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1 Introduction

The topic of 2-dimensional quantum gravity is intensively studied since the 1980s ([1, 2] and
numerous other works) and is quite developed. Different approaches and models in this area
are deeply and intricately connected. One of such connections is the one between minimal
Liouville gravity (MLG) and Jackiw-Tetelboim gravity (JT, see [3] for comprehensive review);
it is believed that JT gravity can be thought of as semiclassical limit of (2, 2p + 1) MLG.
It was first noted in [4], where matrix model description of JT gravity was developed, and
consequently verified by explicit calculations of different observables in both field-theoretic
(e.g. [5]) and matrix model approaches. Of particular interest are observables involving
integration over moduli of the surface; a well-studied example in MLG are the so-called
tachyon correlation numbers (see e.g. [6, 7]). In [8], semiclassical (or JT) limit of tachyon
correlators was considered from the matrix model side. For these an interpretation as “volumes
of moduli spaces for constant curvature surfaces with conical defects” was proposed. A few
other arguments in support of this were given in [9].

A purpose of this article is to propose a particularly natural in this context connection
of these results to certain metrics and volumes on the moduli space, already known in
the literature. They were introduced by Zograf and Takhtajan in the works [10, 11] on
classical Liouville theory. The most “hands-on” definition of these is that they are Kähler
metrics, potential for which is the classical Liouville action. For brevity we will later refer to
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these as ZT metrics, to distinguish from both what is known as Takhtajan-Zograf metrics
in mathematical literature and Weil-Petersson metrics, reserving this name for metrics on
moduli space of constant negative curvature (hyperbolic) surfaces with punctures(cusps)
and/or geodesic boundaries.

The structure of this paper is as follows. In section 2, we introduce notations and necessary
facts from classical and quantum Liouville field theory and minimal gravity and define the
object of our study. Section 3 is devoted to description and results of numerical method for
calculating moduli space volumes associated with ZT metrics for a one-parametric family of
geometries with 4 conical defects on a sphere; we also discuss the limitations and applicability
of this method. In section 4, on a few examples we analytically confirm that ZT volumes
conform to a certain known property of semiclassical MLG tachyon correlators. We conclude
in 5 with some discussion of related questions that would be interesting to study further.

2 Preliminaries

2.1 Quantum and classical Liouville CFT

Liouville conformal filed theory is a 2-dimensional CFT which has the action of the form

AL =
∫
d2x

√
ĝ

( 1
4π ĝ

ab∂aϕ∂bϕ+ µe2bϕ + Q

4π R̂ϕ
)

(2.1)

ĝ is a reference metric that we introduce to give theory a covariant form. We will only
consider Liouville theory on the sphere in this paper. Parameter Q = b+ b−1; the Virasoro
central charge of the theory is then given by cL = 1 + 6Q2. µ is the parameter of the theory
called the “cosmological constant” in this context; dependence of the correlators on µ is fixed,
e.g. by noticing that µ can be put to one by shifting ϕ → ϕ − 1

2b logµ.
Holomorphic stress-energy tensor of the theory is T = −(∂ϕ)2 + Q∂2ϕ. Exponential

operators Va = e2aϕ are primary fields of the model of dimension ∆L
a = a(Q− a). Operators

Va and VQ−a are identified up to a factor RL(a) called the “reflection coefficient”.
As usually the case in CFT, in Liouville theory there are the so-called “degenerate” fields.

They correspond to fields Vm,n ≡ Vam,n with

am,n = −b−1 (m− 1)
2 − b

(n− 1)
2 (2.2)

These are the primary fields (Virasoro highest vectors) with a descendant on level mn which is
annihilated by positive part of the Virasoro algebra and is a highest vector by itself (in other
words, the corresponding Vermat module has a submodule). To work only with irreducible
representations, in CFT such submodules are usually decoupled by putting its highest vector
to zero. Decoupling conditions can be written as Dm,nVm,n = 0, where Dm,n is a polynomial
of Virasoro generators L−k of degree mn; in particular, D1,2 = L2

−1 + b2L−2. From this
follows the celebrated BPZ equation [12] for a 4-point correlator with degenerate field: ∂2

∂z2 + b2

 3∑
k=1

( ∆k

(z − zk)2 − 1
z − zk

d

dz

)
−
∑
i<j

∆1,2 + ∆ij

(z − zi)(z − zj)

 ⟨V1,2(z)
3∏
i=1

Vai(zi)⟩ = 0

(2.3)
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An expression for the three-point functions (or structure constants) of Liouville theory
CL(a1, a2, a3) was first proposed by two groups of authors [13] and [14]. It is called Dorn-
Otto-Zamolodchikov-Zamolodchikov (DOZZ) three-point function. The formula is

CL(a1, a2, a3) = (πµγ(b2)b2−2b2)(Q−a)/b Υb(b)Υb(2a1)Υb(2a2)Υb(2a3)
Υb(a−Q)Υb(a− 2a1)Υb(a− 2a2)Υb(a− 2a3) (2.4)

where Υb(x) is a certain special function that we will not be discussing in detail. We cite
two important properties of it: the shift relations

Υb(x+ b) = γ(bx)b1−2bxΥb(x)
Υb(x+ b−1) = γ(x/b)b2b/x−1Υb(x)

with γ(z) = Γ(z)
Γ(1−z) and the fact that this function has zeroes for x = −mb − n

b and
x = Q + m

b + nb for m,n non-negative.
The OPE Va1(x)Va2(0) in Liouville CFT is most simply written when a1, a2 lie in the

so-called “basic domain” defined by∣∣∣∣Q2 − Re a1

∣∣∣∣+ ∣∣∣∣Q2 − Re a2

∣∣∣∣ < Q

2 (2.5)

In this case we write

Va1(x)Va2(0) =
∞∫

−∞

dP

4π CL
(
a1, a2,

Q

2 − iP

)
(xx)∆L

Q/2+iP
−∆L

a1 −∆L
a2 [VQ/2+iP (0)] (2.6)

The fields that appear here are parametrized by one real number P instead of complex a —
only operators with a = Q

2 + iP, P ∈ R, correspond to normalizable, or “physical”, states of
the theory [15]. This is why we sum over these states only in the OPE. When parameters of the
correlators are not in this domain, some poles of the structure constants may cross the contour
over which we integrate. In order to keep the analyticity in parameters, in such case we should
either deform the contour of integration over P or (equivalently) keep the contour the same
but explicitly add contributions from these poles which are referred to as “discrete terms”.

