2 + 2n)(d − 4 + 2ℓ − 2n) ,

(A.20)

and we impose the following boundary conditions:

C−1
JKO = 0 = Cℓ

JKO . (A.21)

Taking into account the constraints, this is a homogeneous system of ℓ equations for ℓ

variables. If it is closed, all the OPE coefficients must vanish. However, in practice we find
that only ℓ− 1 equations are independent, and the OPE coefficients Cn

JKO are all related to
each other. Dealing with this system of equations for arbitrary ℓ is however tedious because
the spin controls the number of equations and variables, but it can easily be solved for fixed
values of the dimension and spin through computational means.

Despite this, in what follows we show that in the worst-case scenario, this system of
equations always allows us to fix all OPE coefficients in terms of Cℓ−1

JKO. Conversely, in the
best-case scenario the system is closed and we further have Cℓ−1

JKO = 0 — we have checked
that, unfortunately, this only happens in a few sporadic cases.

Given d > 2 and ℓ ≥ 0, one can check that D̃(n) ̸= 0 for 0 ≤ n ≤ ℓ − 1. Therefore, we
can write this system of equations as

Cn−1
JKO = − 1

D̃(n)

(
Ã(n)Cn+1

JKO + B̃(n)Cn
JKO

)
, n = 0, . . . , ℓ − 1 . (A.22)

In this form, we clearly see that this is a recursion relation in the space of OPE coefficients
Cn

JKO. In particular, we can successively solve it for descending values of n. Using Cℓ−1
JKO

and Cℓ
JKO = 0 as initial conditions, it allows us to write all the OPE coefficients in terms

of Cℓ−1
JKO. In fact, since this is a set of linear equations, the result will take the form of

equation (3.25).
Unlike for the case of ⟨JℓJℓO⟩, this is not the end of the story. Notice that this result is

also valid for C−1
JKO, which by definition is vanishing. This is, we have an extra constraint

C−1
JKO = ṽ−1Cℓ−1

JKO = 0 . (A.23)

This has two possible outputs: either ṽ−1 ̸= 0 and this constraint further imposes that
Cℓ−1

JKO must vanish, or ṽ−1 = 0 and the constraint is trivial. The first option corresponds to
the system of linear equations being closed, since we have ℓ equations for ℓ variables. An
easy way of distinguishing these two cases for some fixed ℓ is to compute the determinant
of the matrix corresponding to the system of equations in (A.22) and check whether it
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vanishes. As mentioned in the main text, we checked that it indeed does in any dimension
for 2 ≤ ℓ ≤ 10. In any case, we either find Cn

JKO = 0, which is one of the ingredient of the
proof in section 3, or we find the result shown in equation (3.25), and need to apply the
integrated Ward identity as explained in the same section.

Note that, since A(n) ̸= 0 for 0 ≤ n ≤ ℓ − 1, we could have also solved the recursion
relation (A.8) in ascending order, which would give all OPE coefficients in terms of C0

JKO.
In this case, we would find an extra constraint, Cℓ

JKO = 0. This is in contrast with the case
of ⟨JℓJℓO⟩, where solving the recursion relation in descending order avoided the appearance
of an extra constraint.

To summarize, we have shown that the current conservation condition applied to
⟨JℓKℓ−1O⟩, allows us to always write the OPE coefficients Cn

JKO in terms of Cℓ−1
JKO as

described in equation (3.25). In other words, this condition reduces (at least) the ℓ allowed
conformal structures to only one.

Current conservation for ⟨JℓK3O⟩. Another type of correlators that appear in the
main text are those of type (ℓ, 3, 0). As we will only need to deal with ℓ = 1, 2, 3 we will
not repeat the whole analysis for arbitrary ℓ as we did so far in this appendix, but rather
focus on those special cases. The numerators of those correlators then takes the form

P̂ℓ =
ℓ∑

n=0
Cn

JK3OHℓ−n
12 V n

1 V n−ℓ+3
2 , 0 < ℓ ≤ 3 . (A.24)

As the differential operator enforcing the conservation condition depends only on the
difference in the twist of the two non-conserved operators, we can use the one given in
equation (A.13). As we focus on low spins, finding the constraints by expanding the result
in terms of the building blocks is straightforward, and we again find that there is a unique
independent OPE coefficient:

ℓ=1 : C0
JK3O =− 3

d−2C1
JK3O ;

ℓ=2 : C0
JK3O = 6

d(d−2)C2
JK3O , C2

JK3O = 6
d−2C2

JK3O ;

ℓ=3 : C0
JK3O =

−6C3
JK3O

d(d2−4) , C1
JK3O =

18C3
JK3O

d(d−2) , C2
JK3O =

−9C3
JK3O

d−2 .

