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1 Introduction

The importance of chaos for conformal field theories and the AdS/CFT correspondence
has become increasingly apparent over the years. Quantum chaos is often formulated as
a statement about the statistics of the spectrum of energy eigenvalues. Energy levels
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that are sufficiently close together are expected to show the same statistics as those of
an appropriate random matrix ensemble, namely eigenvalue repulsion; the probability of
energy levels being nearby decreases as they get closer. This leads to a linear ramp in the
spectral form factor, which is the averaged product of partition functions, at late times.
Holographic conformal field theories possess a dense spectrum for large enough energies for
any spin, and thus could possibly display random matrix universality.

In theories with symmetries, only the parts of the spectrum that are independent of
the symmetries can display random matrix universality. In particular, the spectrum of
conformal field theories in two dimensions is subject to translation invariance, Virasoro
symmetry, and modular invariance. We can remove the consequences of translation in-
variance and Virasoro symmetry by focusing on conformal primary operators in fixed spin
sectors. This leaves the question of modular invariance, which relates primaries of different
energy and spin.

In [1], we began investigating the relationship between quantum chaos in two-dimen-
sional CFTs and modular invariance. Motivated by the pure gravity wormhole amplitude
found by Cotler and Jensen [2, 3] (see also [4]), we argued that random matrix statistics for
the “near-extremal” part of the dense spectrum and the corresponding late time linear ramp
is an independent feature of each spin sector separately. This is a non-trivial statement
because the exact spectrum is fully determined by only the spectrum of spin zero primaries
and those of a single non-zero spin. The focus of this analysis was on CFTs where the
ramp is encoded solely in the continuous part of the basis of modular invariant functions.
There exists a discrete part as well, the Maass cusp forms, that can also encode the ramp.

The cusp forms are interesting objects in their own right:

• Cusp forms arise as bound states for a particle moving in the fundamental domain
of SL(2,Z). This is a classically chaotic system, however due to its highly symmetric
structure it does not obey random matrix statistics.

• Instead, their spectrum of eigenvalues R±
n is bounded from below and is Poisson

distributed, i.e corresponds to independent draws from a known distribution.1

• Their Fourier coefficients a
(n,±)
m for prime spin m are bounded by ±2 and are also

Poisson distributed independently drawn from known distributions. As a consequence
of Hecke relations the Fourier coefficients for non-prime (composite) spins are poly-
nomials of those with prime spins. This implies that the distributions of non-prime
spin Fourier coefficients are also determined by the distributions for prime spins.

We sometimes refer to the collection of eigenvalues and Fourier coefficients as cusp form
data. Together their statistical properties are sometimes referred to as arithmetic chaos [5–8].

A connection between arithmetic chaos and quantum chaos in CFTs is an intriguing
possibility (first hinted at in [9]), particularly since quantum chaos in the wormhole ampli-
tude is encoded solely in the cusp forms for all non-zero spins [10]. On the one hand, the

1We label the different cusp forms by an integer n and a sign ‘±’, which refers to cusp forms of even and
odd parity, respectively.
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Figure 1. A depiction of the statistical approximation to cusp form data. The “spectral staircase”
and the erratically distributed Fourier coefficients are replaced with their average values. We
will justify this ‘statistical’ coarse-graining in the time regime that is relevant for random matrix
universality. It should be distinguished from ‘microcanonical’ coarse-graining, which is always
required to discuss correlations in the CFT spectrum.

fact that objects linked to chaos appear in the spectral decomposition of CFTs suggests
that the two (very different) types of chaos may be linked in some way. On the other hand,
arithmetic chaos is a property of the general modular invariant basis functions, not of the
actual CFT spectrum, so it is also present in integrable CFTs. We intend to clarify the
relation in this work.

Summary of results. In this paper, we extend the techniques developed for the con-
tinuous SL(2,Z) spectrum in [1] to the cusp forms and identify the relationship between
arithmetic and quantum chaos. We show that taking the near-extremal, late time limit
automatically implements a statistical averaging over the cusp form data, in particular over
their sporadic eigenvalues and erratic Fourier coefficients. On the one hand, this means
that quantum chaos in 2d CFT depends only on statistical features of arithmetic chaos,
not the detailed structure of the cusp form data. On the other hand, it is remarkable
that full information about (i.e., all statistical moments of) the distributions of the cusp
form data is encoded in the spectral form factor, assuming it exhibits a linear ramp in
all spin sectors. We find the universal form these statistically averaged correlations in the
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cusp form sector must take to produce a ramp. As with the continuous sector, modular
invariance does not spoil the independence of random matrix universality in each separate
spin sector, since the statistical averaging proceeds differently in each spin sector; a linear
ramp must be imposed as a separate assumption for each spin sector in order to fully and
consistently determine the correlations in cusp form expansion coefficients.

By demanding that there be a linear ramp in every spin sector, we are able to “boot-
strap” the exact cusp form correlations whose statistical averaging produces random matrix
statistics independently in every spin sector. These correlations depend on all moments of
the distributions of the Fourier coefficients for prime spin, and are related to well studied
number-theoretic objects. In fact, these correlations are essentially universal and unique
under some mild assumptions. The gravitational wormhole amplitude exhibits the same
universality, while at the same time having the minimal subleading corrections (in the
late time limit) to make it consistent with modular invariance [10]; under some related
minimality assumptions our construction reproduces it exactly.

Our presentation is somewhat pedagogical. For the result on cusp form correlations
encoding a linear ramp in all spin sectors, see (3.18) and (3.21). We derive this result by
investigating statistical features of the sum over ‘arithmetically chaotic’ cusp forms. We
discuss the connection with Euclidean wormholes in section 4.

Outline. The paper is organized as follows. In section 2 we review the setup of [1], intro-
ducing the fluctuating part of the partition function and decomposing it in the complete
basis of modular invariant functions. In section 3 we analyze how random matrix statistics
appears in the cusp forms, and demonstrate its reliance on only arithmetic chaos. We derive
an expression whose statistical average produces a ramp in each spin sector and show that
it is unique under mild assumptions. In section 4 we then show that this expression exactly
matches a calculation in AdS3 gravity. In the discussion, we put forth some preliminary
results on the spectral decomposition of the self-correlations in the spectrum , and how it
differs from eigenvalue repulsion.

Conventions are collected in appendix A. We review statistical features of cusp forms
in appendix C and discuss some important mathematical properties in appendix D. Ap-
pendix E concerns the imprint of linear ramps in a given spin sector onto other spin sectors.

2 Spectral decomposition of the ramp

We start by reviewing the SL(2,Z) spectral decomposition of the linear ramp and recol-
lecting the work of [1]. In the next section we extend this analysis to the cusp forms, and
in particularly use statistical properties thereof (dubbed “arithmetic chaos”) to simplify
the analysis.

2.1 SL(2,Z) spectral theory

Beginning from the full CFT partition function on a torus with modular parameter τ =
x + iy, Z(x, y), in [1, 9] the authors introduce a fluctuating partition function Z̃P(x, y) by
a series of steps intended to account for the symmetries of the problem:
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• First, the partition function is divided by that of a single non-compact boson, Z0 =
1/(y1/2|η(x+iy)|2), to remove all Virasoro descendants in a modular invariant fashion.

• Then one realizes that the ‘censored’ part of the spectrum (i.e., states with h or
h̄ ≤ c−1

24 , equivalently E ≤ 2π
(
m − 1

12

)
≡ Em) is not typically chaotic. Therefore,

one subtracts off this part of the spectrum. In addition, one also removes the part
of the dense spectrum (h, h̄ > c−1

24 , equivalently E > Em) that is determined from
the censored spectrum by symmetries (such as modular S-transformations); together,
these two parts are called the modular completion of the censored spectrum, ẐC(x, y).

The resulting “fluctuating” partition function Z̃P(x, y) is the object that can display quan-
tum chaos. Finally, we write this object in terms of a decomposition into sectors with
definite spin:

Z̃P(x, y) =
∑
m∈Z

e2πimx Z̃m
P (y) . (2.1)

This is not quite an ordinary partition function: the density of states it describes corre-
sponds to fluctuations around the average density of states.

To understand why this is, we have to explain the process of modular completion.
There are different ways of performing the modular completion of the censored spectrum
ρC(E), which are all modular invariant and do not introduce new censored states. We
focus on the kind introduced in [11], where the modular completion of each censored
state results in a continuous density of states in the dense part of the spectrum.2 For
example, the modular completion of the vacuum gives a continuous density of states for
the dense spectrum that includes the well-known Cardy formula for the leading average
density of states at high energies. Other censored states give additional contributions that
are subleading at high energy and large central charge.

In effect, the modular completion defines our coarse-graining procedure: ρ̂C(E) =
ρC(E) + ⟨ρD(E)⟩, where ‘D’ refers to the dense part of the full spectrum.3 With this
prescription, subtracting the modular completion of the censored spectrum amounts to
eliminating the latter while also removing the average density of states from the heavy
spectrum. Explicitly,

ρ̃P(E) ≡ ρP(E)− ρ̂C(E) = ρD(E)− ⟨ρD(E)⟩ (2.2)

is the fluctuating density of states corresponding to the fluctuating partition function,

Z̃m
P (y) =

√
y

e
π
6 y

∫ ∞

Em

dE ρ̃m
P (E)e−yE , (2.3)

where we include the normalization factors from the non-compact boson. Thus, (2.1) is the
modular-invariant object that can display quantum chaos. It is ‘fluctuating’ in the sense
that ρ̃P(E) has a vanishing microcanonical average (in particular it has both positive and
negative contributions).

2This is in the spirit originally suggested in [12] that the effective disorder average in gravity is related
to the conventional one underlying quantum statistical mechanics.

3A similar perspective is established in [10], motivated by the diagonal approximation of semi-classical
periodic orbits.
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The linear ramp: we are interested in the universal correlations that this fluctuating
spectrum exhibits due to quantum chaos. In particular, a quantum chaotic CFT will have
a universal asymptotic contribution to the variance of Z̃P, describing eigenvalue repulsion.
This is often called the ‘linear ramp’ and corresponds to analytically continuing y1 → β+iT

and y2 → β − iT and taking the large T limit of the spectral form factor. A linear ramp
is captured in yi variables by the following limiting behavior:
〈
Z̃m1

P (y1) Z̃m2
P (y2)

〉
ramp = δm1m2

[ 1
π

y1y2
y1 + y2

e−2π|m1|(y1+y2)
]
+ . . .

(
yi ≫ 1,

y1
y2

= fixed
)

(2.4)

where ‘. . .’ denotes subleading terms in the large yi limit. This should be read as a statement
about each spin sector separately. We choose here (and henceforth) a normalization for the
ramp corresponding to the GOE universality class, which matches the discussion in [10, 13].
The normalization would be different for other universality classes, in particular it would
differ by a factor 1

2 for GUE as in [3] and our previous work [1].4

Spectral decomposition: it is useful to expand the fluctuating partition functions in
a complete basis of normalizable modular invariant functions on the fundamental domain
F [9] (see also [10, 14–16]). Such eigenfunctions consist of a continuous spectrum of Eisen-
stein series Es(y) with s ∈ 1

2 + iR, and a discrete spectrum of Maass cusp forms νn,±(y):

∆F E 1
2 +iα(τ) =

(1
4 + α2

)
E 1

2 +iα(τ) , ∆F νn,±(τ) =
(1
4 +

(
R±

n

)2)
νn,±(τ) . (2.5)

in addition to a constant function, ∆F ν0(τ) = 0. Note that there are both even (+) and
odd (−) cusp forms, so there are two sets of eigenvalues {R±

n }. These are randomly dis-
tributed, which we will quantify later. After expanding the fluctuating part of the partition
function in this modular invariant basis, the expansion coefficients are then unconstrained
by modular invariance and their statistical properties are a good diagnostic of chaos. To
write this, we refine the decomposition (2.1):

Z̃P(x, y) = Z̃0
P(y) + 2

∑
m>0

{
cos(2πmx)

[
Z̃m

P,disc.,+(y) + Z̃m
P,cont.(y)

]
+ sin(2πmx)Z̃m

P,disc.−(y)
}

(2.6)

where the spectrum consists of the following pieces:5

spin 0, continuous: Z̃0
P(y) = vol(F)−

1
2 z0 + 2√y

∫
R

dα

4π
z 1

2 +iα yiα ,

spin > 0, discrete: Z̃m>0
P,disc.,±(y) =

∑
n≥0

zn,± νm
n,±(y) ,

spin > 0, continuous: Z̃m>0
P,cont.(y) =

∫
R

dα

4π
z 1

2 +iα Em
1
2 +iα

(y) ,

(2.7)

4It was shown in [13] that every CFT contains an anti-linear, anti-unitary RT symmetry, implying that
the relevant universality class for two-dimensional CFTs is GOE.

5In writing the first line we imposed Λ(iα)z 1
2 +iα = Λ(−iα)z 1

2 −iα, which is a symmetry of the Eisenstein
series.
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with vol(F) = π
3 and the norm of cusp forms refers to the Petersson norm. The modular

invariant expansion coefficients are {z0, zn,±, z 1
2 +iα}, and we are interested in their variance

and how it encodes the linear ramp. Using the explicit basis functions for m > 0,6

νm
n,±(y) = a(n,±)

m

√
yKiR±

n
(2πmy) ,

Em
1
2 +iα

(y) = 2 a
(α)
m

Λ(−iα)
√

yKiα(2πmy) , a(α)
m = 2σ2iα(m)

miα
,

(2.9)

where Λ(s) ≡ Λ(1
2 − s) ≡ π−sΓ(s)ζ(2s).

We also trivially obtain a decomposition into bases of Bessel functions (both with
continuous order, Kiα, and sporadic discrete order, KiR±

n
) by defining the spin-dependent

spectral overlap coefficients:

zm
n,± ≡ a(n,±)

m zn,± ,

zm(α) ≡ 2 a
(α)
m

Λ(−iα) z 1
2 +iα .

(2.10)

The fact that {z0, zn,±, z 1
2 +iα} are independent of spin leads to spectral determi-

nacy [9]: full knowledge of Z̃m
P, cont./disc.,,±(y) for only m = 0 and a single non-zero spin

determines the partition function for every other spin.7 That the coefficients must be
independent of spin will prove to be important.

2.2 Linear ramp from correlations in spectral overlap coefficients

We wish to discuss how the ramp (2.4) translates into specific universal correlations between
the coefficients of the spectral decomposition. This discussion should a priori be had for
each spin sector individually.

Ramp for spin 0: for spins m1 = m2 = 0, the ramp is encoded in
〈
Z̃0

P(y1)Z̃0
P(y2)

〉
, and

in particular it is fully determined by correlations in the overlap coefficients with Eisenstein
series 〈

Z̃0
P(y1)Z̃0

P(y2)
〉
= 4√y1y2

∫
R

dα1dα2
(4π)2

〈
z 1

2 +iα1
z 1

2 +iα2

〉
spin 0 ramp yiα1

1 yiα2
2 + . . .

〈
z 1

2 +iα1
z 1

2 +iα2

〉
spin 0 ramp ∼ 1

2 cosh(πα1)
× 4πδ(α1 + α2) (|αi| → ∞) .