Liouville theory has a nice semiclassical limit which is obtained when b → 0 (or c → ∞).
After rescaling the field bϕ(x) = φ(x), in terms of φ the action has a large prefactor ∼ 1/b2.
Functional integral is then saturated by a saddle point — solution of classical Liouville equation

∂∂φcl = Λe2φcl , Λ = 4πµb2 (2.7)

Function φcl can be interpreted as the Weyl factor of constant curvature metrics on the surface
that we consider. We will put Λ = 1 in what follows for simplicity. Classical limit of correlator
of primary operators exp(2akϕ(x)) = exp(2ak

b φ(x)) depends on how their dimension scale
with b: if a = η/b → ∞, b → 0 with η finite (“heavy” fields), such operators affect the
equations of motion and the saddle solution, adding delta-functional terms to the r.h.s.:

∂∂φcl = e2φcl − π
n∑
k=1

ηkδ
(2)(z − zk) (2.8)
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Leading approximation to correlation functions is then exp(− 1
b2S

cl), where Scl is the action
evaluated on the solution of (2.8). This modification of EOMs can be interpreted as adding
conical singularities (for real 0 < η < 1/2) of angle deficit 4πη on the surface. For η = 1/2+ ip
these are rather macroscopic holes with geodesic boundaries of length ∼ p. If dimensions ∆
of fields stay of order 1 when b → ∞, we refer to such fields as “light”. They do not affect
the saddle point and are just evaluated on the solution, contributing the factor exp(2aφcl/b)
to the correlator.

After proper regularization, in simple cases we can explicitly evaluate the classical action.
For the case of three-point function it is easily verified (both for conical defects [14] and
geodesic boundaries [16]) that the classical action coincides with the straightforward b → 0

limit of the logarithm of DOZZ structure constant (2.4); assuming
3∑
i=1

ηi > 1, the formula is

S
(3)
cl (η1, η2, η3) = (η−1) log 2+F (η−1)+

3∑
i=1

F (η−2ηi)−F (0)−
3∑
i=1

F (2ηi), η ≡ η1 +η2 +η3

(2.9)
where

F (η) = ψ(−2)(1 − x) + ψ(−2)(x) − 2ψ(−2)
(1

2

)
=

η∫
1/2

log γ(z)dz (2.10)

and ψ(n) is a polygamma function.
An important ingredient in the study of classical Liouville theory is the b → 0 limit of the

BPZ equation (2.3). Since degenerate field V1,2(z) = e−φ(z) is light, z-dependence factorizes
out of the correlator; if the other 3 fields are heavy, we have

⟨V1,2(z)Va1(x1) . . . ⟩ ≈b→0 ψ(z)⟨Va1(x1) . . . ⟩ ∼ ψ(z)e−Scl(η1,x1,... )/b2
, ψ(z) = e−φcl(η1,x1,... )

(2.11)
We can then write the BPZ equation as follows:

[∂2 + t(z)]ψ(z) = 0, t(z) := −(∂φcl)2 + ∂2φcl (2.12)

In this form, it is just a consequence of Liouville EOMs and is not very helpful. However, the
form of t(z) can be understood even without knowing the solution, based on its singularities at
xi (determined by contact terms in (2.8)), behaviour at ∞ and the fact that it is holomorphic
(which also follows from EOM). E.g. for correlator of 4 heavy fields η1, . . . , η4 at x, 0, 1,∞
t(z) looks like

t(z) = δ1
(z − x)2 + δ2

z2 + δ3
(z − 1)2 + x(x− 1)c

z(z − 1)(z − x) + δ4 − δ3 − δ2 − δ1
z(z − 1) , δi = ηi(1 −ηi) (2.13)

Parameter c is called “accessory parameter” and cannot be determined from the requirements
above (there would be more than one such parameter for n-point correlators, one for each of
n − 3 complex coordinates on n-punctured sphere moduli space M0,n). If ψ is built from
the physical solution φcl of Liouville equation, from previous factorization arguments (2.11)
one expects that

c = −∂Scl

∂x
(2.14)
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which is a so-called Polyakov conjecture. This statement (at least for the case of the sphere)
can be rigorously proven for properly regularized Liouville action ([10, 17, 18]). One can
build from ψ1,2 (2 independent solutions of equation (2.12)) a solution of Liouville equation:
the function

φ̃cl = − log
[
Λijψi(z)ψj(z)

]
(2.15)

formally solves it if det Λij = −1. For φ̃cl to be single-valued, one needs the monodromy of
solutions ψ to lie in the subgroup preserving the bilinear form Λ, i.e. in some real subgroup
of SL(2,C) isomorphic to either SU(2) or SU(1, 1), depending on the sign of the curvature.
This condition determines the accessory parameter c, for which solutions of (2.12) determine
φcl that solves (2.8).

As already mentioned, we will be interested in classical Liouville action’s interpretation
as a Kähler potential for certain metrics on moduli space of punctured spheres, proposed by
Zograf and Takhtajan in ([10, 11]): gZT

ij
∼ ∂i∂jS

(cl). Here i ∈ 1 . . . n− 3 enumerate complex
coordinates on the moduli space M0,n; a standard choice for these are n − 3 independent
cross-ratios of defects’ coordinates xi.

2.2 Minimal Liouville gravity

A CFT of total central charge 0 that consists of Liouville theory, CFT minimal model
Mr,r′ and fermionic BC-system of central charge −26 (BRST ghosts) is referred to as (r, r′)
minimal Liouville gravity (MLG):

AMLG = AL +AMr,r′ + 1
π

∫
d2x

(
C∂B + C∂B

)
︸ ︷︷ ︸

Aghost

(2.16)

From requirement of zero total central charge it follows that Liouville parameter b =
√
r/r′.

We will not review the properties of BC-CFT and minimal models in detail here; we just
want to define the objects that we study in what follows. More details can be found e.g. in [6].

An important class of operators in this theory are the “tachyons”, obtained by dressing
minimal model primaries Φm,n with Liouville operators Va and ghosts CC so that their
total conformal dimension is 0: in previously defined Liouville parametrization they read
Wm,n ≡ CCVm,−nΦm,n. These are representatives of cohomology classes for nilpotent BRST-
operator Q = C(TL + TM ) + C∂CB in this theory. Instead of adding ghosts, one can also
integrate the operators Um,n ≡ Vm,−nΦm,n of dimension (1, 1) over the surface to obtained
BRST-invariant objects.

Correlators of multiple tachyon operators
∫
d2xUa(x) and Wa(x) on a sphere (in fact,

due to ghost number anomaly the number of C-ghosts in such correlator needs to be equal
to three; so, three fields are W and all the others are integrated operators

∫
d2xUa) are

what we consider in this paper. Such correlators do not depend on any insertion points
xi and are just numbers. Moreover, in certain normalization, they turn out to simplify
greatly compared to the constituents (Liouville and minimal model correlators) and become
piecewise-polynomial in mi and ni.

