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1 Introduction

The method of Modular Linear Differential Equations (MLDEs) for the classification of
Rational Conformal Field Theories (RCFT) in 2d [1, 2] has experienced a significant resur-
gence, with several important results having appeared in recent times [3–21]. This approach
implements modular invariance and positivity of degeneracies of states to constrain pos-
sible consistent partition functions of RCFT having a small number of primaries under
some, possibly extended, chiral algebra. When combined with additional information, it
leads to classifications of all RCFT within specified regions of parameter space (see for
example [18, 22, 23]).

Originally the method was applied to cases with two or three linearly independent
characters satisfying what is now called the “non-zero Wronskian condition”,1 which is the
vanishing of a non-negative integer ℓ proportional to the number of zeroes of a certain
determinant (we explain this in more detail in the following section). ℓ is known as the
Wronskian index. The work of [1] completely classified admissible solutions to the two-
character MLDE with ℓ= 0. Here “admissible” means the solutions have non-negative
integral Fourier coefficients, and also that the identity character is normalised to start with
unity, reflecting uniqueness of the vacuum state. For two characters, it turned out that the
admissible solutions all correspond to CFTs though there are a couple of subtleties that
we will not go into here.

The three-character case, again with ℓ= 0, was investigated for the first time in [2]
where several interesting results were found, but not a complete classification of admissible
solutions. These results were extended many years later in [25, 26] and then more com-
pletely in [10, 13–15] resulting in a complete set of admissible characters of which a large
fraction could be identified as CFTs. In [22], additional information was used to tabulate
the complete set of CFTs with three characters and ℓ= 0.

Studying MLDE and admissible solutions beyond ℓ= 0 is more difficult and there
are very few papers in this direction. For the two-character case, solutions with ℓ= 2
were considered in [25, 27, 28], while solutions with ℓ= 4 were analysed from the MLDE
perspective in [9, 27, 29]. Reference [14] studied three characters for ℓ= 2 and [13] classified
solutions with three, four and five characters and ℓ= 0. To our knowledge, no analysis of
the ℓ≥ 6 case has been carried out even for two characters. Indeed there seems to be
a consensus that the MLDE approach is intractable for ℓ≥ 6, and to our knowledge no

1Some authors refer to this case as “monic”, e.g. [13, 24], to indicate that the MLDE when written in
monic form is free of poles.
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attempt has been made to formulate and solve the MLDE in such cases.2 This will be the
main focus of the present work.

When ℓ< 6 the poles in the MLDE, if any, must be located at the special points τ = ρ

or τ = i in moduli space. On the other hand for ℓ≥ 6, the MLDE can have poles at generic
points in moduli space. Hence we refer to the ℓ≥ 6 case as having “movable poles”. To be
clear, this only means that their locations are free parameters in the equation, but of course
for any particular admissible solution the poles will take fixed values. Also it is important
to emphasise that the solutions of the MLDE have no poles and are regular everywhere,
leading to completely regular candidate partition functions. The poles are present only in
the coefficient functions of the MLDE itself.

There exist other approaches beyond MLDE that have provided insights into admissible
characters with ℓ≥ 6. These approaches avoid explicitly solving, or even formulating,
an ℓ≥ 6 MLDE. For example, [3] employed a novel construction of Hecke operators on
vector-valued modular forms. On the other hand, [6, 30] proposed the method of “quasi-
characters” about which we will say more below.

The primary motivation of the present work is to study modular differential equations
and their admissible solutions for arbitrary ℓ≥ 6. We will restrict our attention to the
case of two characters (second-order equations), though some results will be more general.
Despite the complications due to the presence of both movable poles and “accessory pa-
rameters”, we will be able to make progress using the following strategy. We first of all
parametrise such generic MLDEs in a useful way, which in fact can easily be extended be-
yond the case of two characters. Next we impose single-valuedness of the solutions around
all the poles of the MLDE, leading to a set of equations relating the accessory parameters
to the locations of the poles. These equations define a hypersurface in the space of poles
and accessory parameters. Looking at the asymptotic region of this hypersurface relates
the MLDE for a given ℓ to that for ℓ−6, corresponding to one of the poles migrating to
infinity. This allows us to determine the possible critical exponents for all ℓ≥ 6 in terms
of those for ℓ= 0,2,4, which are already known. This in turn makes it easier to solve the
MLDE explicitly, as we show explicitly in the cases of ℓ= 6,8. Once there are two or more
movable poles this becomes more difficult so we follow a slightly different strategy in the
ℓ= 12 case.

In [6] a complete classification scheme for admissible characters for the case of two
characters and arbitrary ℓ was provided in terms of “quasi-characters”, using inspiration
from mathematical works [31, 32]. The present work, based on MLDE, provides an alternate
route to the same result and the two can therefore be compared. We do so at various stages
and find complete agreement. This encourages us to hope that the present approach can
lead to new results for three or more characters where a full classification based on quasi-
characters is not available (though partial results can be found in [8]).

Before going on, let us mention two important points that will provide some context
for our work. First, there exists an elegant approach to the classification of vector-valued

2However there were some remarkably prescient observations in this direction in the concluding section
of [27].
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modular forms due to Bantay and Gannon [33, 34]. This approach relies on the classifi-
cation of modular data, which we do not assume in our work, so it may be considered a
complementary point of view. Recently this approach was applied to the classification of
n≤ 4 character solutions in [23].

The second point, already alluded to earlier, is that classifying admissible characters is
necessary but far from sufficient to classify CFT. In particular we know of infinite families of
admissible characters that cannot correspond to any CFT. One of the most explicit tools to
find genuine CFT within families of admissible characters is the coset construction [35–37].
A version of this where the numerator is a meromorphic CFT [38, 39] was applied to the
explicit construction of new CFT with small numbers of characters, and their classification,
in [18, 22, 23, 25, 40]. In the present work we do not address the problem of classifying actual
CFTs within the space of admissible characters, rather our focus is purely on admissible
MLDE solutions. Nevertheless, towards the end we will provide explicit examples of genuine
CFT corresponding to the characters we construct, which makes it clear that the sub-space
of CFT within the space of admissible characters is well-populated even for ℓ≥ 6.

2 MLDEs in τ -space

We now move on to the construction of MLDE of nth order and ℓ> 0 and the study of
their admissible solutions. We label such MLDE by (n,ℓ).

2.1 Bases of modular forms

We will choose a convenient basis of holomorphic modular forms of SL(2,Z). These can
have any non-negative even weight w> 2. A generic modular form of this weight is denoted
Mw(τ). These form a multiplicative ring generated by the Eisenstein series E4(τ),E6(τ),
which we normalise so that their q-expansion starts with 1. We also use the cusp form:

∆ = E3
4−E2

6
1728 = q+O(q2) (2.1)

The Klein j-invariant, which will play a key role later on, is given by:

j(τ) = 1728E3
4

E3
4−E2

6
= E3

4
∆ = q−1+744+O(q) (2.2)

Torus moduli space has cusps at τ = ρ≡ e
2πi

3 and τ = i. We have E4(ρ) =E6(i) = 0. In
the first case it is a fractional zero of order 1

3 and in the second, of order 1
2 . Thus E3

4 and
E2

6 , of weight 12, both have a single full zero. The most general modular form with a single
full zero is a linear combination of these two. Alternatively, and more usefully for us, it
can be parametrised up to an overall constant as E3

4−p∆ for some (in principle, complex)
number p. In this form the leading coefficient in a q-expansion is unity independent of p,
which follows from the cusp-form nature of ∆. Additionally, it vanishes at the point τp in
the τ -plane where p= E3

4
∆ (τp) = j(τp). Thus p has a clear geometric meaning as the location

in the j-plane of the zero of the corresponding form. Generically it is a complex number.
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We will need a convenient parametrisation for holomorphic modular forms of arbitrary
weight. To construct a suitable basis we proceed by dividing all possible Mw into three
classes:

1. {0≤w< 12}∪{w= 14}. Here Mw is generated by one of the following: 1, E4, E6,
E2

4 , E4E6, E2
4E6.

2. {w≥ 12,w ̸≡ 2mod12}. Let w= 2(6r+u), then we have: Mw = M2u

r∏
I=1

(E3
4−pI∆) =

M2u ∆r
r∏

I=1
(j−pI) and M2u is one of the following: 1, E4, E6, E2

4 , E4E6. Here pI are

arbitrary complex numbers.

3. {w> 14,w= 2mod12}. For this case we write w= 12r+2, then Mw =E2
4E6

r−1∏
I=1

(E3
4−

pI∆) =E2
4E6 ∆r−1

r−1∏
I=1

(j−pI), where again pI are arbitrary complex numbers.

2.2 Generic (n,ℓ) MLDE

In what follows, “primaries” of an RCFT will not mean Virasoro primaries, but rather
highest-weight integrable representations of some, typically extended, chiral algebra ĝ that
will emerge from the MLDE procedure and is not specified in advance. Corresponding to
each such primary there will be a character that counts the number of descendants under
ĝ above it.

As is well-known, the number of linearly independent characters can be smaller than
the number of primaries. This happens in particular when two or more primaries share
the same character.3 From the MLDE point of view it is more natural to focus only on
characters which arise as the linearly independent solutions of the differential equation.
Therefore, as was originally done in [1, 2], we consider an MLDE of order n and remain
open to the possibility that its solutions are the characters of an RCFT with p>n primaries.

We now formulate the MLDE for the case of n characters and arbitrary Wronskian
index ℓ. The most general such equation takes the form:

(
Dn+

n∑
s=1

µ2sϕ2s(τ)Dn−s
)
χ= 0 (2.3)

where the covariant derivative in τ , denoted D, is defined as follows. Let

Dw ≡ 1
2πi

∂

∂τ
− w

12E2(τ) (2.4)

3Often this arises when the chiral algebra includes a Kac-Moody algebra and there is a symmetry in the
Dynkin diagram of the corresponding finite-dimensional Lie algebra. For example, the D4,1 WZW RCFT
has four primaries corresponding to the identity (h0 = 0), vector (hv = 1

2 ), spinor (hs = 1
2 ) and conjugate

spinor (hc = 1
2 ). However, the triality symmetry in the Dynkin diagram of D4 ensures that the last three

primaries all share the same character. Thus this theory has only two linearly independent characters
and its modular invariant torus partition function is Z(q) = |χ0|2+3|χ1|2. where χ0 denotes the identity
character and χ1 denotes the single independent non-identity character.
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be the derivative acting on a modular form of weight w. Since Dw raises the weight of the
form from w to w+2, we define:

Dn ≡Dw+2n−2◦Dw+2n−4◦. . .◦Dw+2◦Dw (2.5)

In (2.3), this definition applies with w= 0. µ2s are arbitrary parameters and the ϕ2s are
meromorphic modular functions of weight 2s whose poles are governed by the zeroes of
the Wronskian, and whose overall normalisations are specified so that their leading term
is unity. Explicitly we have:

µ2sϕ2s = (−1)sWn−s

Wn
(2.6)

where:

Ws(τ)≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ0(τ) χ1(τ) · · · χn−1(τ)
...

...
...

...
Ds−1

τ χ0(τ) Ds−1
τ χ1(τ) · · · Ds−1

τ χn−1(τ)
Ds+1

τ χ0(τ) Ds+1
τ χ1(τ) · · · Ds+1

τ χn−1(τ)
...

...
...

...
Dn

τ χ0(τ) Dn
τ χ1(τ) · · · Dn

τ χn−1(τ)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.7)

It is easy to see from the definition that Wn−1 =DWn. From (2.6) we find the useful
relation:

µ2ϕ2 =−Wn−1
Wn

=−D logWn (2.8)

The Wronskian index ℓ is defined to be an integer ℓ such that ℓ
6 is the number of zeroes

of Wn. This number does not have to be an integer because of the possibility of fractional
zeroes at the cusps of moduli space, where a zero at τ = ρ counts as 1

3 of a full zero, and
at τ = i counts as 1

2 of a full zero. Thus for general RCFT with n characters, ℓ can be
any non-negative integer other than 1. Note that if the total number of zeroes is fractional
then some zeros must necessarily occur at the cusps, while if the total number is integral
(i.e. ℓ is a multiple of 6) then they can occur anywhere in the fundamental region. More
generally the fractional part of ℓ

6 describes the zeroes fixed at the cusps, while the integral
part describes zeroes that are allowed to be at generic points of moduli space (including
possibly the cusps). This motivates us to define ℓρ, ℓi, ℓτ to be the contribution to ℓ from
the zeroes at ρ,i and generic points respectively. Here ℓρ is even, ℓi is a multiple of 3 and
ℓτ is a multiple of 64 and these quantities satisfy:

ℓρ+ℓi+ℓτ = ℓ (2.9)

The goal is to classify all possible MLDEs of the form (2.3) and then find suitable
solutions to them. These take the form:

χi(q) = qαi

∞∑
k=0

ai,k q
k (2.10)

4Each of these quantities is six times the corresponding quantity wρ,wi,wτ defined in [27].
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We call them admissible when ai,k are integers ≥ 0 for all i,k, which means they potentially
correspond to degeneracies of states. Additionally a0,0 = 1, reflecting non-degeneracy of
the vacuum state. In what follows we will establish several properties of the equations
for generic (n,ℓ), including a count of the parameters on which they depend. After that
we will restrict to n= 2 and consider certain values of ℓ≥ 6 in some detail and examine
families of solutions.

We will start by making a genericity assumption — that for any given ℓ, the largest
possible number of zeroes of Wn are at generic, distinct points in moduli space, away
from each other and from the special points τ = ρ,i. With this assumption, ℓρ takes its
minimum allowed values of 0,2,4 and ℓi takes its minimum allowed values of 0,3. Later we
will consider what happens when the zeroes merge.

Writing ℓ= 6r+u, 0≤u≤ 5, the possible cases are:

u (ℓρ, ℓi, ℓτ )
0 (0,0,6r)
1

(
4,3,6(r−1)

)
2 (2,0,6r)
3 (0,3,6r)
4 (4,0,6r)
5 (2,3,6r)

We will also require that the solutions of the MLDE furnish irreducible representations
ϱ of the modular group PSL(2,Z). By definition,

ϱ(T ) = exp
[
2πidiag

(
− c

24 ,−
c

24 +h1, · · · ,−
c

24 +hn−1

)]
(2.11)

By a theorem of Tuba-Wenzl [41] this implies, for rank ≤ 5, that the eigenvalues of T are
distinct. It follows that none of the hi is integral and no two of them differ by an integer.
This will be sufficient for the cases discussed in this work.5

Now we turn to the parametrisation of the coefficient functions ϕ2s(τ) for s≥ 2. Writing
ℓ= 6r+u, u= 0,1, · · · ,5 as above, we consider the different u values separately as they have
slightly different characteristics. From the definition of ϕ2s in (2.6) and the fact that Wn has
precisely ℓ

6 zeroes, it follows that ϕ2s can be expressed as a ratio of holomorphic modular
forms such that the denominator has weight 2ℓ. This follows from the fact, mentioned
earlier, that a full zero (ℓ= 6) is achieved by a general weight 12 modular form E3

4−p∆.
To achieve the desired modular weight, the numerator of ϕ2s must be modular of weight
2ℓ+2s.