(2.11)

where terms subleading in the large yi limit (denoted as ‘. . .’) are required to obtain a
modular invariant expression; these correspond to deviations from the asymptotic form

6Our conventions for Fourier coefficients are consistent with [9] and [1], but differ from [10]. For com-
parison, we give the translation:(

a
(s≡ 1

2 +iα)
j≡m

)
there

=
(
a(α)

m

)
here

,
(
b(n)

j≡m

)
there

= ||νn,±||
2

(
a(n,±)

m

)
here

. (2.8)

7For partition functions that arise as Poincaré series, further constraints follow [10]. However, we do not
assume this here.
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given in the second line of (2.11).8 While the correlations in z 1
2 +iα will in general contain

more information, the above should be understood as the universal contribution that is
due to a ramp in the spin 0 sector.9

Ramp for non-zero spins: for non-zero spins, decomposing the ramp using (2.6) and
noting that the leading term shown in (2.4) is even in spin, it is clear that the ramp
could apriori be encoded in cross-correlations between any of the terms in (2.6) (subject
to producing the correct parity). We will now discuss the form of the correlations that
can encode a ramp in a single spin sector. However we will later stress the limitations of
this approach when asking for linear ramps in more than one spin sector simultaneously,
as these are not independent of each other and additional consistency conditions must be
imposed.

Using the spectral decomposition of the partition function, we can write its even and
odd parts for spin m ≥ 1 in a basis of Bessel functions, where each individual term is still
modular invariant by construction:

Z̃m
P,+(y) ≡

∑
n>0

zm
n,+

√
yKiR+

n
(2πmy) +

∫
R

dα

4π
zm(α)√yKiα(2πmy) ,

Z̃m
P,−(y) ≡

∑
n>0

zm
n,−

√
yKiR−

n
(2πmy) .

(2.12)

Let us now briefly review how the ramp could be encoded the Eisenstein series cor-
relations (see [1]). For the continuous part of the spectral decomposition, we can use the
orthogonality of Bessel functions to invert the α-integral in (2.12):

zm(α) = 2
π

α sinh(πα)
∫ ∞

0

dy

y3/2 Kiα(2πmy)Z̃m
P,cont.(y) . (2.13)

This allows us to translate the universal expression for RMT eigenvalue repulsion, (2.4),
into an expression for the correlations of zm(α) coefficients by performing two correlated
y-integrals of the form (2.13):

⟨zm1(α1)zm2(α2)⟩ramp = 2α1 tanh(πα1) δm1m2 [δ(α1 − α2) + δ(α1 + α2)] . (2.14)

This shows how a ramp for specific spin m can be encoded in the coefficients of the Eisen-
stein series, and the required correlations are again diagonal in the spectral parameter.10 It
is straightforward to verify this result explicitly by transforming (2.14) back to y-variables,
which reproduces (2.4). We can equivalently write (2.14) as:〈

z 1
2 +iα1

z 1
2 +iα2

〉
spin m ramp = Λ(−iα1)Λ(−iα2)

2
(
a

(α1)
m

)2 α1 tanh(πα1) [δ(α1 − α2) + δ(α1 + α2)]

(2.15)
8We thank E. Perlmutter for pointing out the importance of the large |αi| limit, see [10] and [1] for more

details.
9Note that the correlation (2.11) is manifestly diagonal in the spectral parameters αi. Such diagonality

was proposed in [10] as a natural constraint analogous to Berry’s diagonal approximation in the theory of
periodic orbits. It is also a distinctive feature exhibited by the pure gravity result for the T2×I amplitude [3].

10Since zm(α) is even in α by definition, we refer to the presence of the symmetrized sum of delta-functions
in (2.14) as diagonal.
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The fact that this relation depends explicitly on spin might be understood as follows: the
existence of a ramp in each spin sector gives partial information about the correlation of the
modular invariant coefficients in different regimes, roughly organized by scale of oscillation
as function of α. The different regimes are spin-dependent, so (2.15) is to be understood
as being valid only in the regime informed by the asymptotic form of the spin-m partition
function.11

Note that (2.15) is not consistent with the asymptotic condition (2.11). This means
that once we impose the spin 0 ramp on the correlations in the Eisenstein sector, the
spinning ramps must be encoded in the cusp form correlations.

3 Ramp from cusp forms — the statistical approximation

In this section we extend the above analysis to the cusp forms. The main tool we use
is a continuous approximation to the sum over the cusp forms, which utilizes statistical
information, known as “arithmetic chaos”. We introduce the approximation in the context
of a simple ansatz that yields ramps in a single spin sector from cusp form sums, and show
how this is reproduced to good accuracy by the statistical approximation. This sets the
stage for an improved ansatz, discussed in the next section, where we “assemble” ramps
for all spin sectors simultaneously.

We would like to explore the type of correlations in the overlap coefficients,
⟨zn1,±zn2,±⟩ramp, which yield a linear ramp through a sum over cusp forms:〈

Z̃m1
P,disc.,±(y1)Z̃m2

P,disc.,±(y2)
〉

ramp
=

∑
n1,n2>0

⟨zn1,±zn2,±⟩ramp νm1
n1,±(y1)νm2

n2,±(y2) , (3.1)

where the l.h.s. takes the universal form (2.4), and we recall νm
n,±(y) ≡ a

(n,±)
m

√
yKiR±

n
(2πmy).

Note that the sum is over erratic eigenvalues R±
n and erratic Fourier coefficients a

(n,±)
m . The

first few eigenvalues are:

R+
n =13.7798..., 17.7386.., 19.4235.., 21.3158.., 22.7859.., 24.1124.., 25.8262.., ...

R−
n =9.5337.., 12.1730.., 14.3585.., 16.1381.., 16.6443.., 18.1809.., 19.4847.., ...

(3.2)

These are sporadically distributed and become increasingly dense. The cusp form Fourier
coefficients take a similarly erratic form (for fixed spin), for example:

a
(n,+)
m=2 =+1.5493.., −0.7655.., −0.6928.., +1.2875.., +0.2677.., +1.7124.., ...

a
(n,−)
m=2 =−1.0683.., +0.2893.., −0.2309.., +1.1619.., −1.5402.., +0.3741.., ...

(3.3)

where we normalized such that a
(n,±)
m=1 = 1. The Fourier coefficients are distributed accord-

ing to a Wigner semi-circle for prime spins m → ∞. Studying the nearest neighbor spacings
11To organize the information conveniently and discuss the relationship between all the statements implied

by the ramp in different spin sectors, ref. [1] introduced a conjugate variable ξ; the existence of a ramp
in each spin sector then is localized in that variable, in a different location for different spin sectors. The
transformation to the ξ variables is roughly a Fourier transform, so localization in that variable translates
to a definite scale of oscillatory behavior in the α variables.
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reveals that both the eigenvalues and the Fourier coefficients (for fixed spin) are Poisson
distributed — a fact we shall refer to as arithmetic chaos; see appendix C for details and
plots. In a sense, arithmetic chaos is more akin to an integrable rather than a chaotic
structure. One of our goals is to elucidate the relationship between this randomness in the
structure of the Maass cusp form expansion and the genuine quantum chaos described by
the linear ramp in the spectral form factor. To reproduce the ramp from a sum over cusp
forms, we will have to address this interplay.

A central ingredient in our analysis is a certain continuum approximation to the dis-
crete sum over cusp forms; relatedly, we will argue that all cusp form data can be replaced
with its statistical average, which we will explain in turn. Before giving details, let us
summarize the steps we will follow:

1. To find ⟨zn1,±zn2,±⟩ such that the sum (3.1) yields a ramp, we first note that the
linearly increasing density of eigenvalues R±

n allows us to approximate the sum by an
integral over a continuous eigenvalue density. We will argue that this approximation
becomes arbitrarily good for large yi. Equivalently, we can think of the large yi limit
as implementing a statistical averaging over eigenvalues.

2. While less obvious, we will show that the large yi limit also acts as a statistical aver-
aging over the Fourier coefficients a

(n,±)
m . Since they appear squared in the spectral

form factor, the cusp form sum is effectively only sensitive to their statistical vari-
ance. Thanks to certain Hecke relations, the information contained in the variances
of Fourier coefficients for all spins m is equivalent to the information contained in the
full distribution of those with prime m.

3. Using these statistical properties, we illustrate what kind of correlations ⟨zn1,±zn2,±⟩
can yield a ramp in a given spin sector. We then show how to get a ramp in every
spin sector in a very constrained way. The correlations thus obtained come with a
certain amount of freedom. We show that fixing this freedom in the simplest possible
way leads to a result that matches the pure gravity wormhole amplitude [3].

Throughout this section we make extensive use of a database of 5832 even and 6282
odd Maass cusp forms (corresponding to eigenvalues R±

n < 400), computed in [17] (see
also [18] for a subset). We also assume the non-degeneracy of cusp forms, which is a widely
believed but unproven conjecture.

3.1 Statistical treatment of the sum over eigenvalues R±
n

A ramp can be encoded in the coefficients of Maass cusp forms; to extract this, we need
to invert the discrete part of (2.12). This requires an appropriate regularization of the
integrals over Bessel functions to ensure their orthogonality in the discrete solution space.
We avoid this technical point for the moment by working with an approximate continuous
representation. This will allow us to derive the solution. We will see that this representation
utilizes many of the statistical properties of the cusp forms, thus connecting arithmetic
chaos to the expansion of the ramp in the cusp forms.
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To start we define the density of cusp forms by µ±(R), defined by

Z̃m
P,disc.,±(y) =

∫ ∞

r±
dR µ±(R) zm

R,±
√

yKiR(2πmy) , µ±(R) =
∑
n≥1

δ(R − R±
n ) , (3.4)

where zm
R,± is a smooth function of R such that zm

R±
n ,± ≡ zm

n,±. We will justify by construc-
tion that this is consistent with a ramp.

The asymptotic density of cusp forms can be approximated by a continuous function,
using the ‘Weyl law’ (see for example [19, 20]):

µ+(R) ≈ µ̄+(R) = 1
12 R − 3

2π
logR + log

(
π4/2

)
4π

+O
( logR

R2

)
,

µ−(R) ≈ µ̄−(R) = 1
12 R − 1

2π
logR − log 8

4π
+O

( logR

R2

)
.

(3.5)

The lower cutoff r± > 0 in (3.4) is chosen appropriately such as to avoid over-counting of the
constant cusp form. We review this approximation and various other statistical properties
of the Maass cusp forms in appendix C, see in particular figure 5. For the purpose of our
analysis, the smooth approximation to the density of eigenvalues R±

n sometimes allows us
to replace sums by integrals:∑

n>0
f(R±

n )
?≈
∫ ∞

r±
dR µ̄±(R) f(R) , (3.6)

which one might expect to hold for sufficiently smooth functions f . Clearly the approx-
imation is better for functions f with support at larger values of R, since the eigenvalue
density increases linearly with R; thus, more precisely, for any ε > 0 and sufficiently smooth
functions f , there is a sufficiently large n0 such that∣∣∣∣∣ ∑

n>n0

f(R±
n )−

∫ ∞

Rn0

dR µ̄±(R) f(R)
∣∣∣∣∣ < ε . (3.7)

Working with this continuous approximation, a calculation identical to (2.14) gives:

〈
zm1

R1,±zm2
R2,±

〉
ramp ≈ 2R1 tanh(πR1)

π2 µ̄±(R1)2 δm1m2 δ(R1 − R2) . (3.8)

One can immediately see that this approximate continuous expression translates into the
following correlations for the discrete coefficients:

〈
zm1

n1,± zm2
n2,±

〉
ramp ≈

2R±
n1 tanh

(
πR±

n1

)
π2 µ̄±(R±

n1)
δm1m2 δn1n2 . (3.9)

or, equivalently, the cusp form sum (3.1) encoding a linear ramp should be of the form〈
Z̃m1

P,disc.,±(y1)Z̃m2
P,disc.,±(y2)

〉
ramp

≈
∑

n1,n2>0

(
2R±

n1 tanh
(
πR±

n1

)
π2 µ̄±(R±

n1)
δm1m2δn1n2

)
√

y1KiR±
n1
(2πm1y1)

√
y2KiR±

n2
(2πm2y2)

(3.10)
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Figure 2. Numerical verification of the encoding of a linear ramp in correlations of even (left)
and odd (right) Maass cusp forms, according to (3.10), for y1 = y2 ≡ y. The summation over n

is performed up to some cutoff such that convergence is achieved within the displayable accuracy.
The plots show that the sum converges to the ramp linear y/(2π) up to an m-dependent constant
that is subleading as y → ∞.

This is approximate in the following sense. To evaluate the sum we can proceed in two
ways: (i) analytically, we can approximate the sum by an integral as in (3.6), which in turn
recovers the exact ramp in every spin sector (by construction). The approximation is then
due to replacing the sum by an integral. This approximation becomes increasingly good
for yi → ∞ because the support of the Bessel functions becomes peaked shifts to larger
values of R±

n where these are more dense. Indeed, the sum receives most of its support
from a window n1 = n2 ∈ [nmin, nmax], where both nmin and nmax increase with yi. (ii)
Numerically, we can confirm directly that the discrete sum (3.10) (cut off at an appropriate
nmax) does also reproduce the ramp up to an error (a subleading constant shift) that goes
to zero as yi → ∞.12 Figure 2 illustrates the result (both for even and odd parity cusp
forms). We see that the numerical evaluation of the Maass cusp form sum asymptotes to
the expected linear ramp for large values of yi (we only show the case y1 = y2 ≡ y, but
other cross sections of the (y1, y2) plane were checked similarly). In appendix B we give
more details on these approximations.

3.2 Statistical treatment of the Fourier coefficients a(n,±)
m

Let us return to the sum over cusp forms, (3.1). We wish to address the following question:
what form of correlations ⟨zn1,±zn2,±⟩ yields the ramp (3.10)? Naively, it seems that we
have already answered this question in (3.9). However, that expression, taken literally,
would via (2.10) give a different, spin-dependent form of ⟨zn1,±zn2,±⟩ for every spin, which
clearly cannot be correct. So how is (3.10) consistent with spin-independent correlations
⟨zn1,±zn2,±⟩? To resolve this conundrum, we take a detour to discuss properties of the
Fourier coefficients a

(n,±)
m of the cusp forms.

12The constant shift is the error introduced by the summands with small values of n, where the continuum
approximation is worse. It is strictly subleading to the linear ramp for large yi.
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What does the erratic nature of the Fourier coefficients mean for the validity of our
continuous approximation to the eigenvalues? We argued that the sum over n is dominated
by a window of R±

n ∈ [Rmin, Rmax]. For any desired error in the evaluation of the cusp form
sum, the corresponding Rmin and Rmax increase indefinitely as yi → ∞ (see appendix B),
so the relevant density of eigenvalues R±

n increases as well. Summing over an increasingly
dense set of R±

n acts as a statistical coarse-graining over the n-dependent summands. In
particular, the product of the Fourier coefficients appearing in the sum and the correlations
⟨zn1,±zn2,±⟩ get averaged over. We therefore expect to be able to replace the discrete erratic
Fourier coefficients by their statistical distribution.

Distribution of Fourier coefficients: the statistical distribution of the Fourier coef-
ficients is a well-known topic of mathematical research, and we review it in some detail
in appendix C. Let us only point out the most crucial aspects. First, the asymptotic
distribution of a

(n,±)
m for fixed prime spins m ≡ p is well known [21]:

µp(x) =


(p+1)

√
4−x2

2π

(
(p1/2+p−1/2)2−x2

) if |x| < 2

0 otherwise
(3.11)

For large prime spins, this approaches a Wigner semicircle (2π)−1√4− x2. Another notable
feature is that the distribution suggests that |a(n,±)

p | < 2 for all n, a property known as the
Ramanujan-Petersson conjecture [21]. We are interested in moments of these distributions.
Since the sum (3.1) features the squares of Fourier coefficients, a statistical feature of
particular interest is their variance

N±
m ≡

(
a

(n,±)
m

)2 ≡ lim
n0→∞

1
n0

n0∑
n=1

(
a(n,±)

m

)2
, (3.12)

which has the following exact value for prime spins:13

N±
p = p + 1

p
(p prime; exact). (3.14)

See (C.5) for higher moments. We use the notation (· · · ) to denote statistical averaging
(over n). This is independent of the microcanonical averaging, denoted by ⟨· · · ⟩, which we
always use to discuss correlations in the coarse-grained CFT spectrum.