A long-standing conjecture is that these correlation numbers can be equivalently ob-
tained from double-scaling limit of matrix models (in fact, calculations in this approach
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are significantly simpler than in Liouville gravity); see e.g. [19, 20] for early studies of the
problem. Identification of matrix model and LG generating functionals is complicated by the
necessity to do an analytic redefinition of coupling constants, which is referred to as “reso-
nance transformations”; their form is most fully understood for the case of (2, 2p+ 1) MLG,
corresponding to one-matrix model [21]. Solidifying the connection betweeen two approaches
in general case is a subject of separate line of research; in this paper we will mostly examine
4-point correlation numbers on the sphere in (2, 2p+ 1) minimal gravity, for which calculation
in continuous approach can be done and the agreement with matrix model is proven ([7, 22]).
In other cases, where only matrix model answers are available, we will be assuming the
equivalence of two approaches and call matrix model results MLG correlation numbers.

2.3 Some results for MLG correlators

Let us order the parameters of the tachyon correlator ⟨W1,k1+1· · ·
∫
d2xU1,kn+1⟩ in (2, 2p+ 1)

MLG as 0 ≤ k1 ≤ k2 ≤ k3 ≤ · · · ≤ kn ≤ p − 1. Then the four-point correlation number,
as obtained from the matrix model, reads [21]

Zk1k2k3k4 = −Fθ(−2) +
4∑
i=1

Fθ(ki − 1) − Fθ(k12|34) − Fθ(k13|24) − Fθ(k14|23) (2.17)

where kij|lm and the function Fθ are defined as

kij|lm = min(ki + kj , kl + km); Fθ(k) = 1
2(p− k − 1)(p− k − 2)θ(p− 2 − k) (2.18)

There are corrections to this answer that are nonzero only if the so called “fusion rules”k1 + k2 + k3 > k4,
∑
ki is even;

k1 + k2 + k3 + k4 > 2p− 5, ∑ ki is odd
(2.19)

are not satisfied; they nullify the correlation number in this case. The p → ∞ limit of this
correlator when all operators are “heavy” (as before, it means that parameter of the dressing
Liouville fields for tachyons η1,−ki−1 = ba1,−ki−1 = b2 ki+2

2 or, equivalently, κi = ki
p ≈ kib

2

stays finite in the limit b → 0) is taken using the asymptotic for function Fθ:

Fθ(κp) ≈ p2 · 1
2(1 − κ)2θ(1 − κ) (2.20)

We also can say a bit more about the meaning of fusion rules (2.19) in semiclassical limit.
The odd-sector one becomes κ1 + · · · + κ4 > 2 and is nothing but Gauss-Bonnet theorem,
which is a necessary condition for the metric on the sphere with given defects to be hyperbolic.
If this inequality is not satisfied, only metric with constant positive curvature may exist;
in this case, a known necessary condition for existence of such metric is the inequality
κ1 + κ2 + κ3 > κ4, coinciding with even sector fusion rules. This inequality is referred to
as Troyanov condition in the literature [23].

For further reference in section 4, we also note the following property of these numbers:
assume that sum of any two numbers ki + kj , i ̸= j is less than p for the four-point function,
the same is valid for the sum of any three numbers for five-point function and so on. Then

– 6 –
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the expression for correlation number factorizes and, up to a factor dependent only on ∑ ki,
counts the number of conformal blocks in minimal model part of the correlator. E.g. for
four-point number we have

Zk1k2k3k4 =

(1 + k1)(2p− 3 − k), k14 < k23

(1 + k2+k3+k1−k4
2 )(2p− 3 − k), k14 ≥ k23

(2.21)

This property was noted in [9] for four- and five-point correlation numbers based on the
results of [21, 24]. For higher than 5-point correlators, this behaviour can be anticipated from
calculations of [25] (although these results, relying on analytic continuation of expressions
obtained from Coulomb integrals, have limited applicability in MLG, where correlators are
non-analytic).

3 Numerical calculation of moduli space volumes from CFT

In this section we describe the method for numerical calculation of ZT metrics and associated
volumes. We focus on a one-parametric family of constant curvature metrics on a sphere
with 4 conical defects of deficit angles 2π · (1, 1, κ, κ), 0 < κ < 1. Using known results
in exactly solvable Liouville CFT to study classical geometry of moduli spaces was first
proposed in [26]; our calculation is analogous to the one carried out in [27] (there, a case
with κ = 1 in our notation was studied in detail, when ZT metric coincides with the usual
Weil-Petersson one for surface with punctures, or zero length geodesic boundaries) and [28]
(for torus with 1 geodesic boundary).

The MLG result (2.17) for four-point correlator suggests the following expression for
the volumes in the studied case:

Z(κ) = 2π2
(
1 − 2(1 − κ)2 + (1 − 2κ)2θ(1 − 2κ)

)
(3.1)

We changed the normalization to more conventional one in geometry, where the Weil-Petersson
volume Z(1) = 2π2; we will be more interested in parametric dependence rather than overall
normalization.

3.1 Description of the “saddle point” method

We start with the known decomposition of Liouville four-point correlator

⟨Va1(0)Va2(x)Va3(1)Va4(∞)⟩=
∫
dP

4π C
(
a1,a2,

Q

2 −iP
)
C

(
Q

2 +iP,a3,a4

)∣∣∣∣∣∣F∆

∆1 ∆3

∆2 ∆4

∣∣∣∣∣∣x
∣∣∣∣∣∣

2

(3.2)
Here the conformal block is normalized so that its series expansion in x starts with x∆−∆1−∆2 .
If we assume that all the external and intermediate dimensions are “heavy” (with the
parameters scaling with b → 0 as before), the structure constants, as well as conformal blocks,
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are known to exponentiate in the b → 0 limit. The integral then takes the form

≈
∫
dp

4π exp


− 1
b2

S(3)
cl

(
η1,η2,

1−2ip
2

)
+S

(3)
cl

(1+2ip
2 ,η3,η4

)
−2Re f 1

4 +p2

 δ1 δ3

δ2 δ4

∣∣∣∣∣∣ x


︸ ︷︷ ︸
≡S(4)(p,x,x)=S(4)

hol(p,x)+S(4)
a/hol(p,x)


(3.3)

Semiclassical structure constant S(3)
cl is given in (2.9). Then, by the usual saddle point

arguments, we expect that in the semiclassical limit the integral is approximately given by
exp

(
− 1
b2S

(4)(psaddle(x, x), x, x)
)

at the extremum of the expression in exponent, i.e. psaddle is
such that ∂S(4)

∂p |p=psaddle= 0. It is reasonable to assume (although not proven rigorously), that
at least in a certain region of parameter space S(4)(psaddle, x, x), computed by this method
from CFT, coincides with the usual regularized classical Liouville action. It turns out that
for some values of parameters η this is not quite true (e.g. because the nontrivial real saddle
disappears). We will comment on this in the following sections.