(A.25)

Current conservation for ⟨J2KℓO⟩. Correlators of type (2, ℓ, 0) also appear in the
charge-conservation identity discussed in section 3.3. Here we will focus in the cases
ℓ = 1, . . . , 6, as needed for the analysis in the main text. The numerators of those
correlators then take the form

P ′
ℓ =

min(ℓ,2)∑
n=0

Cn
J2KOHn

12V
2−n
1 V ℓ−n

2 . (A.26)

The differential operator is again the one given in equation (A.13). As we focus on low
spins, finding the constraints by expanding the result in terms of the building blocks is
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straightforward, and we again find that there is a unique independent OPE coefficient:

ℓ = 1, · · · , 6 : C0
J2KO = −d − 2

2ℓ
C1

J2KO , C2
J2KO = −ℓ − 1

2d
C1

J2KO . (A.27)

B Surface integrals and Ward identities

The previous appendix dealt with the current conservation condition applied to three-point
functions, and the constraints it imposed on the OPE coefficients. We have found that in
the two cases of interest, it reduces the number parameters to (at most) one. In section 3,
we further argue that the remaining coefficient must vanish at the higher-spin point using
the conserved charges obtained by integrating conserved currents over a codimension-one
surface Σ. This requires a choice of surface and polarization vector so that the integral over
the conformal structure is non-trivial. We now show that there is always a choice leading
to the desired outcome.

To do so, we will need the expression of the three building blocks in terms of the
spacetime coordinates and polarization vectors:

H12 =
(ξ1 · ξ2)|x12|2 − 2(ξ1 · x12)(ξ2 · x12)

|x12|4
,

V1 =
(ξ1 · x13)
|x13|2

− (ξ1 · x12)
|x12|2

,

V2 =
(ξ2 · x21)
|x21|2

− (ξ2 · x23)
|x23|2

.

(B.1)

In both cases of interest, and following reference [122], we consider the theory in Euclidean
spacetime and fix the position of the three operators to be at:

x1 = (0, x) , x2 = (12y, 0) , x3 = (−1
2y, 0) . (B.2)

This simplifies the expressions of the conformal structures. For instance, we have
the relations:

|x12|2 = x2 + 1
4y2 , |x13|2 = x2 + 1

4y2 , |x23|2 = y2 . (B.3)

We then need a codimension-one surface over which we integrate the first higher-spin
conserved current Jℓ. A choice that reveals itself to be very convenient is the surface defined
by x1 = (0, x). It corresponds to picking the J

1ν1···νℓ−1
ℓ components of the current in the

correlator. It is then easier to demand all indices to be in the same direction, and we choose
the first polarization vector to be ξ1 = (1, 0). The second polarization vector remains
unfixed, and for our purpose the following choice will lead us to the desired outcome:

ξ1 = ξ2 = (1, 0) , (B.4)

which in turn allows us to rewrite the building blocks as:

H12 =
x2 − 1

4y2(
x2 + 1

4y2
)2 V1 =

y

x2 + 1
4y2

, V2 = −
x2 − 1

4y2

y
(
x2 + 1

4y2
) . (B.5)
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Interestingly, this choice implies an additional relation between the three buildining blocks
that will considerably simplify the form of the conformal structure, and allow us to perform
the integrals exactly:

V1V2 = −H12 . (B.6)

With the definitions above, we are now ready to consider the surface integral for both
relevant three-point functions necessary to use the integrated Ward identity.

Integrals of ⟨JℓJℓO⟩ structures. In the case of surface integrals of the three-point
functions ⟨JℓJℓO⟩, the conformal structures are given by equation (2.5). For the choice of
polarizations given above and the relation (B.6), all the conformal structure take the same
form up to a sign:

Θn =
(−1)n

(
x2 − 1

4y2
)ℓ

yd
(
x2 + 1

4y2
)d−2+2ℓ

. (B.7)

We are therefore looking for an expression for the integral over the surface Σ defined by
x1 = (0, x) and for the choice of polarization given in equation (B.4):

IJJO(ℓ) =
ℓ∑

n=0

∫
Σ

dd−1x vnΘn =
∑ℓ

n=0(−1)nvn

yd

∫
Rd−1

dd−1x

(
x2 − 1

4y2
)ℓ

(
x2 + 1

4y2
)d−2+2ℓ

, (B.8)

where the coefficients vn are those found by solving the recursion relation (A.11) imposing
the current-conservation condition discussed in section 3.1. As mentioned there, while we
do not have a closed expression for the coefficients vn for arbitrary spin, we have checked
that the prefactor does not vanish,

∑ℓ
n=0(−1)nvn ̸= 0, for ℓ = 1, 2, . . . , 10.