For non-prime spins m, the variances N±
m are determined by the distributions for prime

spins. Importantly, not only the variances of the distributions for prime spins, but also
13It is interesting to note that since the Fourier coefficients for prime spins are Poisson distributed, as

shown in appendix C, the variance in (3.12) already implies delta-functions in spin and eigenvalue index,

p1, p2 prime: a
(n1,±)
p1 a

(n2,±)
p2 =

(
a

(n1,±)
p1

)2
δn1,n2 δp1,p2 = N±

p1 δn1,n2 δp1,p2 . (3.13)

This suggests that arithmetic chaos is linked to the diagonal approximation in the periodic orbit picture
of [10]. The delta-function in the eigenvalue indices persists even for non-prime spins and is therefore tied to
the effective statistical averaging implemented by the correlated cusp form sums (3.1). Note, however, that
we will later average over summands involving higher moments of Fourier coefficients, which complicates
the picture.
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their higher moments are needed. The reason is that the Fourier coefficients themselves are
determined as non-linear polynomials of those for prime spins by a certain Hecke algebra,
see (C.9) for some examples. Statistical averaging over such polynomials requires knowledge
of higher moments of the prime distributions. In summary, the following three pieces of
information are equivalent:

variances N±
m ≡

(
a

(n,±)
m

)2 of distributions of all spins m

⇔

all moments
(
a

(n,±)
p

)k of distributions of prime spins p

⇔
distributions (3.11) of prime spins

We review these statements in appendix C and give examples in (C.9). Using the first
5832 even and 6282 odd Fourier coefficients, we find numerically for their variances as a
function of spin m:

N+
m ≈ 1, 1.46, 1.27, 1.65, 1.13, 1.84, 1.07, 1.72, 1.32, 1.63, 1.02, . . .

N−
m ≈ 1, 1.47, 1.30, 1.68, 1.16, 1.89, 1.09, 1.76, 1.36, 1.68, 1.04, . . .

(3.15)

where values for prime m are printed in boldface (see tables 1 and 2 for more details).

Statistical averaging in the spectral form factor: whenever the statistical averaging
over n applies to our cusp form sum over n, it means that we can replace discrete erratic
expressions by their statistical average. This amounts to a significant simplification for
evaluating sums such as (3.1): for large yi the exact squared Fourier coefficients (which
oscillate erratically) can be replaced by their mean value, i.e., the variance of their distri-
bution (3.11), thus ‘forgetting’ about the detailed sporadic values and only keeping track of
statistical information. This explains how it was possible that the correlations ⟨zn1,±zn2,±⟩
that follow from (3.9) could depend on spin in such a fine tuned way as to cancel all er-
ratic Fourier coefficients a

(n1,±)
m1 a

(n2,±)
m2 : the correlations ⟨zn1,±zn2,±⟩ do not actually need

to cancel the Fourier coefficients exactly, but only on average. As we will see, this is indeed
possible in a spin-independent way.

Focusing on a single spin sector, the fact that the Fourier coefficients only need to
cancel on average means we would expect to reproduce the linear ramp in the spin m

sector from〈
Z̃m

P,disc.,±(y1)Z̃m
P,disc.,±(y2)

〉
ramp naive

≡ 1
N±

m

∑
n>0

(
2R±

n tanh(πR±
n )

π2 µ̄±(R±
n )

)(
a(n,±)

m

)2 √
y1KiR±

n
(2πmy1)

√
y2KiR±

n
(2πmy2)

(3.16)

This corresponds to correlations of the form14

〈
zn,± zn,±

〉
spin m ramp naive ≡

1
N±

m

2R±
n tanh(πR±

n )
π2 µ̄±(R±

n )
≈ 24

π2 N±
m

(m ≥ 1, n ≫ 1) (3.17)

14The second approximation, 2R±
n tanh(πR±

n )
π2 µ̄±(R±

n )
≈ 24

π2 , is valid asymptotically for very large n, i.e., for very
large yi. For all numerical results in this paper, this approximation is not good enough and is not used.
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Figure 3. We compute the Maass cusp form sum using the variance of the Fourier coefficients
instead of their exact values in (3.16). For large y increasingly many Fourier coefficients contribute
to the sum over n, which means that their square can be increasingly well approximated by their
variance. We therefore reproduce the linear ramp asymptotically (up to a subleading constant
shift), cf. figure 2. The left (right) shows the case of even (odd) parity cusp forms. In the odd case
the ramps for different spins lie almost on top of each other. Insets show larger values of y.

We can check the validity of this claim numerically by computing the sum (3.16) and
comparing it with the true form of the ramp. As can be seen in figure 3, for large y the
correct linear ramp is approached, again up to a constant which is subleading for y → ∞.

Evidently, (3.17) still depends on the spin m via the normalization N±
m , albeit much

more weakly than had we tried to cancel the erratic Fourier coefficients in (3.16) exactly
(term by term). It is therefore still not a good candidate for correlations ⟨zn,±zn,±⟩ that
yield linear ramps independent of the choice of spin. And indeed, correlations of the
form (3.17) only yield a ramp with the correct slope in the spin m sector. In other spin
sectors m′, we would need a similar form of correlations, but with a different normalization
1/N±

m′ . We will remedy this situation in the following subsection.

3.3 Ramps in all spin sectors: number theory and uniqueness

As we have seen, (3.17) only encodes the ramp in the spin m superselection sector, but it
‘contaminates’ the slope of any putative ramp in other spin sectors. The basic assumption
of quantum chaos, however, would be a linear ramp with the correct slope in all spin
sectors. To achieve this, let us now take the statistical averaging one step further and
improve the naive ansatz (3.17) such that it works on average for every spin sector, i.e., in
a spin-independent way. We wish to write:

⟨zn1,±zn2,±⟩ramp ≈
2R±

n1 tanh
(
πR±

n1

)
π2µ̄±(R±

n1)
δn1n2 f (n,±) ≈ 24

π2 δn1n2 f (n,±) (3.18)

with a spin-independent function f (n,±) such that

(
a

(n,±)
m

)2
f (n,±) = 1 for all m ≥ 1. (3.19)
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The effective averaging over n will then guarantee that in the limit yi → ∞, we recover
the ramp for all spins m:∑

n1,n2>0
⟨zn1,±zn2,±⟩ramp νm

n1,±(y1)νm
n2,±(y2)

yi→∞−→
∑
n>0

24
π2
(
a

(n,±)
m

)2
f (n,±) √y1KiR±

n
(2πmy1)

√
y2KiR±

n
(2πmy2) + . . .

= 1
π

y1y2
y1 + y2

e−2πm(y1+y2) + . . .

(3.20)

where we replaced
(
a

(n,±)
m

)2
f (n,±) by its average according to (3.19) in the second line and

then simply applied (3.10). We denote subleading terms by ‘. . .’.
We will refer to f (n,±) as the arithmetic kernel associated with the cusp form νn,±.

This name is inspired by the fact that any function satisfying (3.19) must obviously depend
on all Fourier coefficients for all spins in a fine-tuned way such that it produces just the
right normalization for the ramp in every spin sector. It must, in a sense, encode all the
information loosely referred to as arithmetic chaos, such as Hecke relations (C.8) and the
statistical distribution of Fourier coefficients (3.11). Note that the ansatz (3.18) assumes
diagonality in ni. We will justify by construction that this is a consistent assumption. Note
further that the condition (3.19) really only needs to hold asymptotically as a statement
about the average over terms in the spectral form factor with large n.15 Deviations for
small n will only affect subleading terms in the late-time spectral form factor. We fix this
ambiguity in the minimal way, i.e., by imposing (3.19) as an average over all n as written.

Given all the information encoded in ‘arithmetic chaos’, it is remarkable that such a
function exists. We will now first write down this function, then explain why it works, and
then derive it, showing that it is essentially unique (under the above assumptions). The
arithmetic kernel satisfying (3.19) is given by

f (n,±) =
∏

p prime

[
p + 1

p
− 1

p + 1
(
a(n,±)

p

)2]
. (3.21)

Let us first confirm that this function satisfies (3.19). We do this in three steps:

1. If m ≡ p is prime: since the Fourier coefficients for prime spins are independently
distributed, we only need to know the second and fourth moments of the distribu-
tions (3.11), which are easy to calculate. We immediately find:(
a

(n,±)
p

)2
f (n,±) =

[
p+1

p

(
a

(n,±)
p

)2− 1
p+1

(
a

(n,±)
p

)4] ∏
p′ prime

p′ ̸=p

[
p′+1

p′
− 1

p′+1
(
a

(n,±)
p′

)2]=1 ,

(3.22)

where every factor is individually 1 due to the following statistical facts:

p prime:
(
a

(n,±)
p

)2 = p + 1
p

,
(
a

(n,±)
p

)4 = 2p2 + 3p + 1
p3 . (3.23)

15For example, we can imagine performing a ‘moving average’ over large but finite windows of n, which
determine the cusp form sum over corresponding ‘batches’ of cusp forms, then for small n it is certainly
allowed that the average fluctuates around 1.
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2. If m = pk is a prime power: for prime power spins, we can analogously show that
every factor in an expression similar to (3.22) is 1. For the first factor (p′ = p) we
need some more non-trivial facts about the Fourier coefficients, which follow from
the Hecke multiplicativity rules (C.8). The required properties are (see appendix D
and in particular Lemma 4):

p prime:
(
a

(n,±)
pk

)2 = p − p−k

p − 1 ,
(
a

(n,±)
pk

)2(
a

(n,±)
p

)2 = 2(p + 1)− p−k(p + 2 + p−1)
p − 1

(3.24)
Note that these properties encode all information about the distributions (3.11).

3. Arbitrary m: for any general integer m, there is a prime factorization m = pk1
1 · · · pkr

r .
The Hecke multiplicativity rules (C.8) imply

m = pk1
1 · · · pkr

r ⇒
(
a(n,±)

m

)2 =
(

a
(n,±)
p

k1
1

)2
· · ·
(

a
(n,±)
pkr

r

)2
. (3.25)

The property (3.19) follows factor by factor.

The arithmetic kernel f (n,±) has a deep number theoretical meaning in terms of Hecke
L-functions. We elaborate on these fascinating mathematical properties in appendix D.
We can also derive f (n,±) from physical requirements, i.e., by merely imposing (3.19) in all
spin sectors. We sketch the derivation below, delegating details to appendix D.3.

Uniqueness of the arithmetic kernel: we will now derive the arithmetic kernel (3.21)
by arguing that the requirement (3.19) fixes it uniquely (within an ansatz class). First
recall that Fourier coefficients have multiplicative properties due to them being eigenvalues
of Hecke operators. In particular, if the spin has a prime factor decomposition as in (3.25),
since a

(n,±)
pk are independently distributed for different primes p it is useful to first solve

the problem (3.19) for prime power spins, m = pk. Consider an ansatz of the form

f (n,±)
p =

∑
r≥0

cp,r
(
a(n,±)

p

)2r (3.26)

for prime p. Since we already assumed diagonality in eigenvalues R±
ni

in (3.18), odd powers
of Fourier coefficients will average to zero, and we discard them in our ansatz. Such
terms would not affect the construction of the universal ramp, but they would change the
subleading behavior of the late time spectral form factor. Discarding odd powers in the
ansatz can thus be viewed as a minimality assumption about the ansatz. It would be
interesting to constrain such ambiguities further, using input from the off-diagonal sector.

The condition (3.19) yields an infinite linear system constraining the parameters cp,r

in terms of moments of the distribution of Fourier coefficients. After some investigation
(see appendix D.3), this system can be written as follows:

∑
r≥0

cp,r
(
a

(n,±)
p

)2(k+r) = (2k)!
k!(k + 1)! . (3.27)
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Making extensive use of (i) Hecke relations and (ii) all moments of the distributions of
prime Fourier coefficiens, the solution of this system for m = pk is unique:

cp,0 = p + 1
p

, cp,1 = − 1
p + 1 , cp,r≥2 = 0 . (3.28)

Using (3.25), the condition (3.19) for all m is then solved by

f (n,±) =
∏

p prime
f (n,±)

p =
∏

p prime

[
p + 1

p
− 1

p + 1
(
a(n)

p

)2]
. (3.29)

While we have made simplifying assumptions in the derivation of this kernel (see the
discussion after (3.19)), its uniqueness within a large class of possibilities is remarkable.
We show in the next subsection that the structure of the result (3.18), (3.21) is more than
just a mathematical curiosity; it has a number theoretical interpretation and its simplicity
is in fact intimately tied to a calculation in AdS3 pure gravity.

4 Matching universal correlations to the AdS3 wormhole

Our ‘bottom-up’ construction of the spectral overlap coefficients encoding the linear ramp
was based on minimal assumptions about quantum chaos in all spin sectors and consistency
with the symmetries of CFTs. We also assumed a certain minimality in the ansatz for the
arithemtic kernel f (n,±), which then allowed us to fully determine it. In this section we
compare this ‘minimally consistent’ arithmetic kernel with the wormhole amplitude found
in AdS3 pure gravity, which also exhibits such linear ramps. We find detailed agreement.

Demanding universal eigenvalue repulsion (i.e., a linear ramp) in every spin sector of
the CFT, and assuming that for m > 0 this property is encoded in the cusp form sector
alone, we constructed the following form of spectral correlations as the simplest consistent
possibility:

〈
z 1

2 +iα1
z 1

2 +iα2

〉
spin 0 ramp = 1

2 cosh(πα1)
× 4πδ(α1 + α2),

〈
zn1,±zn2,±

〉
spin m>0 ramps =

24
π2 f (n,±) × δn1,n2 , f (n,±) ≡

∏
p prime

[
p + 1

p
− 1

p + 1
(
a(n,±)

p

)2]
(4.1)

By virtue of being spin-independent, these correlations provide a manifestly modular in-
variant encoding of a linear ramp in all spin sectors. (Of course, the ‘bare’ asymptotic
ramp is not modular invariant by itself, so the subleading corrections produced by (4.1)
are important.)

Let us now turn to gravity. The spectral decomposition of the T2 × I wormhole
amplitude in AdS3 pure gravity [2, 3] was given in [10], and provides an explicit example
of a modular invariant spectral form factor that contains a ramp in the large yi limit.16 In

16We thank Scott Collier for private conversation on this result.
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our notation it corresponds to the following non-zero variances:17

〈
z 1

2 +iα1
z 1

2 +iα2

〉
wormhole =

1
2 cosh(πα1)

× 4πδ(α1 + α2) ,

〈
zn1,± zn2,±

〉
wormhole =

1
2 cosh

(
πR±

n1

) 1
||νn,±||2

× δn1n2 ,
(4.2)

where the cusp form norms are computed with respect to the Petersson inner product (see
appendix D for more details, and figure 9 for concrete values). The second line is meant
to indicate that both the even and odd correlations as indicated give a ramp with correct
normalization. In a CFT with parity symmetry, the even and odd ramps describe chaos in
different parity superselection sectors.

Now compare our result (4.1) with (4.2). The continuous part of the correlations,
which encodes the spin 0 ramp, matches immediately (which is by construction). More
interestingly, the discrete correlations, which we constructed by imposing quantum chaotic
universality consistently across spin sectors, also match the gravity result. To see this, we
need an important fact from arithmetic number theory, which is derived and explained in
appendix D. The central observation is that our arithmetic kernel f (n,±) is a particular
meromorphic symmetric square L-function L

(n,±)
ν×ν (s) evaluated at s = 1. For every sin-

gle cusp form, this function provides a generalization of the Riemann zeta-function that
encodes all the statistical properties and Hecke relations between different spin Fourier
coefficients. The precise statement is:

f (n,±) = ζ(2)
L

(n,±)
ν×ν (s = 1)

= π2

48 cosh
(
πR±

n

)
||νn,±||2

. (4.3)

The intermediate steps in this equation are reviewed in appendix D. This establishes equal-
ity of, on the one hand, the correlations found from demanding a ‘bare’ linear ramp in all
spin sectors (taking into account the mechanism of statistical averaging over cusp forms
and constructing a minimal spin-independent arithmetic kernel) in (4.1), and, on the other
hand, the pure gravity result, (4.2).