We note in passing that real psaddle, when it exists, has a simple geometrical meaning,
being proportional to the length of the (unique) simple closed geodesic separating pairs of
points (0, x) and (1,∞), i.e. one of the Fenchel-Nielsen coordinates l. On the other hand,
derivative with respect to p of the holomorphic part of the action (which includes holomorphic
classical conformal block and half of classical structure constants) is proportional to iθ [29],
where θ is a conjugate twist coordinate; a saddle point condition for the integral then means
that for real p θ is real as well.

One can develop an expansion for psaddle on the boundary of moduli space (when x → 0).
Consider the first few terms of the expansion of S(4) in p; from explicit expressions one can
see that part of S(4)(p, x, x) coming from the structure constants is an even function of p,
but non-analytic at p = 0 in such a way so we have

S(4)(p, x, x) = const −A(ηi)|p| +B(ηi)p2 +
(
δ1 + δ2 − 1

4 − p2
)

log(xx) +O(p3) (3.4)

Then in leading approximation the saddle point equation reads

0 = ∂S(4)

∂p
= −A+ 2|p| log e

B

xx
↔ |p| = A/2

log eB

xx

+ · · · → 0, x → 0 (3.5)

It confirms that psaddle is small for small x (note that solution exists only for A > 0).
However, all the terms that we ignored in the expansion of classical conformal blocks
are “nonperturbatively” smaller than p to any power, being proportional to powers of
q = exp(−#/psaddle). Ignoring them, we can first find a “perturbative” expansion for psaddle
in 1

log(xx) , by restoring other terms in the series for (∂S(3)
cl /∂p) in p and solving the “corrected”

saddle-point equation order by order.
Instead of x, we will parametrize the moduli space with “elliptic” q variable, defined as

q = exp(iπτ), τ = i
K(1 − x)
K(x) (3.6)
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Figure 1. 1 and 2: fundamental domain F in q and τ coordinates. 3: Hyperbolic surface with 4
conical defects and the separating geodesic.

where K(x) is the complete elliptic integral of the first kind. To rewrite the expansion in terms
of q one can use that x = 16q(1 + . . . ). Terms denoted by . . . in brackets do not matter for
“perturbative” expansion. We prefer “elliptic” parametrization because convergence of series
in q is generically better; also, “non-perturbative” corrections would be easier to construct
systematically — one can write subleading terms in the q-expansion of conformal block
order by order using Zamolodchikov’s recursion relation [30] (this approach was successfully
used in [27]). Also, we note that in principle we can expand in ϵ = (log a(ηi)/qq)−1 for
any function a(η); for a specific choice a = eB/28 quadratic in p terms in the expansion
have the most simple form.

After the series for psaddle is found, we can compute the “classical action” S(4) and
the associated Kähler metric on the moduli space: gqq = −4π∂q∂qS(4)(q, q) (as a series
expansion in ϵ). Up to this step, obtaining analytic expressions is possible; the only thing
left to compute the volumes is to integrate

√
det g over the moduli space M0,4. The discrete

group S3 = S4/(S2 × S2) of order 6 permutes the conical defects and, nontrivially acting on
cross-ratio x, acts on M0,n. A convenient choice of fundamental domain of this action is

F =
{
q = reiψ | −π/2 ≤ ψ ≤ π/2, 0 ≤ r ≤ exp

(
−
√
π2 − ψ2

)}
(3.7)

It is depicted on figure 1, but it is easier to understand how this domain looks in τ coordinate,
where it is just the usual fundamental domain for SL(2,Z) action on the upper half-plane.
Integration over this domain of the terms in the series for gqq can be carried out numerically.

3.2 Example of application and problems

Let us now specify previous results for an example that we introduced in the beginning of
this section: the four-point function ⟨Vκ/2b(0)Vκ/2b(x)V1/2b(1)V1/2b(∞)⟩. The moduli space
M0,4 is decomposed into a fundamental domain F and 5 its images under the action of the
aforementioned S3 group; in 2 of these 6 domains, Vκ/2b(x) is closer to the operator Vκ/2b(0)
and should be fused with it, while in the other 4 it should be fused with V1/2b. To calculate
the integral over the whole moduli space, in each domain we should use decomposition like
the formula (3.2) in a corresponding channel.

First, we need to understand when the real saddle point, that we need to evaluate the
integral, exists. Using the formula (2.9) for classical structure constants, we get that for
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(1/2, κ/2) fusion channel for all 0 < κ < 1 the coefficient A in (3.5) is equal to 2π > 0.
Thus, the real saddle exists and in the corresponding domains the calculation procedure
is reliable. However, for the (κ/2, κ/2) channel this is not the case — the coefficient A is
equal to 2π for κ > 1/2 and otherwise is zero. For more general values of parameters of
the correlator, real saddle in the integral (3.2) would disappear if the parameters η1, η2 of
fused fields are such that η1 + η2 < 1/2.

The formal reason for such behaviour is the following — functions F (η1 + η2 − 1/2 − ip)
and F (η1 + η2 − 1/2 + ip), entering the classical structure constants (2.9) and defined by
integral representation (2.10), develop an additional linear in p contribution to the Maclaurin
series in p when Re (η1 + η2 − 1/2) < 0. Indeed, the integrand log γ(z) in (2.10) obtains an
additional imaginary part ±iπ; from this the proposed behaviour of F (η) follows. These
additional linear terms from two F -functions above then cancel the term −2π|p| that series
for S(4) had when κ > 1/2.

We were a little bit inaccurate in the arguments of the previous paragraph, using naive
analytic continuation for classical structure constants (2.9) in the domain η1 + η2 < 1/2. In
fact, as noted before in [31], in this case classical limit of the three-point function changes
less trivially: if real part of the argument of some F -function in (2.9) is −1 < η < 0, to get
the asymptotic coinciding with the logarithm of DOZZ formula one needs to replace

exp
(

− 1
b2F (η)

)
⇒ 1

2 sinh iπη
b2

exp
(

− 1
b2F (η + 1)

)
(3.8)

For Im η = ±p the denominator can be expanded in series in exp(−π|p|/b2). This expansion
can be interpreted as sum over certain complex saddle points in the functional integral.
Performing the replacement above for 2 F -functions with negative real part of their argument
and proceeding with the expansion, it is easy to see that there is no nontrivial real saddle
for integral over p in any of the terms in the obtained series.