From Sub-section 2.1, we find that, under the genericity assumption, these denomina-

5We thank an anonymous referee for emphasising that the corresponding result may well not be true for
general rank > 5.
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tors of weight 2ℓ can be parametrised as follows:

ℓ= 6r :
r∏

I=1
(E3

4−pI∆)

ℓ= 6r+1: E2
4E6

r−1∏
I=1

(E3
4−pI∆)

ℓ= 6r+2: E4

r∏
I=1

(E3
4−pI∆)

ℓ= 6r+3: E6

r∏
I=1

(E3
4−pI∆)

ℓ= 6r+4: E2
4

r∏
I=1

(E3
4−pI∆)

ℓ= 6r+5: E4E6

r∏
I=1

(E3
4−pI∆)

(2.12)

Thus for all u ̸= 1 the denominators have exactly r full zeroes, whose locations as a function
of τ are determined by the r parameters pI , as well as u fractional zeroes whose locations
are fixed and hence they are not associated to any free parameters. For u= 1 we instead
have r−1 full zeroes, two zeroes of order 1

3 at τ = ρ and a zero of order 1
2 at τ = i.

Applying (2.8), we find:

ℓ= 6r : µ2ϕ2 =E2
4E6

r∑
I=1

1
E3

4−pI∆

ℓ= 6r+1 : µ2ϕ2 = 2E6
3E4

+ E2
4

2E6
+E2

4E6

r−1∑
I=1

1
E3

4−pI∆

ℓ= 6r+2 : µ2ϕ2 = E6
3E4

+E2
4E6

r∑
I=1

1
E3

4−pI∆

ℓ= 6r+3 : µ2ϕ2 = E2
4

2E6
+E2

4E6

r∑
I=1

1
E3

4−pI∆

ℓ= 6r+4 : µ2ϕ2 = 2E6
3E4

+E2
4E6

r∑
I=1

1
E3

4−pI∆

ℓ= 6r+5 : µ2ϕ2 = E6
3E4

+ E2
4

2E6
+E2

4E6

r∑
I=1

1
E3

4−pI∆

(2.13)

By inspection we see that in every case, the expression has a leading term ℓ
6 as q→ 0. Since

we are normalising every ϕ2s to start with 1, it follows that µ2 = ℓ
6 .

We now consider the behaviour of solutions around τ→ i∞, where the appropriate
coordinate is q= e2πiτ → 0, by inserting the leading behaviour χi ∼ qαi +O(qαi+1) into the
MLDE. In a CFT, the exponents αi determine the central charge c and the conformal
dimensions hi via:

αi =− c

24 +hi, i= 0,1, · · · ,n−1 (2.14)

– 7 –
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where h0 = 0, corresponding to the identity primary. Expanding:

ϕ2(τ) =
∞∑

n=0
ϕ2,n q

n (2.15)

and inserting this as well as (2.10) into the MLDE (2.3), at leading order we find the
indicial equation:

αn+
(
µ2ϕ2,0−

n(n−1)
12

)
αn−1+· · ·= 0 (2.16)

If the roots of this equation are αi, i= 0,1, · · · ,n−1 then we see that:

n−1∑
i=0

αi = n(n−1)
12 − ℓ

6 (2.17)

where we used µ2 = ℓ
6 and ϕ2,0 = 1. The above equation is the valence (or Riemann-Roch)

formula.
The lower order terms in (2.16) are straightforward but tedious to write explicitly, and

they similarly allow us to determine the parameters µ4,µ6, · · ·µ2n in terms of the critical
exponents αi, i= 0,1, · · · ,n−1. We refer to the parameters µ2s as rigid parameters since
they are completely determined by the critical exponents. Conversely if we know the µi

then they determine the critical exponents.

2.3 (2, ℓ) MLDE

In this paper we will work with two characters, yet keeping the Wronskian index ℓ arbitrary.
To our knowledge this region of (n,ℓ) space has not previously been investigated barring
some insightful observations in [27]. Let us mention that for two characters, the concept
of movable poles essentially corresponds to the “non-rigid” case from the perspective of
Fuchsian differential equations. These are the cases where the parameters in the equation
are uniquely determined by the exponents of the solutions. Technically the rigid cases
among the (2, ℓ) family arise for ℓ= 0,2. However as we will argue below, admissible
characters for ℓ= 4 are completely determined in terms of those for ℓ= 0. Thus the non-
rigid cases of interest start at ℓ= 6, which is also where movable poles first arise. So for
practical purposes we can think of “non-rigid” (2, ℓ) MLDE as being equivalent to “MLDE
having movable poles”. This justifies our use of “rigid” for the parameters µ2s of the
previous sub-section and “non-rigid” for the rest.

The general (2, ℓ) MLDE is:(
D2+µ2ϕ2(τ)D+µ4ϕ4(τ)

)
χ= 0 (2.18)

where ϕ2,ϕ4 are meromorphic modular forms of weight 2 and 4 respectively.
Now consider the coefficient function ϕ4. Its denominator must have (at most) the

zeroes of the Wronskian Wn. The numerator is then a general modular form of weight
4 higher. Also the form must be normalised so that its q-expansion starts with 1. This

– 8 –
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implies that it takes the form:

ℓ= 6r : ϕ4 = E4
∏r

I=1(E3
4−b4,I∆)∏r

i=1(E3
4−pI∆)

ℓ= 6r+2: ϕ4 = E2
4
∏r

I=1(E3
4−b4,I∆)

E4
∏r

I=1(E3
4−pI∆)

= E4
∏r

I=1(E3
4−b4,I∆)∏r

I=1(E3
4−pI∆)

ℓ= 6r+4: ϕ4 =
∏r+1

I=1(E3
4−b4,I∆)

E2
4
∏r

I=1(E3
4−pI∆)

(2.19)

The b4,I are “accessory parameters” about which we will have a lot to say in the rest of this
paper (they carry the subscript 4 because they arise in a weight-four modular function).
Notice that for the middle case there is no pole at τ = ρ due to cancellation of an E4 between
the numerator and denominator. Also the last case has an extra power of (E3

4−b4,r+1∆)
in the numerator.

Returning to the MLDE (2.18), we have already determined that µ2 = ℓ
6 . Also, the

leading term of ϕ4 in a q-expansion is normalised to unity. Then the indicial equation
determines:

µ4 =α0α1 (2.20)

where αi are the critical exponents around q= 0. Also it is known [27] that with two
characters, ℓ is always even. Hence W cannot have an odd number of zeroes at τ = i.
Then, recalling that ℓ= 6r+u, one is restricted to even values of u. With all the above
information, we write the general (2, ℓ) MLDE as follows:

ℓ= 6r :(
D2+

(
E2

4E6

r∑
I=1

1
E3

4−pI∆

)
D+α0α1E4

∏r
I=1(E3

4−b4,I∆)∏r
I=1(E3

4−pI∆)

)
χ(τ) = 0

ℓ= 6r+2 :(
D2+

(
E6
3E4

+E2
4E6

r∑
I=1

1
E3

4−pI∆

)
D+α0α1E4

∏r
I=1(E3

4−b4,I∆)∏r
I=1(E3

4−pI∆)

)
χ(τ) = 0

ℓ= 6r+4 :(
D2+

(
2E6
3E2

4
+E2

4E6

r∑
I=1

1
E3

4−pI∆

)
D+α0α1

E2
4

∏r+1
I=1(E3

4−b4,I∆)∏r
I=1(E3

4−pI∆)

)
χ(τ) = 0

(2.21)

Well-studied special cases are the MMS equation [1] which corresponds to ℓ= 0:(
D2+α0α1E4

)
χ(τ) = 0 (2.22)

and the ℓ= 2 equation studied in [27, 28]:(
D2+ E6

3E4
D+α0α1E4

)
χ(τ) = 0 (2.23)

As we see, these equations have no movable poles.
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Returning now to the general case, although pI are generically complex, they are
subject to constraints arising from the fact that c and the degeneracies are rational. As
we will show below, the symmetric polynomials in the pI must all be real and rational.
This generalises the statement in [27]) that a single pole must be real and rational. Let us
mention here that for a real pole, τp lies in the subspace of moduli space for which j(τp) is
real, namely {Re(τ) = 0}∪

{
Re(τ) = 1

2

}
∪|τ |= 1.

So far we have only considered the indicial equation about q= 0. However, the char-
acters also need to have appropriate behaviour near the cusps τ = ρ,i in order to be single-
valued. We label the exponents around τ = ρ,i as α(ρ),α(i) respectively to avoid confusion
with the exponents α around τ = i∞. Near τ = ρ we introduce a new coordinate:

z= (τ−ρ)3 (2.24)

When τ circles ρ by e2πi/3, we return to the same point in moduli space. The above change
of variables converts this to a regular circle z→ e2πiz, so z is a good coordinate at the cusp.
In this coordinate, E4 ∼ z

1
3 and j∼ z as z→ 0. The indices at τ = ρ are found by inserting

the trial solution
χ(z)∼ zα(ρ) (2.25)

Regularity imposes the requirement that α(ρ) is a non-negative multiple of 1
3 . A similar

analysis tells us that τ = i is a multiple of 1
2 .

Now expanding out the MLDE (2.21) we get:(
− 1

4π2∂
2
τ −

1
12πiE2(τ)∂τ + 1

2πiµ2ϕ2(τ)∂τ +α0α1ϕ4(τ)
)
χ= 0 (2.26)

As we are working near τ = ρ where E4 and j vanish while E6 and ∆ tend to finite values,
we can replace µ2ϕ2 by u

6
E6
E4

. This is because near τ = ρ, µ2ϕ2 has u
6 poles where ℓ= 6r+u,

by our genericity assumption. Meanwhile ϕ4 given in (2.19) reduces near τ = ρ to:

ℓ= 6r : ϕ4 ≃ 0
ℓ= 6r+2: ϕ4 ≃ 0

ℓ= 6r+4: ϕ4 ≃−b4,r+1∆
E2

4

r∏
I=1

b4,I

pI

(2.27)

From the definition of the j-invariant we have:

E6
E4

=− 1
2πi

∂

∂τ
(log j) (2.28)

Since j∼ (τ−ρ)3, it follows that:

E6
E4

≃− 3
2πi(τ−ρ) near τ = ρ (2.29)

From this we can also deduce the behaviour:

∆
E2

4
≃− 1

1728

(
E6
E4

)2
= 1

768π2(τ−ρ)2 (2.30)
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Now we change variables in the MLDE using (2.24) and insert (2.25). In the case u= 0
we find the indicial equation:

3
(
α(ρ))2−α(ρ) = 0 (2.31)

The solutions are α(ρ) = 0, 1
3 . Thus both solutions exhibit regular behaviour as functions

of τ . While this has been a good consistency check, it does not tell us anything new about
the parameters in the MLDE.

Next, for u= 2, the MLDE near τ = ρ becomes:(
− 1

4π2∂
2
τ −

1
12πiE2∂τ + 1

2πi
E6
3E4

∂τ

)
χ= 0 (2.32)

Going now to the z-coordinate and inserting χ(z)∼ zα(ρ) , the indicial equation is:

3
(
α(ρ))2−2α(ρ) = 0 (2.33)

whose solutions are α(ρ) = 0, 2
3 . Again the solution is consistent but does not provide new

information.
The situation is different for the last case, u= 4. (2.27) tells us we have non-trivial

behaviour for both ϕ2 and ϕ4. This indicial equation now becomes:

α(ρ)(α(ρ)−1)+ γ

1728 = 0 (2.34)

where:
γ≡α0α1b4,r+1

r∏
I=1

b4,I

pI
(2.35)

From this we learn that α(ρ)
0 +α(ρ)

1 =1. As we have seen, these exponents are non-negative
multiples of 1

3 , which leads to the unique solution α(ρ)
0 = 1

3 ,α
(ρ)
1 = 2

3 . It now follows from (2.34)
that:

γ= 384 (2.36)

This was previously noted in [6] for the case ℓ= 4. Here we see that it is true for all ℓ= 6r+4
as long as there are precisely two poles (of 1

3 -order each) at the cusp τ = ρ and the rest are at
generic values away from the cusp. We can think of this result as determining b4,r+1 in (2.35)
in terms of the other b4,I . Then the (so far) independent coefficients are b4,I , I = 1,2, · · · , r
and pI . Thus, despite the appearance of an apparent additional parameter b4,r+1, the case
ℓ= 6r+4 is actually similar to the cases ℓ= 6r,6r+2 in that all of them have precisely 2r
parameters of which r correspond to poles pI of the coefficient functions and the other r
are the b4,I . As indicated above, these are the accessory parameters familiar from Fuchsian
differential equations.

In standard treatments of the MLDE, starting with [1], one now solves the equation
order by order using the Frobenius method, and imposes admissibility at each successive
order, in particular non-negative integrality of the Fourier coefficients. We will do this
eventually, but here we pause to rewrite the MLDE treating j(τ), rather than τ , as the
independent parameter. This makes it somewhat easier and more intuitive to write out
general MLDEs and impose their single-valuedness around poles of the coefficient functions.
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Of course the Fourier coefficients in the j variable have no integrality restrictions, so we
will need to return to the τ -coordinate in order to check integrality of the coefficients in
the q-expansion and thereby determine admissibility of solutions.

3 MLDEs in j-space

3.1 Generic (n,ℓ) MLDE in j-space

In this section we return to the general case of n characters and study MLDEs in a formalism
where the independent variable is the Klein invariant j(τ) rather than τ (this was explored
for special cases in [26, 27]). As a warm-up exercise, let us consider the one-character case.
First we fix ℓ= 6r. Then the most general allowed character is:

χ(j) =
r∏

I=1
(j−pI) (3.1)

where pI are a set of r complex numbers that describe the zeroes of the character (which is
the same as the Wronskian in this case). The MLDE satisfied by this character is trivially
seen to be: (

∂j +ψ2(j)
)
χ(j) = 0 (3.2)

where:

ψ2(j) =−∂j logχ(j)

=−
r∑

I=1

1
j−pI

(3.3)

Here we have labelled the first non-trivial coefficient as ψ2(j) in keeping with the convention
used for the MLDE in τ , though here it does not reflect the modular weight, since everything
is modular invariant (up to possible phases). Also note that the coefficients µ2s are now
absorbed into the normalisation of the ψ2s.