It is interesting to note that the spin-0 ramp, encoded in the Eisenstein sector, can
similarly be expressed in terms of a suitable L-function:〈

z 1
2 +iα1

z 1
2 +iα2

〉
spin 0 ramp = Λ(iα1)Λ(iα2)

2L
(2α1)
E (1)

× 4πδ(α1 + α2) , (4.4)

where L
(α)
E (s) = ζ(s + iα)ζ(s − iα) is the meromorphic continuation of a sum over Fourier

coefficients. See appendix D.4 for more details.
To summarize, we have found that a linear ramp in all spin sectors m ≥ 1 is encoded

in the following sum over cusp forms in the near-extremal limit:∑
n>0

1
2 cosh

(
πR±

n

) νm
n,±(y1)
||νn,±||

νm
n,±(y2)
||νn,±||

= 1
π

y1y2
y1 + y2

e−2π|m|(y1+y2) + . . . (for all m) (4.5)

17To compare with [10], note that π
cosh(πα) = Γ( 1

2 + iα)Γ( 1
2 − iα). To compare with [3], note that

we introduced an additional factor of 2 in the wormhole amplitude to match the GOE universality class,
cf., [10, 13].
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The agreement of the wormhole amplitude with the ‘minimal’ realization of quantum
chaos across spin sectors was called the MaxRMT principle in [10]. It amounts to the
statement that the gravity amplitude is the minimal modular completion of a spectral
form factor exhibiting linear ramps. More precisely, ref. [10] shows that the wormhole
amplitude is the minimal extension of the ‘bare’ ramp, after imposing ‘diagonal’ and ‘Hecke’
projections onto correlated eigenvalues and eigenfunctions in the spectral decomposition of
the spectral form factor.18

Our investigation similarly imposed some minimality requirements: the main assump-
tions were the realization of quantum chaos in all spin sectors and modular invariance; we
argued that these assumptions required a spin-independent form of the arithmetic kernel
and then constructed the simplest consistent kernel from an ansatz (3.18) by solving the
statistical constraints. The main assumptions in this analysis concern the nature of these
statistical constraints: by discarding from the ansatz any terms that would be invisible to
our statistical condition (3.19), we fixed it fully and recovered the wormhole amplitude.
Recall also that we demanded the averaging condition (3.19) to hold exactly for all n. This
assumption extrapolates the linear ramp beyond the asymptotic regime in the simplest
way, i.e., by discarding fluctuations from the statistical average. Relaxing these assump-
tions would give the flexibility to change the subleading corrections to the ramp such as
to encode spectra not described by the wormhole. This provides a statistical perspective
based on arithmetic chaos on the MaxRMT principle of [10].

5 Discussion

To summarize, we note again that the Euclidean wormhole amplitude (4.2) describes a
universal part of the spectral correlations in any individual chaotic CFT, which dominates
the late time near-extremal limit. We constructed the same object ‘bottom-up’ by im-
posing quantum chaos (in the form of a linear ramp) in every spin sector separately and
consistently balancing the imprints ramps in any given spin sector have on the slope of
ramps in other spin sectors. We delineated the way in which a solution can be constructed
based on statistical considerations of Maass cusp forms. A crucial role was played by the
effective statistical averaging over erratic data defining the modular invariant Maass cusp
forms. It is due to this averaging that, on the one hand, all statistical information about
‘arithmetic chaos’ is encoded in the collection of linear ramps, while, one the other hand,
detailed erratic features of cusp forms are washed out and a single spin-independent form
of chaotic correlations could be bootstrapped. There is some freedom in the construc-
tion of the solution, which would affect subleading corrections to the spectral form factor;
the match with the gravitational result was established by not making use of any of this

18The Hecke projection of [10] refers to demanding that the spectral decomposition features no mixed
correlations between Eisenstein series and cusp forms. It is then proven that Hecke symmetric wormhole
amplitudes must have an identical functional form of correlations in the continuous and discrete sectors,
which is indeed a remarkable feature of (4.2) after absorbing the cusp form norms into the normalization
of Fourier coefficients. We explore this feature in more detail in [22].
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freedom, i.e., fixing it in the minimal and most symmetric way, which we quantified. We
conclude with some further comments.

Spectral determinacy. It was found in [10] that the spectral decomposition of the AdS3
wormhole amplitude is such that the correlations in the Eisenstein series coefficients and
those in the Maass cusp form coefficients are identical. We found the same result by im-
posing statistical universalities (quantum chaos) in all spin sectors and implementing them
in a minimal way through a sum over cusp forms. This strengthens the spectral determi-
nacy property of general two-dimensional CFTs [9], as in these examples all spin sectors
exhibit identical correlations (‘strong spectral determinacy’ [10]). How is this consistent
with one of the basic assumptions of quantum chaos, i.e., the independence of spectral
universalities in each symmetry superselection sector? We take the following perspective:
even though the statistical approximation required that our result (4.1) for spin m > 0
linear ramps had to be the same for all spins, it nevertheless encodes separate input from
all spin sectors. This is manifest when we consider the arithmetic kernel f (n,±): it contains
all squared Fourier coefficients for all spin sectors in a highly fine-tuned way such as to
ensure the correct statistical property (3.19) for all spin sectors. For example, had we
only imposed the ramp in some particular spin sector, then the naive ansatz (3.17) would
have been sufficient. But this would have impacted the slope of the ramp in all other spin
sectors. Finding the universal kernel that yields the correct slope for all spins required
us to separately assume the existence of a ramp for all spins and input the corresponding
information into the construction of f (n,±) in a correlated way.19

We can summarize this as follows: imposing random matrix universality in just one
given spin sector leaves a lot of freedom for the choice of the cusp form correlations
⟨zn,±zn,±⟩, thanks to statistical coarse-graining in the late time limit. It does by no means
imply a linear ramp with the correct slope for any other independent spin sector. But
imposing random matrix universality in all spin sectors, leads to enough constraints to
determine a universal, spin-independent form for the correlations describing the leading
order linear ramp. Further, the statistical conditions we investigated naturally led to a
‘minimal’ solution of this problem, which agrees with the gravity result.

Deriving chaos. A first-principles, bottom-up derivation of chaos in holographic CFTs
still eludes us. While we now understand the relationship between quantum chaos and
modular invariance better, quantum chaos is still a basic assumption that we show is
consistent with other features of the 2d CFTs. This is contrasted with the wormhole
amplitude in gravity, which can be derived from first principles. Some standard properties
of holographic CFTs might be sufficient for such a derivation, in particular the assumptions
that yield a dense spectrum above the extremal limit (large central charge, no conserved
currents, and a twist gap). A promising path towards this would be the construction of an
Efetov sigma model as in [23, 24], similar to how chaos is derived in the SYK model [25]. It
would be fascinating to see if such an approach can be adopted using recent discussions of

19Note also that we did not assume additional structures in the CFT partition function, such as it being
a Poincaré sum over images of a seed function, which would lead to further constraints; see [10].
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random matrix ensembles for 2d CFT operator data and OPE coefficients, which furnish
approximate solutions to the bootstrap equations [26–28].

The plateau. In chaotic quantum mechanics the universal form of eigenvalue correlations
is expected to take the random matrix form for sufficiently close energy levels, depending
on the universality class (see, e.g., [29]). For the GUE universality class, this is

⟨ρ(E + ω/2)ρ(E − ω/2)⟩ = ⟨ρ(E)⟩2 + ⟨ρ(E)⟩δ(ω)− sin2 (πω⟨ρ(E)⟩)
(πω)2 . (5.1)

The first term describes the disconnected part, the third the famous sine-kernel which gives
rise to the ramp in the time domain. We now wish to discuss the second term, i.e., the
tautological “self-correlations”, to provide comparison with the chaotic case — eigenvalue
repulsion and the ramp — discussed before. In quantum chaotic systems this term gives
rise to the eventual plateau for sufficiently long times (or equivalently for sufficiently close
eigenvalues), but this term is even more universal as it also exists in integrable systems.
Systems with Poissonian statistics are completely described by the first two terms in (5.1),
up to non-universal terms at early times.20

While the ramp appears to a natural object in the spectral decomposition, and can be
described as analogous to the “diagonal approximation” [10] in a periodic orbit expansion
(i.e., the correlations in spectral eigenvalues, α and R±

n , are diagonal), we will see that
the plateau is perhaps less natural. This is consistent with the analogy with the semi-
classical periodic orbits, for which the plateau is non-perturbative. Note also that in
gravity calculations, the plateau is much more difficult to obtain than the ramp; in JT
gravity it arises from an infinite sum of wormhole geometries [30, 31]. We will now offer
a few comments on the spectral decomposition of the plateau, leaving a full analysis for
future work.

Self-correlations: first, we comment on the expected height of the plateau in a quantum
chaotic system, and see how this is reproduced in our language with the fluctuating partition
function Z̃m

P (y). Recall from (2.2) that the density of states for the fluctuating partition
function is just the density of states for the dense spectrum minus its average, ρ̃P(E) =
ρD(E)−⟨ρD(E)⟩. This means that the second and third terms in (5.1) have to do with the
correlation of the fluctuating partition function. Thus the height of the plateau we expect
from considering the fluctuating partition function is just that of a standard partition
function (multiplied by

√
y1y2

e
π
6 (y1+y2) from the definition of Z̃P). Focusing on the second term

in (5.1):

⟨ρ̃ m1
P (E1)ρ̃ m2

P (E2)⟩plateau = ⟨ρm
D(E1)⟩δ(E1 − E2)δm1m2

⇒ ⟨Z̃m1
P (y1) Z̃m2

P (y2)⟩plateau =
√

y1y2

e
π
6 (y1+y2) ⟨Z

m1
P,D(y1 + y2)⟩δm1m2

≡
√

y1y2

e
π
6 (y1+y2) δm1m2

∫ ∞

Em1

dE ⟨ρm1
D (E)⟩e−(y1+y2)E ,

(5.2)

20If we discuss multiple independent Hamiltonians, the self-correlations exist for identical matrices (tau-
tologically) but are absent for distinct random matrices.
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where ⟨ρm
D(E1)⟩ is the average density of spin m Virasoro primaries.21 Note that the

plateau coefficient is given by Zm
P,D, which is not the modular invariant, fluctuating, dense

partition function. It is just the standard partition function for the dense primaries of spin
m; in particular it is not modular invariant.

By taking yi → ∞, we can estimate the plateau height:22

〈
Z̃m

P (y1)Z̃m
P (y2)

〉
plateau ≈ ⟨ρm

D(Em)⟩
√

y1y2
y1 + y2

e−2π|m|(y1+y2). (5.4)

Comparing (5.4) to the ramp, we see that the ramp and plateau become equal to each
other when √

y1y2 ∼ T = ⟨ρm
D(Em)⟩ ≡ ∆(Em)−1, i.e., when at times of order the inverse

mean-level spacing at threshold energy, as expected from general considerations.

Spectral decomposition: we can now analyze how the plateau appears in the Eisenstein
series; the cusp forms come with new technical issues, and we relegate their discussion to
appendix E.5. For the spin 0 case, we plug (5.4) into the usual integral transform (similar
to (2.13)):

〈
z 1

2 +iα1
z 1

2 +iα2

〉
spin 0 plateau ≈ 2iπ2⟨ρ0

D(E0)⟩
1

sinh(πα1)
δ(α1 + α2 − i) . (5.5)

The most interesting feature of this expression is that it is not diagonal in αi.23

For the spin mi > 0 case, we find similarly:24

⟨zm1(α1)zm2(α2)⟩plateau ≈ −4π2m⟨ρm
D(Em)⟩D

(
1

(α1 − α2)2 + 1
(α1 + α2)2

)
δm1m2

(αi → ∞)
(5.7)

Again, the correlations for the plateau in any spin sector are not diagonal (there is no
delta-function imposing α1 = ±α2). From the perspective of [10], this means the plateau

21We use the average density from [32], given by

⟨ρm
D(E1)⟩ ≈

1
2π

2
1 + δm1,0

1
E1
2π

+ c
12

exp

{
2π

√
c − 1
3

(
E1

2π
+ c

12

)}
. (5.3)

22This is obtained via Laplace’s method; the integral is dominated by the global maximum at Ei = Emi ,
as the local maximum for large yi lies outside the region of integration as long as y1 + y2 ≳ c ≫ 1.

23The appearance of unfamiliar delta function of a complex argument is due to our function space in-
cluding functions that grow exponentially in y, see for example the discussion in [33].

24This should be understood as a distribution, i.e.,∫
D 1

x2 ϕ(x) ≡
∫

1
x2

(
ϕ(x)− ϕ(0)− xϕ′(0)

)
=
∫

− log |x|ϕ′′(x) . (5.6)

Such a procedure is necessary as the Fourier transform of |ξ| only makes sense as a distribution i.e. when
integrated against test functions, and the resulting distribution cannot be defined without some method
of regularizing the singularity at α1 ± α2 = 0. The first method is by subtracting the first two terms in
the Taylor series so that the singularity becomes removable; the second is to use integration by parts and
discard boundary terms, which makes the singularity integrable.
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does not come from the diagonal approximation analogous to the semi-classical periodic
orbits, as one would expect.

Similar to our discussion of the ramp, we can ask if (5.7) should be improved by
imposing a plateau consistently across all spin sectors. We leave such an analysis to the
future, but discuss the question of the imprint of a plateau in a given spin sector onto other
spin sectors, using numerical evidence, in appendix E.4.
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A Notation and conventions

In this appendix we collect some conventions and useful formulae. We consider the spectral
decomposition of the Laplacian on the fundamental domain F = {τ = x + iy , y >

0}/SL(2,Z), which admits continuous and discrete solutions:

∆F Es(τ) = s(1− s)Es(τ) , ∆F νn,±(τ) =
(1
4 + (R±

n )2
)

νn,±(τ) , (A.1)

where the Eisenstein series and Maass cusp forms have the following Fourier decomposition:

Es(τ = x + iy) =
[
ys + Λ(1− s)

Λ(s) y1−s
]
+
∑
m≥1

cos(2πmx) 4σ2s−1(m)
ms− 1

2Λ (s)
√

yKs− 1
2
(2πmy) ,

νn,±(τ = x + iy) =
∑
m≥1

{
cos(2πmx)
sin(2πmx)

}
a(n,±)

m

√
yKiR±

n
(2πmy) .

(A.2)

The continuous eigenvalues are s ≡ 1
2 + iα with α ∈ R, while R±

n > 0 are discrete randomly
distributed real numbers (see appendix C for details). We work with unnormalized cusp
forms, satisfying a

(n,±)
1 = 1. We also define Fourier coefficients for the Eisenstein series,

via a
(α)
m = 2m−iασ2iα(m). (The Hecke eigenvalues are 1

2a
(α)
m .)

