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1 Introduction

In the Standard Model (SM), the cb̄ meson family is the only meson system whose states
are formed from two heavy quarks of different flavors. As a result, the cb̄ mesons can
not annihilate into gluons and consequently they are more stable than the double heavy
charmonium cc̄ and bottomonium bb̄. Therefore, the cb̄ meson family provides a good
platform for a systematic study of the QCD dynamics in the heavy quark interactions.

The excited cb̄ states can pass through electromagnetic radiative decays and hadronic
transitions to the low-lying states, which then decay via the charged weak currents. Since
the cb̄ meson family shares dynamical properties with the quarkonium, i.e., c and b̄ move
nonrelativistically, it is appropriate to study the low-lying cb̄ meson states by the NRQCD
effective field theory [1]. The meson decay constant is a fundamental physical quantity
describing the leptonic decay of a meson state. With the framework of the NRQCD
factorization, at the lowest order in quark relative velocity expansion, the decay constant
can be factorized into the short-distance coefficient (matching coefficient) and the long-
distance matrix element (wave function at the origin).

Using the NRQCD theory, the matching coefficients for heavy flavor-changing currents
have been calculated in various perturbative orders of the strong coupling constant αs. The
one-loop matching coefficient for the heavy flavor-changing temporal axial-vector current
was first calculated in ref. [2]. The one-loop calculation of the heavy flavor-changing spatial
vector and temporal axial-vector currents allowing for higher order relativistic corrections
can be found in refs. [3, 4]. Two-loop corrections to the heavy flavor-changing pseudo-scalar,
spatial vector and temporal axial-vector currents are available in the literature [5–7]. At the
N3LO of αs, the matching coefficients for the heavy flavor-changing pseudo-scalar, spatial
vector, scalar, temporal axial-vector and spatial axial-vector currents have been numerically
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evaluated in refs. [8–11], and our calculations in refs. [10, 11] confirm the earlier results
presented in refs. [8, 12] with agreement in almost all of their significant digits.

The aim of this work is to calculate the N3LO QCD corrections to the matching
coefficients and decay constants for the S-wave vector meson B∗

c coupled with the heavy
flavor-changing tensor and axial-tensor currents. Apart from testing the perturbative
convergence of the NRQCD theory, the three-loop matching of heavy flavor-changing (axial-
)tensor currents will reveal the nonrelativistic dynamics in B∗

c decays via different currents
and shed light on the internal structure when the heavy bottom and charm quarks are
combined into the cb̄ meson.

The (axial-)tensor decay constants can appear in the calculations of meson distribution
amplitudes, form factors and branching ratios for the leptonic, semileptonic, nonleptonic and
rare decays [13–18], which along with experimental measurement are helpful to determine
the fundamental parameters in particle physics. As well as being significant inputs to
factorization formulae, the (axial-)tensor decay constants play an important role in QCD
sum rule analysis [19–22]. Furthermore, the (axial-)tensor currents can be included in
effective field theory extensions of the SM and may be related to anomalous interactions
and new physics beyond the SM [23–25].

By using lattice QCD and QCD sum rules, the (axial-)tensor decay constants of heavy
quarkonia (such as Υ, J/ψ) and light mesons (such as ρ, ϕ mesons) have been calculated
in various literature [26–41]. Additionally, the accurate calculations of the higher-order
perturbative corrections to the decay constants involving heavy-light (axial-)tensor currents
have been performed within various QCD effective field theories [19, 42, 43]. In this paper,
with the help of the NRQCD theory we will fill the gap in the higher-order perturbative
QCD calculations for the (axial-)tensor decay constants of beauty-charmed mesons. Our
predictions for B∗

c decay constants involving vector, tensor and axial-tensor currents will
provide valuable information for experimental searches for the ground vector B∗

c meson.
Additionally, our calculations will serve as a probe to test the SM and explore potential
new physics.

The rest of the paper is organized as following. In section 2, we introduce the matching
formulas between QCD and NRQCD. In section 3, we describe the details of our calculation
for the QCD vertex function. In section 4, we study the current renormalization constants
in QCD. In section 5, we study the current renormalization constants in NRQCD. In
section 6, we present the three-loop numeric results of the matching coefficients and decay
constants. Section 7 contains a summary.

2 Matching formulas

We first introduce the definitions of the decay constants for the S-wave vector cb̄ meson
B∗

c (1−)(3S1) coupled with the vector v, tensor t, axial-tensor t5 currents [30, 42, 44–58]

⟨0|jµ
v |B∗

c (q, ε)⟩
.= fv,i

B∗
c
mB∗

c
εµ,

⟨0|jµν
t |B∗

c (q, ε)⟩
.= f t,i0

B∗
c
(qµεν − qνεµ),

⟨0|jµν
t5 |B∗

c (q, ε)⟩
.= f t5,ij

B∗
c
ϵµναβqαεβ , (2.1)
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where q and ε represent the momentum and polarization vector of B∗
c , respectively. The su-

perscript (v, i)/(t, i0)/(t5, ij) denotes the contributing (see below) spatial/spatial-temporal/
spatial-spatial component of the vector/tensor/axial-tensor current, respectively. The heavy
flavor-changing currents in the full QCD are defined by

jµ
v = ψ̄bγ

µψc,

jµν
t = ψ̄bσ

µνψc,

jµν
t5 = ψ̄bσ

µνγ5ψc, (2.2)

where σµν = i
2(γµγν − γνγµ). The QCD current components contributing to the decay

constants of B∗
c can be expanded in terms of NRQCD currents as follows,

ji
v = Cv,ij̃

i
v +O(|⃗k|2),

ji0
t = Ct,i0j̃

i0
t +O(|⃗k|2),

jij
t5 = Ct5,ij j̃

ij
t5 +O(|⃗k|2), (2.3)

where |⃗k| is the small half relative spatial momentum between the bottom and charm quarks.
Cv,i, Ct,i0, Ct5,ij are the matching coefficients for the heavy flavor-changing spatial vector,
spatial-temporal tensor, spatial-spatial axial-tensor currents, respectively. And the NRQCD
currents read [3, 4, 59]

j̃i
v = φ†

bσ
iχc,

j̃i0
t = i j̃i

v,

j̃ij
t5 = −ϵijk j̃k

v , (2.4)

where φ†
b and χc denote 2-component Pauli spinor fields annihilating the b̄ and c quarks,

respectively.
After inserting the currents in eq. (2.3) between the vacuum state and the free cb̄ pair

of on-shell heavy charm and bottom quarks with small relative velocity [5, 60], we can write
the matching formulas as√