The generalisation of the above to the case of ℓ= 6r+u is straightforward: the character
acquires an extra multiplicative factor of j

1
3 for each zero at τ = ρ and a factor (j−1728)

1
2

for a zero at τ = i (we are not requiring admissibility at this stage, which would have ruled
out the latter). Then the coefficient function ψ2(j) acquires an additive term:

− 1
3j , −

1
2(j−1728) (3.4)

for each zero at ρ,i respectively.
Moving on to the n-character case, the MLDE in terms of the independent variable j

can be written: (
∂n

j +
n∑

s=1
ψ2s(j)∂n−s

j

)
χ(j) = 0 (3.5)

The modular invariants ψ2s can have poles at the special points j= 0,1728 as well as at
generic points j= pI , I = 1,2, · · ·r. The solutions can be expanded as follows around the
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special points:

χi(j) = jα
(ρ)
i

∞∑
k=0

a
(ρ)
i,k j

k
3 , (3.6)

χl(j) = (j−1728)α
(i)
i

∞∑
k=0

a
(i)
l,k (j−1728)

k
2 . (3.7)

Similarly around each of the generic poles j= pI , we parametrise the solutions as:

χi(j) = (j−pI)α
(I)
i

∞∑
k=0

a
(I)
i,k (j−pI)k (3.8)

One should keep in mind that the ai,k with superscripts (ρ),(i),(I) have no particular
integrality property.

The relevant Wronskians are defined similarly to (2.7):6

Wr(j)≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χ0(j) χ1(j) · · · χn−1(j)
...

...
...

...
∂r−1

j χ0(j) ∂r−1
j χ1(j) · · · ∂r−1

j χn−1(j)
∂r+1

j χ0(j) ∂r+1
j χ1(j) · · · ∂r+1

j χn−1(j)
...

...
...

...
∂n−1

j χ0(j) ∂n−1
j χ1(j) · · · ∂n−1

j χn−1(j)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.9)

and:
ψ2s = (−1)sWn−s(j)

Wn(j) (3.10)

As noted in [27], Wr(j) necessarily have poles, unlike Wr(τ). The poles are introduced
by the powers of dj

dτ that relate two Wronskians. For example the relations between the
Wronskians Wn(j) and W0(j) with that of the Wronskians Wn(τ) and W0(τ) are as follows
(similar but more complicated relations can be found for all the Wr):

Wn(j) =
(

dj
dτ

)−n(n−1)
2 Wn(τ) (3.11)

W0(j) =
(

dj
dτ

)−n(n+1)
2 W0(τ) (3.12)

Using (2.28), we see that:
dj

dτ
=−2πiE6

E4
j=−2πiE6E

2
4

∆ (3.13)

Thus dj
dτ has two zeroes of order 1

3 at τ = ρ and one of order 1
2 at τ = i, so W (j) acquires

n(n−1)
3 poles at ρ and n(n−1)

4 poles at i. It also has the zeroes of Wn(τ). So we could define
a new Wronskian index ℓj such that ℓj

6 gives the total number of zeroes of W (j):

ℓj =−7n(n−1)
2 +ℓ (3.14)

6We denote them Wr(j), though they are different from Wr(τ) so this is really abuse of notation - which
hopefully will not cause confusion.
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We see that for n= 1, ℓj = ℓ, while for n= 2, ℓj =−7+ℓ as one can read off from Page
434 of [27]. Actually this relation is slightly misleading as it does not contain all the
information: the extra poles contained in the first term on the r.h.s. are necessarily at the
points τ = ρ,i and are not free to move. So it is better to break up ℓj into contributions
from zeroes/poles at ρ,i and generic positions (as we did before for ℓ):

ℓj = ℓjρ+ℓji +ℓjτ (3.15)

Now, positive values of these quantities denote zeroes while negative values denote poles.
Recall that in the τ -space case, the terms are individually ≥ 0 and ℓρ, ℓi and ℓτ are multiples
of 2,3,6 respectively. Then, taking account of the new poles introduced by the change of
variables, we get:

ℓjρ =−2n(n−1)+ℓρ

ℓji =−3n(n−1)
2 +ℓi

ℓjτ = ℓτ

(3.16)

Positivity of ℓp, ℓi, ℓτ then induces obvious lower bounds on ℓjρ, ℓ
j
i , ℓ

j
τ . Notice that it is

possible for ℓjρ, ℓ
j
i to vanish due to cancellations between poles induced by the change of

variables to j and zeroes of the original Wronskian at the special points ρ,i.
From the above considerations, we can readily fix the first coefficient function ψ2(j)

in (3.5), which is given by:

ψ2(j) =−Wn−1(j)
Wn(j) =−∂j logWn(j) (3.17)

The result is:

ψ2(j) =−
ℓjρ
6j−

ℓji
6(j−1728)−

ℓ
j
τ
6∑

I=1

1
j−pI

= n(n−1)
3j + n(n−1)

4(j−1728)−
ℓρ
6j−

ℓi
6(j−1728)−

ℓτ
6∑

I=1

1
j−pI

(3.18)

3.2 (2, ℓ) MLDE in j-space

We now again specialise to the case of two characters, keeping the Wronskian index arbi-
trary. The first step is to determine the remaining coefficient function ψ4(j) in the MLDE
for this case. From the definition we have:

ψ4(j) = W0(j)
W2(j) (3.19)

Now,

W0(j) =
∣∣∣∣∣∂jχ0 ∂jχ1
∂2

jχ0 ∂
2
jχ1

∣∣∣∣∣ , W2(j) =
∣∣∣∣∣ χ0 χ1
∂jχ0 ∂jχ1

∣∣∣∣∣ , (3.20)
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Inserting the behaviour χi ∼ jα
(ρ)
i near j∼ 0 (τ = ρ) we find:

W0(j)∼α
(ρ)
0 α

(ρ)
1

(
α

(ρ)
1 −α(ρ)

0

)
jα

(ρ)
0 +α

(ρ)
1 −3+O

(
jα

(ρ)
0 +α

(ρ)
1 −2

)
W2(j)∼

(
α

(ρ)
1 −α(ρ)

0

)
jα

(ρ)
0 +α

(ρ)
1 −1

(3.21)

The reason to write the first correction to W0 is that the leading term can vanish, if α(ρ)
0 or

α
(ρ)
1 vanishes. However since the two exponents must be distinct, the leading term of W2

cannot vanish. Thus we have ψ4(j)∼ j−2 unless one of the exponents vanishes, in which
case ψ4(j)∼ j−1.

The exponents α(ρ)
i satisfy (see (A.2)):

α
(ρ)
0 +α(ρ)

1 − 1
3 = ℓρ

6 (3.22)

Writing ℓ= 6r+u, we have u= ℓρ = 0,2,4 respectively for the cases ℓ= 6r,6r+2,6r+4. It
follows that the exponents are as follows:

ℓ= 6r : =⇒ (α(ρ)
0 ,α

(ρ)
1 ) =

(
0, 13

)
ℓ= 6r+2: α

(ρ)
0 +α(ρ)

1 = 2
3 =⇒ (α(ρ)

0 ,α
(ρ)
1 ) =

(
0, 23

)
ℓ= 6r+4: α

(ρ)
0 +α(ρ)

1 = 1 =⇒ (α(ρ)
0 ,α

(ρ)
1 ) =

(1
3 ,

2
3

) (3.23)

(these facts have already been derived in terms of the τ coordinate in Sub-section 2.3, but
here our goal is to derive everything independently in the j coordinate). Thus in the first
two cases the leading term in W0 indeed vanishes and the subleading term has to be used.
We see that the behaviour of ψ4(j) in the three cases is ∼ j−1,∼ j−1,∼ j−2 respectively.

Next we consider the behaviour near j= 1728 (τ = i). Similar arguments tell us that
ψ4(j)∼α

(i)
0 α

(i)
1 (j−1728)−2+O

(
(j−1728)−1). This time we have (see (A.4)):

α
(i)
0 +α(i)

1 − 1
2 = ℓi

6 = 0 =⇒ (α(i)
0 ,α

(i)
1 ) =

(
0, 12

)
, (3.24)

in every case, so the leading term always vanishes and we have a simple pole in j−1728.
From the r generic zeroes of W2 at j= pI , we get a simple pole at each of these points.

Finally, the τ→ i∞ behaviour requires that the overall power of j as j→∞ is −2. Hence
ψ4(j) must contain, in the numerator, a generic polynomial in j of degree r for ℓ= 6r,6r+2
and of degree r+1 for ℓ= 6r+4. Thus finally we get:

ℓ= 6r :

∂2
jχ(j)+

[
1

2(j−1728) + 2
3j−

r∑
I=1

1
j−pI

]
∂jχ(j)+ α0α1

j(j−1728)

r∏
I=1

(j−b4,I)
r∏

I=1
(j−pI)

χ(j) = 0.
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ℓ= 6r+2:

∂2
jχ(j)+

[
1

2(j−1728) + 1
3j−

r∑
I=1

1
j−pI

]
∂jχ(j)+ α0α1

j(j−1728)

r∏
I=1

(j−b4,I)
r∏

I=1
(j−pI)

χ(j) = 0.

ℓ= 6r+4:

∂2
jχ(j)+

[
1

2(j−1728)−
r∑

I=1

1
j−pI

]
∂jχ(j)+ α0α1

j2(j−1728)

r+1∏
I=1

(j−b4,I)
r∏

I=1
(j−pI)

χ(j) = 0. (3.25)

These expressions can easily be confirmed by explicitly changing variables from τ to j in
eqs. (2.13), (2.19). However, the methods we have used to arrive at them are useful in the
general case (higher than second-order) and one does not need to invoke the MLDE in τ

to write the equations in j-space.
By considering the indicial equation around j= 0 (τ = ρ), we will again find, in the

ℓ= 6r+4 case, that it is possible to fix b4,r+1 in terms of the remaining coefficients. As a
result, once we impose the indicial equations there are 2r independent coefficients in every
case, namely the pI and b4,I with I = 1,2, · · · , r. Note that the MLDE is totally symmetric
under permutations of the pI and also under permutations of the accessory parameters b4,I .

The differential equations in the j plane that were discussed above are examples of
Fuchsian differential equations (FDE) with regular singular points. However they have
some special features. A general FDE with regular singular points is of the form:

dnf

dxn
+

n∑
i=1

αi(x)d
if

dxi
= 0 (3.26)

where the coefficient functions αi(x) have at most poles of order i at the regular singular
points. However due to our genericity assumption, the Wronskian has only simple zeroes
at generic points pI . Hence in our case, all the coefficient functions have only simple poles
(with the exception of poles at τ = ρ, which are double poles whenever the Wronskian
index is equal to 4 mod 6). This means that ab initio they span a more restricted set than
general Fuchsian differential equations with regular singular points. We will revisit this
issue later on when we move away from the genericity assumption by allowing movable
poles to coalesce. Meanwhile, as already noted above, our b4,I correspond in the language
of FDE to what are called “accessory parameters”.

3.3 Reduction of ℓ = 6r+4 to ℓ = 6r

Let us note an important general lesson that is exemplified by (3.23). In the third line,
the lower of the two exponents is 1

3 . This means we can take any solution of the ℓ= 6r+4
MLDE and write it as:

χ(j) = j
1
3 ζ(j) (3.27)
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where ζ(j) has an expansion about j= 0 in positive powers of j. Then, as is easily verified,
ζ(j) solves an MLDE with (n,ℓ) = (2,6r). This means that, in terms of having a well-
defined power-series expansion about all the singular points of the MLDE, every ℓ= 6r+4
solution factorises into the E8,1 character j

1
3 times a solution of the (2,6r) equation. It

is not, however, necessarily the case that both factors are admissible. In particular, it is
possible for ζ(j) to be a non-admissible character while j

1
3 ζ(j) is admissible.

A very striking example, noted in sub-section 5.1 of [6], is that the characters of the
c= 33 CFT of [9], which has Wronskian index ℓ= 4, can be written as the product of j

1
3

times a solution with c= 25 and ℓ= 0. However, the c= 25 solution has some negative
coefficients in its q-series and therefore does not count as admissible (as we will see below,
it is actually a quasi-character). Yet, after multiplying it by j

1
3 it becomes admissible and

in fact a genuine CFT. But this CFT, despite the factorisation described above, is by no
means a tensor product of two other CFTs.

The factorisation of solutions described above for ℓ= 4 is easily seen to persist for all
ℓ= 6r+4. Hence we no longer need to discuss MLDEs for the case ℓ= 6r+4, even though
we have formulated them above. All we need to remember is that admissible solutions
in these cases are found by considering all integral (not only admissible) solutions of the
ℓ= 6r equation, multiplying each one by j

1
3 and then testing for admissibility.

On the other hand, in the first two lines of (3.23), the lower of the two exponents is 0.
This tells us that we cannot extract a positive power from the character and still hope to
find a positive power-series expansion in j. Moreover this fact persists for ℓ= 6r,6r+2 as
long as the genericity assumption is obeyed. So even relaxing admissibility, the characters
in these cases do not factorise.