The spectral decomposition of a normalizable modular invariant function takes the
form

f(τ) =
∫ ∞

−∞

dα

4π

(
f, E 1

2 +iα

)
E 1

2 +iα(τ) +
∑
±

∑
n≥0

(f, νn,±)
||νn,±||2

νn,±(τ) . (A.3)

where the Petersson inner product is (f, g) ≡
∫
F dxdy y−2 f ḡ. In particular:

(f, E 1
2 +iα) =

∫
F

dxdy

y2 f(x + iy)E 1
2−iα(x − iy) =

∫ ∞

0
dy y−

3
2−iα fm=0(y) . (A.4)

– 24 –



J
H
E
P
1
2
(
2
0
2
3
)
1
6
1

0 500 1000 1500 2000 2500 3000 3500
0.0

0.2

0.4

0.6

0.8

1.0

0 500 1000 1500 2000 2500 3000 3500
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4. We quantify how the sum over cusp forms indexed by n depends on the terms with small
n (and hence small R±

n ). We plot the ramp in the spectral form factor computed using only values
of n for which R±

n > Rmin and normalize it by the complete result. Asymptotically as y → ∞ this
ratio converges to 1, no matter how many low-lying values of R±

n we exclude. We show the cases
of even (left) and odd (right) cusp forms separately (they are almost indistinguishable). Solid lines
correspond to spin m = 1, dashed lines to m = 2.

B Dominant regime of eigenvalues in (3.10)

In this appendix we elaborate on the dominance of large R±
n as yi → ∞ in the evaluation

of the cusp form sum (3.10). As functions of y, the Bessel functions KiR±
n
(2πmy) have

strong oscillations for 0 < 2πmy ≲ R±
n , with amplitude of order

√
2π/R±

n e−πR±
n /2, and

subsequently decay exponentially like
√
1/(4my) e−2πmy, independent of R±

n . First, the
exponential decay implies that the sum over n converges and can thus be truncated in
numerical evaluation. More non-trivially, the sum is dominated by terms with increasingly
large values of R±

n . We verify this numerically in figure 4: we compare the ramp computed
using all relevant terms in the sum with the partial result obtained by dropping all terms
with 0 < R±

n < Rmin. We observe that the ratio of these two quantities approaches 1
as y → ∞, for any choice of Rmin. Equivalently, any partial sum over only low-lying R±

n

converges to a finite constant (times the usual e−2πm(y1+y2)) as yi → ∞, as the Bessel
functions become independent of R±

n . This is therefore subleading to the ramp:

lim
yi→∞

e2πm(y1+y2)
nmax∑
n=1

⟨zm
n,±zm

n,±⟩ramp
√

y1KiR±
n
(2πmy1)

√
y2KiR±

n
(2πmy2)

= 1
4m

nmax∑
n=1

⟨zm
n,±zm

n,±⟩ramp ∼ 1
4π2m

(
R±

nmax

)2
,

(B.1)

which holds for any nmax as long as yi ≫ 1
2πm R±

nmax . Effectively the sum over n is domi-
nated by a window Rmin ≲ R±

n ≲ Rmax where both Rmin and Rmax increase with yi. This
justifies using the continuous approximation, i.e., treating the eigenvalues R±

n statistically
for large yi.
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To summarize, the sum (3.10) can be (roughly) split into three pieces, which qualita-
tively contribute as follows to the spectral form factor:

(1) 0 < R±
n ≲ Rmin(yi) : subleading constant

(2) Rmin(yi) ≲ R±
n ≲ Rmax(yi) : linear ramp

(3) Rmax(yi) ≲ R±
n : exponentially small

(B.2)

To understand the dependence of Rmin and Rmax on yi, we study the dominant contribu-
tions to the sum (3.10). The integrand in the continuous approximation of the cusp form
sum is µ̄±(R)⟨zm

n,±zm
n,±⟩ramp, which grows monotonically with n, while the Bessel functions

decay very slowly as functions of R until R ≳ 2πmyi. This leads to an integrand that
peaks at a value of R that increases with yi, in turn making the continuous approximation
better. This is best seen by approximating (3.10) as an integral:

〈
Z̃m

P,disc.,±(y1)Z̃m
P,disc.,±(y2)

〉
ramp

≈
∫ ∞

Rn0

dR
2R tanh(πR)

π2
√

y1KiR(2πmy1)
√

y2KiR(2πmy2)

(B.3)

Instead of evaluating this analytically, we consider the integrand I as a function of R

for fixed yi. Initially the integrand grows linearly, I(R) ∼ 1
2mπ2 R e−2πm(y1+y2). The

integrand reaches a maximum at R∗ ∼ π
2

√
2my1y2
y1+y2

where its value scales as I(R∗) ∼
1

2mπ2 R∗ e−2πm(y1+y2). The integrand then decays to zero polynomially and becomes negli-
gible for values of R greater than Rmax ∼ 2π

√
2my1y2
y1+y2

. The choice of Rmin(yi) corresponds
to dropping a finite number of terms in the regime of linear growth. Since both the max-
imum of the integrand as well as the upper region of integration grow as

√
y1y2

y1+y2
, we can

drop terms with small R less than Rmin ∼
√

y1y2
y1+y2

.25

C Statistics of Maass cusp forms: arithmetic chaos

We review some statistical facts about the Maass cusp forms, along with clarifying aspects
that (to our knowledge) do not appear in the literature. Some of this information can also
be found in the main text, repeated here for convenience. We use the first 5832 even and
6282 odd cusp forms for all numerics (this corresponds to R±

n < 400) [17].
The eigenvalues of cusp forms are distributed according to the Weyl law [19, 20]:

µ+(R) ≈ µ̄+(R) = 1
12 R − 3

2π
logR + log

(
π4/2

)
4π

+O
( logR

R2

)
,

µ−(R) ≈ µ̄−(R) = 1
12 R − 1

2π
logR − log 8

4π
+O

( logR

R2

)
.

(C.1)

We illustrate this in figure 5.

25This estimate ensures an error less than about 1%.
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Figure 5. Comparison of the exact counting function of discrete eigenvalues of the Laplacian with
the Weyl law approximation as given in (C.1).

The Fourier coefficients {a
(n,±)
p } for fixed prime spin p and ordered by increasing cor-

responding eigenvalue R±
n are equidistributed according to the distributions [19, 21]

µp(x) =


(p+1)

√
4−x2

2π

(
(p1/2+p−1/2)2−x2

) if |x| < 2

0 otherwise
(C.2)

which approaches the Wigner semi-circle 1
2π

√
4− x2 as p → ∞. Equidistribution means

that averages over all cusp forms for a given spin can be replaced with averages over the
distribution, i.e.,

lim
n0→∞

n0∑
n=1

f
(
a(n,±)

p

)
=
∫

dx µp(x)f(x). (C.3)

This is illustrated in figure 6.
We now investigate the nearest-neighbour level spacing, both for the eigenvalues R±

n

and for the Fourier coefficients a
(n,±)
m . This provides a more numerically tractable way of

analyzing the correlations than the density of states two-point function. After “unfolding”
the spectrum,26 we calculate the distribution of the difference between nearest-neighbour
levels:

PR±
n
(s) ≡ #{xn : xn+1 − xn = s} . (C.4)

An integrable spectrum is distributed according to Poissonian statistics, PP (s) = e−s,
which means level attraction: PP (s) → 1 as s → 0. Chaotic spectra, on the other
hand, are distributed according to the ensemble with appropriate symmetries, e.g., the

26Unfolding the spectrum corresponds to replacing each member R±
n → x±

n = ⟨N±(R±
n )⟩. This yields

⟨N±(R±)⟩ =
∫ R±

−∞ dR′± µ±(R′±) =
∫ x±

−∞ dx′± = x±, i.e., the spectrum has constant unit density in x

variables [34].
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Figure 6. The distribution of the first 5832 even and 6282 odd Fourier coefficients for prime spins,
compared to the distribution they are equidistributed with respect to.

Gaussian orthogonal ensemble with PGOE(s) = 1
2πse−πs2/4, which exhibits level repulsion:

PGOE(s) → 0 as s → 0.
The eigenvalues of the cusp forms are known to obey Poissonian statistics [5], and we

find that the Fourier coefficients for prime spin obey the same, shown in figure 7; hence,
both the eigenvalues and Fourier coefficients are distributed randomly but not chaotically.
Effectively, for any given spin m, the Fourier coefficients for different n are independent
random variables.

We can equivalently characterize the distributions (C.2) through their moments. For
the distributions of prime spin Fourier coefficients, (C.2), the odd moments are zero and

– 28 –



J
H
E
P
1
2
(
2
0
2
3
)
1
6
1

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

0 1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

Figure 7. The distribution of the nearest neighbor spacing of the first 5832 even and 6282 odd
eigenvalues and spin 2 Fourier coefficients, compared to the Poissonian expectation. Note that the
statistics for all other prime spins is similar.

the even moments are:27

p prime:
(
a

(n,±)
p

)2k = p

p + 1
(2k)!

k!(k + 1)! 2F1
(
1, k + 1

2 , k + 2, 4p
(p+1)2

)
. (C.5)

For example:

(
a

(n,±)
p

)2 = p + 1
p

,
(
a

(n,±)
p

)4 = (p + 1)(2p + 1)
p2 ,

(
a

(n,±)
p

)6 = (p + 1)(5p2 + 4p + 1)
p3

(C.6)
These distributions for Fourier coefficients are specifically for prime spins. All Fourier
coefficients for non-prime (composite) spins are fully determined in terms of these by Hecke
relations because Maas cusp forms are eigenfunctions of Hecke operators:

Tmνn,±(τ) = a(n,±)
m νn,±(τ) where Tmf(τ) = 1√

m

∑
a,b,d:
ad=m

0≤b≤d−1

f

(
aτ + b

d

)
. (C.7)

27This formula can be easily derived by computing arbitrary moments of (C.2) and realizing that they
correspond to an integral representation of the hypergeometric function.
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spin m
(
a

(n,±)
m

) (
a

(n,±)
m

)2 (
a

(n,±)
m

)3 (
a

(n,±)
m

)4 (
a

(n,±)
m

)5 (
a

(n,±)
m

)6
2 0 3

2 = 1.5 0 15
4 = 3.75 0 87

8 = 10.88 . . .

3 0 4
3 = 1.33 . . . 0 28

9 = 3.11 . . . 0 232
27 = 8.59 . . .

4 1
2 = 0.5 7

4 = 1.75 25
8 = 3.16 . . . 127

16 = 7.94 . . . 601
32 = 18.78 . . . 3055

64 = 47.73 . . .

5 0 6
5 = 1.2 0 66

25 = 2.64 0 876
125 = 7.01 . . .

6 0 2 0 35
3 = 11.67 . . . 0 841

9 = 93.44 . . .

7 0 8
7 = 1.14 . . . 0 120

49 = 2.45 . . . 0 2192
343 = 6.39 . . .

8 0 15
8 = 1.88 . . . 0 831

64 = 12.98 . . . 0 67935
512 = 132.7 . . .

9 1
3 = 0.33 . . . 13

9 = 1.44 . . . 61
27 = 2.26 . . . 469

81 = 5.79 . . . 3181
243 = 13.09 . . . 23857

729 = 32.73 . . .

Table 1. Exact values of the moments of the distributions of Fourier coefficients. For prime m,
these follow from (C.5). For composite m, they are constructed from prime moments using Hecke
relations.

This implies immediately:
a(n,±)

m a
(n,±)
m′ =

∑
ℓ|(m,m′)

ℓ>0

a
(n,±)
mm′

ℓ2
(C.8)

for example, if p, p′ are prime we get the important multiplicative relation: a
(n,±)
p a

(n,±)
p′ =

a
(n,±)
pp′ + δpp′ (see Lemma 1 for more relations of this type).

The Hecke relations allow us to construct the non-prime Fourier coefficients from the
prime ones. This in turn implies that the variances (‘normalization factors’ N±

m) of the
distributions of Fourier coefficients for non-prime spins follow from higher moments of the
prime distributions. We give a few examples:

a
(n,±)
4 =

(
a

(n,±)
2

)2 − 1 ⇒ N±
4 ≡

(
a

(n,±)
4

)2 =
(
a

(n,±)
2

)4 − 2
(
a

(n,±)
2

)2 + 1

a
(n,±)
6 = a

(n,±)
2 a

(n,±)
3 ⇒ N±

6 ≡
(
a

(n,±)
6

)2 =
(
a

(n,±)
2

)2 (
a

(n,±)
3

)2
a

(n,±)
8 =

(
a

(n,±)
2

)3 − 2 a
(n,±)
2 ⇒ N±

8 ≡
(
a

(n,±)
8

)2 =
(
a

(n,±)
2

)6 − 4
(
a

(n,±)
2

)4 + 4
(
a

(n,±)
2

)2
(C.9)

We give exact analytical and numerical values for some of these moments in tables 1 and 2.
The composite spins m = 4 and m = 8 are special cases of a general result, see Lemma 4.
The numerical values for the second moments are within a few percent of the theoretical
values. This error increases for higher moments due to the limited number of cusp forms
available numerically. The numerical results for odd forms are consistently slightly better
because we have more of them available.

More generally, computing just the variances N±
m for all non-prime m requires knowl-

edge of all moments of the distributions of prime coefficients. Since the distributions are
bounded, their moments determine the distributions fully. In other words, knowledge of
all variances N±

m is equivalent to complete knowledge of all the prime distributions (C.2).
We show the variance of the Fourier coefficients for a large number of spins in figure 8.
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spin m
(
a

(n,±)
m

) (
a

(n,±)
m

)2 (
a

(n,±)
m

)3 (
a

(n,±)
m

)4 (
a

(n,±)
m

)5 (
a

(n,±)
m

)6
2 0.01...(+)

−0.01...(−)
1.46...(+)
1.47...(−)

0.02...(+)
−0.02...(−)

3.56...(+)
3.62...(−)

0.09...(+)
−0.08...(−)

10.14...(+)
10.35...(−)

3 0.01...(+)
−0.01...(−)

1.27...(+)
1.30...(−)

0.03...(+)
−0.03...(−)

2.87...(+)
2.95...(−)

0.10...(+)
−0.09...(−)

7.69...(+)
7.97...(−)

4 0.46...(+)
0.47...(−)

1.65...(+)
1.68...(−)

2.82...(+)
2.91...(−)

7.10...(+)
7.31...(−)

16.42...(+)
16.97...(−)

41.08...(+)
42.53...(−)

5 0.01...(+)
−0.01...(−)

1.13...(+)
1.16...(−)

0.03...(+)
−0.03...(−)

2.38...(+)
2.45...(−)

0.10...(+)
−0.09...(−)

6.08...(+)
6.28...(−)

6 0.01...(+)
−0.01...(−)

1.84...(+)
1.89...(−)

0.11...(+)
−0.10...(−)

9.99...(+)
10.37...(−)

1.39...(+)
−1.21...(−)

74.60...(+)
77.76...(−)

7 0.01...(+)
−0.01...(−)

1.07...(+)
1.09...(−)

0.03...(+)
−0.03...(−)

2.19...(+)
2.25...(−)

0.10...(+)
−0.09...(−)

5.47...(+)
5.65...(−)

8 0.01...(+)
−0.01...(−)

1.72...(+)
1.76...(−)

0.11...(+)
−0.11...(−)

10.86...(+)
11.28...(−)

1.19...(+)
−1.19...(−)

104.5...(+)
108.9...(−)

9 0.27...(+)
0.30...(−)

1.32...(+)
1.36...(−)

1.90...(+)
2.00...(−)

4.85...(+)
5.08...(−)

10.52...(+)
11.10...(−)

25.72...(+)
27.17...(−)

Table 2. Numerical values of the moments of the distributions of Fourier coefficients, computed
using the Fourier coefficients for cusp forms with eigenvalue R±

n < 400 (separately for even and odd
parity).