This integral can be then performed straightforwardly by noting that the integration
variable only appear through its norm. A change of variable x = yx̃ followed by going to
spherical coordinates leads us to:

IJJO(ℓ) =
∑ℓ

n=0(−1)nvn

y2d−3+2ℓ
Sd−2

∫ ∞

0
dr

rd−2
(
r2 − 1

4

)ℓ

(
r2 + 1

4

)d−2+2ℓ
, (B.9)

where Sd−2 is the volume of the (d − 2)-sphere. Using the integral representation of
hypergeometric functions, we finally have the closed-form expression:∫ ∞

0
dr

rd−2 (r2− 1
4

)ℓ(
r2+ 1

4

)d−2+2ℓ =(−1)ℓ 2d−2+2(ℓ−1)Γ
(

d−1
2

)
Γ
(

d−3+4ℓ
2

)
Γ(d−2+2ℓ) 2F1

(
d−1
2 ,−ℓ,−d−5+4ℓ

2 ;−1
)

(B.10)

We conclude that for d > 2 and ℓ > 1, the surface integral IJJO does not generically vanish.
For instance, in the case of spin-four currents, the surface integrals reduces to:

IJJO(ℓ = 4) = Sd−2
3(d + 19)

√
π Γ

(
d−1
2

)
Γ
(

d
2 + 3

) ∑4
n=0(−1)nvn

y2d+5 . (B.11)
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In section 3, this enables us to show that three-point function ⟨J4J4O⟩ is trivial, an
important step in our proof. Note however that for spin-one currents, we cannot arrive at
this conclusion with the choice of polarizations we have made, as for any dimension,

IJJO(ℓ = 1) = 0 . (B.12)

In fact, this integral always vanishes for the spin-one case. Repeating the above computation
for the polarizations ξ1 = (1, 0) and ξ2 = (0, ξ), we are led to

ℓ∑
n=0

∫
Σ

dd−1x vnΘn =
∑ℓ

n=0(−1)nvn

yd−1

∫
Rd−1

dd−1x (ξξξ · x)(
x2 + 1

4y2
)d

= 0 , (B.13)

where we have used that as the integrand is odd, for our choice of surface the integral is
trivial. As a generic polarization can be written as a combination of the two choices above
and the integrals are linear with respect to the polarization, this surface integral vanishes
for ℓ = 1 for any choice of ξ2.

Integrals of ⟨JℓKℓ−1O⟩ structures. We can repeat the procedure used above for the
three-point function ⟨JℓKℓ−1O⟩. Placing the spacetime points as in equation (B.2), the
type-(ℓ, ℓ − 1, 0) conformal structures (see equation (2.7) for a definition), we obtain:

Θ̃n =
(−1)n

(
x2 − 1

4y2
)ℓ−1

yd+1
(
x2 + 1

4y2
)d−3+2ℓ

. (B.14)

For the choice of surface Σ defined by x1 = (0, x), and the polarization given in equa-
tion (B.4), we want to calculate:

IJKO(ℓ) =
ℓ∑

n=0

∫
Σ

dd−1x ṽnΘ̃n =
∑ℓ−1

n=0(−1)nṽn

yd+1

∫
dd−1x

(
x2 − 1

4y2
)ℓ−1

(
x2 + 1

4y2
)d−3+2ℓ

. (B.15)

The coefficients ṽn are given by the recursion relation (A.22) imposed by the current
conservation condition. We have checked that the prefactor is non-zero in any dimension for
ℓ = 1, 2, . . . , 10:

∑ℓ−1
n=0(−1)nṽn ≠ 0. Turning to the integral itself, using the same change of

variables as above, we obtain:

IJKO(ℓ) =
∑ℓ−1

n=0(−1)nṽn

yd−2+2ℓ
Sd−2

∫ ∞

0
dr

rd−2
(
r2 − 1

4

)ℓ−1

(
r2 + 1

4

)d−3+2ℓ
. (B.16)

Using the integral representation of hypergeometric functions, we finally find that:

∫ ∞

0
dr

rd−2
(
r2 − 1

4

)ℓ−1

(
r2 + 1

4

)d−3+2ℓ
=

(−1)ℓ+1 2d−2+2(ℓ−1)
Γ
(

d−1
2

)
Γ
(

d−5+4ℓ
2

)
Γ(d − 3 + 2ℓ) 2F1

(
d − 1
2 ,−ℓ + 1,−d − 7 + 4ℓ

2 ;−1
) (B.17)
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and IJKO(ℓ) never vanishes for any value of the dimension or the spin. For ℓ = 1, 4, it takes
the simple form:

IJKO(ℓ = 1) = 1
y2d

Sd−2

√
π Γ

(
d−1
2

)
Γ
(

d
2

) = 1
y2d

Sd−1 , (B.18)

IJKO(ℓ = 4) =
∑3

n=0(−1)nṽn

y2d+6 Sd−2(−3)
√

π(3d + 17)Γ
(

d−1
2

)
Γ
(

d+6
2

) . (B.19)

The upshot of the computations performed in this appendix is that, except when ℓ = 1
for IJJO, for generic dimensions and spins the surface integrals does not vanish. Combined
with the results using the current conservation-condition shown in appendix A, this enables
to show that at the higher-spin point the OPE coefficients of these three-point function are
trivial in section 3.