Recalling that psaddle is proportional to the length of separating geodesic, we can under-
stand the geometric meaning of why the saddle point disappears: on a hyperbolic surface
such geodesic does not exist if conical defects are not sharp enough. Indeed, consider figure 1;
suppose that geodesic AEBE′A that separates two pairs of points exist. Then, together with
the parts of geodesics that connect the defects, we obtain 2 hyperbolic tetragons AEBCD and
AE′BCD. The sum of all their angles is equal to 2π(2−2η1 −2η2)+2π and by Gauss-Bonnet
theorem should be less than 4π, which leads necessarily to η1 + η2 > 1/2.

Summarising this discussion, we see that the procedure that we use is only reliable for
κ > 1/2. Thus, we will only restrict to such values of the parameter in the next section.

3.3 Results of the calculation

For brevity we will call (κ/2, κ/2) and (1/2, κ/2) channels “channel 1” and “channel 2”
respectively. We introduce the “perturbative” expansion parameter ϵ as

1
ϵ

= log 1
xx

− f(δ) (3.9)
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where δ ≡ κ − 1
2 and f is some function of δ, independent of x. Then, the saddle point

equation in “perturbative” approximation becomes

∂S(4)

∂p
= ∂

∂p

(
S

(3)
cl

(
η1,η2,

1
2 − ip

)
+S

(3)
cl

(1
2 + ip,η3,η4

))
︸ ︷︷ ︸

=−2π|p|+...

+2p
(1
ϵ

+f(η)
)

|p=psaddle= 0 (3.10)

and can be solved order by order in ϵ, putting psaddle =
nmax∑
n=1

pnϵ
n. For the following choice

of f for channels 1 and 2 respectively

f1 =ψ(0)(1−δ)+ψ(0)(δ)+8γ+6ψ(0)
(1

2

)
and f2 =4ψ(0)

(1
4(2δ+1)

)
+4ψ(0)

(1
4(3−2δ)

)
+8γ
(3.11)

expansion coefficients look the simplest; e.g. up to 6th order in ϵ the saddle point momentum is

psaddle1 = πϵ− 1
6ϵ

4π3
(
ψ(2)(1 − δ) + ψ(2)(δ) + 6ψ(2)

(1
2

)
− 32ψ(2)(1)

)
(3.12)

+ 1
120π

5ϵ6
(
ψ(4)(1 − δ) + ψ(4)(δ) + 6ψ(4)

(1
2

)
− 128ψ(4)(1)

)
+ . . .

in channel 1 and

psaddle2 = πϵ+ 2
3ϵ

4π3
(

−ψ(2)
(1

4(3 − 2δ)
)

− ψ(2)
(1

4(2δ + 1)
)

+ 8ψ(2)(1)
)

+ 1
30ϵ

6π5
(
ψ(4)

(1
4(3 − 2δ)

)
+ ψ(4)

(1
4(2δ + 1)

)
− 32ψ(4)(1)

)
+ . . . (3.13)

in channel 2. We can now substitute that in the action/Kähler potential, obtaining the
series in ϵ, differentiate it termwise using

∂q∂qϵ
−n = n(n+ 1)

qq
ϵ−n−2 (3.14)

and obtain the series expansion for the metric in 2 channels (again, for simplicity we write
the formulas for the choice of f as in (3.11))

g1 = 8π3ϵ3

qq

1−10π2

ψ(2)(1−δ)+6ψ(2)
(

1
2

)
+ψ(2)(δ)

12 + 8ζ(3)−4ψ(2)(1)
3

ϵ3 + . . .

 (3.15)

g2 = 8π3ϵ3

qq

1−10π2

ψ(2)
(

2δ+1
4

)
+ψ(2)

(
3−2δ

4

)
3 + 8ζ(3)−4ψ(2)(1)

3

ϵ3 + . . .

 (3.16)

Then, we integrate each term over the fundamental domain F . Radial integration can be
performed exactly

exp(−
√
π2−ψ2)∫

0

dr

r
(const − 2 log r)−n =

(
const + 2

√
π2 − ψ2

)1−n

2(n− 1) (3.17)

and integration over the angle ψ — only numerically. Expanding to 25th order in ϵ, integrating
over the fundamental domain in two channels, we obtain the following plots (figure 2).
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Figure 2. κ-dependence of contributions to moduli space volume from 2 channels (times 6). At
κ = 0.7 agreement is already bad.

Figure 3. Contributions to moduli space volume from channel 1 from integrating different terms in
the series for the metric, starting with 1/(qq log3 |q|). Absence of convergence can be seen.

κ 1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5
ch. 1 19.737 19.639 19.344 18.856 18.181 17.326 16.303 15.125 13.810 12.381 10.865
ch. 2 19.737 19.639 19.340 18.835 18.115 17.137 15.913 14.265 12.287 10.082 7.990
sum 19.737 19.639 19.343 18.850 18.159 17.263 16.173 14.838 13.302 11.615 9.907
(3.1) 19.739 19.641 19.344 18.851 18.160 17.272 16.186 14.903 13.423 11.745 9.870

Figure 4. Numerical data for contributions from different channels (data points for channel 1 and
channel 2 are normalized to agree with the full answer (3.1) at κ = 1).

The points on figures 2, 5 and 6 represent numerical data for volumes associated with ZT
metric, and the solid blue line is the analytic expression in (3.1), which for κ > 1/2 coincides
with the usual WP volume, analytically continued to imaginary lengths. For figure 2 numerical
data is obtained using fixed expansion parameter ϵ such that f(δ) in (3.9) is given by (3.11)

When κ is close enough to 1, agreement is very good. However, expansion coefficients for
the metric start growing too quickly if we change κ. The final numeric sum doesn’t seem
to converge when truncated to the order that we consider (the highest one we considered
was 50th order in ϵ). E.g. on figure 3 we have the results of integration of different terms in
the series for the metric in channel 1 for δ = 0.25. However, it turns out that this problem
can be tamed by tuning f(δ) and the expansion parameter ϵ. In table 4 and figure 5 for
each data point we fitted f(δ) to obtain optimal convergence (also, for some points it was
necessary to extend the expansion from 25th to 40th order in ϵ).

Contributions in 2 different channels start to look different from each other and the
analytic prediction (3.1) when κ is small enough. However, the appropriate sum over all
6 images of fundamental domain is in quite good numerical agreement (accuracy ∼ 1%)
with (3.1) for all considered values of parameter κ (see figure 6). It should be possible to
make the agreement more precise by accounting for subleading terms in the expansion of
classical conformal block and expanding to higher order in ϵ.
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Figure 5. κ-dependence of contributions to moduli space volume from different channels (normalized
to agree with the full answer at κ = 1) with tuned expansion parameter.
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Figure 6. Sum of contributions from all domains calculated with tuned expansion parameter ϵ.