0 100 200 300 400 500
0.0

0.5

1.0

1.5

2.0

2.5

3.0

m prime
m composite

Figure 8. Exact variance of the Fourier coefficients as a function of m, up to the 100th prime. The
prime coefficients have variance 1 + 1

m , while the composite primes have much more complicated
behaviour (which is determined by the Hecke relations and higher moments of the distribution of
prime Fourier coefficients); in this range, all variances are O(1), but as m grows, the maximum
possible value grows as well.
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D Hecke relations, cusp form norms, and L-functions

In this appendix we provide some mathematical details relating to the norms of cusp forms
and their relation to objects in analytic number theory. In order to be pedagogical, we
provide step-by-step proofs of some important statements. Most of the general definitions
and results can be found in the literature, see, for example, [35–38].

D.1 Hecke relations and L-functions

We first note some useful relations between Fourier coefficients of prime power spins.

Lemma 1. Let p, p1, . . . pr be distinct primes. Then:

(i) a
(n,±)
p

k1
1 ···pkr

r

= a
(n,±)
p

k1
1

· · · a(n,±)
pkr

r

(ii) a
(n,±)
pk = a

(n,±)
pk−1 a(n,±)

p − (1− δk,1) a
(n,±)
pk−2

(iii) a
(n,±)
pk = 1

2k

⌊k/2⌋∑
ℓ=0

(
k + 1
2ℓ + 1

)
ℓ∑

r=0

(
ℓ

r

)
(−4)r(a(n,±)

p

)k−2r

(iv)
(
a

(n,±)
pk

)2 = 1
22k+1

k∑
ℓ=0

[(
2k + 2
2ℓ + 2

)
+ (−1)ℓ

(
k + 1
ℓ + 1

)]
ℓ∑

r=0

(
ℓ

r

)
(−4)r (a(n,±)

p

)2(k−r)

(D.1)

Proof: (i) and (ii) follow immediately from the Hecke algebra (C.8). (iii) follows by viewing
(ii) as a recursion relation and solving it in terms of a

(n,±)
p . (iv) follows from squaring and

simplifying (iii).
Let us define the following Hecke L-functions for any of the cusp forms, defined by its

Fourier coefficients:

L(n,±)(s) ≡
∑
m≥1

a
(n,±)
m

ms
(Re(s) > 1) . (D.2)

These L-functions are absolutely convergent in an s-half plane and they admit an analytic
continuation to an entire function on the whole complex plane (see, e.g., [37]).

Lemma 2. The L-function (D.2) admits an Euler product representation:

L(n,±)(s) =
∏

p prime

1
1− a

(n,±)
p p−s + p−2s

. (D.3)

Proof: note that, as a consequence of the Hecke relations, we have[
1− a(n,±)

p p−s + p−2s
]∑

k≥0
a

(n,±)
pk p−ks = 1 . (D.4)

The Euler product can then be written as a sum using Lemma 1(i):

∏
p prime

1
1− a

(n,±)
p p−s + p−2s

=
∏

p prime

∑
k≥0

a
(n,±)
pk p−ks

 =
∑
m≥1

a
(n,±)
m

ms
. (D.5)
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To make contact with the cusp form norms, we now consider the ‘symmetric square
L-function’, defined as28

L
(n,±)
ν×ν (s) ≡ ζ(2s)

∑
m≥1

a
(n,±)
m2

ms
(Re(s) > 1) . (D.8)

Lemma 3. The symmetric square L-function admits an Euler product representation:

L
(n,±)
ν×ν (s) =

∏
p prime

1
1−

(
a

(n,±)
p

)2(
p−s − p−2s

)
+ (p−s − p−2s − p−3s)

(D.9)

Proof: the proof is the same as for Lemma 2, but starting from the observation that the
following product simplifies:[

1−
(
a(n,±)

p

)2(
p−s − p−2s)+ (p−s − p−2s − p−3s

)]∑
k≥0

a
(n,±)
p2k p−ks = 1− p−2s , (D.10)

and recalling that ∏p(1− p−2s)−1 = ζ(2s).

Theorem 1. The norms of the cusp forms satisfy:

||νn,±||2 ≡ (νn,±, νn,±) =
1

8 cosh
(
πR±

n

) L
(n,±)
ν×ν (1) . (D.11)

Proof: (See, e.g., references [40, 41].) We compute the norm using the Rankin-Selberg
trick, i.e., note that a constant expression can be computed as the residue at s = 1 with
an Eisenstein series, which in turn allows for unfolding of the fundamental domain:

||νn,±||2 = π

3 Ress=1
(
|νn,±( · )|2, Es( · )

)
= π

3 Ress=1

∫
F

dxdy

y2 |νn,±(x + iy)|2 Es(x + iy)

= π

3 Ress=1

∫ ∞

0
dy ys−2

(∫ 1
2

− 1
2

dx |νn,±(x + iy)|2
)

= π

6 Ress=1
∑
m≥1

(
a(n,±)

m

)2 ∫ ∞

0
dy ys−1 (KiR±

n
(2πmy)

)2
= π

6 Ress=1
∑
m≥1

(
a(n,±)

m

)2 Γ
(

s
2 + iR±

n

)
Γ
(

s
2 − iR±

n

)
Γ
(

s
2
)2

8(πm)sΓ(s)

= π2

48 cosh
(
πR±

n

) Ress=1
∑
m≥1

(
a

(n,±)
m

)2
ms

.

(D.12)

28More generally, for αp, βp ∈ C satisfying

1− a(n,±)
p p−s + p−2s =

(
1− αpp−s

) (
1− βpp−s

)
, (D.6)

i.e., αp + βp = a
(n,±)
p and αpβp = 1, the Ramanujan-Petersson conjecture asserts |αp| = |βp| = 1. The

symmetric ℓ-th power L-function is then an automorphic function [39], defined as

L
(n,±)
νℓ (s) =

∏
p prime

ℓ∏
k=0

1(
1− αℓ−2k

p p−s
) . (D.7)

The symmetric square L-function is the special case ℓ = 2. We suspect that ℓ-th power L-functions play a
role in the computation of higher moments of the CFT partition function.
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Figure 9. Plot of the even and odd cusp form norms, rescaled by 8 cosh(πR±
n ). The norms

themselves decay exponentially: ||ν+
1 ||2 ≈ 4.54 × 10−20, . . . , ||ν+

100||2 ≈ 1.42 × 10−90 and ||ν−
1 ||2 ≈

1.67 × 10−14, . . . , ||ν−
100||2 ≈ 2.86 × 10−79. This is equivalently computable through the symmetric

square L-function.

To evaluate the residue, we note that the sum in the last line is related to a Rankin-Selberg
zeta function and has an Euler product formula ([37], Lemma 3.1 with k = 1),

ζ(2s)
∑
m≥1

(
a

(n,±)
m

)2
ms

= ζ2(s)
∏

p prime

1
1 + 2p−s −

(
a

(n,±)
p

)2
p−s + p−2s

. (D.13)

This function is known to have a simple pole at s = 1. Then,

ζ(2s)
∑
m≥1

(
a

(n,±)
m

)2
ms

=
∏

p prime

1
(1− p−s)2

(
1 + 2p−s −

(
a

(n,±)
p

)2
p−s + p−2s

)
=

∏
p prime

1
(1− p−s)

(
1−

(
a

(n,±)
p

)2(
p−s − p−2s

)
+ (p−s − p−2s − p−3s)

)
= ζ(s)L(n,±)

ν×ν (s) .

(D.14)
Taking the residue at s = 1 of both sides and using Ress=1ζ(s) = 1 yields

||νn,±||2 = π2

48 cosh
(
πR±

n

) ∑
m≥1

a
(n,±)
m2

m
= 1

8 cosh
(
πR±

n

) L
(n,±)
ν×ν (1) . (D.15)

D.2 Statistical averages and moments of L-functions

Having reviewed some basic facts about the cusp form norms and the distribution of their
Fourier coefficients, we can now state some of the crucial properties that hold after statis-
tical averaging over n. Let us first state the following useful
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Lemma 4. Let k ∈ N and p be prime. Then the average over n yields the following results:

(i)
(
a

(n,±)
pk

)2 =
k∑

ℓ=0
p−ℓ = p − p−k

p − 1

(ii)
(
a

(n,±)
pk+1 a

(n,±)
pk−1

)
=

k∑
ℓ=1

p−ℓ = 1− p−k

p − 1

(iv)
(
a

(n,±)
pk

)2(
a

(n,±)
p

)2 = 2(p + 1)− p−k(p + 2 + p−1)
p − 1

(iii)
(
a

(n,±)
p

)2(k+1) = (p + 1)2

p

(
a

(n,±)
p

)2k − (p + 1) (2k)!
k!(k + 1)!

(D.16)

Proof: to prove (i), we start with Lemma 1(iv) and evaluate its average using the
moments of the distributions for prime Fourier coefficients (C.5):

(
a

(n,±)
pk

)2 = p

22k+1(p+1)

k∑
ℓ=0

ℓ∑
r=0

[(
2k+2
2ℓ+2

)
+(−1)ℓ

(
k+1
ℓ+1

)]

×
(

ℓ

r

)
(−4)r (2(k−r))!

(k−r)!(k−r+1)! 2F1

(
1,k−r+1

2 ,k−r+2,
4p

(p+1)2

)

= p

22k+1(p+1)

k∑
ℓ=0

ℓ∑
r=0

[(
2k+2
2ℓ+2

)
+(−1)ℓ

(
k+1
ℓ+1

)]

×
(

ℓ

r

)
(−4)r (2(k−r))!

(k−r)!(k−r+1)!

∞∑
q=0

Γ
(
k−r+ 1

2+q
)
Γ(k−r+2)

Γ
(
k−r+ 1

2

)
Γ(k−r+2+q)

( 4p

(p+1)2

)q

= p

p+1

∞∑
q=0

k∑
ℓ=0

[(
2k+2
2ℓ+2

)
+(−1)ℓ

(
k+1
ℓ+1

)] (−1)k+q Γ
(
ℓ+ 3

2

)
Γ
(
ℓ−k−q+ 1

2

)
Γ(k+q+2)

( 4p

(p+1)2

)q

= p

p+1

∞∑
q=0

(2q)!
22q

[ 1
(q!)2 −

Θ(q−k)
(q+k+1)!(q−k−1)!

]( 4p

(p+1)2

)q

= p

p+1

[
p+1
p−1−

p+1
pk+1(p−1)

]
= p−p−k

p−1 ,

(D.17)

where Θ(n) = 1 if n > 0 and vanishes otherwise. The second result, (ii), can be proven
in a similar fashion, using Lemma 1(ii) to simplify. To prove (iii), we use Lemma 1(ii) to
calculate as follows:

(
a

(n,±)
pk

)2(
a

(n,±)
p

)2 =
(
a

(n,±)
pk+1 + (1− δk,0) a

(n,±)
pk−1

)2
=

k+1∑
ℓ=0

p−ℓ + (1− δk,0)
[

k−1∑
ℓ=0

p−ℓ + 2
k∑

ℓ=1
p−ℓ

]

= 2(p + 1)− p−k(p + 2 + p−1)
p − 1 .

(D.18)
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Finally, to prove (iv), we use (C.5) and the series representation of the hypergeometric
function:

(
a

(n,±)
p

)2(k+1) = p

p + 1
(2k + 2)!

(k + 1)!(k + 2)!

∞∑
q=0

Γ
(
k + 3

2 + q
)
Γ(k + 3)

Γ
(
k + 3

2

)
Γ(k + 3 + q)

( 4p

(p + 1)2

)q

= 4p

p + 1
(2k)!

k!(k + 1)!

∞∑
q=1

Γ
(
k + 1

2 + q
)
Γ(k + 2)

Γ
(
k + 1

2

)
Γ(k + 2 + q)

( 4p

(p + 1)2

)q−1

= (p + 1)2

p

[(
a

(n,±)
p

)2k − p

p + 1
(2k)!

k!(k + 1)!

]
.

(D.19)

Corollary: For any k ∈ N and p prime,
(
a

(n,±)
pk

)2 [1− (a(n,±)
p

)2(
p−1 − p−2)+ (p−1 − p−2 − p−3)

]
= 1− p−2 . (D.20)

Proof: follows immediately from Lemma 4(i) and (iii).
Finally, the central property needed in our analysis of the gravity amplitude concerns

the interplay of the moments of distributions of Fourier coefficients and the cusp form
norms:

Theorem 2. Let m ≥ 1 be any integer spin. Then the statistical averaging over different
cusp forms indexed by n yields:

(
a

(n,±)
m

)2 (8 cosh(πR±
n

)
||νn,±||2

)−1
=
(
a

(n,±)
m

)2 (
L

(n,±)
ν×ν (1)

)−1
= 6

π2 . (D.21)

Proof: the first equality follows from Theorem 1. To prove the second equality, write the
L-function in terms of its Euler product:

(
a

(n,±)
m

)2 (
L

(n,±)
ν×ν (1)

)−1

=
(
a

(n,±)
m

)2 ∏
p prime

[
1−

(
a

(n,±)
p

)2(
p−1 − p−2)+ (p−1 − p−2 − p−3)]

=
∏

p prime

(
1− p−2

)
= 1

ζ(2) = 6
π2 ,

(D.22)

where we applied the Corollary of Lemma 4 factor by factor after decomposing a
(n,±)
m into

factors of Fourier coefficients of prime powers (Lemma 1(i)):

m = pk1
1 · · · pkr

r ⇒
(
a(n,±)

m

)2 =
(

a
(n,±)
p

k1
1

)2
· · ·
(

a
(n,±)
pkr

r

)2
. (D.23)

D.3 Derivation of the arithmetic kernel f (n,±)

In the main text we verified that the arithmetic kernel (3.21) has the required properties
to produce a ramp in all spin sectors. We also outlined how to derive it, but provide more
details here. The derivation essentially also shows that it is unique, up to modifications,
which are invisible to our averaging condition (3.19).
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Construction of f (n,±): the goal is to find a function f (n,±) which satisfies (3.19). Since
the Fourier coefficients have multiplicativity properties determined by Hecke relations, it
is convenient to begin by decomposing a

(n,±)
m into coefficients with prime-power index:

m = pk1
1 · · · pkr

r ⇒ a
(n,±)
p

k1
1 ···pkr

r

= a
(n,±)
p

k1
1

· · · a(n,±)
pkr

r
(D.24)

where pi are distinct primes. Let us therefore first find a function f
(n,±)
p which is fine tuned

to Fourier coefficients with prime-power index pk such that:

(
a

(n,±)
pk

)2
f

(n,±)
p = 1 for all k ≥ 0 . (D.25)

It is important to note that a
(n,±)
pk is fully determined by powers of a

(n,±)
p , see Lemma 1(iv).