ZOS
2,b Z

OS
2,c Z

OS
J ΓJ = CJ(µf , µ,mb,mc)

√
Z̃OS

2,b Z̃
OS
2,c Z̃

−1
J Γ̃J +O(|⃗k|2), (2.5)√

ZOS
2,b Z

OS
2,c Z

MS
J ΓJ = CJ(µf , µ,mb,mc)

√
Z̃OS

2,b Z̃
OS
2,c Z̃

−1
J Γ̃J +O(|⃗k|2). (2.6)

Since NRQCD is obtained from QCD by factorizing (‘integrating out’) the hard contributions,
which go into the matching coefficient [59, 61, 62], Γ̃J does not contain contributions from the
hard region of loop momenta on the NRQCD side. Due to expansion (prior to integration)
in momenta that are not hard within dimensional regularization [63], contributions from the
soft, potential and ultrasoft regions of loop momenta agree in QCD and NRQCD, and thus
drop out of both ΓJ and Γ̃J before performing integration [5, 59, 60]. As a consequence, in
eqs. (2.5) and (2.6), ΓJ becomes the on-shell unrenormalized vertex function in the pure
hard integration region of QCD, whereas Γ̃J becomes the on-shell tree level vertex function
independent of αs in NRQCD. The left and right parts in eqs. (2.5) and (2.6) represent the
renormalization of ΓJ and Γ̃J , respectively.
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ZOS
2,b(c) is the b(c) quark field OS renormalization constant in QCD, which can be obtained

from refs. [64, 65]. Z̃OS
2,b(c) is the b(c) quark field OS renormalization constant in NRQCD

and Z̃OS
2,b = Z̃OS

2,c = 1 because heavy bottom and charm quarks are decoupled in the NRQCD
effective theory. Z̃J is the NRQCD heavy flavor-changing current renormalization constant
in the MS scheme. Z

OS(MS)
J is the QCD heavy flavor-changing current renormalization

constant in OS(MS) scheme.
At the leading-order (LO) of αs, the matching coefficient CLO

J = CLO
J = 1, while in a fixed

high order perturbative calculation, both CJ and CJ are finite and depend on the NRQCD
factorization scale µf and the QCD renormalization scale µ. For J ∈ {(t, i0), (t5, ij)}, we
can not directly calculate CJ by eq. (2.5) because both ZOS

J and Z̃J are not known at
present, however we can obtain CJ by first introducing eq. (2.6) and calculating CJ , which
will be elucidated in section 4.

3 QCD vertex function

Let q1(q2) denote the charm (bottom) external momentum, q = q1 + q2 represent the
total external momentum, and the small momentum k [66] refer to the relative movement
between the bottom and charm quarks. From eq. (2.3) and eq. (2.4), terms at O(k) are not
needed in QCD and NRQCD so that we can safely set k = 0 throughout the calculation to
obtain the vertex function ΓJ in the hard region of the full QCD [60]. Based on the on-shell
condition q2

1 = m2
c , q

2
2 = m2

b , the external momentum configuration can be written as

q1 = mc

mb +mc
q,

q2 = mb

mb +mc
q,

q2 = (mb +mc)2. (3.1)

Following the literature [67], we employ the appropriate projector to obtain the hard
QCD vertex function ΓJ

Γt,i0 = Tr
[
P(t,i0),µνΓ

µν
(t)

]
,

Γt5,ij = Tr
[
P(t5,ij),µνΓ

µν
(t5)

]
, (3.2)

where Γµν
(t) = · · ·σµν · · · , Γµν

(t5) = · · ·σµνγ5 · · · denote on-shell amputated QCD amplitudes
with tensor structures for the tensor and axial-tensor currents, respectively. And the
projectors for the heavy flavor-changing spatial-temporal tensor and spatial-spatial axial-
tensor currents are constructed as

P(t,i0),µν = 1
4(D − 1)(mb +mc)2

(
mc

mb +mc
/q +mc

)
σµν

(
− mb

mb +mc
/q +mb

)
,

P(t5,ij),µν = 1
2(D − 1)(D − 2)(mb +mc)2

(
mc

mb +mc
/q +mc

)
σµνγ5

(
− mb

mb +mc
/q +mb

)
.

(3.3)
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Figure 1. Representative three-loop Feynman diagrams labelled with corresponding color factors
for the QCD vertex function with the heavy flavor-changing current. The cross “

⊕
” implies the

insertion of a certain heavy flavor-changing current. The solid closed circle represents the bottom
quark loop with mass mb and flavors nb (physically, nb = 1).

It is worth mentioning that due to no singlet diagram [59] and no trace with an odd number
of γ5 [11] for heavy flavor-changing currents, throughout our calculation we adopt the
naively anticommuting γ5 dimensional regularization scheme, i.e., γ5γµ + γµγ5 = 0, γ2

5 = 1.
As following, we will outline our workflow to perform the higher-order calculation

for the QCD vertex function. Firstly, we use FeynCalc [68] to obtain Feynman diagrams
and corresponding Feynman amplitudes. In the Feynman diagrams, we have allowed
for nb bottom quarks with mass mb, nc charm quarks with mass mc and nl massless
quarks appearing in the quark loop. Some representative three-loop Feynman diagrams
contributing to the QCD vertex function are displayed in figure 1. By $Apart [69], each
Feyman amplitude is decomposed into several Feynman integral families. Based on the
symmetry among different families, we use our Mathematica code+LiteRed [70]+FIRE6 [71]
to minimize [72–74] the number of all Feynman integral families. For each heavy flavor-
changing current, the total number of three-loop Feynman integral families is minimized
from 841 to 110. Then, we use FIRE6/Kira [75]/FiniteFlow [76] based on Integration by
Parts (IBP) [77] to reduce each Feynman integral family to master integral family. Next,
we use our Mathematica code+Kira+FIRE6 to minimize the number of all master integral
families. For each heavy flavor-changing current, the total number of three-loop master
integral families is minimized from 110 to 26 meanwhile the total number of three-loop
master integrals is minimized into 300. Last, we use AMFlow [78], which is a proof-of-concept
implementation of the auxiliary mass flow method [79–81], equipped with FiniteFlow/Kira
to calculate each master integral family.
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4 QCD current renormalization constants