3.4 Determining accessory parameters: the (2,6) case

Having dealt with the indicial equations about j= 0,1728, the next step is to study the
indicial equations around j= pi. This will determine all the accessory parameters b4,i in
ψ4(j). Let us start with a particular case, the (2,6) MLDE which from (3.25) has the form:

∂2
jχ(j)+

[ 1
2(j−1728) + 2

3j−
1

j−p1

]
∂jχ(j)+ α0α1(j−b4,1)

j(j−1728)(j−p1)χ(j) = 0, (3.28)

A priori it has 2 parameters, b4,1 and p1. In this case we have ℓρ = ℓi = 0 and ℓ1 = 6.
Let us examine the leading behaviour of the characters about j= p1. Since p1 is not a

special point in moduli space (by the genericity assumption), the critical exponents around
it must be integers. We substitute the expansion (3.8) in (3.28) and look at the solution
at order (j−p1)α

(1)
i −1 to get the indicial equation:

α
(1)
i (α(1)

i −2) = 0 (3.29)

so the exponents are
(
α

(1)
0 ,α

(1)
1
)

= (0,2). Notice that in this process we have identified the
solution χ0(j) with the exponent 0, and χ1(j) with exponent 2.7

7It is important not to identify these two solutions with the two characters χ0(τ) and χ1(τ) that form
the two linearly independent CFT characters with integral expansions in q. The reason is that here we are
expanding around a point inside moduli space instead of the point τ → i∞. Hence each pair is in general a
linear combination of the other pair.
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When the exponents differ by an integer there is potentially a problem with single-
valuedness of the solution. In fact the solution with α(1) = 2 always exists, but the solution
with α(1) = 0 in general has a logarithmic term. If present, this term would render the
corresponding character multivalued in j and therefore unphysical [27, 42]. To analyse this
situation we start by inserting the expansion (3.8) in (3.28). At order (j−p1)α

(1)
i we find:

a
(1)
i,1 =

α
(1)
i (7

6p1−1152)+α0α1(p1−b4,1)

p1(p1−1728)
(
1−
(
α

(1)
i

)2) (3.30)

Inserting α
(1)
1 = 2 we determine a(1)

1,1 for this solution, and continuing in this way we are
guaranteed to determine the subsequent coefficients. If we insert the other value α(1)

0 = 0,
we find:

a
(1)
0,1 = α0α1(p1−b4,1)

p1(p1−1728) (3.31)

Now the recursion relation that should have determined the next coefficient a(1)
0,2 does not

contain that variable. This is a consequence of the integral difference in indices that we
noted above. Instead, it gives us a constraint on b4,1:

α0α1+
(

576− 5p1
6 +α0α1(p1−b4,1)

)
a

(1)
0,1 = 0, (3.32)

Thus the above constraint is the condition that the second solution does not have a log-
arithmic piece. If we do not implement the constraint, one of the characters becomes
multi-valued around a zero of the Wronskian and has to be rejected on physical grounds.8

Substituting (3.31) into (3.32) we get:

α0α1(p1−b4,1)2+
(

576− 5
6p1

)
(p1−b4,1)+p1(p1−1728) = 0 (3.33)

After multiplying by all the denominators, this becomes a quadratic curve in p1,(p1−b4,1)
with discriminant:

25
36−4α0α1 (3.34)

Using α0 =− c
24 and α1 = c

24−
5
6 (the latter follows from (2.17)), we see that this is positive

for all c ̸= 10, and the quadratic is a hyperbola. At c= 10 the curve degenerates to a
parabola. From (3.33), notice that when b4,1 = p1 then we have p1 = 0 or p1 = 1728, in
other words the pole has to be at one of the cusps τ = ρ,τ = i of moduli space. The
curve (3.33) determines the accessory parameter in terms of the pole p1.

It is useful to consider the asymptotic region of the curve (3.33) as p1 →∞. In this
limit, the Wronskian no longer has a zero in the finite region of moduli space, hence now
we should find solutions with ℓ= 0 and this is indeed what happens as we will see later in
several examples. Defining:

x1 = 1− b4,1
p1

(3.35)

8Such objects are called “weak VVMF” in [26].
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we see that at large p1, (3.33) becomes:

α0α1x
2
1−

5
6x1+1 = 0 (3.36)

with the solutions:

x1 =
5
6±
√

25
36−4α0α1

2α0α1
(3.37)

Since ℓ= 6, we have from (2.17) that α0+α1 =−5
6 . This allows us to simplify the above

equation to:

x1 =
{
− 1
α0
,− 1
α1

}
(3.38)

Next we consider generic values of ℓ and show that the accessory parameters are
determined similarly. As we will see, this allows the complete determination of α0,α1 for
all ℓ in terms of those for ℓ< 6 which are already known.

3.5 Determining accessory parameters: the general case

In the most general case with two characters and arbitrary ℓ, as long as the singularities are
well-separated the phenomenon is very similar. For each singularity pI we get one constraint
on the combined set of b4,I and pI by trying to calculate the second-order coefficient a(I)

0,2.
This provides us with a set of simultaneous equations for the b4,I . In the cases ℓ= 6r,6r+2
this is sufficient to determine all the b4,i in terms of the pI . We now consider each family
in more detail.

ℓ = 6r case, r ≥ 0. In this case, we have r full zeroes that are well-separated from each
other and from the special points j= 0,1728. Substituting (3.8) into the ℓ= 6r case of (3.25)
and equating the coefficient of (j−pI)α

(I)
i −1 to zero, we get the indicial equation:

α
(I)
i

(
α

(I)
i −2

)
= 0, (3.39)

and hence (α(I)
0 ,α

(I)
1 ) = (0,2), 1≤ I ≤ r. At the next order in the expansion, setting to zero

the coefficient of (j−pI)α
(I)
i we get:

a
(I)
i,1 = 1

pI(pI−1728)
(
1−
(
α

(1)
i

)2)

α0α1

r∏
J=1

(pI−b4,J)
r∏

J=1
J ̸=I

(pI−pJ)
+α(I)

i

(7pI

6 −1152
)
 (3.40)

which is manifestly a generalisation of (3.30). Choosing α(1)
0 = 0 in the above, we get:

a
(I)
0,1 =

α0α1
r∏

J=1
(pI−b4,J)

pI(pI−1728)
r∏

J=1
J ̸=I

(pI−pJ)
, (3.41)
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At the next order, we set to zero the coefficient of (j−pI)α
(1)
i +1. First let us examine the

term that contains a(I)
0,2:

a
(I)
0,2 pI(pI−1728)

(
r∏

J=1
J ̸=I

(pI−pJ)
)
α

(I)
i

(
α

(I)
i −2

)
(3.42)

Since this is proportional to the indicial equation, the above expression is identically zero
and hence the dependence on a

(I)
0,2 drops out. In its place, we find a set of constraint

equations on the parameters of the MLDE (assuming the pI are distinct from the accessory
parameters b4,J):

a
(I)
0,1

 1
pI(pI−1728)

(
576− 5pI

6

)
−2

r∑
J=1
J ̸=I

1
pI−pJ

+ α0α1
pI(pI−1728)

r∏
J=1

(pI−b4,J)
r∏

J=1
J ̸=I

(pI−pJ)



+ α0α1
pI(pI−1728)

r∏
J=1

(pI−b4,J)
r∏

J=1
J ̸=I

(pI−pJ)

(
r∑

J=1

1
pI−b4,J

)
= 0. (3.43)

Now substituting the value of a(I)
0,1 from (3.41) in (3.43) we get:

1
pI(pI−1728)

 576− 5pI

6 +α0α1

r∏
J=1

(pI−b4,J)
r∏

J=1
J ̸=I

(pI−pJ)

−2
r∑

J=1
J ̸=I

1
pI−pJ

+
r∑

J=1

1
pI−b4,J

= 0. (3.44)

Thus we get a set of r coupled equations for the accessory parameters b4,J which can be
solved in principle to determine them as functions of the pI .

We can think of these equations as defining a sub-manifold or algebraic variety in the
2r-dimensional parameter space of the pI and b4,I . We will call them “accessory equations”.
If we multiply out all the denominators, these become a set of r polynomials of degree 2r.
The special case in the last section, (3.33), corresponds to r= 1, hence a single quadratic
equation, namely a hyperbola.

We see that for general r, each equation is separately invariant under a permutation of
the b4,I , while the equations are permuted among themselves if we permute the pI . These
facts suggest the use of symmetric polynomials in the pI as well as the b4,I , which will be
introduced in section 5. Also, the equations become singular if any two of the pI coincide
with each other or with an accessory parameter b4,J . This is as expected, since both such
coincidences change the nature of the original equation — the first violates the genericity
assumption, while the second cancels a pole in the last term of the MLDE.

Now let us consider the asymptotic region of the sub-manifold defined by (3.44), by
taking pr →∞ together with b4,r while keeping xr = 1− b4,r

pr
fixed. Then the equations for
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I = 1,2, · · · , r−1 become:

1
pI(pI−1728)

 576− 5pI

6 +α0α1 (1−xr)

r−1∏
J=1

(pI−b4,J)

r−1∏
J=1
J ̸=I

(pI−pJ)

−2
r−1∑
J=1
J ̸=I

1
pI−pJ

+
r−1∑
J=1

1
pI−b4,J

= 0, 1≤ I ≤ r−1

(3.45)

while the equation for I = r becomes:

α0α1x
2
r +
(1−ℓ

6

)
xr +1 = 0. (3.46)

The second equation determines xr in terms of the product of exponents α0α1:

xr = 1
2α0α1

(
ℓ−1

6 ±

√
(ℓ−1)2

36 −4α0α1

)
(3.47)

We can simplify this using the valence formula (2.17) which tells us that α0+α1 = 1−ℓ
6 .

Then:

xr = 1
2α0α1

(
−(α0+α1)±α0−α1

)
=
{
− 1
α0
,− 1
α1

}

=
{

24
c
,

24
c−24h

} (3.48)

Meanwhile, the first set of equations is precisely the one for the MLDE with r replaced
by r−1, i.e. Wronskian index ℓ replaced by ℓ−6, with the replacement:

(α0α1)(ℓ−6) = (1−xr)(α0α1)(ℓ)

=
{
α

(ℓ)
0 +1
α

(ℓ)
0

,
α

(ℓ)
1 +1
α

(ℓ)
1

}
(α0α1)(ℓ)

=
{(

(α0+1)α1
)(ℓ)

,
(
α0(α1+1)

)(ℓ)
} (3.49)

Applying the procedure recursively, this equation determines α0,α1 (up to exchange of
characters) for all ℓ= 6r given their values for ℓ= 0, which are known from [1].

ℓ = 6r+2 case, r ≥ 0. For the case of ℓ= 6r+2, we again have r distinct full zeros at
pI , and also a zero of order 1

3 at τ = ρ(j= 0). The genericity assumption also says that
pI ̸= 0,1728. This case is very similar to the ℓ= 6r case and we again find (α(I)

0 ,α
(I)
1 ) =

(0,2), 1≤ I ≤ r. At the next order we have:

a
(I)
i,1 = 1

pi(pI−1728)
(
1−
(
α

(1)
i

)2)
 α0α1

r∏
J=1

(pI−b4,J)
r∏

J=1
J ̸=I

(pI−pJ)
+α(I)

i

(5pI

6 −576
)  (3.50)
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Now choosing α(1)
0 = 0 in the above we get,

a
(I)
0,1 =

α0α1
r∏

J=1
(pI−b4,J)

pi(pI−1728)
r∏

J=1
J ̸=I

(pI−pJ)
, (3.51)

At the next order we find the constraint:

a
(I)
0,1

 1
pI(pI−1728)

(
1152− 7pI

6

)
−2

r∑
J=1
J ̸=I

1
pI−pJ

+ α0α1
pI(pI−1728)

r∏
J=1

(pI−b4,J)
r∏

J=1
J ̸=I

(pI−pJ)



+ α0α1
pI(pI−1728)

r∏
J=1

(pI−b4,J)
r∏

J=1
J ̸=I

(pI−pJ)

(
r∑

J=1

1
pI−b4,J

)
= 0. (3.52)

Now substituting the value of a(I)
0,1 from (3.51) in (3.52) we get,

1
pI(pI−1728)

 1152− 7pI

6 +α0α1

r∏
J=1

(pI−b4,J)
r∏

J=1
J ̸=I

(pI−pJ)

−2
r∑

J=1
J ̸=I

1
pI−pJ

+
r∑

J=1

1
pI−b4,J

= 0. (3.53)

Thus, once more we get coupled equations for the b4,J which define a sub-manifold of
the original space and determine the accessory parameters as functions of the pI . The
analysis of the asymptotic behaviour is precisely the same as for ℓ= 6r, and we again end
up with (3.46) where now ℓ= 6r+2, as well as a version of (3.45) where −5

6pI is replaced
by −7

6pI and 576 is replaced by 1152. Fruthermore, (3.49) remains unchanged in this case.
Since we have argued above that the ℓ= 6r+4 case can always be reduced to ℓ= 6r by

extracting a factor j
1
3 , we do not need to find the accessory equations separately for that

case. Hence at this stage our analysis of accessory equations is complete.
To summarise, what we have learned from the asymptotic analysis is that (3.49) is

true for all ℓ= 6r+u where u= 0,2. Although there are two choices in this equation, it is
clear that they are related by an exchange of characters. We can invert (3.49) and iterate
it u times (where ℓ= 6r+u) to get:

α
(ℓ=6r+u)
0 =α

(ℓ=u)
0 −r

α
(ℓ=6r+u)
1 = (α1)(ℓ=u)

(3.54)

Here we have chosen α0 =− c
24 and α1 =− c

24 +h. So the above equations tell us that:

c(ℓ=6r+u) = c(ℓ=u)+24r

h(ℓ=6r+u) =h(ℓ=u)+r
(3.55)
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Thus, using only the MLDE for generic ℓ, we have demonstrated that the central charge
and conformal dimension of a solution for any ℓ= 6r,6r+2 are related as above to those of
an MLDE solution with ℓ= 0,2 (with a corresponding result for ℓ= 6r+4 following from
factorisation of the solutions in that case). As we show below, this perfectly agrees with
the analysis from quasi-characters [6].

3.6 Admissible range of central charges for (2, ℓ) solutions

In this sub-section, we study the admissible range of central charges for (2, ℓ) solutions,
based on the asymptotic analysis and knowledge of the admissibility range for (2,0) and
(2,2) solutions. Then we will present the results for ℓ= 6,8,12,14, which will be used in
upcoming sections.

We first note that (3.49) can be solved for c(ℓ) in terms of c(ℓ−6) by using the valence
formula and then replacing everything in terms of central charges. There are two possi-
bilities for the product of exponents in this equation, each of which translates into two
possibilities for the relation between central charges. Thus we get:

c(ℓ) = c(ℓ−6)+24 or c(ℓ) = 4(ℓ−1)−c(ℓ−6)

c(ℓ) = c(ℓ−6) or c(ℓ) = 4(ℓ−7)−c(ℓ−6) (3.56)

respectively. Imposing unitarity via h(ℓ)> 0, we also get the lower bounds:

h(ℓ) = c−2(ℓ−1)
12 > 0 =⇒ c(ℓ)> 2(ℓ−1) (3.57)

One of the four possibilities in (3.56) can be ruled out, namely c(ℓ) = 4(ℓ−7)−c(ℓ−6). To see
this, let us suppose it is allowed. Then the unitarity bound (3.57) for c(ℓ) gives 4(ℓ−7)−
c(ℓ−6)> 2(ℓ−1) implying c(ℓ−6)< 2(ℓ−13). However, the unitarity bound directly implies
that c(ℓ−6)> 2(ℓ−7). Thus we have a contradiction and the above possibility is ruled out.