Integrals of ⟨JℓK3O⟩ structures. In section 3.3, the charge-conservation identites
leading to CHS

JKO = 0 can be simplified if some of the correlator can be shown to be trivial.
We focus now on correlators of the type ⟨JℓK3O⟩ with ℓ ≤ 3. In that case the conformal
structures at the positions given in equation (B.2) are:

Θ̂n = P̂n

|x12|d−2|x13|d−2|x23|d+2 =
(−1)n+3−ℓ

(
x2 − 1

4y2
)3

yd+5−ℓ
(
x2 + 1

4y2
)d+1+ℓ

. (B.20)

The numerator of the conformal structures is given in equation (A.24). In the integrated
Ward identity, with the choice of polarization (B.4), the relevant integral over the surface Σ
given by x = 0 is therefore:

IJK3O(ℓ)=
ℓ∑

n=0

∫
Σ

dd−1xunΘ̂n =
∑ℓ

n=0(−1)n+3−ℓun

yd+5−ℓ

∫
dd−1x

(
x2− 1

4y2
)3

(
x2+ 1

4y2
)d+1+ℓ

, (B.21)

where the coefficients un are those given in equation (A.25). Once again, using spherical
coordinates, it can be written in terms of hypergeometric functions that further simplify to:

IJK3O(ℓ) = 2d−4+2ℓ

∑ℓ
n=0(−1)n+2−ℓun

y2d+2+ℓ
Sd−2(ℓ − 1)(ℓ2 + ℓ + 3(d − 1))

Γ
(

d−1
2

)
Γ
(

d−3
2 + ℓ

)
Γ(d + 1 + ℓ) .

(B.22)
This integral therefore never vanishes except when ℓ = 1, and we can then follow the
discussion around equation (3.17) to apply the integrated Ward identity. Since the operator
K3 cannot appear in the commutator [Qℓ,O] when ℓ ≤ 3 according to equation (3.31), the
correlator must therefore be trivial when ℓ = 2, 3, which leads to a simplification of the
charge-conservation identity (3.35) for spin-four currents.
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Integrals of ⟨J2KℓO⟩ structures. We focus now on correlators of the type ⟨J2KℓO⟩.
In that case the numerator of the conformal structures is given in equation (A.26), and at
the positions given in equation (B.2), we obtain:

Θ′
n = P ′

n

|x12|d−2|x13|d−2|x23|d+2 =
(−1)n+ℓ

(
x2 − 1

4y2
)ℓ

yd+ℓ
(
x2 + 1

4y2
)d+ℓ

. (B.23)

In the integrated Ward identity, with the choice of polarization (B.4), the relevant integral
over the surface Σ given by x = 0 is therefore:

IJ2KO(ℓ)=
min(ℓ,2)∑

n=0

∫
Σ

dd−1xunΘ′
n =

∑min(ℓ,2)
n=0 (−1)n+ℓun

yd+ℓ

∫
dd−1x

(
x2− 1

4y2
)ℓ

(
x2+ 1

4y2
)d+ℓ

,

(B.24)
where the coefficients un are those given in equation (A.27). Once again, using spherical
coordinates, it can be written in terms of hypergeometric functions that further simplify to:

IJ2KO(ℓ) =
∑min(ℓ,2)

n=0 (−1)n+ℓun

yd+ℓ

∫
dd−1x

(
x2 − 1

4y2
)ℓ

(
x2 + 1

4y2
)d+ℓ

, (B.25)

where the integral can once again be written in terms of a hypergeometric function:∫
dd−1x

(
x2− 1

4y2)ℓ(
x2+ 1

4y2
)d+ℓ

=(−1)ℓ 2d

yd+1 Sd−2
Γ
(

d−1
2
)
Γ
(

d−1
2 +ℓ

)
Γ(d−3+2ℓ) 2F1

(
d−1
2 ,−ℓ,−d−7+4ℓ

2 ;−1
)

(B.26)
We therefore find that the integral never vanishes for ℓ = 1, . . . , 6, and we can then follow
the discussion around equation (3.17) to apply the integrated Ward identity. Since the
operator Ks cannot appear in the commutator [Q2,O] when ℓ ≥ 1 and when the spin two
current is the energy-momentum tensor, J2 = T2, the correlator must therefore be trival
when ℓ = 1, . . . , 6, which leads to a simplification of the charge-conservation identity (3.35)
for spin-four currents.
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