Based on the matching formulas in eq. (2.5) and eq. (2.6), we have the following relations for
the QCD heavy flavor-changing spatial-temporal tensor (t, i0) and spatial-spatial axial-tensor
(t5, ij) current OS(MS) renormalization constants:

ZMS
t,i0 = ZMS

t5,ij = ZMS
t ,

ZOS
t,i0 = ZOS

t5,ij = ZOS
t ,

Ct,i0

Ct,i0
= Ct5,ij

Ct5,ij
= ZOS

t

ZMS
t

= zg
t z

µ
t +O(ϵ), (4.1)

where ZOS(MS)
t is the QCD heavy flavor-changing tensor current OS(MS) renormalization

constant and zg
t z

µ
t is the finite (ϵ0) term of the ratio ZOS

t /ZMS
t . ZOS

t is not available in the
literature while ZMS

t can be obtained from refs. [19, 23, 42, 82, 83]:

ZMS
t = 1 + α

(nf )
s (µ)
π

CF

4ϵ +

α(nf )
s (µ)
π

2

CF

[
CF

( 1
32ϵ2 − 19

64ϵ

)

+ CA

(
− 11
96ϵ2 + 257

576ϵ

)
+ TFnf

( 1
24ϵ2 − 13

144ϵ

)]

+

α(nf )
s (µ)
π

3

CF

{
C2

F

[ 1
384ϵ3 − 19

256ϵ2 + 1
ϵ

( 365
1152 − 1

3ζ3

)]

+ CFCA

[
− 11

384ϵ3 + 75
256ϵ2 + 1

ϵ

(
−6823
6912 + 7

12ζ3

)]
+ C2

A

[ 121
1728ϵ3 − 3439

10368ϵ2 + 1
ϵ

(13639
20736 − 5

24ζ3

)]
+ CFTFnf

[ 1
96ϵ3 − 13

192ϵ2 + 1
ϵ

( 49
864 + 1

12ζ3

)]
− CATFnf

[ 11
216ϵ3 − 245

1296ϵ2 + 1
ϵ

( 251
1296 + 1

12ζ3

)]
+ T 2

Fn
2
f

[ 1
108ϵ3 − 13

648ϵ2 − 1
144ϵ

]}
+O

(
α4

s

)
. (4.2)

On the one hand, we can use eq. (2.6) and eq. (4.2) to fit Z̃J and calculate CJ for
J ∈ {(t, i0), (t5, ij)}. On the other hand, from eq. (2.3) and eq. (2.4), we obtain following
relations between the spatial vector and spatial-temporal tensor currents:

Z̃t,i0 = Z̃v,i,

Ct,i0 = Cv,i,

f t,i0
B∗

c
= fv,i

B∗
c
, (4.3)
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where Z̃v,i, Cv,i and fv,i
B∗

c
have been calculated and denoted as Z̃v, Cv and fB∗

c
respectively

in our previous publication [11]. Substituting eq. (4.3) into eq. (4.1), we obtain

zg
t z

µ
t = Cv,i

Ct,i0
. (4.4)

For J ∈ {(t, i0), (t5, ij)}, with zg
t z

µ
t and CJ known, we can calculate CJ by eq. (4.1), i.e.

CJ = zg
t z

µ
t CJ .

As following, we will present our result of zg
t z

µ
t . For brevity, we introduce several

notations throughout the paper:

x ≡ mc

mb
,

Lµ ≡ ln µ2

mbmc
,

Lµf
≡ ln

µ2
f

mbmc
. (4.5)

Let zµ
t (Lµ = 0) = 1, and let zg

t satisfy the renormalization group invariance (see
eq. (5.14) in ref. [11]).1 With the aid of numerical fitting techniques such as the PSLQ
algorithm [65], we can obtain the following expressions for zµ

t and zg
t :

zµ
t = 1 + α

(nf )
s (µ)
π

CF

4 Lµ +

α(nf )
s (µ)
π

2

CF

[
CF

( 1
32L

2
µ − 19

32Lµ

)

+ CA

(11
96L

2
µ + 257

288Lµ

)
− TFnf

( 1
24L

2
µ + 13

72Lµ

)]

+

α(nf )
s (µ)
π

3

CF

{
C2

F

[ 1
384L

3
µ − 19

128L
2
µ +

(365
384 − ζ3

)
Lµ

]

+ CFCA

[ 11
384L

3
µ − 185

576L
2
µ +

(7
4ζ3 −

6823
2304

)
Lµ

]
+ C2

A

[ 121
1728L

3
µ + 3133

3456L
2
µ +

(13639
6912 − 5

8ζ3

)
Lµ

]
+ CFTFnf

[
− 1

96L
3
µ + 35

288L
2
µ +

(
ζ3
4 + 49

288

)
Lµ

]
− CATFnf

[ 11
216L

3
µ + 445

864L
2
µ +

(
ζ3
4 + 251

432

)
Lµ

]
+ T 2

Fn
2
f

[
L3

µ

108 +
13L2

µ

216 − Lµ

48

]}
+O

(
α4

s

)
, (4.6)

1We find that CJ /zg
t = zµ

t CJ (J ∈ {(t, i0), (t5, ij)}) is renormalization group invariant and zg
t zµ

t can

be written as zg
t zµ

t =
∑

0≤j≤i

(
α

(nf )
s (µ)/π

)i

Lj
µcij(x), which can always be factorized into the product of

zµ
t = 1 +

∑
1≤j≤i

(
α

(nf )
s (µ)/π

)i

Lj
µfij(x) and the renormalization group invariant zg

t in eq. (4.7). In a word,

zµ
t and zg

t can be uniquely determined by Ct,i0 and Ct,i0 = Cv,i.
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zg
t = 1 + α