4 Classical action for “perturbatively heavy” insertions

4.1 Motivation: “light limit”

The simplification of MLG answers when p > ki + kj mentioned near (2.21) is suggestive of
how the moduli space metric behaves for these values of parameters. Consider e.g. the sphere
4-point function in the case when k1 +k4 < k2 +k3, which means that the number of conformal
blocks is maximal and equal to (1 + k1) (as before we assume k1 ≤ k2 ≤ k3 ≤ k4 ≤ p− 1),
MLG correlator and its semiclassical limit are (2.21)

Zk1k2k3k4 = (1 + k1)(2p− 3 − k1 − k2 − k3 − k4) ≈ p2κ1
(
2 −

∑
κi
)
, p → ∞;

κi ≡ ki
p

≈ 2baL1,−ki−1 = 2ηi (4.1)

For general n-point correlator on the sphere under the same conditions apparently we would
have (see the discussion at the end of 2.3)

Zk1k2k3...kn ≈ p2n−6κ1κ2 . . . κn−3(2 −
∑

κi)n−3, p → ∞ (4.2)

Before semiclassical limit, formula is a bit more complicated: the factor other than the
number of conformal blocks is most easily expressed via number of screenings, see [25]. Note
that this factor is just the r.h.s. of Gauss-Bonnet theorem

Area[g] ∼ 2 −
∑

κi (4.3)
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to the power (n− 3). This l.h.s. of this theorem, on the other hand, is just the volume of
the “physical” sphere where our constant curvature metric is defined. From the complex
geometry point of view, moduli space is just a symmetrized product of n− 3 spheres (up to
blowups at singular points). Then, as we see that moduli space volume (4.2) is proportional
to (Area[g])n−3, we can conjecture that (up to a coefficient) in this limit the moduli space
metric reduces to metric on the product space of n− 3 spheres with “physical” metric g.

This property is easily understood from ZT proposal in the “light” limit for Liouville
correlators. In this limit dimensions of fields ∆i = ai(Q−ai) = O(1), b → 0 for i = 1 . . . n− 3;
so only 3 heavy fields κn−2, κn−1, κn affect the classical solution of Liouville equation φcl.
Nontrivial xi dependence factorizes from the correlator as exp

(
1
b

∑
aiφcl(xi)

)
. Considering

the argument of the exponent as a Kähler potential, the corresponding metric gZT
ij

= ∂i∂jS

becomes block-diagonal: gZT
ij

(xk) = δijai∂∂ϕ(xi). Due to Liouville equation ∂∂φ = e2φ this
indeed reduces to the metric g = e2φdz dz on the physical sphere up to coefficient. The
volume associated with this metric is∫ n−3∏

i=1
d2xi

√
det gZT =

n−3∏
i=1

(∫
d2xi aie

2φ(xi)
)

=
n−3∏
i=1

ai

(∫
d2xi

√
det g

)

= (2 − κn−2 − κn−1 − κn)n−3
n−3∏
i=1

ai (4.4)

To leading order in ai this is consistent with MLG answer (4.2). It is not precisely what
we want, since the asymptotic of MLG answer that we take implies that all fields should
be heavy, with dimension ∆i = O(1/b2). However, we expect that the arguments about
factorization should also be valid in the so-called “perturbatively heavy” limit — when after
taking the limit b → 0, ai = ηi/b, ηi finite, we take the limit ηi → 0 (or expand in series in
ηi). This limit for conformal blocks is particularly meaningful and was extensively studied
in the AdS3/CFT2 context (see e.g. [32]).

A priori it is not obvious that “light” and “perturbatively-heavy” limit agree with each
other; in the following sections we will confirm these expectations by an explicit calculation.

4.2 Monodromy method for calculating the classical action

We remind that for the four-point function ⟨V1,2(z)Va1(x)Va2(0)Va3(1)Va4(∞)⟩ classical BPZ
equation (2.12) reads

[∂2
z + t(z)]ψ = 0, t(z) = δ1

(z − x)2 + δ2
z2 + δ3

(z − 1)2 + x(x− 1)c
z(z − 1)(z − x) + δ4 − δ3 − δ2 − δ1

z(z − 1) (4.5)

One can use this equation to study both the “holomorphic” problem of determining classical
conformal blocks and “mixed” one for classical Liouville action. In both cases we need to
vary an accessory parameter c(x) to realise certain conditions on monodromy of the system of
solutions. For conformal block traces of monodromy matrix are determined by intermediate
dimensions of the block that we want to study; for classical Liouville action, as mentioned
before, the conditions are that the monodromy group is isomorphic to a real form of SL(2,C)

— either SU(1, 1) or SU(2). After finding c(x), either conformal block or classical action (more
precisely, its coordinate-dependent part) can be found from relation (2.14).
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Expansion in ηi for the solution of the equation above can be developed as follows.
We separate

t(z) = t(0)(z) + t(1)(z), (4.6)

with t(1) containing contributions proportional to perturbatively small dimensions and the
accessory parameter, and look for the solution as a series ψ = ψ(0) + ψ(1) + . . . . Equating
order by order, we get the following chain of equations

[∂2
z + t(0)]ψ(0) = 0

[∂2
z + t(0)]ψ(1) = −t(1)ψ(0)

[∂2
z + t(0)]ψ(2) = −t(2)ψ(0) − t(1)ψ(1)

. . .

(4.7)

Solutions of the zero-order equation ψ
(0)
± are assumed to be known (the cases we consider are

with 2 and 3 heavy operators, where they can be found explicitly). Then, corrections ψ(i)

can be found using the method of variation of parameters. At first order we have

ψ
(1)
± = 1

W

ψ(0)
+

z∫
ψ

(0)
− t(1)ψ

(0)
± − ψ

(0)
−

z∫
ψ

(0)
+ t(1)ψ

(0)
±

 (4.8)

(W is the wronskian of solutions ψ(0)
± ). Monodromy matrix to first order is determined

by the integrals
∮
ψ

(0)
∓ T (1)ψ

(0)
± around singular points, i.e. the residues of the integrands.

Specifically, monodromy matrix for contour γ

M (1)
γ = (12×2 + I)M (0)

γ , I = 1
W


∮
γ
ψ

(0)
− t(1)ψ

(0)
+ −

∮
γ
ψ

(0)
+ t(1)ψ

(0)
+∮

γ
ψ

(0)
− t(1)ψ

(0)
− −

∮
γ
ψ

(0)
+ t(1)ψ

(0)
−

 (4.9)

Extension of this procedure to higher orders apparently meets some difficulties [33]. The
reason is that one can not simply close the contour of integration and calculate the residues,
since the integrand will not be single-valued in the vicinity of singular points. In the following
sections we restrict to first order in parameters of perturbatively heavy fields, although in
fact expressions for the volumes we are looking for should be exact in some order in such
perturbation theory, because volumes are polynomial in ηi. It might be interesting to find
a way to see it explicitly.