In order for a condition such as (D.25) to hold, the function f
(n,±)
p must balance different

moments of the distribution of a
(n,±)
p . This is captured by an ansatz of the following form:

f (n,±)
p =

∑
r≥0

cp,r
(
a(n,±)

p

)2r
. (D.26)

We only need even powers of the Fourier coefficients because any odd powers will have
vanishing expectation value. We also do not need any Fourier coefficients with spin other
than p because these are distributed independent of a

(n,±)
p , so they can be absorbed into

cp,r as far as the averaged (D.25) is concerned. The condition (D.25) then amounts to an
infinite number of constraints on cp,r. For example:

k = 0 : 1 != f
(n,±)
p =

∑
r≥0

cp,r
(
a

(n,±)
p

)2r

k = 1 : 1 !=
(
a

(n,±)
p

)2
f

(n,±)
p =

∑
r≥0

cp,r
(
a

(n,±)
p

)2r+2

k = 2 : 1 !=
(
a

(n,±)
p2

)2
f

(n,±)
p =

((
a

(n,±)
p

)2 − 1
)2

f
(n,±)
p = −1 +

∑
r≥0

cp,r
(
a

(n,±)
p

)2r+4

k = 3 : 1 !=
(
a

(n,±)
p3

)2
f

(n,±)
p =

((
a

(n,±)
p

)3 − 2a
(n,±)
p

)2
f

(n,±)
p = −4 +

∑
r≥0

cp,r
(
a

(n,±)
p

)2r+6

(D.27)

and so on. Iterating this process, one finds for general k:

∑
r≥0

cp,r
(
a

(n,±)
p

)2(k+r) = (2k)!
k!(k + 1)! , (D.28)

where the r.h.s. is the k-th Catalan number. Using a general recursion relation of the
moments of Fourier coefficients (Lemma 4(iv)), we can write the r.h.s. as follows:

∑
r≥0

cp,r
(
a

(n,±)
p

)2(k+r) = p + 1
p

(
a

(n,±)
p

)2k − 1
p + 1

(
a

(n,±)
p

)2k+2
. (D.29)
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It is now obvious to see that a simple solution exists for all k:

cp,0 = p + 1
p

, cp,1 = − 1
p + 1 , cp,r>1 = 0 . (D.30)

To see that this is the only solution, note that the equations (D.28) form a linear system.
Therefore, the existence of any other solution c′p,r would mean that there exist coefficients
c̃p,r ≡ cp,r − c′p,r such that ∑

r≥0
c̃p,r

(
a

(n,±)
p

)2(k+r) = 0 (D.31)

for all k. This can be written as an infinite list of equations labelled by k, which we call

Ep,k ≡
∑
r≥k

c̃p,r−k

(
a

(n,±)
p

)2r = 0 . (D.32)

This can be thought of as an (infinite dimensional) triangular matrix acting on the vector
of moments of Fourier coefficients. If c̃p,0 ̸= 0, we can form a linear combination which
cancels all terms but one:

0 = Ep,0 −
c̃p,1
c̃p,0

Ep,1 −
(

c̃p,2
c̃p,0

−
c̃2

p,1
c̃2

p,0

)
Ep,2 − . . . = c̃p,0 . (D.33)

This contradicts the assumption, so we must have c̃p,0 = 0. Next, if c̃p,1 ̸= 0 we could form
a similar linear combination

0 = Ep,0 −
c̃p,2
c̃p,1

Ep,1 −
(

c̃p,3
c̃p,1

−
c̃2

p,2
c̃2

p,1

)
Ep,2 − . . . = c̃p,1

(
a

(n,±)
p

)2
, (D.34)

which is again contradictory and thus implies c̃p,1 = 0. Continuing this way, we must have
c̃p,k = 0 for all k. Therefore, there does not exist any solution different from cp,k.

To summarize, we have shown that

f (n,±)
p = p + 1

p
− 1

p + 1
(
a(n,±)

p

)2 (D.35)

solves (D.25) and is unique as far as our ansatz is concerned.29 This function will give
a ramp in all spin sectors of the form m = pk. From the multiplicative property of the
Fourier coefficients, (D.24), it is then clear how to construct the function that will yield a
linear ramp for all spins m = pk1

1 · · · pkr
r ; indeed, we simply construct it as

f (n,±) =
∏

p prime

[
p + 1

p
− 1

p + 1
(
a(n,±)

p

)2]

=
∏

p prime

(
1− p−2

)−1
×
[
1−

(
a(n,±)

p

)2 (
p−1 − p−2

)
+
(
p−1 − p−2 − p−3

)]
= π2

6
1

L
(n,±)
ν×ν (1)

,

(D.36)

29There are ways to modify f
(n,±)
p that are invisible to the statistical averaging. For example, one can

add odd powers of a
(n,±)
p with arbitrary coefficients, as these will vanish in the evaluation of (3.19). See

main text for more comments.
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where we used ζ(2) = ∏
p prime(1 − p−2)−1 = π2

6 and we used the symmetric square L-
function associated with the cusp form νn,±, see Lemma 3. It is a meromorphic function in
s with a potential pole at s = 1 [36] (in our case there is no pole, so we can simply evaluate
at s = 1).30 This completes our derivation of the arithmetic kernel f (n,±).

D.4 L-function for Eisenstein series

It is natural to define the following continuous family of L-functions for the Eisenstein
series E 1

2 +iα(x, y) in terms of their Fourier coefficients (cf., (2.9)):31

L
(α)
E (s) ≡ 1

2
∑
m≥1

a
(α)
m

ms
, a(α)

m = 2σ2iα(m)
miα

(Re(s) > 1) . (D.37)

Lemma 5. The meromorphic continuation of the Eisenstein series L-function is

L
(α)
E (s) = ζ(s + iα)ζ(s − iα) . (D.38)

Proof: we expand the zeta-functions formally in the domain where they converge:

ζ(s + iα)ζ(s − iα) =
∑

n1≥1

∑
n2≥1

1
ns+iα

1 ns−iα
2

=
∑
m≥1

∑
n1,n2:

n1n2=m

1
ns+iα

1 ns−iα
2

=
∑
m≥1

1
ms+iα

σ2iα(m) = L
(α)
E (s)

(D.39)

Note in particular:

L
(2α)
E (s = 1) = cosh(πα)Λ(iα)Λ(−iα) , Λ(s) = π−sΓ(s)ζ(2s) , (D.40)

which is similar to the symmetric square L-function for cusp forms evaluated at s = 1.
See [22] for more details on this connection.

E Effects of chaos across different spin sectors

In this appendix we show (and review) that the existence of a ramp (or plateau) in a given
spin sector is generically not sufficient to conclude the existence of a ramp (or plateau) in
another spin sector. We previously showed this for the Eisenstein series in [1], and only
briefly review those results here. We mainly focus here on extending this result to the
Maass cusp form spectrum.

30Note that there would be a pole at s = 1 if there was some prime Fourier coefficient with a
(n,±)
p = ±2.

It is unproven but widely believed to be true that such a Fourier coefficient does not exist (Ramanijan-
Petersson conjecture) [21].

31The factor 1
2 is unconventional, but will make the following discussion more convenient.
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E.1 Signatures of a spin m = 0 ramp at spin (m1, m2)

Recall the simple form of correlations ⟨z 1
2 +iα1

z 1
2 +iα2

⟩ that correspond to a linear ramp in
the m = 0 sector, (2.11). Since these correlations also enter into the spectral form factor
for all m > 0, we can ask about their imprint onto higher spin sectors. We previously
found in [1] (numerically) for the contribution to the spin (m1, m2) spectral form factor
due to the existence of a ramp at spin 0:32

〈
Z̃m1

P,cont.(y1)Z̃m2
P,cont.(y2)

〉
⊃0 2λm1 δm1m2 e−2π(m1y1+m2y2)

√
y1y2

y1 + y2
+ . . . (yi ≫ 1)

(E.1)
where “⊃0” means that we only consider the contribution to the left hand side that is
implied by the existence of a ramp at spin m = 0. The first few spin-dependent prefactors
in this expression are

λ1 = 0.761 . . . , λ2 = 0.644 . . . , λ3 = 0.613 . . . , λ4 = 0.532 . . . , λ5 = 0.548 . . . , etc.
(E.2)

Details can be found in [1]. Crucially, since (E.1) is strictly subleading to the ramp (2.4),
the form of the spin 0 correlations advocated in (2.11) is consistent by itself and does not
affect the slope or existence of ramps in any other spin sector.

E.2 Signatures of a spin m ramp at spin (m1, m2): Eisenstein series

Let us now assume the existence of a linear ramp in the Eisenstein spectrum at spin m.
From (2.15), we would infer the following imprint of a spin m ramp onto the spin (m1, m2)
sector:〈

Z̃m1
P,cont.(y1)Z̃m2

P,cont.(y2)
〉

⊃m

√
y1y2
π2

∫∫
dα1dα2

〈
z 1

2 +iα1
z 1

2 +iα2

〉
spin m ramp

σ2iα1(m1)σ2iα2(m2)
miα1

1 miα2
2 Λ(−iα1)Λ(−iα2)

Kiα1(2πm1y1)Kiα2(2πm2y2)

=
2√y1y2

π2

∫
dα α tanh(πα) m2iασ2iα(m1)σ2iα(m2)

(m1m2)iασ2iα(m)2 Kiα(2πm1y1)Kiα(2πm2y2)

(E.3)

where the notation “⊃m” means that we consider the contribution to the spectral form
factor that is implied by the existence of a ramp in the spin m sector. For m = 1, this
expression is particularly simple. Its numerical evaluation gives [1]

〈
Z̃m1

P,cont.(y1)Z̃m2
P,cont.(y2)

〉
⊃m=1 σ0(m1)× δm1m2

1
π

y1y2
y1 + y2

e−2πm1(y1+y2) (E.4)

with the divisor function giving the following count:

σ0(1) = 1 , σ0(2) = 2 , σ0(3) = 2 , σ0(4) = 3 , σ0(5) = 2 , etc. (E.5)

So, unlike for spin 0, the higher spin ramps do imprint onto the slope of ramps in other
spin sectors. This is analogous to the situation with the ‘naive’ ansatz for the spin m ramp

32The factor 2 relative to [1] is for the same reason as in (2.4).
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in the cusp form case discussed in the main text, see (3.17). It would be interesting to
analyze if the naive ansatz for ramps in the Eisenstein sector can be improved, or if the
above analysis hints at a deeper inconsistency with ramps for m > 0 being encoded in
Eisenstein series at all.

E.3 Signatures of a spin m ramp at spin (m1, m2): maass cusp forms

The numerical analysis of the previous subsection can be generalized straightforwardly to
the case of cusp forms. To this end, we adapt the calculation (E.3): let us assume that
the spin m spectrum of Maass cusp forms contains a linear ramp. As discussed in the
main text, the statistical averaging over cusp form data, which is automatic in the large yi

limit, means that there are different choices of correlations which would all yield a linear
ramp in some given spin sector. Ultimately, we found (4.1) by demanding a ramp with
the correct slope in every spin sector. That is, we demanded that the imprint of any spin
sector is the same on any other spin sector. In this appendix we analyze the consequences of
working with less fine-tuned spectral correlations that are engineered to only describe RMT
statistics in a fixed spin sector. In particular, consider the most naive ansatz, obtained by
taking (3.9) and simply dividing out the Fourier coefficients:

〈
zn1,± zn2,±

〉
spin m ramp naive’ ≈

1
a

(n1,±)
m a

(n2,±)
m

2R±
n1 tanh

(
πR±

n1

)
π2 µ̄±(R±

n1)
δn1n2 . (E.6)

Such a correlation implies that the spin (m1, m2) sector must contain the following term:
〈
Z̃m1

P,disc.,±(y1)Z̃m2
P,disc.,±(y2)

〉
⊃m

∑
n1,n2

⟨zn1,± zn2,±⟩spin m ramp naive’ a(n1,±)
m1 a(n2,±)

m2

√
y1KiR±

n1
(2πm1y1)

√
y2KiR±

n2
(2πm2y2)

≈
∑

n

2R±
n tanh(πR±

n )
π2µ̄±(R±

n )
a

(n,±)
m1 a

(n,±)
m2(

a
(n,±)
m

)2 √
y1KiR±

n
(2πm1y1)

√
y2KiR±

n
(2πm2y2) .

(E.7)

This can be evaluated numerically, which yields similar results as in the case of Eisenstein
series discussed in the previous subsection:

〈
Z̃m1

P,disc.,±(y1)Z̃m2
P,disc.,±(y2)

〉
⊃m η±

m,m1 × δm1m2
1
π

y1y2
y1 + y2

e−2πm1(y1+y2) (yi ≫ 1) ,

(E.8)

where the spin-dependent coefficient η±
m,m1 is generally different from 1. This is illustrated

in figure 10. From the curves in that figure, we find the following numerical fit:

num. fit:

η+
1,1 =1, η+

1,2 =1.44 . . . , η+
1,3 =1.25 . . . , η+

1,4 =1.61 . . . , η+
1,5 =1.10 . . . , . . .

η−
1,1 =1, η−

1,2 =1.46 . . . , η−
1,3 =1.28 . . . , η−

1,4 =1.65 . . . , η−
1,5 =1.13 . . . , . . .

(E.9)
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Figure 10. Numerical evaluation of (E.7): we show the imprint of a ramp in the spin m =
1 sector onto the spin (m1, m2) sector of the spectral form factor, assuming the naive form of
correlations (E.6) which is not engineered to have information about any other spin sector. While
the asymptotic contribution has the correct linear y-dependence (for m1 = m2), it does not have
the correct slope to account for all the information encoded in a ramp.

This matches within ∼10% with the theoretical expectation based on statistical averaging,
namely η±

m,m1 = N±
m1/N±

m , which follows after replacing squares of Fourier coefficients by
their variances in (E.7):33

theoretical values: η±
1,1 = 1, η±

1,2 = 3
2 , η±

1,3 = 4
3 , η±

1,4 = 7
4 , η±

1,5 = 5
4 , . . . (E.10)

The fact that the prefactor η±
m,m1 in (E.8) is not 1 means that the ramp at spin

(m1, m2) is not fully encoded in the ramp at spin m. Random matrix universality in one
spin sector therefore does not imply random matrix universality in a different spin sector
— as is consistent with general expectations in the theory of quantum chaos. Instead, one
must fine-tune the approximation (E.6) in a way that is informed by cusp form data in all
other spin sectors. This is achieved by the arithmetic kernel f (n,±) discussed in the main
text.

E.4 Independence of the plateaus

Similar to the case of the ramps analyzed above and in [1], here we discuss the numerical
imprint of a plateau in one spin sector onto other sectors. We begin with the imprint of a

33Computing N±
m1 /N±

m using the finite number of cusp forms available to us, i.e., using (3.15), yields
agreement within ∼ 2%. This shows that a still much larger number of cusp forms is required in order to
get very close to the theoretical values for η±

m,m1 .
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spin 0 plateau onto the spin (m1, m2) sector:〈
Z̃m1

P,cont.(y1)Z̃m2
P,cont.(y2)

〉
⊃plateau

m=0

√
y1y2
4π2

∫∫
dα1dα2

〈
z 1

2 +iα1
z 1

2 +iα2

〉
spin 0 plateau

a
(α1)
m1 a

(α2)
m2

Λ(−iα1)Λ(−iα2)
Kiα1(2πm1y1)Kiα2(2πm2y2)

=
√

y1y2
π2

∫
dα2iπ2 1

sinh(πα)
σ2iα(m1)σ−2iα−2(m2)

miα
1 m−iα−1

2 Λ(−iα)Λ(iα + 1)
Kiα(2πm1y1)K−iα−1(2πm2y2)

(E.11)
The result, as shown in figure 11, is〈

Z̃m1
P,cont.(y1)Z̃m2

P,cont.(y2)
〉
⊃plateau

m=0 λ(p)
m ⟨ρm

D(Em)⟩e−2π|m|(y1+y2) (yi ≫ 1) , (E.12)

where the spin m coefficient λ
(p)
m is a small, O(e−2πm) coefficient:

λ
(p)
1 ≈ 6.04 × 10−3, λ

(p)
2 ≈ 1.51 × 10−5, λ

(p)
3 ≈ 3.49 × 10−8, λ

(p)
5 ≈ 1.38 × 10−13, . . .

(E.13)
Thus the spin 0 plateau produces a small constant in the spin m sector. Since the plateau
also goes to a constant for yi ≫ 1, y1/y2 = fixed, this represents a subleading correction
to the true spin m plateau. This is a similar situation to the imprint of the spin 0 ramp;
however, here we find that it is subleading due to the coefficient, rather than the functional
form.