(nf )
s (µ)
π

z
(1)
t (x) +

α(nf )
s (µ)
π

2(
z

(2)
t (x) + z

(1)
t (x)
4 β

(nf )
0 Lµ

)

+

α(nf )
s (µ)
π

3{
z

(3)
t (x) +

(
z

(1)
t (x)
16 β

(nf )
1 + z

(2)
t (x)
2 β

(nf )
0

)
Lµ

+ z
(1)
t (x)
16 β

(nf )
0

2
L2

µ

}
+O

(
α4

s

)
, (4.7)

z
(1)
t (x) = − CF

4
x− 1
x+ 1 ln x,

z
(2)
t (x) = CF

[
CF z

F F
t (x) + CA z

F A
t (x) + TF nl z

F L
t (x) + TF nb z

F B
t (x) + TF nc z

F C
t (x)

]
,

z
(3)
t (x) = CF

[
C2

F z
F F F
t (x) + CF CA z

F F A
t (x) + C2

A z
F AA
t (x)

+ CF TF nl z
F F L
t (x) + CF TF nb z

F F B
t (x) + CF TF nc z

F F C
t (x)

+ CA TF nl z
F AL
t (x) + CA TF nb z

F AB
t (x) + CA TF nc z

F AC
t (x)

+ T 2
F n

2
l z

F LL
t (x) + T 2

F nl nb z
F LB
t (x) + T 2

F nl nc z
F LC
t (x)

+ T 2
F n

2
b z

F BB
t (x) + T 2

F nb nc z
F BC
t (x) + T 2

F n
2
c z

F CC
t (x)

]
, (4.8)

where β(nf )
0 = 11

3 CA − 4
3TFnf and β

(nf )
1 = 34

3 C
2
A − 4CFTFnf − 20

3 CATFnf are respectively
the one-loop and two-loop coefficients of the QCD β function [84] and nf = nl + nb + nc is
the total number of flavors. The color-structure components of z(2)

t (x) and z
(3)
t (x) read:

zF F
t (x) = − 563

384 − 1
6π

2 ln 2 + ζ3
4 + 3(x− 1)

32(x+ 1) ln x

− 8x4 − 20x3 − 99x2 − 46x− 35
144(x+ 1)2 π2

− 32x4 + 40x3 − 19x2 + 42x− 3
96(x+ 1)2 ln2 x

+ (x+ 1)(x− 1)3

3x2
[
ln(1− x) ln x+ Li2(x)

]
+ 2x4 + x3 − x− 2

6x2
[
ln(1 + x) ln x+ Li2(−x)

]
,

zF A
t (x) = 5141

3456 + 1
12π

2 ln 2− ζ3
8 − 209(x− 1)

288(x+ 1) ln x

+ x4 − 2x3 − 10x2 − 4x− 3
36(x+ 1)2 π2

+ 16x4 + 16x3 − 5x2 + 22x+ 11
96(x+ 1)2 ln2 x

− (x+ 1)(x− 1)3

6x2
[
ln(1− x) ln x+ Li2(x)

]
− x4 − 1

6x2
[
ln(1 + x) ln x+ Li2(−x)

]
,

zF L
t (x) = − 205

864 − π2

36 + 13(x− 1)
72(x+ 1) ln x− 1

24 ln2 x,

– 8 –
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zF B
t (x) = − 205

864 − 1
4x + π2

18(x+ 1)

+ 13x2 − 13x+ 12
72x(x+ 1) ln x+ (3x− 1)

24(x+ 1) ln
2 x

− (x2 + x+ 1)(x− 1)2

6x3(x+ 1)
[
ln(1− x) ln x+ Li2(x)

]
− x3 + 1

6x3
[
ln(x+ 1) ln x+ Li2(−x)

]
,

zF C
t (x) = − 205

864 − x

4 − x4 − 3x3 − 5x+ 1
36(x+ 1) π2

− 12x2 − 13x+ 13
72(x+ 1) ln x− 4x4 + x+ 1

24(x+ 1) ln2 x

+ (x2 + x+ 1)(x− 1)2

6(x+ 1)
[
ln(1− x) ln x+ Li2(x)

]
+ x3 + 1

6
[
ln(x+ 1) ln x+ Li2(−x)

]
, (4.9)

zF F F
t (x0) = − 2.322282618854114578537016108614,
zF F A

t (x0) = 0.63952094914985889385999778652907,
zF AA

t (x0) = 4.91543462857763455194218954249917,
zF F L

t (x0) = 0.48535345668429975701679412257185,
zF F B

t (x0) = − 0.96788752784853089190831478824595,
zF F C

t (x0) = − 0.030004714341714672058240640021062,
zF AL

t (x0) = − 3.7810411909098785095485086146338,
zF AB

t (x0) = 2.00151369570156466157964680499125,
zF AC

t (x0) = − 0.64029413850834349156677913068544,

zF LL
t (x) = 2665

23328 + 13π2

324 + 7ζ3
54 − 89(x− 1)

648(x+ 1) ln x

− x− 1
54(x+ 1)π

2 ln x+ 13
216 ln2 x− x− 1

108(x+ 1) ln
3 x,

zF LB
t (x0) = − 0.18426684902451221497413586356109,
zF LC

t (x0) = 0.24724217746243652013783508427839,
zF BB

t (x0) = 0.24641742011807953984404155385694,
zF BC

t (x0) = 0.069455208354306644824678292877365,
zF CC

t (x0) = 0.043546270000908910321578999401716, (4.10)

where the numerical results with about 30-digit precision for various color-structure com-
ponents of z(3)

t (x) at the physical point x = x0 = 150/475 are presented because it is
difficult to obtain the analytic expressions of them involving Goncharov polylogarithms (see
ref. [64]). In the supplementary material attached to the paper, we provide the numerical
results with about 30-digit precision for them at the following ten points:

x ∈
{ 1
20 ,

1
5 ,

100
475 ,

150
525 ,

150
475 ,

150
425 ,

204
498 ,

200
475 ,

1
2 , 1

}
. (4.11)
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Figure 2. The renormalization scale µ dependence of zg
mz

µ
m = Cp

Cp
and zg

t z
µ
t = Ct,i0

Ct,i0
at LO, NLO,

NNLO and N3LO accuracy. The central values are calculated inputting the physical values with
µf = 1.2 GeV, mb = 4.75GeV and mc = 1.5GeV. There are no visible error bands from the variation
of the NRQCD factorization scale µf between 7 and 0.4 GeV.