4.3 4 defects: example wih 2 heavy operators

The simplest case with 2 heavy (η3 = η4 = ηh; we need to have heavy dimensions equal for
classical solution of Liouville equation to exist) and 2 perturbatively heavy (η1 = η2 = ηl)
operators was studied in [34] where the following coordinate dependence of classical action
was established:

Scl(x) = S = 4ηL log(1 + |1 − x|1−2ηh) + F (x) + F (x) +O(ηL)2 (4.10)
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Metric volume form calculated from this action can be integrated over d2x, yielding ∼ ηl(1 −
2ηh) ∼ κl(2 − 2κh) as the volume. This is consistent with (4.1) to first order in ηl.

Here we slightly generalize the analysis of [34] to the case of 2 different light operators
η1 = ηl, η2 = ηl · σ. Decomposition of the energy-momentum tensor t(z) in this case is

t(0)(z) = δ3
(z − 1)2 , t

(1)(z) = ηl
(z − x)2 + σηl

z2 + x(x− 1)c
z(z − 1)(z − x) − ηl(1 + σ)

z(z − 1) (4.11)

and the monodromy matrices for basis of zero-order solutions

ψ̃±(z) = (1 − z)
1±α

2 (4.12)

are (C ≡ c/ηl and α ≡ 1 − 2ηh)

Mγ0 = 12×2 + 2πiηl
α

 C(1−x)+σ −C(1−x)+α−σ

C(1−x)+α+σ −C(1−x)−σ

 (4.13)

Mγx = 12×2 + 2πiηl
α

 −C(1−x)−σ (C(1−x)+σ(1+α))(1−x)α

−(C(1−x)+σ(1−α))(1−x)−α C(1−x)+σ

 (4.14)

Unitarity condition to first order in ηL for 0 and x reads

J0δMγ = (δM−1
γ )†J0 = −δM †

γJ0 (4.15)

where δMγ is a linear in ηl part of monodromy matrix, J = B†B and B is the SL(2,R)
matrix of change of basis from ψ̃± to the basis with SU(2)-monodromy around all punctures.
From unitarity condition at 0th order we should have J0 = diag(a, 1/a); then, matrix
equation (4.15) reduces to 2 equations for CC(1 − x) = C(1 − x)

C(1−x)+σ(1−α)
C(1−x)+σ(1+α)

1
|1−x|2α = C(1−x)+α+σ

C(1−x)+σ−α
(4.16)

This equations are solved by

C = 1
1 − x

α
(√

σ2(ζ + 1)2 − 2σ((ζ − 6)ζ + 1) + (ζ + 1)2 − (σ + 1)(ζ + 1)
)

2(ζ − 1) − σ

 , (4.17)

where ζ ≡ |1 − x|2α. We can differentiate it over x and obtain the metric; integrating this
bulky expression over x, however, is difficult. Instead, consider how the prefactor behaves
at x → 1 and x → ∞:

C ≈ 1
1 − x

(
α · σ + 1 −

√
(σ − 1)2

2 − σ

)
, x → 1 (4.18)

C ≈ − 1
x

(
α ·

√
(σ − 1)2 − (σ + 1)

2 − σ

)
, x → ∞ (4.19)
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Since metric coefficients (which in this case are the same as coefficients of the volume form)
are given by gxx ∼ ∂c = ∂c, integral over d2x reduces to sum of boundary terms, which are
residues of C and C at x = 1 and ∞ (with an appropriate sign):

V ∼ ηL · α ·
(
σ + 1 −

√
(σ − 1)

2)
= ηL(2 − 4ηh) ·

1, σ > 1
σ, σ < 1

(4.20)

This is, again, consistent with the answer (4.1) from MLG: for the case that we consider,
number of conformal blocks is defined by the smallest of 2 numbers η1, η2, which depends
on whether σ is greater or smaller than 1.

4.4 4 defects: example with 3 heavy operators

Now let’s try to use the results of [35] for the case of 1 light operator with parameter ϵ2
at point z and three heavy operators with parameters κ2/2, κ1/2, κ1/2 inserted at 0, 1,∞.
We will also use other notations 1 − κ1 = α, 1 − κ2 = β to conform with the reference.
The formula (4.1) is supposed to work when 2κ1 > κ2, which is Troyanov condition in the
geometric language. Energy-momentum tensor is decomposed as

t(0)(y) = δ2
y2 + δ1

(y − 1)2 − δ2
y(y − 1) , t

(1)(y) = ϵ2
(y − z)2 + x(x− 1)c

y(y − 1)(y − z) − ϵ2
y(y − 1) (4.21)

For the basis chosen in [35], monodromy matrix around zero is −diag (eiπβ , e−iπβ) + 0ϵ2 + . . . ;
around z we have

Mγz =12×2+iϵ2

I++ I+−

I−+ I−−

 (4.22)

I++=−I−−=AF+F−(1−z)α(Cz(1−z)+B(z)) (4.23)
I+−=−A(1−z)αz−βF 2

−(Cz(1−z)+D−(z));I−+=A(1−z)αzβF 2
+(Cz(1−z)+D+(z)); (4.24)

where

A = 2π2

sin πβ , B(z) = 1 − z(α+ 2) + z(1 − z)d log(F+F−)
dz

;

D± = 1 − z(α+ 2) + z(1 − z)d logF 2
±

dz
± β(1 − z) (4.25)

and
F±(z) = 2F1

(1 ± β

2 ,
1 ± β

2 + α, 1 ± β, z

)
(4.26)

In 0th order both these matrices are from SU(2); to satisfy this condition for monodromy
around 1, matrix J0 again needs to have a diagonal form diag (a, 1/a), but now a is fixed
at zeroth order:

a2 = −
16−βΓ

(
−β

2

)2
Γ
(

1
2(−2α+ β + 1)

)
Γ
(

1
2(2α+ β + 1)

)
Γ
(
β
2

)2
Γ
(
−α− β

2 + 1
2

)
Γ
(
α− β

2 + 1
2

) (4.27)
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We can check that a is real in the region where we expect positive curvature metrics to
exist, i.e. Gauss-Bonnet + Troyanov condition are satisfied: 2κ1 + κ2 < 2, 2κ1 > κ2. Now
we need to find C such that (4.15) is satisfied for monodromy around z. This condition
in matrix form reads  aI++ aI+−

a−1I−+ a−1I−−

 =

aI++ a−1I−+

aI+− a−1I−−

 (4.28)

which reduces to 2 equations on C ≡ c/ϵ2 and C

Cz(1 − z) +B = F+F−
F+F−

(1 − z)α
(1 − z)α (Cz(1 − z) +B) (4.29)