It follows that at each step we can only have the following three possibilities:

c(ℓ) = c(ℓ−6), c(ℓ) = c(ℓ−6)+24, c(ℓ) = 4(ℓ−1)−c(ℓ−6) (3.58)

We can now recursively work out the ranges for any given ℓ= 6r,6r+2 starting from the
known ranges for ℓ= 0,2 [1, 25]:

ℓ= 0 : c(ℓ=0) ∈ (0,8)

ℓ= 2 : c(ℓ=2) ∈ (16,24)
(3.59)

and applying all the possibilities above subject to the constraint (3.57). We find:9

ℓ= 6 : c(ℓ=6) ∈ (24,32)

ℓ= 8 : c(ℓ=8) ∈ (16,24) ∪ (40,48)

ℓ= 12 : c(ℓ=12) ∈ (24,32) ∪ (48,56)

ℓ= 14 : c(ℓ=14) ∈ (28,36) ∪ (40,48) ∪ (64,72)

(3.60)

9For ℓ = 6, we rule out the case: c(ℓ=6) = 20−c(ℓ=0), which in turn implies c(ℓ=6) ∈ (12,20), by requiring
the admissibility of m

(6)
k , for higher oders in k ∼ 2000.
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Using (3.58) for ℓ= 6,8,12,14, we get the following admissible sets for the above ℓ values:

c(ℓ=6) ∈
{122

5 ,25,26, 134
5 ,28, 146

5 ,30,31, 158
5

}
c(ℓ=8) ∈

{82
5 ,17,18, 94

5 ,20, 106
5 ,22,23, 118

5

}
∪
{202

5 ,41,42, 214
5 ,44, 226

5 ,46,47, 238
5

}
c(ℓ=12) ∈

{122
5 ,25,26, 134

5 ,28, 146
5 ,30,31, 158

5

}
∪
{242

5 ,49,50, 254
5 ,52, 266

5 ,54,55, 278
5

}
c(ℓ=14) ∈

{142
5 ,29,30, 154

5 ,32, 166
5 ,34,35, 178

5

}
∪
{202

5 ,41,42, 214
5 ,44, 226

5 ,46,47, 238
5

}
∪
{322

5 ,65,66, 334
5 ,68, 346

5 ,70,71, 358
5

}
(3.61)

Let us digress a bit and conclude this sub-section with an observation regarding the
modular data for 2-character admissible solutions. Using eqs. (3.56), and the admissibility
range for (2,0) and (2,2) solutions, we note that for any ℓ= 6r, or 6r+2 we have c(ℓ) ={
n+c(ℓ=0),m+c(ℓ=2)

}
, where n,m are non-negative integers (as ℓ is a non-negative integer).

Since 5c(ℓ=0) and 5c(ℓ=2) are known to be integers, the above observation implies that 5c(ℓ)

is also an integer. For ℓ= 6r+4, we already know that χ(ℓ=6r+4) = j
1
3χ(ℓ=6r) and hence

5c(ℓ=6r+4) is also an integer. It follows that 5c is an integer for any admissible (2, ℓ)
solution. This fact was first noted in [43] where the result was derived using representation
theory of PSL(2,Z). Here we have derived it using just the MLDE approach. Similar
results about the modular data for n-character admissible solutions with n= 3,4,5 have
been obtained in [13]. It is worth exploring if those results can also be derived within the
MLDE approach.

4 Detailed solution for the case of one movable pole

With the understanding of this system that we have described above, it is relatively
straightforward to directly find the most general admissible solutions of the MLDE in
the case ℓ= 6, where there is one movable pole p1 and one accessory parameter. We first
present the solution and then examine its relation to the quasi-character approach.

We will study the (2,6) case in detail, with some formulae reserved for appendix C.2,
while a similar analysis for the (2,8) case can be found in appendix D. For future use, a re-
view of the Frobenius solution for the (2,0) and (2,2) MLDEs is presented in appendix C.1.
This contains formulae that will be needed below.

4.1 Solving the MLDE with one movable pole

In this sub-section we will adapt the various elements of the theory of MLDEs developed
so far into an organised method to solve them. This method involves incorporation of the
accessory equation into the solution from the outset. It allows us, as we will see, to solve
the MLDE in the present case completely and thereby derive features of the solution that
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were suggested by quasi-character theory [6]. The (2,6) MLDE in the τ -plane is:(
D2+ E2

4 E6
E3

4−p1 ∆
D+α0α1E4(E3

4−b4,1 ∆)
E3

4−p1 ∆

)
χ(τ) = 0. (4.1)

In this form, we have three parameters, the rigid parameter α0α1 and two non-rigid param-
eters, the movable pole p1 and the accessory parameter b4,1. We use the first three orders
of the Frobenius solution as applied to the identity character. At leading order, we have
the indicial equation which determines the rigid parameter in terms of the central charge,
and at the second and third order we have the following:

α0α1 = c(c−20)
576 , (4.2)

m
(6)
1 = f1(c,p1, b4,1) (4.3)

m
(6)
2 = f2(c,p1, b4,1) (4.4)

Here m(6)
1 and m

(6)
2 are the Fourier coefficients of the identity character. The superscript

(6) indicates that this is of the (2,6) solution. The explicit forms of f1(c,p1, b4,1) and
f2(c,p1, b4,1) are given in (C.11) and (C.12).

In the next step, one solves for the three parameters of the MLDE in terms of objects
associated to the identity character, namely the central charge c and the Fourier coefficients
m

(6)
1 and m(6)

2 . This has already been done for α0α1 in (4.2). For the remaining parameters
we obtain:

p1 = f3(c,m(6)
1 ,m

(6)
2 ) (4.5)

b4,1 = f4(c,m(6)
1 ,m

(6)
2 ) (4.6)

The explicit expressions for the right hand sides can be found in (C.13) and (C.14). We
note that both p1 and b4,1 are rational functions of m(6)

1 and m
(6)
2 with coefficients being

rational functions of c. In particular, we see that the movable pole in the (2,6) solution is
rational, as already noted in [27]. Later we will discuss the general version of this statement.

The next step is to invoke the accessory equations (3.33), insert the values of p1 and
b4,1, previously determined in (4.5) and (4.6), and solve for m(6)

2 in terms of m(6)
1 and c.

Remarkably, we get the following linear equation in m
(6)
1 :

m
(6)
2 = A2(c)+B2(c) m(6)

1 (4.7)

where A2(c) and B2(c) are given in (C.15). Consulting (C.5) we immediately find a relation
between the coefficient B2(c) above, and the degeneracy for the (2,0) MLDE solution at a
central charge c−24:

B2(c) =m
(0)
1 (c−24) (4.8)

Some additional calculation shows that:

A2(c) =m
(0)
2 (c)−m(0)

1 (c−24)m(0)
1 (c) (4.9)
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Thus (4.7) is the same as:

m
(6)
2 =m

(0)
2 (c)+m(0)

1 (c−24) (m(6)
1 −m(0)

1 (c)). (4.10)

At the next stage, we insert (4.10) in (4.5) and (4.6) to obtain:

p1 = f5(c,m(6)
1 ) (4.11)

b4,1 = f6(c,m(6)
1 ) (4.12)

The explicit expressions for the right hand sides are given in (C.16) and (C.17). These
equations now have a nice geometrical interpretation. The space of MLDE parameters is
three dimensional, co-ordinatized by α0α1 (or, via (4.2), the central charge c), p1 and b4,1.
For a fixed central charge c, we have the p1−b4,1 plane. The algebraic variety defined by the
accessory equation (3.33) is a hyperbola in this plane and the equations (4.11) and (4.12)
are its parametric equations with m

(6)
1 serving as a parameter on the curve.

We carry on solving the MLDE to higher order. At the next order, after using (4.10)
we obtain the following:

m
(6)
3 =A3(c)+B3(c) m(6)

1 (4.13)

where A3(c) and B3(c) are given in (C.18). It is again remarkable that m(6)
3 has a linear

dependence on m
(6)
1 . In the same way as was done above, one shows that m(6)

3 can be
written in terms of the (2,0) solution as follows:

m
(6)
3 =m

(0)
3 (c)+m(0)

2 (c−24) (m(6)
1 −m(0)

1 (c)), (4.14)

which is very similar to the form of m(6)
2 in (4.10).

This motivates us to propose the relation:

m
(6)
k =m

(0)
k (c)+m(0)

k−1(c−24) (m(6)
1 −m(0)

1 (c)). (4.15)

We have performed a computer check of this phenomenon to order 8. We expect it to hold
for all k≥ 2 and hope to provide a proof in future work.

Notice that we can extend (4.15) to include k= 1. When we plug in k= 1 in (4.15) we
get m(6)

1 =m
(0)
1 (c)+m(0)

0 (c−24)(m(6)
1 −m(0)

1 (c)) which is an identity after noting m
(0)
0 (c−

24) = 1.
Now (4.15) can be converted into an equation relating the identity characters at c and

c−24. We then compute the non-identity character of the (2,6) MLDE and find that it
satisfies the same equation, leading to:

χ
(6)
i =χ

(0)
i (c)+(m(6)

1 −m(0)
1 (c))χ(0)

i (c−24), i= 0,1 (4.16)

We should emphasize that (4.16) holds for all Frobenius solutions of the (2,6) MLDE
without any qualifiers such as admissibility, integrality etc: every Frobenius solution of the
(2,6) MLDE can be written as a sum of two Frobenius solutions of (2,0) MLDE.
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Now we impose admissibility. For this, we impose integrality of the m(6)
k s and each

of (4.15), for k≥ 2, leads to a Diophantine equation, after defining N = 5c. The first two are

N4+(2m(6)
1 −427)N3+(−656m(6)

1 +2m(6)
2 +41140)N2

+(71480m(6)
1 −560m(6)

2 +1124700)N+37400m(6)
2 −2587200m(6)

1 = 0
(4.17)

2N6+(3m(6)
1 −1308)N5+(274648−1665m(6)

1 )N4

+(369774m(6)
1 −6m(6)

3 −18801040)N3+(−41075340m(6)
1 +3060m(6)

3 +453302400)N2

+(2282045400m(6)
1 −498600m(6)

3 +22315264000)N+25806000m(6)
3 −50725224000m(6)

1 = 0
(4.18)

In particular this shows directly that N = 5c is an integer. Now, inserting the admissible
set of central charges (3.61) into the above equations, we output all the possible admissible
solutions. We also verify integrality of the non-identity character up to the same order.
The result can then be computed up to very high orders (q2000 in this case) and verified to
be admissible. We find an infinite family of admissible solutions for each of the following
central charges:

c= 122
5 ,25,26, 134

5 ,28, 146
5 ,30,31, 158

5 (4.19)

labelled by the free integer m(6)
1 ≥ 0.

We now study the other MLDE with a single movable pole, the (2,8) MLDE:(
D2+ 4

3
E6
(
E3

4−
p1
4 ∆

)
E4
(
E3

4−p1 ∆
)D+α0α1E

2
4
(
E3

4−b4,1 ∆
)

E4
(
E3

4−p1 ∆
) )

χ(τ) = 0 (4.20)

In this form, we have three parameters, the rigid parameter α0α1 and two non-rigid param-
eters, the movable pole p1 and the accessory parameter b4,1. We use the first three orders
of the Frobenius solution as applied to the identity character. At leading order, we have
the indicial equation which determines the rigid parameter in terms of the central charge,
and at the second and third order we have the following:

α0α1 = c(c−28)
576 , (4.21)

m
(8)
1 = f̃1(c,p1, b4,1) (4.22)

m
(8)
2 = f̃2(c,p1, b4,1) (4.23)

Here m(8)
1 and m

(8)
2 are the Fourier coefficients of the identity character. The superscript

(8) indicates that this is of the (2,8) solution. The explicit forms of f̃1(c,p1, b4,1) and
f̃2(c,p1, b4,1) are given in (C.20) and (C.21).

In the next step, one solves for the three parameters of the MLDE in terms of objects
associated to the identity character, namely the central charge c and the Fourier coefficients
m

(8)
1 and m(8)

2 . This has already been done for α0α1 in (4.21). For the remaining parameters
we obtain:

p1 = f̃3(c,m(8)
1 ,m

(8)
2 ) (4.24)

b4,1 = f̃4(c,m(8)
1 ,m

(8)
2 ) (4.25)
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The explicit expressions for the right hand sides can be found in (C.22) and (C.23). We
note that both p1 and b4,1 are rational functions of m(8)

1 and m
(8)
2 with coefficients being

rational functions of c. In particular, we see that the movable pole in the (2,8) solution is
rational.

The next step is to invoke the accessory equation (D.4), insert the values of p1 and
b4,1, previously determined in (4.24) and (4.25), and solve for m(8)

2 in terms of m(8)
1 and c.

Similar to the (2,6) computation, remarkably, we get the following linear equation in m(8)
1 :

m
(8)
2 =m

(2)
2 (c)+m(2)

1 (c−24) (m(8)
1 −m(2)

1 (c)). (4.26)

At the next stage, we insert (4.26) in (4.24) and (4.25) to obtain:

p1 = f̃5(c,m(8)
1 ) (4.27)

b4,1 = f̃6(c,m(8)
1 ) (4.28)

The explicit expressions for the right hand sides are given in (C.24) and (C.25). These
equations now have a geometrical interpretation, similar to the (2,6) case.

We carry on solving the MLDE to higher order and obtain:

m
(8)
k =m

(2)
k (c)+m(2)

k−1(c−24) (m(8)
1 −m(2)

1 (c)). (4.29)

We have performed a computer check of this phenomenon to order 8. We expect it to hold
for all k≥ 2 and hope to provide a proof in future work.

We can extend (4.29) to include k= 1. When we plug in k= 1 in (4.29) we get m(8)
1 =

m
(2)
1 (c)+m(2)

0 (c−24)(m(8)
1 −m(2)

1 (c)) which is an identity after noting m(2)
0 (c−24) = 1.

Now (4.29) can be converted into an equation relating the identity characters at c and
c−24. We then compute the non-identity character of the (2,8) MLDE and find that it
satisfies the same equation, leading to:

χ
(8)
i =χ

(2)
i (c)+(m(8)

1 −m(2)
1 (c))χ(2)

i (c−24), i= 0,1 (4.30)

We should emphasize that (4.30) holds for all Frobenius solutions of the (2,8) MLDE
without any qualifiers such as admissibility, integrality etc: every Frobenius solution of the
(2,8) MLDE can be written as a sum of two Frobenius solutions of (2,2) MLDE.

Now we impose admissibility. For this, we impose integrality of the m(8)
k s and each

of (4.29), for k≥ 2, leads to a Diophantine equation, after defining N = 5c. The first two are

N4+(2m(8)
1 −755)N3+(2m(8)

2 −1024m(8)
1 +190108)N2

+(162200m(8)
1 −640m(8)

2 −15965940)N−8174400m(8)
1 +49400m(8)

2 = 0
(4.31)

2N6+(3m(8)
1 −2292)N5−(2709m(8)

1 −983128)N4

+(904050m(8)
1 −6m(8)

3 −193838000)N3−(144191100m(8)
1 −3420m(8)

3 −17557104000)N2

+(11171925000m(8)
1 −628200m(8)

3 −686724352000)N−339388920000m(8)
1 +37050000m(8)

3 = 0
(4.32)
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In particular this shows directly that N = 5c is an integer. Now, inserting the ad-
missible set of central charges (3.61) into the above equations, we output all the possible
admissible solutions. We also verify integrality of the non-identity character up to the same
order. The result can then be computed up to very high orders (q2000 in this case) and
verified to be admissible. We find an infinite family of admissible solutions for each of the
following central charges:

c= 82
5 ,17,18, 94

5 ,20, 106
5 ,22,23, 118

5 (4.33)

labelled by the free integer m(8)
1 ≥ 0.