The values of them for x > 1 can be obtained by employing the invariance of zg
t under the

exchange mb ↔ mc meanwhile nb ↔ nc.
To verify our calculation of zg

t z
µ
t and investigate the deviation between CJ and CJ ,

following eq. (4.1), we also study the relations [43] for the QCD heavy flavor-changing scalar
(s) and pseudo-scalar (p) current OS(MS) renormlization constants:

ZMS
s = ZMS

p = ZMS
m ,

ZOS
s = ZOS

p =
mbZ

OS
m,b +mcZ

OS
m,c

mb +mc
,

Cs

Cs
= Cp

Cp
=
mbZ

OS
m,b +mcZ

OS
m,c

(mb +mc)ZMS
m

= zg
mz

µ
m +O(ϵ), (4.12)

where ZMS
m is the quark mass MS renormalization constant in QCD, which can be found in

refs. [19, 42, 82, 85]. ZOS
m,b(c) is the b(c) quark mass OS renormalization constant in QCD,

which can be obtained from ref. [64]. zg
m and zµ

m can be defined by analogizing to the
definitions of zg

t and zµ
t respectively in the above context.

Furthermore, we expand zg
mz

µ
m = Cp

Cp
and zg

t z
µ
t = Ct,i0

Ct,i0
in power series of α(nl=3)

s (µ)
(where nl is the number of massless quark flavors. See the following sections for the
definition of αs.) and plot the renormalization scale µ dependence of them in figure 2. We
see both zg

mz
µ
m and zg

t z
µ
t are convergent and show good renormalization scale dependence.

Note that both zg
mz

µ
m and zg

t z
µ
t are free from µf due to the fact that the QCD current

renormalization constant ZOS(MS)
J is independent of the NRQCD factorization scale µf . We

also find although CJ satisfies the renormalization group invariance (see eq. (5.14) in ref. [11])
while CJ does not, the deviation between CJ and CJ is relatively small. In addition, our
calculation verifies both CJ and CJ are gauge invariant so that zg

mz
µ
m, zg

t z
µ
t , ZMS

J and ZOS
J

are also gauge invariant. We conclude that our calculation results for zg
t z

µ
t are reasonable

and reliable.
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5 NRQCD current renormalization constants

We employ the matching formula in eq. (2.6) to obtain Z̃J for J ∈ {(t, i0), (t5, ij)}. To
perform the conventional QCD renormalization procedure [86] for ΓJ on the l.h.s. of eq. (2.6),
we need to implement the QCD heavy quark field and mass OS renormalization, the QCD
coupling constant MS renormalization [84, 87, 88], and the QCD heavy flavor-changing
current MS renormalization, after which the QCD vertex function gets rid of the ultra-
violet(UV) divergences, yet still contains uncancelled infra-red(IR) poles starting from order
α2

s. The remaining IR poles in QCD should be exactly cancelled by the UV poles of the
NRQCD heavy flavor-changing current MS renormalization constant Z̃J on the r.h.s. of
eq. (2.6), which renders the matching coefficient finite. Therefore, eq. (2.6) can completely
determine Z̃J and subsequently determine CJ .

Based on the high-precision numerical results and the PSLQ algorithm [65], we have
fitted and reconstructed the exact analytical expressions of Z̃J for J ∈ {(t, i0), (t5, ij)},
which verify Z̃t,i0 ≡ Z̃v,i. The results of Z̃t,i0 and Z̃t5,ij are presented as following:

Z̃J

(
Lµf

;x
)
= 1 +

(
α

(nl)
s (µf )
π

)2

Z̃
(2)
J (x) +

(
α

(nl)
s (µf )
π

)3

Z̃
(3)
J

(
Lµf

;x
)
+O(α4

s),

Z̃
(2)
t,i0(x) = Z̃

(2)
t5,ij(x) = π2CF

1
ϵ

(
3x2 + 2x+ 3
24 (x+ 1)2 CF + 1

8CA

)
,

Z̃
(3)
J

(
Lµf

;x
)
= π2CF

{
C2

F

[ 3x2 − x+ 3
36ϵ2(x+ 1)2 + 1

ϵ

(
19x2 + 5x+ 19

36(x+ 1)2 − 2
3 ln 2

+x
3 − 4x2 − 2x− 3

12(x+ 1)3 ln x+ 1
6 ln(x+ 1) + 3x2 − x+ 3

12(x+ 1)2 Lµf

)]

+ CFCA

[
x

216ϵ2(x+ 1)2 + 1
ϵ

(
78x2 + cJ

1 x+ 78
324(x+ 1)2

− x+ 11
48(x+ 1) ln x+ 1

4 ln(x+ 1) + 11x2 + 8x+ 11
48(x+ 1)2 Lµf

)]
+ C2

A

[ −1
16ϵ2 + 1

ϵ

( 2
27 + 1

6 ln 2− 1
24 ln x+ 1

12 ln(x+ 1) + 1
24Lµf

)]
+ CFTFnl

[ 3x2 + 2x+ 3
108ϵ2(x+ 1)2 − 21x2 + cJ

2 x+ 21
324ϵ(x+ 1)2

]
+ CFTFnb

x2

15ϵ(x+ 1)2

+ CFTFnc
1

15ϵ(x+ 1)2 + CATFnl

[ 1
36ϵ2 − 37

432ϵ

]}
, (5.1)

where ct,i0
1 = 296, ct5,ij

1 = 227, ct,i0
2 = 58, ct5,ij

2 = 10. And the corresponding anomalous
dimension γ̃J [89–94] related to Z̃J reads

γ̃J

(
Lµf

;x
)
=
(
α

(nl)
s (µf )
π

)2

γ̃
(2)
J (x) +

(
α

(nl)
s (µf )
π

)3

γ̃
(3)
J

(
Lµf

;x
)
+O(α4

s),

γ̃
(2)
J (x) = −4 Z̃(2)[1]

J (x), γ̃
(3)
J

(
Lµf

;x
)
= −6 Z̃(3)[1]

J

(
Lµf

;x
)
, (5.2)
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where Z̃(i)[1]
J denotes the coefficient of 1

ϵ in Z̃(i)
J . Note both Z̃J and γ̃J explicitly depend on

µf but not µ [8, 9, 12, 61, 95]. One can check Z̃J and γ̃J are invariant under the exchange
mb ↔ mc meanwhile nb ↔ nc.