The imprint of a spin 1 plateau, through a similar calculation, is as follows (see fig-
ure 12):〈

Z̃m1
P,cont.(y1)Z̃m2

P,cont.(y2)
〉
⊃plateau

m=1 µ(p)
m

√
y1 + y2

2 ⟨ρm
D(Em)⟩

√
y1y2

y1 + y2
e−2π|m|(y1+y2) (yi ≫ 1)

(E.14)
where

µ
(p)
2 ≈ 8.13 . . . × 10−3, µ

(p)
3 ≈ 1.97 . . . × 10−5, µ

(p)
5 ≈ 7.78 . . . × 10−11, . . . (E.15)

We obtain a function that dominates over the plateau at large yi. This is a similar situ-
ation to the ramp, where the imprint of the spin 1 ramp dominated over the true spin m

ramp; however, here we find that it dominates due to the functional form, rather than the
coefficient. It would obviously be interesting to study the implications of this further.

E.5 Comments on the plateau and the cusp forms

When trying to find an expression for the spectral decomposition of the plateau into the
cusp forms, we can apply the logic of section 3, i.e., use arithmetic chaos and the continuous
approximation. Using (5.7), this would immediately give:

⟨zm1
n1,±zm1

n2,±⟩spin m plateau
?≈− 4m

πµ̄(R±
n1)µ̄(R±

n2)
⟨ρm

D(Em)⟩

D

 1(
R±

n1 − R±
n2

)2 + 1(
R±

n1 + R±
n2

)2

 δm1m2 .

(E.16)
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Figure 11. Plot of the imprint of the spin 0 plateau on other spin sectors (note the log scaling of the
y-axis). In order to get a result that is c-independent and compare with the true spin m plateau (5.4),
we normalize the imprint by ⟨ρD(Em)⟩e−2πm(y1+y2); at large c, ⟨ρD(E0)⟩/⟨ρD(Em)⟩ ≈ 1

2 e−2πm.
With this normalization, the true spin m plateau becomes equal to 1/2 for y1 = y2. The results
shown therefore amount to a small constant ∼ O(e−2πm).

These correlations should then produce a plateau in the spectral form factor. Unfortu-
nately, (E.16) is not as well suited for numerical analysis as the ramp. The reason is that
the factor (R±

n1 ± R±
n2)

−2 decays for large R±
n , meaning that the integrand is peaked at

small values of R±
n . This is in contrast to the ramp, where we instead had the factor

R±
n1 tanh

(
πR±

n1

)
which leads to an integrand peaked at large values of R±

n .

However we do expect that as yi and R±
ni

increase, the continuous approximation (E.16)
becomes better. The reason is that in the continuous approximation, the region of R±

ni

where the integrand has support increases as yi → ∞. Thus, even though the correlations
are peaked at small Rni , (E.16) should reproduce the plateau at sufficiently large yi. We
do not have access to enough cusp form data to demonstrate this, and we leave (E.16) as
a conjecture.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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Figure 12. Plot of the imprint of the spin 1 plateau on other spin sectors for y1 = y2 = y. We
again normalize by ⟨ρD(Em)⟩e−2πm(y1+y2); at large c, ⟨ρD(E1)⟩/⟨ρD(Em)⟩ ≈ e−2π(m−1). The result
is a function that grows like √

y; creating a similar plot for a fixed y2 yields the functional form
in (E.14).

References

[1] F.M. Haehl, C. Marteau, W. Reeves and M. Rozali, Symmetries and spectral statistics in
chaotic conformal field theories, JHEP 07 (2023) 196 [arXiv:2302.14482] [INSPIRE].

[2] J. Cotler and K. Jensen, AdS3 wormholes from a modular bootstrap, JHEP 11 (2020) 058
[arXiv:2007.15653] [INSPIRE].

[3] J. Cotler and K. Jensen, AdS3 gravity and random CFT, JHEP 04 (2021) 033
[arXiv:2006.08648] [INSPIRE].

[4] L. Eberhardt, Off-shell Partition Functions in 3d Gravity, arXiv:2204.09789 [INSPIRE].

[5] J. Bolte, G. Steil and F. Steiner, Arithmetical chaos and violation of universality in energy
level statistics, Phys. Rev. Lett. 69 (1992) 2188.

[6] P. Sarnak, Arithmetic Quantum Chaos,
http://web.math.princeton.edu/sarnak/ArithmeticQuantumChaos.pdf, (1993).

[7] D.A. Hejhal and B.N. Rackner, On the Topography of Maass Waveforms for PSL(2,Z), Exp.
Math. 1 (1992) 275.

[8] E.B. Bogomolny, B. Georgeot, M.J. Giannoni and C. Schmit, Arithmetical chaos, Phys. Rept.
291 (1997) 219 [INSPIRE].

[9] N. Benjamin et al., Harmonic analysis of 2d CFT partition functions, JHEP 09 (2021) 174
[arXiv:2107.10744] [INSPIRE].

[10] G. Di Ubaldo and E. Perlmutter, AdS3/RMT2 Duality, arXiv:2307.03707 [INSPIRE].

– 45 –

https://doi.org/10.1007/JHEP07(2023)196
https://arxiv.org/abs/2302.14482
https://inspirehep.net/literature/2637213
https://doi.org/10.1007/JHEP11(2020)058
https://arxiv.org/abs/2007.15653
https://inspirehep.net/literature/1809686
https://doi.org/10.1007/JHEP04(2021)033
https://arxiv.org/abs/2006.08648
https://inspirehep.net/literature/1801459
https://arxiv.org/abs/2204.09789
https://inspirehep.net/literature/2070445
https://doi.org/10.1103/PhysRevLett.69.2188
http://web.math.princeton.edu/sarnak/Arithmetic Quantum Chaos.pdf
https://doi.org/10.1016/S0370-1573(97)00016-1
https://doi.org/10.1016/S0370-1573(97)00016-1
https://inspirehep.net/literature/32433
https://doi.org/10.1007/JHEP09(2021)174
https://arxiv.org/abs/2107.10744
https://inspirehep.net/literature/1890443
https://arxiv.org/abs/2307.03707
https://inspirehep.net/literature/2675194


J
H
E
P
1
2
(
2
0
2
3
)
1
6
1

[11] C.A. Keller and A. Maloney, Poincare Series, 3D Gravity and CFT Spectroscopy, JHEP 02
(2015) 080 [arXiv:1407.6008] [INSPIRE].

[12] J. Pollack, M. Rozali, J. Sully and D. Wakeham, Eigenstate Thermalization and Disorder
Averaging in Gravity, Phys. Rev. Lett. 125 (2020) 021601 [arXiv:2002.02971] [INSPIRE].

[13] C. Yan, More on torus wormholes in 3d gravity, JHEP 11 (2023) 039 [arXiv:2305.10494]
[INSPIRE].

[14] S. Collier and E. Perlmutter, Harnessing S-duality in N = 4 SYM & supergravity as SL(2,
Z)-averaged strings, JHEP 08 (2022) 195 [arXiv:2201.05093] [INSPIRE].

[15] G. Di Ubaldo and E. Perlmutter, AdS3 Pure Gravity and Stringy Unitarity,
arXiv:2308.01787 [INSPIRE].

[16] E. D’Hoker and J. Kaidi, Lectures on modular forms and strings, arXiv:2208.07242
[INSPIRE].

[17] H. Then, Maaß cusp forms for large eigenvalues, Math. Comput. 74 (2004) 363.

[18] LMFDB collaboration, The L-functions and modular forms database,
https://www.lmfdb.org, (2023).

[19] G. Steil, Eigenvalues of the Laplacian and of the Hecke operators for PSL(2,Z),
DESY-94-028 (1994) [INSPIRE].

[20] C. Matthies and F. Steiner, Selberg’s ζ function and the quantization of chaos, Phys. Rev. A
44 (1991) R7877.

[21] P. Sarnak, Statistical Properties of Eigenvalues of the Hecke Operators, in proceedings of
Analytic Number Theory and Diophantine Problems, Oklahoma State University (1984),
Prog. Math. 70 (1987) 321.

[22] F.M. Haehl, W. Reeves and M. Rozali, Euclidean wormholes in two-dimensional CFTs from
quantum chaos and number theory, to appear.

[23] A. Altland and J. Sonner, Late time physics of holographic quantum chaos, SciPost Phys. 11
(2021) 034 [arXiv:2008.02271] [INSPIRE].

[24] A. Belin, J. de Boer, P. Nayak and J. Sonner, Generalized spectral form factors and the
statistics of heavy operators, JHEP 11 (2022) 145 [arXiv:2111.06373] [INSPIRE].

[25] A. Altland and D. Bagrets, Quantum ergodicity in the SYK model, Nucl. Phys. B 930 (2018)
45 [arXiv:1712.05073] [INSPIRE].

[26] A. Belin and J. de Boer, Random statistics of OPE coefficients and Euclidean wormholes,
Class. Quant. Grav. 38 (2021) 164001 [arXiv:2006.05499] [INSPIRE].

[27] J. Chandra, S. Collier, T. Hartman and A. Maloney, Semiclassical 3D gravity as an average
of large-c CFTs, JHEP 12 (2022) 069 [arXiv:2203.06511] [INSPIRE].

[28] A. Belin et al., Approximate CFTs and Random Tensor Models, arXiv:2308.03829
[INSPIRE].

[29] A.D. Mirlin, Statistics of energy levels and eigenfunctions in disordered and chaotic systems:
supersymmetry approach, Proc. Int. Sch. Phys. Fermi 143 (2000) 223 [INSPIRE].

[30] A. Blommaert, J. Kruthoff and S. Yao, An integrable road to a perturbative plateau, JHEP
04 (2023) 048 [arXiv:2208.13795] [INSPIRE].

– 46 –

https://doi.org/10.1007/JHEP02(2015)080
https://doi.org/10.1007/JHEP02(2015)080
https://arxiv.org/abs/1407.6008
https://inspirehep.net/literature/1307433
https://doi.org/10.1103/PhysRevLett.125.021601
https://arxiv.org/abs/2002.02971
https://inspirehep.net/literature/1779426
https://doi.org/10.1007/JHEP11(2023)039
https://arxiv.org/abs/2305.10494
https://inspirehep.net/literature/2660891
https://doi.org/10.1007/JHEP08(2022)195
https://arxiv.org/abs/2201.05093
https://inspirehep.net/literature/2010484
https://arxiv.org/abs/2308.01787
https://inspirehep.net/literature/2685096
https://arxiv.org/abs/2208.07242
https://inspirehep.net/literature/2136107
https://doi.org/10.1090/s0025-5718-04-01658-8
https://www.lmfdb.org
https://inspirehep.net/literature/372116
https://doi.org/10.1103/PhysRevA.44.R7877
https://doi.org/10.1103/PhysRevA.44.R7877
https://doi.org/10.1007/978-1-4612-4816-3_19
https://doi.org/10.21468/SciPostPhys.11.2.034
https://doi.org/10.21468/SciPostPhys.11.2.034
https://arxiv.org/abs/2008.02271
https://inspirehep.net/literature/1810199
https://doi.org/10.1007/JHEP11(2022)145
https://arxiv.org/abs/2111.06373
https://inspirehep.net/literature/1966413
https://doi.org/10.1016/j.nuclphysb.2018.02.015
https://doi.org/10.1016/j.nuclphysb.2018.02.015
https://arxiv.org/abs/1712.05073
https://inspirehep.net/literature/1643316
https://doi.org/10.1088/1361-6382/ac1082
https://arxiv.org/abs/2006.05499
https://inspirehep.net/literature/1800440
https://doi.org/10.1007/JHEP12(2022)069
https://arxiv.org/abs/2203.06511
https://inspirehep.net/literature/2051114
https://arxiv.org/abs/2308.03829
https://inspirehep.net/literature/2686362
https://doi.org/10.3254/978-1-61499-228-8-223
https://inspirehep.net/literature/1327952
https://doi.org/10.1007/JHEP04(2023)048
https://doi.org/10.1007/JHEP04(2023)048
https://arxiv.org/abs/2208.13795
https://inspirehep.net/literature/2143698


J
H
E
P
1
2
(
2
0
2
3
)
1
6
1

[31] P. Saad, D. Stanford, Z. Yang and S. Yao, A convergent genus expansion for the plateau,
arXiv:2210.11565 [INSPIRE].

[32] B. Mukhametzhanov and S. Pal, Beurling-Selberg Extremization and Modular Bootstrap at
High Energies, SciPost Phys. 8 (2020) 088 [arXiv:2003.14316] [INSPIRE].

[33] H. Maxfield, Quantum corrections to the BTZ black hole extremality bound from the
conformal bootstrap, JHEP 12 (2019) 003 [arXiv:1906.04416] [INSPIRE].

[34] O. Bohigas and M.-J. Giannoni, Chaotic motion and random matrix theories, in J.S. Dehesa,
J.M.G. Gomez and A. Polls eds., Mathematical and Computational Methods in Nuclear
Physics, Lect. Notes Phys. 209 (1984) 1.

[35] Y. Motohashi, Spectral Theory of the Riemann Zeta-Function, Cambridge Tracts in
Mathematics, Cambridge University Press (1997), DOI:10.1017/CBO9780511983399.

[36] G. Shimura, On the holomorphy of certain dirichlet series, Proc. London Math. Soc. s3-31
(1975) 79.

[37] A. Sankaranarayanan, Fundamental properties of symmetric square L-functions I, Illinois J.
Math. 46 (2002) 23.

[38] J. Hoffstein and P. Lockhart, Coefficients of Maass Forms and the Siegel Zero, Annals Math.
140 (1994) 161.

[39] J. Newton and J.A. Thorne, Symmetric power functoriality for holomorphic modular forms,
arXiv:1912.11261.

[40] V. Blomer and A. Corbett, A symplectic restriction problem, arXiv:1912.07496.

[41] V. Blomer et al., The second moment theory of families of L-functions,
https://arxiv.org/abs/1804.01450 [DOI:10.48550/ARXIV.1804.01450].

– 47 –

https://arxiv.org/abs/2210.11565
https://inspirehep.net/literature/2169090
https://doi.org/10.21468/SciPostPhys.8.6.088
https://arxiv.org/abs/2003.14316
https://inspirehep.net/literature/1789086
https://doi.org/10.1007/JHEP12(2019)003
https://arxiv.org/abs/1906.04416
https://inspirehep.net/literature/1739363
https://doi.org/10.1007/3-540-13392-5_1
https://doi.org/10.1017/CBO9780511983399
https://doi.org/https://doi.org/10.1112/plms/s3-31.1.79
https://doi.org/https://doi.org/10.1112/plms/s3-31.1.79
https://arxiv.org/abs/1912.11261
https://arxiv.org/abs/1912.07496
https://arxiv.org/abs/1804.01450
https://doi.org/10.48550/ARXIV.1804.01450

	Introduction
	Spectral decomposition of the ramp
	SL(2,Z) spectral theory
	Linear ramp from correlations in spectral overlap coefficients

	Ramp from cusp forms — the statistical approximation
	Statistical treatment of the sum over eigenvalues Rn**(+-)
	Statistical treatment of the Fourier coefficients am**(n,+-)
	Ramps in all spin sectors: number theory and uniqueness

	Matching universal correlations to the AdS3 wormhole
	Discussion
	Notation and conventions
	Dominant regime of eigenvalues in (3.10)
	Statistics of Maass cusp forms: arithmetic chaos
	Hecke relations, cusp form norms, and L-functions
	Hecke relations and L-functions
	Statistical averages and moments of L-functions
	Derivation of the arithmetic kernel f**(n,+-)
	L-function for Eisenstein series

	Effects of chaos across different spin sectors
	Signatures of a spin m=0 ramp at spin (m1,m2)
	Signatures of a spin m ramp at spin (m1,m2): Eisenstein series
	Signatures of a spin m ramp at spin (m1,m2): maass cusp forms
	Independence of the plateaus
	Comments on the plateau and the cusp forms