4.2 Brief review of quasi-characters

A construction of admissible characters for all two-character CFT was presented in [6].10

This proposal did not use MLDEs with movable poles (i.e. ℓ≥ 6) that we are using here,
rather it only made use of solutions to the MMS equation, which has ℓ= 0, and a similar
equation with ℓ= 2. Now we are in a position to compare our results, obtained from
the ℓ= 6 MLDE, with this approach. For this we first briefly review the quasi-character
approach and its application to the (2,6) case (for a detailed exposition with references,
see [6]). Then we will compare the results of the present paper with it.

Ref. [6] started from the observation that although the (2,0) MLDE — the MMS equa-
tion — has only finitely many admissible solutions, it has infinitely many more solutions
having all integral Fourier coefficients of which some are negative. Thus these are special,
although not admissible, solutions. They occur at specific values of the central charge c.11

There are families of such solutions with the following central charges, parametrised by an
integer n:

Lee-Yang family: c= 2(6n+1)
5 , n ̸= 4 mod 5

A1 family: c= 6n+1
A2 family: c= 4n+2, n ̸= 2 mod 3
D4 family: c= 12n+4

(4.34)

Of these, the central charges

c= 2
5 ,1,2,

14
5 ,4,

26
5 ,6,7,

38
5 (4.35)

correspond to admissible characters12 with ℓ= 0. Together with a c= 8 solution that cor-
responds to a one-character solution with a spurious second character, hence is not in the
above set, these make up the so-called “MMS series” [1].

10There is an earlier construction of VVMF due to Bantay and Gannon [33, 34], however, that requires
advance knowledge of the possible modular data while here we do not make this assumption. Also here, as
part of admissibility, we always impose the requirement that the leading term of the identity character is
unity.

11Although these solutions do not describe CFT, they can still be assigned a value of c by writing their
leading critical exponent α0 as − c

24 .
12These all correspond to CFTs, except for the first and last cases that are “Intermediate Vertex Operator

Algebras” [44].
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While all such quasi-characters have ℓ= 0 and solve the MMS equation ((2,0) MLDE),
they do so for different values of the parameter in the MLDE. Thus their linear combinations
do not solve the same equation, and in general they would not be closed under modular
transformations. However if we take linear combinations of r+1 quasi-characters such that
successive terms differ in central charge by 24 (they automatically then belong to the same
family in the list above), it can be shown that the modular transformations of each term
are the same, and that the linear combination satisfies an MLDE for which the Wronskian
index is 6r. It was argued in [6] that this process generates all (2, ℓ) admissible characters
for every ℓ= 6r.

Quasi-characters with ℓ= 2, relevant to the ℓ= 6r+2 case, have also been constructed [6]
and we review them in appendix D. On the other hand the ones with ℓ= 4, relevant to
ℓ= 6r+4 are simply j

1
3 times the ℓ= 0 quasi-characters listed above. Thus all possible

values of ℓ have been covered.
Now we return to the case ℓ= 6. Here one must add precisely two ℓ= 0 quasi-characters

differing in central charge by 24. We take one of these to be any of the MMS solutions,
denoted χA

i (where A stands for “admissible”), whose central charge lies in the MMS
list (4.35), and the other to be the quasi-character χQ

i with central charge 24 higher. We
denote the latter central charge by c and the former by c−24. Thus we form the sum:

χQ
i (q)+N1χ

A
i (q) (4.36)

This sum has the following properties: (i) it has central charge c and satisfies (2.17) with
Wronskian index 6, (ii) the negative degeneracies of the quasi-character in the sum are
potentially cancelled by the positive terms in the admissible character, depending on the
value of N1. Thus the sum is admissible for N1 greater than some lower bound, which
varies from case to case.

In view of completeness of the above approach, one therefore predicts that all (2,6)
admissible characters (and hence all (2,6) CFT) have central charges:

c= 122
5 ,25,26, 134

5 ,28, 146
5 ,30,31, 158

5 (4.37)

This precisely coincides with (4.19) except for the two end-points. As already noted below
that equation, those correspond to one-character theories that show up as two-character
MLDE solutions with one spurious character, which we ignore.

Thus we have found perfect agreement between the central charges arising in the direct
solution of the (2,6) MLDE for admissible characters in Sub-section 4.1, and the central
charges found from the quasi-character construction of the same admissible set that does
not use the (2,6) MLDE at all. We now go on to make a more detailed comparison of the
results of the two approaches.

4.3 Comparison of quasi-character and MLDE results

In this sub-section we confront the explicit admissible MLDE solutions described above
with the quasi-character approach. The former approach has one free parameter, which
we can take to be p1 describing the location of the zero of the Wronskian, or the Fourier
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coefficient m1 representing the degeneracy of the first excited state in the identity module.
The two are related by (4.11). The latter approach has a free parameter N1, that also
determines the first excited state degeneracy m1. Thus p1, the location of the movable
pole, must be a function of the integer N1. We see that admissibility quantises the location
of the movable pole and also that the quasi-character parameter N1 is the natural integer
in terms of which this quantisation can be expressed. We now exhibit these relations in all
the cases. We will see that all solutions lie on one of the two branches of the hyperbola
in (3.33), while the other branch actually corresponds to negative values of m1.

Admissible Solutions (i).

c= 122
5 , m1 ≥ 0, m2 = 169885+m1, m3 = 19870140+m1 (4.38)

For this central charge, from eqs. (4.11)–(4.12) we get p1 and b4,1 as functions of m1:

p1 = −(m1−3538)(m1−658)
6(m1+244) (4.39)

b4,1 = −(m1−354898)(m1−3538)
366(m1+244) (4.40)

This is also the solution obtained by the quasi-character method

χLY
n=10+N1χ

LY
n=0 (4.41)

with m1 =N1−244.

Admissible Solutions (ii).

c= 25, m1 ≥ 0, m2 = 143375+3m1, m3 = 18616375+4m1 (4.42)

In this case we have:

p1 = −(m1−2875)(m1−571)
5(m1+245) (4.43)

b4,1 = −(m1 −118075)(m1 −2875)
125(m1 +245) (4.44)

This is also the solution obtained by the quasi-character method

χA1
n=4+N1χ

A1
n=0 (4.45)

with m1 =N1−245.

Admissible Solutions (iii).

c= 26, m1 ≥ 0, m2 = 118105+8m1, m3 = 18305456+17m1 (4.46)

In this case we have:

p1 = −(m1−2210)(m1−482)
4(m1+247) (4.47)

b4,1 = −(m1−47138)(m1−2210)
52(m1+247) (4.48)
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This is also the solution obtained by the quasi-character method:

χA2
n=6+N1χ

A2
n=0 (4.49)

with m1 =N1−247.

Admissible Solutions (iv).

c= 134
5 , m1 ≥ 0, m2 = 106731+14m1, m3 = 19112822+42m1 (4.50)

In this case we have:

p1 = −2(m1−1876)(m1−436)
7m1+1742 (4.51)

b4,1 = −2(m1−1876)(7m1−206092)
67(7m1+1742) (4.52)

This is also the solution obtained by the quasi-character method:

1
7
(
χLY

n=11+N1χ
LY
n=1

)
(4.53)

This is a curious case, already remarked upon in section 5.2 of [6]. What happens here is
that χLY

n=11 has an integral q-expansion only if the first term of the identity character is
normalised to 7, rather than 1. This is the normalisation chosen above. The first excited
state “degeneracy” of this quasi-character is −1742 while all others are positive. Since the
identity character of the sum will be considered admissible only when its leading term is 1,
we must divide the sum by 7 as shown above. As a result the degeneracy of the first excited
state is m1 = N1−1742

7 . This can be any integer, as long as we choose N1 to be 1742 plus
a multiple of 7. With this choice, the sum in (4.53) has all integral coefficients even after
dividing by 7, which is a miracle of sorts since it means all the infinitely many coefficients
become multiples of 7 even though neither of the terms in the sum has this property.

Admissible Solutions (v).

c= 28, m1 ≥ 0, m2 = 97930+28m1, m3 = 21891520+134m1 (4.54)

In this case we have:

p1 = −(m1−1540)(m1−388)
3(m1+252) (4.55)

b4,1 = −(m1−17668)(m1−1540)
21(m1+252) (4.56)

This is also the solution obtained by the quasi-character method

χD4
n=2+N1χ

D4
n=0 (4.57)

with m1 =N1−252.
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Admissible Solutions (vi).

c= 146
5 , m1 ≥ 0, m2 = 96433+52m1, m3 = 27102272+377m1 (4.58)

p1 = −3(m1−1314)(m1−354)
4(2m1+511) (4.59)

b4,1 = −3(m1−1314)(13m1−157242)
292(2m1+511) (4.60)

This is also the solution obtained by the quasi-character method

1
2
(
χLY

n=12+N1χ
LY
n=2

)
(4.61)

with m1 = 1
2(N1−511). Here the quasi-character, when normalised to be integral, starts

with 2. For m1 to be integral, we must choose N1 to be an odd integer.

Admissible Solutions (vii).

c= 30, m1 ≥ 0, m2 = 99675+78m1, m3 = 32782900+729m1 (4.62)

p1 = −2(m1−1200)(m1−336)
5(m1+258) (4.63)

b4,1 = −2(m1−9840)(m1−1200)
25(m1+258) (4.64)

This is also the solution obtained by the quasi-character method

χA2
n=7+N1χ

A2
n=1 (4.65)

with m1 =N1−258.

Admissible Solutions (viii).

c= 31, m1 ≥ 0, m2 = 110980+133m1, m3 = 44696513+1673m1 (4.66)

p1 = −3(m1−1085)(m1−317)
7m1+1829 (4.67)

b4,1 = −3(m1−1085)(7m1−55211)
31(7m1+1829) (4.68)

This is also the solution obtained by the quasi-character method

χA1
n=5+N1χ

A1
n=1 (4.69)

with m1 = 1
7(N1−1829) and N1 must be taken to be 1829 plus a multiple of 7.
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Admissible Solutions (ix).

c= 158
5 , m1 ≥ 0, m2 = 124741+190m1, m3 = 56937196+2831m1 (4.70)

p1 = −4(m1−1027)(m1−307)
9m1+2370 (4.71)

b4,1 = −4(m1−1027)(19m1−133273)
237(3m1+790) (4.72)

This is also the solution obtained by the quasi-character method

χLY
n=13+N1χ

LY
n=3 (4.73)

with m1 = 1
3(N1−790) and N1 has to be chosen to be 790 plus a multiple of 3.

4.4 Analysis of the accessory equation

Let us now analyse the accessory equation (3.33) in the case of ℓ= 6 in some more detail.
This equation can be re-written as a quadratic:

p2
1+α0α1(p1−b4,1)2− 5

6p1(p1−b4,1)−1728p1+576(p1−b4,1) = 0 (4.74)

As noted below (3.33), this is a hyperbola for all values of α0α1 except when α0α1 = 25
144 ,

corresponding to c= 10, when it degenerates to a parabola. Remaining away from c= 10,
we now analyse the hyperbola in some detail. We will see, among other things, that all
(2,6) solutions with N1> 0 lie on one branch of the hyperbola, with the other branch
corresponding to negative values of N1.

To illustrate this, we pick an example. Consider the (2,6) solution with c= 25. In this
case, we have: N1 =m1+245 (see previous section). For this, the hyperbola is given below.
In this case, from (4.43) and (4.44), we get,

b4,1 =−(N1−3120)(N1−118320)
125N1

,

p1 =−(N1−816)(N1−3120)
5N1

.

(4.75)

This gives, b4,1
p1

= N1−118320
25(N1−816) . The asymptotes to the above hyperbola are: b4,1 =−89856

25 +
29
5 p1 (drawn in purple) and b4,1 = 117504

125 + 1
25p1 (drawn in pink). Note that, the origin lies

on the lower branch. This can be seen from the fact that when N1 → 0, we have b4,1
p1

→ 29
5

(whose slope is equal to the purple asymptote), which intersects the lower branch at the
origin. This means that the point N1 → 0 lies on the bottom end of the lower branch. Also,
note that when N1 →∞, we have b4,1

p1
→ 1

25 , whose slope is equal to the pink asymptote.
This means that the point N1 →∞ lies on the left end of the lower branch.

The lower branch of the hyperbola corresponds to characters with N1> 0 and the upper
branch corresponds to characters with N1< 0. To see this note the following argument.
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Figure 1. Hyperbola in the b4,1 vs p1 plane corresponding to the (2,6) solution with c= 25.

Using (4.75), we can see that both b4,1 and p1 can only be positive (which happens on the
upper branch) if N1< 0. On the contrary, both b4,1 and p1 can never be positive (which
happens on the lower branch) if N1> 0.

N1 increases as we trace the lower branch from below. The red dot on the lower
branch is where m1 = 0. Starting from this red dot and tracing towards the left end of the
lower branch we obtain all the admissible solutions. The green dot on the lower branch
corresponds to the point where m1 = 571 implying N1 = 816. This in turn implies p1 = 0
and b4,1 ̸= 0. This is a factorised solution of the form j

1
3χ(2,2) where χ(2,2) is a (2,2) CFT

with c= 17 (see [25]).
In the next plot, we have all the hyperbolas corresponding to each of the (2,6) solutions

with central charges in the admissibility range: 24<c(ℓ=6)< 32. As explained in the c= 25
example, for each hyperbola, we have the characters with N1> 0 on the lower branches
and N1< 0 on the upper branches.

Now let us consider (2,8) solutions. The accessory equation now becomes (see (3.53)),

p2
1+α0α1(p1−b4,1)2− 7

6p1(p1−b4,1)−1728p1+1152(p1−b4,1) = 0 (4.76)

Let us consider the solution with c= 23. In this case, we have: N1 = m1−69
5 (see

section D in appendix: case viii) with c= 23). For this, the hyperbola is given below.
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Figure 2. All hyperbolas in the b4,1 vs p1 plane corresponding to (2,6) solutions with central
charges: 24<c(ℓ=6) < 32.

In this case, from (D.24) and (D.25), we get,

b4,1 =−(5N1−48944)(5N1+4048)
345N1

,

p1 = (5N1−560)(5N1+4048)
15N1

.