In our calculation, we consider QCD where nl massless flavors, nb flavors with mass mb

and nc flavors with mass mc possibly appear in the quark loop. However the contributions
from the loops of heavy charm and bottom quarks are decoupled in the NRQCD. To match
QCD with NRQCD, we employ both the coupling running [10, 11, 96] and the decoupling
relation [10, 11, 62, 94, 97–103] in D = 4− 2ϵ for the mutual conversion between α

(nf )
s (µ),

α
(nl)
s (µf ) and α

(nl)
s (µ), where nf = nl + nb + nc is the total number of flavors.

The numerical values of α(nl)
s (µ) with nl = 3, nb = nc = 1 and µ ∈ [0.4, 7]GeV can be

calculated using the coupling running and the decoupling relation in D = 4 [10, 11] or using
the package RunDec [104–107] function AlphasLam with Λ(nl=3)

QCD = 0.3344GeV determined
by inputting the initial value α(nf =5)

s (mZ = 91.1876GeV) = 0.1179.

6 Matching coefficients and decay constants

The final result of the matching coefficient CJ for J ∈ {(t, i0), (t5, ij)} can be written
as [8–11]:

CJ(µf , µ,mb,mc) = 1 + α
(nl)
s (µ)
π

C(1)
J (x) (6.1)

+
(
α

(nl)
s (µ)
π

)2 [C(1)
J (x)
4 β

(nl)
0 Lµ + γ̃

(2)
J (x)
2 Lµf

+ C(2)
J (x)

]

+
(
α

(nl)
s (µ)
π

)3{
C(1)

J (x)
16 β

(nl)
0

2
L2

µ +
[C(1)

J (x)
16 β

(nl)
1 + C(2)

J (x)
2 β

(nl)
0

]
Lµ

+ γ̃
(2)
J (x)
4 β

(nl)
0 LµLµf

+
[∂γ̃(3)

J

(
Lµf

;x
)

4∂Lµf

− γ̃
(2)
J (x)
8 β

(nl)
0

]
L2

µf

+ 1
2

[
C(1)

J (x)γ̃(2)
J (x) + γ̃

(3)
J

(
Lµf

= 0;x
) ]
Lµf

+ C(3)
J (x)

}
+O

(
α4

s

)
,

where nl is the number of the massless flavors. C(n)
J (x) (n = 1, 2, 3) is a function only

depending on x = mc/mb, which can be decomposed in terms of different color factor
structures [8, 9, 12, 61, 95, 108]:

C(1)
t,i0(x) = C(1)

t5,ij(x) =
3
4CF

(
x− 1
x+ 1 ln x− 8

3

)
,

C(2)
J (x) = CF

[
CF CF F

J (x) + CA CF A
J (x) + TF nl CF L

J (x) + TF nb CF B
J (x) + TF nc CF C

J (x)
]
,

C(3)
J (x) = CF

[
C2

F CF F F
J (x) + CF CA CF F A

J (x) + C2
A CF AA

J (x)

+ CF TF nl CF F L
J (x) + CF TF nb CF F B

J (x) + CF TF nc CF F C
J (x)

+ CA TF nl CF AL
J (x) + CA TF nb CF AB

J (x) + CA TF nc CF AC
J (x)

+ T 2
F n

2
l CF LL

J (x) + T 2
F nl nb CF LB

J (x) + T 2
F nl nc CF LC

J (x)

+ T 2
F n

2
b CF BB

J (x) + T 2
F nb nc CF BC

J (x) + T 2
F n

2
c CF CC

J (x)
]
. (6.2)

– 12 –



J
H
E
P
1
2
(
2
0
2
3
)
1
5
2

In the following, we will present the numerical results with about 30-digit precision
for the color-structure components of C(2)

J (x) and C(3)
J (x) with J ∈ {(t, i0), (t5, ij)} at the

physical heavy quark mass ratio x = x0 = 150
475 :

CF F
t,i0 (x0) = −13.7128908053312964335378688241536,

CF F
t5,ij(x0) = −14.913034700503762441588142929738,

CF A
t,i0 (x0) = CF A

t5,ij(x0) = −6.5854991351922034080659088041666,
CF L

t,i0(x0) = CF L
t5,ij(x0) = 0.48623749753445268636481818648117,

CF B
t,i0 (x0) = CF B

t5,ij(x0) = 0.094767648112565260648796850397580,
CF C

t,i0 (x0) = CF C
t5,ij(x0) = 0.58579656372904430515925102361910;

CF F F
t,i0 (x0) = 20.189694171293059999115718422862,

CF F F
t5,ij (x0) = 22.306062127579275290403925140598,

CF F A
t,i0 (x0) = −203.43492648602951942325728768127,

CF F A
t5,ij (x0) = −203.95472214521991932337123118763,

CF AA
t,i0 (x0) = CF AA

t5,ij (x0) = −102.79687277377774222247635787879,
CF F L

t,i0 (x0) = 50.937750168903261462489070659559,
CF F L

t5,ij (x0) = 50.848850621112708424855717022108,
CF F B

t,i0 (x0) = CF F B
t5,ij (x0) = −0.12549350490181543572124489903965,

CF F C
t,i0 (x0) = CF F C

t5,ij (x0) = −1.6854789447153670526748653363782,
CF AL

t,i0 (x0) = CF AL
t5,ij (x0) = 40.225746623835199555381909178019,

CF AB
t,i0 (x0) = CF AB

t5,ij (x0) = −0.20773504228300500317960484318926,
CF AC

t,i0 (x0) = CF AC
t5,ij (x0) = 0.46466348732388629839619141994117,

CF LL
t,i0 (x0) = CF LL

t5,ij (x0) = −2.0881487824796221669234777696960,
CF LB

t,i0 (x0) = CF LB
t5,ij (x0) = −0.055625961762816926133354428478288,

CF LC
t,i0 (x0) = CF LC

t5,ij (x0) = −0.77633957612352777786750825747681,
CF BB

t,i0 (x0) = CF BB
t5,ij (x0) = 0.0155302263395316874159466507909598,

CF BC
t,i0 (x0) = CF BC

t5,ij (x0) = 0.090304843884397461649988047441091,
CF CC

t,i0 (x0) = CF CC
t5,ij (x0) = 0.166410566769625472334622650374377, (6.3)

where the color-structure components of C(n)
t,i0(x0) are directly obtained from C(n)

t,i0(x) ≡ C(n)
v,i (x)

while those of C(n)
t5,ij(x0) are calculated by Ct5,ij = zg

t z
µ
t Ct5,ij .