Cz(1 − z) +D− = − 1
a2

(1 − z)α
(1 − z)α (zz)βF

2
+

F 2
−

(
Cz(1 − z) +D+

)
(4.30)

From these equations it follows

C = − 1
z(1 − z)

(1 − z

1 − z

)α 1
F+F−
F+F−

+ (zz)β

a2
F

2
+

F 2
−

·
(
D− + (zz)β

a2
(1 − z)α
(1 − z)α

F
2
+

F 2
−
D+ −B + F+F−

F+F−

(1 − z)α
(1 − z)αB

)
(4.31)

Consider the asymptotics of this functions at z = 0, 1,∞. First, at z = 0 we have D± =
1 ± β,B = B = 1 and

C ≈ −1
z

(1 − β − 1 + 1) , z → 0 (4.32)

At z → 1 leading asymptotic for hypergeometric function reads

F± ≈ (1 − z)−α Γ(α)Γ(±β + 1)
Γ
(

±β+1
2

)
Γ
(
α+ 1±β

2

) ; logF± = −α log(1 − z) (4.33)

Then,
B(z) ≈ 1 − α− 2 + 2α1 − z

1 − z
= α− 1 = D± (4.34)

the last bracket in (4.31) reduces to

(α− 1)
(1 − z

1 − z

)−α
(
F+F−
F+F−

+ (zz)β
a2

F
2
+

F 2
−

)
(4.35)

and the asymptotic of C is

C ≈ − 1
z − 1(1 − α), z → 1 (4.36)

Behaviour at infinity is found similarly; we obtain the asymptotic

C ≈ −1
z

(1 + α) , z → ∞ (4.37)
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The sum of three residues of c, giving the volume, now becomes

ϵ2(2α+ β − 1) = ϵ2(2 − 2κ1 − κ2) (4.38)

consistent with MLG (4.1).
By these calculations we basically confirmed that accessory parameter calculated by

perturbation theory in monodromy method has the same asymptotics as derivative of the
classical solution ∂ϕ(z); i.e. correspondence with “light” limit.

4.5 A comment on CFT derivation of previous results

As was noted before, in the region of parameter space considered in this section numerical
method of section 3 does not work: non-trivial saddle point (dependent on both x and x)
in the integral over Liouville momentum p disappears (in fact, in any channel). It is then
reasonable to ask how do we expect to find nontrivially dependent on both x, x Kähler
potential from the CFT approach.

Apparently, to do this, one must account for “discrete terms”, i.e. the residues at the poles
of the structure constant that cross the integration contour p ∈ R in (3.2) when we enter the
domain ηi + ηj < 1/2. The residue at each such pole has the form exp(f(x) + f(x)); however,
in the b → 0 limit there is an infinite amount of these contributions (since the distance
between the consecutive poles is b), among which there is no dominant one and all of them
must be summed. After the summation, the correlator is no longer a product of holomorphic
and antiholomorphic function and its logarithm can be a non-trivial Kähler potential.

In fact, the result of [34] mentioned in the beginning of section 4.3 was reproduced
from CFT in this reference from precisely these considerations. In that case it was possible,
because classical conformal blocks with 2 heavy and 2 perturbatively heavy operators can
be calculated exactly [36]. It would be interesting to see if the same can be done in more
general case, without “perturbatively heavy” approximation.

5 Discussion

We finish with some interesting possible directions for the future work:

• MLG correlators like (2.17) have a simple enough form even without taking p → ∞ limit
to try and find some meaning of them. For the usual Weil-Petersson volumes finite-p
deformations were proposed and calculated in [5] — these are MLG boundary amplitudes.
For “sharp” defects it can be shown that tachyon correlators that we examine coincide
with these p-deformed volumes analytically continued to imaginary lengths (in the
previous work [9] it was mistakenly stated otherwise). It would be interesting to
understand if it is possible to find an alternative definition of both of these objects, for
example, in terms of representation theory of Uq(sl2), known to be relevant for Liouville
gravity [37], or from the point of view of quantization of Teichmuller space [38].

• One can consider the following alternative way to check the results of these article. By
definition, MLG correlator we started with is an integral over x of the product of Liouville
and minimal model four-point functions. If after integration we obtain the moduli
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space volume in the semiclassical limit, it is reasonable to assume that the product of
correlators reduces to a volume form of ZT metric. The Liouville 4-point function is
expressed using formula (3.2); in the semiclassical limit it might be possible to replace
minimal model with c < 1 Liouville theory (passing to the so-called “generalized minimal
gravity”) and then the same is valid for the matter correlator. Evaluating both integrals
over Liouville momenta with saddle point method, we would find that leading exponential
factors exp(∓ 1

b2S
(4)(psaddle, x, x) (“classical action”) cancel between Liouville and matter

and only O(1/c) corrections to classical conformal blocks and structure constants are left.
Also, the determinant (∂2S(4)/∂p2)−1 |p=psaddle appears after Gaussian integration in
leading order; combining these 3 factors, one should obtain an alternative representation
of the ZT metric volume form. If one could systematically compute O(1/c) corrections
to conformal block, this alternative proof may be possible to carry out numerically.

• Generally the idea to use methods and exact results in classical and quantum Liouville
CFT to study classical geometry of moduli spaces and JT gravity (which is intimately
connected with it) seems very promising. One particular direction of thought is the
geometric meaning of “heavy” degenerate operators in classical Liouville theory (V1,n
with n ∼ 1/b2) and a related question of JT limit for ground ring operators (see
e.g. [7, 39]) in MLG. We hope to obtain some insight into this question in the future.

• While this work was being prepared, another proposal [40] for the measure on moduli
spaces of surfaces with conical defects appeared, which also agrees with semiclassical
limit of MLG answers. It would be interesting to connect the two approaches. We note
one particular connection: an approximate expression (4.2) that we motivated from
classical Liouville theory can be considered as following from “string” and “dilaton”
equations proven in [40] (equations (1.3a) and (1.3b)). Indeed, for surfaces without
geodesic boundaries from these equations it follows that moduli space volume for
surfaces with one defect of very small deficit angle κ → 0 vanishes linearly in κ with
the coefficient proportional to the power of Euler characteristic. The arguments for
“light limit” at section 4.1 can also be straightforwardly developed to obtain precisely
the “dilaton” equation in a more general setting.
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