(4.77)

This gives, b4,1
p1

=− 5N1−48944
23(5N1−560) . The asymptotes to the above hyperbola are: b4,1 =−16128

23 −
1
23p1 (drawn in purple) and b4,1 = 25344

5 − 19
5 p1 (drawn in pink).

The red dot on the lower branch is where m1 = 0, impying N1 =−69
5 . Starting from

this red dot and tracing towards the bottom end of the lower and then continuing from the
top end of the upper branch we obtain all the admissible solutions. The green dot on the
upper branch corresponds to the point where m1 = 629 implying N1 = 112. This in turn
implies p1 = 0 and b4,1 ̸= 0. This is a factorised solution of the form j

2
3χ(2,0) where χ(2,0) is

a (2,0) MMS CFT with c= 7.
So, we see that in the (2,8) case, admissible solutions lie on both the branches while

in the (2,6) case, admissible solutions appear only in the lower branch.
In the next plot, we have all the hyperbolas corresponding to each of the (2,8) solutions

with central charges in the admissibility range: 16<c(ℓ=8)< 24.
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Figure 3. Hyperbola in the b4,1 vs p1 plane corresponding to the (2,8) solution with c= 23.

5 Discussion of the case of two movable poles

We now turn to the case of ℓ= 12. This is important because there are two independent
poles p1,p2 and correspondingly two accessory parameters. A number of novel features will
emerge in this setting that were not visible for ℓ< 12.

5.1 The (2,12) MLDE and constraints on accessory parameters

The (2,12) MLDE in the τ plane is given by

(
D2+E2

4E6

( 1
E3

4−p1∆
+ 1
E3

4−p2∆

)
D+α0α1E4 (E3

4−b4,1 ∆)(E3
4−b4,2 ∆)

(E3
4−p1 ∆)(E3

4−p2 ∆)

)
χ(τ) = 0

(5.1)
In the j-coordinate, the same MLDE is given by:

(
∂2

j +
( 2

3j+ 1
2(j−1728)−

1
(j−p1)−

1
(j−p2)

)
∂j + α0α1(j−b4,1)(j−b4,2)

j(j−1728)(j−p1)(j−p2)

)
χ(j) = 0

(5.2)

– 37 –



J
H
E
P
1
2
(
2
0
2
3
)
1
4
3

-20 000 -10 000 0 10 000 20 000

-30 000

-20 000

-10 000

0

10 000

20 000

30 000

p1

b 4
,1

c=
82

5
c=17 c=18

c=
94

5
c=

106

5
c=20

c=22 c=23 c=
118

5

Figure 4. All hyperbolas in the b4,1 vs p1 plane corresponding to (2,8) solutions with central
charges: 16<c(ℓ=8) ≤ 24.

The accessory equations for ℓ= 12 can be read off from (3.45) and after some rationalisation
of denominators they reduce to:

576− 5p1
6 +α0α1 (p1−b4,1)(p1−b4,2)

p1−p2
−p1 (p1−1728)

(
2

p1−p2
− 1
p1−b4,1

− 1
p1−b4,2

)
= 0

576− 5p2
6 +α0α1 (p2−b4,1)(p2−b4,2)

p2−p1
−p2 (p2−1728)

(
2

p2−p1
− 1
p2−b4,1

− 1
p2−b4,2

)
= 0

(5.3)

When one examines the coefficient functions of the MLDEs, both in the τ -space and
the j-space, one finds that the poles and the accessory parameters appear in symmetric
combinations. Hence, we work with the symmetric parameters:

P1 ≡ p1+p2, P2 = p1p2

B1 ≡ b4,1+b4,2, B2 = b4,1b4,2
(5.4)

More generally, for ℓ= 6r, we would have Pk,Bk with k= 1,2, · · ·r, where Pk denotes the kth
symmetric polynomial in the movable poles and Bk denotes the kth symmetric polynomial
in the accessory parameters. We will see below that these symmetric parameters always
turn out to be rational for admissible character solutions, while the individual poles and
accessory parameters need not be.
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Now, the sum and difference of the two equations in (5.3) can be written in terms of
the symmetric parameters:

(P1−B1)(2P2+2B2−P1B1)
P 2

2 +P2(B2
1−P1B1−2B2)+B2(P 2

1 −P1B1+B2)

+α0α1

(1728B2+B1P2−1728P2−B2P1
P2(P2−1728P1+17282)

)
+
(

576(P 2
1 −2P2)− 5

6P1P2−1728·576P1+2880P2

P2(P2−1728P1+17282)

)
= 0

α0α1

(
2P 2

2 +2·1728P2B1+B2P
2
1 −1728P1(P2+B2)−P2(P1B1+2B2)

P2(P2−1728P1+17282)

)

+(P 2
1 −4P2)

(
2P2−P1B1+B2

1−2B2
P2B1(P1−B1)+2P2B2−P 2

2 −B2(P 2
1 −P1B1+B2)

)

+(P 2
1 −4P2)

(
576·1728−576P1+ 5

6P2

P2(P2−1728P1−17282)

)
= 4 (5.5)

The accessory equations for the more general case for ℓ= 6r ((3.44)) can also similarly be
recast in terms of the Pk’s and the Bk’s. Although these look more complicated than (5.3),
we will soon see that the Pk and Bk are real while the same does not hold for the pI , b4,I .

Now, we will discuss in general terms how one solves the (2,12) MLDE. We start out as
we did for the (2,6) MLDE. The first step is to obtain the first few orders of the Frobenius
solution for the identity character. Here we have four parameters and hence we need four
orders beyond the indicial equation. Thus there are five equations, the analogues of (4.2)–
(4.4): the first one is simply α0α1 = c(44−c)

576 and four others for the Fourier coefficients
of the identity character m1,m2,m3,m4 (to be consistent with our earlier notation these
should have a superscript (12) to denote the ℓ= 12 case, but we drop it to simplify the
notation). These are four linear equations for the parameters P1,P2,B1,B2 and we can
solve them and obtain the analogues of (4.5)–(4.6). Each of the symmetric parameters is a
rational function of m1,m2,m3,m4 with coefficients being rational functions of c. Hence we
have shown, as promised, that the symmetric parameters are rational. This is the correct
generalisation of the observation in [27] that a single movable pole is rational.

Thus there are three possibilities for the movable poles: (i) they are both rational,
(ii) they are both real and irrational and lie in a quadratic field extension of the rationals,
(iii) they are complex conjugates of each other. The accessory parameter follow the same
pattern. Notice that the possibility of complex or real irrational poles/accessory parameters
occurs for the first time at ℓ= 12.

For the general case of ℓ= 6r the analogs of (4.2)–(4.4) would be 2r+1 equations
α0α1 = c(4(6r−1)−c)

576 and 2r more for the Fourier coefficients m1, . . .m2r. Similar to the ℓ= 6
and ℓ= 12 cases, we would solve these equations for the 2r variables Pk,Bk and solve for
each of them as a rational function of m1, . . .m2r with coefficients being rational functions
of c. Again, we can conclude that the Pk and the Bk are rational numbers. Thus, any given
movable pole is either complex (and occurs with its conjugate) or is real irrational (and
occurs with its Galois conjugates) or is rational, and the same for any accessory parameter.
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The next step is to bring in the accessory equations (5.5). There are two of them and
we substitute into them the symmetric parameters in terms of their rational expressions
(of m1,m2,m3,m4), leading to two equations that contain only c and the m1,m2,m3,m4.
We then expect to solve for m3,m4 in terms of m1,m2 and c. From the previous example,
our expectation is that the dependence will be linear in m1 and m2, leading to an analogue
of (4.7). We would then solve for higher Fourier coefficients mk,k≥ 5 and expect to obtain
a linear dependence in m1 and m2 thus making contact with the quasi-character theory.
Unfortunately this procedure becomes extremely tedious, so we employ an alternate route
below.

5.2 (2,12) admissible characters

We will use quasi-character theory [6] to obtain (2,12) solutions and make contact with
the above analysis. In general terms, quasi-character theory informs us that (2,6r) ad-
missible character solutions can be found by taking r+1 summands, each of which is a
(2,0) quasi-character. The summation will contain r quasi-character parameters, which
are non-negative and subject to further restrictions. The precise details and systematics of
this procedure has never been worked out for r≥ 2, and will be addressed in [45]. Here we
will content ourselves with working out one example in full detail.

(2,12) solution with c = 25,h = 1
4 . According to quasi-character theory, we can pick

three (2,0) quasi-characters in the A1 class and sum them to obtain a (2,12) solution:
c= 25,h= 1

4 in the following way:

χ=χA1
n=4+N1χ

A1
n=0+N2χ

A1
n=−4 (5.6)

where the n= 4 and n=−4 terms are quasi-characters (integral but not positive) while the
n= 0 term is an admissible character (for the A1,1 WZW model). The leading behaviour in
the q-series expansion of the identity character corresponds to c= 25 and that of the non-
identity character gives h= 1

4 . These numbers ensure that ℓ= 12. But it is not yet clear
that these are admissible characters. For that we examine the q-series. For the identity
character, we have

χA1
n=4;0+N1χ

A1
n=0;0+N2χ

A1
n=−4;0 =

q−
25
24
(
1+(−245+N1)q+(142640+3N1+26752N2)q2

+(18615395+4N1+1734016N2)q3+(837384535+7N1+46091264N2)q4+. . .
)

(5.7)

and for the non-identity character, we have

χA1
n=4;1+N1χ

A1
n=0;1+N2χ

A1
n=−4;1 =

q−
19
24
(
N2+(2N1−247N2)q+(565760+2N1−86241N2)q2

+(51745280+6N1−4182736N2)q3+(1965207040+8N1−96220123N2)q4+. . .
)

(5.8)

– 40 –



J
H
E
P
1
2
(
2
0
2
3
)
1
4
3

Requiring admissibility of the above q-series up to order q5, we find the following restrictions
on the quasi-character parameters N1 and N2.

N1 = 245+m1, N2 ≤
490+2m1

247 , m1 ∈Z≥0 (5.9)

(we have denoted the integer by m1 anticipating that it will be the degeneracy of the first
excited state in the identity character).

Let us consider the relations given in (5.9). The first expression relates the quasi-
character parameter N1 to m1 which is the dimension of the Kac-Moody algebra (if any) of
the final theory. On the other hand, the second relation serves as a restriction on N2 for any
fixed N1. This restriction will be modified at every order in q. So, to ascertain admissibility
of χ in (5.6), we need to look at the asymptotic growth of the coefficients in the q-series
of this character. This is done by considering the Rademacher expansion (see [46] and
appendix A of [6]). This assures us that the asymptotic growth of the negative-type quasi-
character, χA1

n=−4;1 is sub-leading as compared to that of the positive-type quasi-characters
χA1

n=4;1 and χA1
n=0;1. Thus, (5.6) will be an admissible character for all N1 satisfying (5.9),

i.e. N1 ≥ 245, and finitely many N2 satisfying some upper bound (not necessarily the one
in (5.9).

Quasi-character theory claims that the two non-negative integral q-series above with
c= 25,h= 1

4 are in fact (2,12) admissible characters. We will check this claim by showing
that they solve the (2,12) MLDE. In particular, first we will compute the point in param-
eter space where the solution (5.6) lives, in other words, we will determine the poles and
accessory parameters as functions of the quasi-character parameters N1 and N2. Then we
will show that this point satisfies the accessory equations (5.3) – (5.5).

For this, we substitute (5.6) into the MLDE (5.1). The two-derivative terms simplify
on using the fact that the summands in (5.6) are solutions to the (2,0) MLDE:

D2χA1
n=4 = 725

576E4χ
A1
n=4,

D2χA1
n=0 = 5

576E4χ
A1
n=0,

D2χA1
n=−4 = 437

576E4χ
A1
n=−4. (5.10)

The q-series of the MLDE, at the leading order for both the identity and non-identity
character, determines the rigid-parameter in (5.6) to be the expected α0α1 = 475

576 . To
obtain the poles and accessory parameters we consider the first and second order terms
in the q-series for the identity and non-identity characters. This gives us four equations
for the four variables (the two poles and the two accessory parameters). For the identity
character this results in:

898560+432N1−125P1−475B1 = 0 (5.11)

and

−155450880+51984N1+53932032N2+(572905+451N1)P1

+(469775−475N1)B1+725P2−125P 2
1 = 0 (5.12)
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For the non-identity character we find instead:

1440N1+612864N2+19N2P1−475N2B1 = 0 (5.13)

and

1466449920−468576N1−499484160N2+(1190N1+287603N2)P1

+(−950N1+470725N2)B1+437N2P2+475N2B2+19N2P
2
1 −475N2P1B1 = 0 (5.14)

Solving (5.11), (5.12), (5.13), (5.14), we obtain solutions for the symmetric parameters in
terms of the quasi-character parameters:

P1 = 1984N2+3N1N2−10N1

N2
, P2 = 8(816−N1+88N2)(3120−N1−1064N2)

N2

B1 = 650560N2+57N1N2+1250N1

475N2
B2 = 8(N1+1064N2−3120)(−5N1+38456N2+591600)

475N2
(5.15)

We see right away that the symmetric parameters are all rational.
The equations (5.16) give the point in the MLDE parameter space where the quasi-

character sum (5.6) lives. Now a necessary condition for this to be an admissible character
is that this point solves the accessory equations (5.3). We have checked that this is indeed
the case. Now, we know the exact (2,12) MLDE that the quasi-character sum (5.6) is
expected to solve, namely (5.1) with the parameters given by (5.16) and α0α1 = 475

576 . We
then just substitute the q-series expansions (5.7) and (5.8) and verify. We have done so
for high-enough order to convince us that the quasi-character sum (5.6) is indeed a (2,12)
admissible character for all values of N1,N2 satisfying (5.9).

Now we can solve for the poles and accessory parameters in terms of the symmetric
parameters, to find:

p1 = 1984N2+N1 (3N2−10)±
√
A

2N2
, p2 = 1984N2+N1 (3N2−10)∓

√
A

2N2

b4,1 = 650560N2+N1 (57N2+1250)±
√
B

950N2
, b4,2 = 650560N2+N1 (57N2+1250)∓

√
B

950N2
(5.16)

where

A = (N2−2)
(
4096N1N2+N2

1 (9N2−50)+512N2 (1463N2+19890)
)

B = (19N2+250)
(
−2723840N1N2+N2

1 (171N2+6250)−243200N2 (33649N2−115362)
)
.