We want to mention that all contributions up to N3LO have been calculated for a general
QCD gauge parameter ξ (ξ = 0 corresponds to Feynman gauge) but only with the ξ0, ξ1

terms, and the final N3LO results of the matching coefficients for the heavy flavor-changing
spatial-temporal tensor and spatial-spatial axial-tensor currents are all independent of ξ,
which constitutes an important check on our calculation. In the supplementary material
attached to this paper, we provide the numerical results with about 30-digit precision for
the color-structure components of C(2)

J (x) and C(3)
J (x) at the ten points2 of x in eq. (4.11).

2It is worth mentioning that at the point x = 204/498 the agreement between our three-loop numerical
results of Cv,i (Cv,i ≡ Ct,i0) and the corresponding results of the C in eqs. (20a)–(20o) in ref. [9] is limited to
a precision of only about two significant digits.
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Figure 3. The two-loop coefficient C(2)
J (x) (J ∈ {(t, i0), (t5, ij)}) with nl = 3, nb = nc = 1 and its

five color-structure components as functions of the heavy quark mass ratio x within the range of
x ∈ (0, 1]. The blue hollow dots and green solid dots on the curves represent sample points at ten
different values of x in eq. (4.11). The red crosses on the curves correspond to the results at the
physical heavy quark mass ratio with x = x0 = 150/475.

Choosing our results at the ten points of x as sample data points, we plot the dependence
of C(n)

J (x) (J ∈ {(t, i0), (t5, ij)}, n ∈ {2, 3}) with nl = 3, nb = nc = 1 and its color-structure
components on the heavy quark mass ratio x within the range of x ∈ (0, 1] in figure 3 and
figure 4, from which one can see C(n)

J (x) and its color-structure components have a relatively
weak x-dependence in the physical region, indicating that the B∗

c meson might be viewed
both as a heavy-heavy meson and as a heavy-light meson [47, 109]. From eq. (6.3) and
figures 3 and 4, we find the dominant contributions in C(2)

J (x) and C(3)
J (x) come from the

components corresponding to the color structures C2
F , CFCA, C2

FCA and CFC
2
A, while the

contributions from the bottom and charm quark loops are negligible. We also find almost all
color-structure components of C(n)

t5,ij(x) are exactly equal to the corresponding components of
C(n)

t,i0(x), except that |CF F F
t5,ij (x)−CF F F

t,i0 (x)| ≳ |CF F
t5,ij(x)−CF F

t,i0 (x)| > |CF F A
t5,ij (x)−CF F A

t,i0 (x)| ≳
|CF F L

t5,ij (x)− CF F L
t,i0 (x)| ≳ 0.
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Figure 4. The same as figure 3, but for the three-loop coefficient C(3)
J (x) (J ∈ {(t, i0), (t5, ij)})

with nl = 3, nb = nc = 1 and its fifteen color-structure components.
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Figure 5. The renormalization scale µ dependence of the matching coefficients Ct,i0 and Ct5,ij at
LO, NLO, NNLO and N3LO accuracy. The central values of the matching coefficients are calculated
inputting the physical values with µf = 1.2 GeV, mb = 4.75GeV and mc = 1.5GeV. The error
bands come from the variation of µf between 2 and 0.4 GeV.

The values of C(n)
J (x) and its color-structure components for x > 1 can be obtained by em-

ploying the invariance [2–6, 8, 9, 11] of CJ under the exchange mb ↔ mc meanwhile nb ↔ nc.
Furthermore, we have checked that both C(2)

J (x) and C(3)
J (x) for J ∈ {(v, i), (t, i0), (t5, ij)}

are indeed approximately linear with respect to 1
x in the range of 1

x ∈ [2, 4] as the description
for the C(3)(r) in figure 3 in ref. [9]. However, it’s worth noting that the linear approximation
may not be applicable to other values of x within the range of x ∈ (0,∞).

We consider the ratio of the B∗
c decay constant involving the spatial-temporal tensor

current to that involving the spatial-spatial axial-tensor current, from which the wave
function at the origin is eliminated [5, 8, 9, 11, 60, 108, 110, 111] so that the ratio of the
physical decay constants is approximately equal to the ratio of the nonphysical matching
coefficients [42], i.e.

f t,i0
B∗

c

f t5,ij
B∗

c

≈
Ct,i0 × |ΨB∗

c
(0)|

Ct5,ij × |ΨB∗
c
(0)| ≈

Ct,i0
Ct5,ij

. (6.4)

Throughout our calculation in the remaining part of this section, we will expand both
the matching coefficients and the ratio of the matching coefficients (decay constants) in
power series of α(nl=3)

s (µ) and study the numerical results up to O(α3
s) for them. Setting

µf = 1.2GeV, µ = µ0 = 3GeV, mb = 4.75GeV, mc = 1.5GeV, the αs-expansions of eq. (6.1)
and eq. (6.4) reduce to

Ct,i0 =1−2.067273α
(3)
s (µ0)
π

−29.29166
(
α

(3)
s (µ0)
π

)2

−1689.867
(
α

(3)
s (µ0)
π

)3

+O(α4
s),

Ct5,ij =1−2.067273α
(3)
s (µ0)
π

−31.42525
(
α

(3)
s (µ0)
π

)2

−1696.499
(
α

(3)
s (µ0)
π

)3

+O(α4
s),

f t,i0
B∗

c

f t5,ij
B∗

c

≈ Ct,i0
Ct5,ij

=1+2.133589
(
α

(3)
s (µ0)
π

)2

+11.04305
(
α

(3)
s (µ0)
π

)3

+O(α4
s). (6.5)
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Figure 6. The renormalization scale µ dependence of the matching coefficient (decay constant)
ratio at LO, NLO, NNLO and N3LO accuracy. The central values are calculated inputting the
physical values with µf = 1.2 GeV, mb = 4.75GeV and mc = 1.5GeV. The error band comes from
the variation of µf between 7 and 0.4 GeV.

LO NLO NNLO N3LO

Ct,i0 1 0.83875−0+0.04086+0.00753−0.01927
+0−0.06738−0.00790+0.03251 0.66053−0.08198+0.09301+0.01324+0.02563

+0.17632−0.16857−0.01477−0.03155 −0.14143−0.16360+0.50840+0.01790+0.08745
+0.36305−1.41702−0.02078−0.15050

Ct5,ij 1 0.83875−0+0.04086+0.00753−0.01927
+0−0.06738−0.00790+0.03251 0.64755−0.08198+0.09875+0.01392+0.02378

+0.17632−0.18168−0.01552−0.02879 −0.15756−0.16166+0.51277+0.01881+0.08660
+0.35888−1.41796−0.02179−0.14861

Table 1. The values of the matching coefficients Ct,i0 and Ct5,ij up to N3LO. The central values of the
matching coefficients are calculated inputting the physical values with µf = 1.2 GeV, µ = µ0 = 3GeV,
mb = 4.75GeV and mc = 1.5GeV. The uncertainties are estimated by varying µf from 2 to 0.4 GeV,
µ from 7 to 1.5 GeV, mb from 5.25 to 4.25 GeV, mc from 2 to 1 GeV, respectively.

LO NLO NNLO N3LO

f t,i0
B∗

c

f t5,ij

B∗
c

≈ Ct,i0
Ct5,ij

1 1 1.01298−0−0.00575−0.00068+0.00186
+0+0.01312+0.00074−0.00276 1.01822−0.00670−0.00559−0.00111+0.00143

+0.00417+0.00481+0.00124−0.00267

Table 2. The same as table 1, but for the ratio of the matching coefficients (decay constants), with
the uncertainties in the first column estimated by varying µf from 7 to 0.4 GeV.

With the values of α(nl=3)
s (µ) calculated (see section 5), we investigate the QCD

renormalization scale µ dependence of the matching coefficients and the matching coefficient
(decay constant) ratio at LO, NLO, NNLO and N3LO accuracy in figure 5 and figure 6,
respectively. The middle lines correspond to the choice of µf = 1.2GeV for the NRQCD
factorization scale, and the upper and lower edges of the error bands correspond to
µf = 0.4GeV and µf = 2(7) GeV, respectively. Furthermore, we present our precise
numerical results of the matching coefficients and the matching coefficient (decay constant)
ratio at LO, NLO, NNLO and N3LO accuracy in table 1 and table 2, respectively, where
the uncertainties from µf , µ, mb and mc are included.
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From eq. (6.5), the figures 5 and 6, as well as the tables 1 and 2, we have the
following points:

(1) Both the matching coefficients Ct,i0 and Ct5,ij are nonconvergent up to N3LO; especially,
the third order corrections to them are very large. Besides, the N3LO corrections
to the matching coefficients also exhibit very strong dependence on both the QCD
renormalization scale µ and the NRQCD factorization scale µf .

(2) Due to a large cancellation at O(α3
s) between the two nonconvergent matching

coefficients, the matching coefficient ratio is becoming convergent,3 or well-behaved
say conservatively, up to N3LO. Then by the approximation in eq. (6.4), we obtain
the convergent decay constant ratio f t,i0

B∗
c
/f t5,ij

B∗
c

up to N3LO. Note that each physical
decay constant is also convergent (see ref. [11]).

(3) The N3LO QCD correction to the ratio of the matching coefficients (decay constants) is
almost independent of both µf and µ, which verifies the correctness of our calculation
for the decay constant ratio based on eq. (6.4) (also see related discussion in ref. [11]).

(4) From the tables 1 and 2, we also see the uncertainties of the matching coefficients and
the matching coefficient (decay constant) ratio arising from the errors in the heavy
quark masses mb and mc are relatively small compared to those resulting from the
errors in µf and µ (also see ref. [7]).

(5) For the B∗
c decay constants involving different heavy flavor-changing currents, we

predict fv,i
B∗

c
= f t,i0

B∗
c
> f t5,ij

B∗
c

.

7 Summary

In this paper, we elaborate on the three-loop calculations of the NRQCD current renor-
malization constants (and corresponding anomalous dimensions), matching coefficients,
(the ratio of) decay constants for the heavy flavor-changing spatial-temporal tensor (t, i0)
current and spatial-spatial axial-tensor (t5, ij) current coupled to the S-wave vector cb̄
meson B∗

c within the NRQCD framework. Although the matching coefficients for both
(t, i0) and (t5, ij) currents are nonconvergent, we can obtain the convergent ratio of B∗

c

decay constants between (t, i0) and (t5, ij) currents up to N3LO. Our prediction for (the
ratio of) B∗

c decay constants involving (axial-)tensor currents, along with the experiment, is
useful to determine the fundamental parameters in particle physics and is also of interest in
beyond the Standard Model studies.

As a byproduct, we obtain the three-loop finite term for the ratio of the QCD heavy
flavor-changing tensor current renormalization constant in the OS scheme to that in the
MS scheme, which is a key ingredient to obtain matching coefficients for various heavy
flavor-changing (axial-)tensor currents coupled to the S-wave and P -wave cb̄ mesons. And
the study for P -wave cb̄ mesons is underway.

3In this paper, we use ‘convergence’ and ‘convergent’ to mean that the higher-order terms in the
perturbation series up to O(α3

s) are smaller than or comparable to the lower-order terms in size within the
physical values of αs. Therefore, the meanings of ‘convergence’ and ‘convergent’ in this paper are somewhat
different from the mathematical definitions of ‘convergence’ and ‘convergent’, respectively.
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