(5.17)

This exemplifies our claim about the nature of movable poles and accessory parameters.
When A> 0 and is a perfect square, both the movable poles are rational. When A> 0 and
not a perfect square the poles are both real and irrational and lie in the field extension
Q[

√
A]. When A< 0, the movable poles are complex conjugates. Also when A= 0 (which

happens for N2 = 2) both poles coincide and we will discuss this in the next section.
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(2,12) solution with c = 31,h = 3
4 . Following the discussion of the previous subsection,

we can add three (2,0) quasi-characters in the A1 class to obtain a (2,12) solution: c=
31,h= 3

4 in the following way:

χ= 1
7
(
χA1

n=5+N1χ
A1
n=1+N2χ

A1
n=−3

)
(5.18)

where the n= 5 and n=−3 terms are quasi-characters while the n= 1 term is an admissible
character (for the E7,1 WZW model). Now let us consider the leading behaviour in the
q-series expansions. The identity character corresponds to c= 31 and that of the non-
identity character gives h= 3

4 . Using the Riemann-Roch relation (2.17), we see that these
numbers correspond to ℓ= 12. However, at this stage, it is not yet clear that the q-series
expansions are those of admissible characters. For that we examine the q-series. For the
identity character, we have

1
7
(
χA1

n=5;0+N1χ
A1
n=1;0+N2χ

A1
n=−3;0

)
= 1

7q
− 31

24
(
7+(N1−1829)q+(533603+133N1+39N2)q2

+(309815674+1673N1+1547N2)q3+. . .
)

(5.19)

and for the non-identity character, we have

1
7
(
χA1

n=5;1+N1χ
A1
n=1;1+N2χ

A1
n=−3;1

)
=

1
7q

− 13
24
(
N2+(56N1−377N2)q+(40641+968N1−22126N2)q2

+(4836279+7504N1−422123N2)q3+. . .
)

(5.20)

Requiring admissibility of the above q-series up to order q5, we find the following relations:

N1 = 7m1+1829, N2 ≤
7678672813+1363376m1

41490618 , m1 ∈Z≥0 (5.21)

(we have denoted the integer by m1 anticipating that it will be the degeneracy of the first
excited state in the identity character).

Proceeding as before, let us note that, the first of the relations in (5.21) relates the
quasi-character parameter N1 to the dimension m1 of the Kac-Moody algebra (if any)
of the final theory. However the second relation should be viewed as a restriction on
N2 for any fixed N1. This restriction will be modified at higher orders in q. As in the
previous sub-section, the Rademacher expansion (see [46] and appendix A of [6]) assures
us that the asymptotic growth of the negative-type quasi-character, χA1

n=−3;1 is sub-leading
as compared to that of the positive-type quasi-characters χA1

n=5;1 and χA1
n=1;1. Thus, (5.18)

will be an admissible character for all N1, that is, N1 ≥ 1829 satisfying (5.21) and finitely
many N2 satisfying some upper bound.

Now proceeding as before, we can express the symmetric parameters of the MLDE,
namely, P1,P2,B1,B2 in terms of the quasi-character parameters only. However, in this
case these expressions are quite lengthy and hence we do not report them here.
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6 Beyond the genericity assumption: merging of poles

In this section we consider what happens when poles in the original MLDE merge. This
first happens when p1 → 0 or 1728 in the (2,6) case. Once we reach the value ℓ= 12, we
can also have two movable poles p1,p2 merging. We will analyse some special cases below
and then draw general conclusions at the end.

6.1 (2,6) solutions as p1 → 0

We want to investigate what happens to the (2,6) solutions if we set p1 = 0, corresponding
to the point τ = ρ. This is our first example of a case violating the genericity assumption.
Let us take this limit directly in (3.28). It becomes:

∂2
jχ(j)+

( 1
2(j−1728)−

1
3j

)
∂jχ(j)+α0α1(j−b4,1)

j2(j−1728) χ(j) = 0. (6.1)

Now we insert the expansion:

χi(j) = jα
(ρ)
i

∞∑
k=0

a
(ρ)
i,k j

k (6.2)

We find the indicial equation:

α
(ρ)
i (α(ρ)

i −1)− 1
3α

(ρ)
i +α0α1b4,1

1728 = 0 (6.3)

Since the last term in general contributes to the indicial equation, we do not immediately
get the values of the exponents. Instead the equation tells us that

α
(ρ)
0 +α(ρ)

1 = 4
3 (6.4)

This in fact already follows from (A.2), since after taking p1 → 0 we have ℓρ = 6. Since
the α(ρ) must be distinct non-negative multiples of 1

3 , the possible solutions to the above
equation are (0, 4

3) or (1
3 ,1).

The first choice of exponents lead to either α0α1 = 0 or b4,1 = 0. First let us look at the
case when α0α1 = 0. From (6.1) we notice that in this case the non-derivative term (the
last term) vanishes. So ∂jχ(j) solves a first order MLDE. We can now integrate this to get
a first-order MLDE for χ(j) itself. This means the solution space becomes 1-dimensional
and thereby we rule this case out.13

The other choice, b4,1 = 0, is a possibility and in this case indeed we have the exponents
(0, 4

3). As noted at the end of sub-section 3.2, when the lower of the two exponents is 0, it
means we cannot extract some positive power of j from the solution and still get a sensible
expansion in powers of j. Thus such solutions, if they exist, would be non-factorisable.

In fact we have already shown that they do exist. In section 4.3, we have listed the
values of p1 and b4,1 for all admissible solutions of the (2,6) MLDE as functions of the

13Note that this argument is independent of the exact form of the MLDE or even its order, hence it can
be readily generalised to an nth order MLDE where it implies that the solution space is (n−1)-dimensional
when α0α1 = 0.
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degeneracy m1 of the first excited state in the identity character. In eqs. (4.39), (4.40)
we see that there is a common value m1 = 3538 such that p1 and b4,1 both vanish keeping
their ratio fixed. This is the unique solution with indices (α(ρ)

0 ,α
(ρ)
1 ) =

(
0, 4

3

)
within this

family. A similar situation holds for each one of the subsequent pairs, eqs. (4.43), (4.44),
(4.47), (4.48), (4.51), (4.52), (4.55), (4.56), (4.59), (4.60), (4.63), (4.64), (4.67), (4.68),
(4.71), (4.72) — for each case, there is a unique value of m1 that makes both p1 and b4,1
vanish together. This, then, is the full list of admissible solutions with indices

(
0, 4

3

)
.

The other alternative is that the exponents are (1
3 ,1). These arise in the same solutions

listed in the previous paragraph, by choosing m1 to be the value that makes p1 vanish but
b4,1 ̸= 0. For example in eqs. (4.39), (4.40) this value is 658. Each of the other cases is
similar.

Inserting this in (6.3) leads to the constraint:

b4,1 = 576
α0α1

(6.5)

The reader may verify that this equation agrees with the values obtained as in the previous
paragraph, by making p1 vanish with b4,1 ̸= 0 in each of our explicit solutions.

Now we come to a key point. Since the lower of the two exponents has shifted from 0
(when p1 was a generic point) to 1

3 (after p1 goes to 0) we can make the change of variable:

χi(j) = j
1
3 ζi(j) (6.6)

where the function ζ(j) has a sensible expansion in power of j. Indeed, we find that
ζ satisfies the (2,2) MLDE, the middle equation of (3.25) with r= 0. Recall that the
parameters in that equation are α0,α1, the exponents around τ→∞ (not to be confused
with the α(ρ)

i above!). We find the relation:

(α0α1)ℓ=6 = (α0α1)ℓ=2+ 1
6 (6.7)

In fact from (6.6) we already know the exponents of the solution ζ(j) must be:

αℓ=2
i =αℓ=6

i + 1
3 (6.8)

and using the valence formula on both sides, it is easy to check that (6.7) agrees with this.
In this case we can come to the same conclusion by solving the accessory equation (3.33)

as p1 → 0. One solution is b4,1 = 0 and the other is:

b4,1 = 576
α0α1

(6.9)

Inserting this into the MLDE in terms of τ :(
D2+ 1

3
E6
E4
D+

(α0α1− 1
6)E3

4 +(576−α0α1 b4,1)∆
E2

4

)
ζ(τ) = 0 (6.10)

and performing the change of dependent variable:

χ(τ) = j
1
3 ζ(τ) (6.11)

– 45 –



J
H
E
P
1
2
(
2
0
2
3
)
1
4
3

we get the (2,2) MLDE:(
D2+ 1

3
E6
E4
D+

(
α0α1−

1
6

)
E4

)
ζ(τ) = 0 (6.12)

In this equation we see the relation (α0α1)ℓ=2 = (α0α1)ℓ=6− 1
6 .

Thus we learn that, in the cases where the lower of the critical exponents is nonzero,
sending the movable pole to the point p1 = 0 causes the solution to factorise into a product
of solutions of an MLDE with lower value of ℓ (in this case a pair of characters with ℓ= 2)
times a single meromorphic character j

1
3 which also has ℓ= 2. A priori this may not seem

like a “merger” of poles since there was no pole at p1 = 0 to begin with. However it does
count as a merger because a single pole at τ = ρ is three times the minimum allowed pole
at that point.

As we will see later, the reason we could simply take the limit in the accessory equation
like (3.33) is that this limit does not create any new constraint, which in turn is because
the new exponents do not differ from each other by an integer. Below we will see examples
where merging of poles leads to new exponents that differ by an integer and consequently a
novel constraint equation arises. In such cases, merging the poles in the original constraint
equation can give incorrect results. Instead one has to start afresh from the MLDE where
the poles have merged.

Let us consider the relation (6.7), valid for factorised characters of the form χ(ℓ=6) =
j

1
3χ(ℓ=2). Next we use the ℓ= 6 and ℓ= 2 valence formula (2.17) on the left and right of

this equation respectively. Replacing everything in terms of the central charges, we get the
following possibilities:

c(ℓ=6) = 12−c(ℓ=2), c(ℓ=6) = c(ℓ=2)+8 (6.13)

We know from [28] that admissible solutions for the (2,2) case lie in the range 16<c(ℓ=2)<

24. Thus, admissibility of (2,6) solutions rules out the first case in (6.13). Then from
the second equation above, we have 24<c(ℓ=6)< 32. We already know the allowed central
charges for admissible (2,6) solutions from section 3.6. Thus we see that tensor-product
(2,6) CFTs follow the exact same range and not a subset of it. We will encounter examples
later where the product theories occupy a smaller range of central charges.

We will now look at some more examples that present different features, and then turn
to the general case.

6.2 (2,6) solutions as p1 → 1728

Let us now investigate what happens to the (2,6) solutions if we set p1 = 1728. This
corresponds to the point τ = i in the upper half plane. Taking this limit in (3.28) we get:

∂2
jχ(j)+

( 2
3j−

1
2(j−1728)

)
∂jχ(j)+α0α1(j−b4,1)

j(j−1728)2 χ(j) = 0. (6.14)

Let us now insert the following expansion in the MLDE (6.14):

χl(j) = (j−1728)α
(i)
l

∞∑
k=0

a
(i)
l,k j

k (6.15)
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We find the indicial equation to be,

α
(i)
l (α(i)

l −1)− 1
2α

(i)
l +α0α1

(
1− b4,1

1728

)
= 0 (6.16)

The indicial equation tells us that,

α
(i)
0 +α(i)

1 = 3
2 (6.17)

One could have already deduced this fact from (A.4), since after taking p1 → 1728 we have
ℓi = 6. Now the α(i)s must be distinct non-negative multiples of 1

2 . Hence, the possible
solutions to the above equation are (0, 3

2) or (1
2 ,1).

The exponents (0, 3
2) correspond to either α0α1 = 0 or b4,1 = 1728. The former can be

ruled out since in this case the solution space is 1-dimensional, as argued in the previous
sub-section. However b4,1 = 0 is a possibility and in this case indeed we have the exponents
(0, 3

2). Solutions, with these exponents, if they exist, would be non-factorisable. Once can
see this by following similar arguments of regularity of solution around τ = i as described
in the previous sub-section.

The other alternative is that the exponents are (1
2 ,1). Inserting this in (6.16) leads to

the constraint:
b4,1 = 864(2α0α1−1)

α0α1
(6.18)

As noted in the previous sub-section, since the lower of the two exponents has shifted from
0 (when p1 was a generic point) to 1

2 (after p1 goes to 1728) we can make the following
change of variable:

χ(j) = (j−1728)
1
2 ζ(j) (6.19)

where the function ζ(j) is regular around τ = i. Furthermore, we find that ζ satisfies the
(2,0) MLDE and this yields the following relation,

(α0α1)ℓ=6 = (α0α1)ℓ=0+ 1
6 (6.20)

In fact from (6.19) we already know the exponents of the solution ζ(j) must be:

αℓ=0
l =αℓ=6

l + 1
2 (6.21)

and using the valence formula on both sides, it is easy to check that (6.20) agrees with this.
Thus, as seen before in the previous sub-section, in the cases where the lower of the

critical exponents is nonzero, sending the movable pole to the point p1 = 1728 causes the
solution to factorise into a product of solutions of an MLDE with lower value of ℓ (in this
case a pair of characters with ℓ= 0) times (j−1728)

1
2 which is a solution to the first order

MLDE with ℓ= 3.
In this case also, we can come to the same conclusions as above by solving the accessory

equation (3.33) as p1 → 1728. This is because, as before, taking p1 → 1728 in (3.33) doesn’t
create any new constraint since the new exponents about τ = i do not differ by an integer.
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Now we make a comment about the factorised case: χ(ℓ=6) = (j−1728)
1
2χ(ℓ=0), analo-

gous to the discussion following (6.13). Using the valence formula in (6.20) and replacing
every exponent in terms of central charges we get:

c(ℓ=6) = 8−c(ℓ=0), c(ℓ=6) = 12+c(ℓ=0) (6.22)

Each of these conditions, together with the known range for admissible c(ℓ=0) solutions,
implies that c(ℓ=6)< 20 for such a factorised solution. However admissible (2,6) solutions
have c(ℓ=6)> 24, therefore there are none with this factorised form.

6.3 (2,12) solutions as p1 → p2

Next we consider the case where two movable poles coalesce but remain away the points 0
and 1728. This possibility arises for the first time in the (2,12) MLDE (5.2). So we put
p2 = p1 in this equation, to get:

∂2
jχ+

( 1
2(j−1728) + 2

3j−
2

j−p1

)
∂jχ+ α0α1

j(j−1728)
(j−b4,1)(j−b4,2)

(j−p1)2 = 0. (6.23)

Now we expand the characters about j= p1 as in (3.8):

χi(j) = (j−p1)α
(1)
i

∞∑
k=0

a
(1)
i,k (j−p1)k, (6.24)

Due to the double pole, the last term in (6.23) contributes to the indicial equation, which
becomes:

α
(1)
i (α(1)

i −3)+α0α1(p1−b4,1)(p1−b4,2)
p1(p1−1728) = 0 (6.25)

Again we cannot read off the exponents directly, but from the above equation we have:

α
(1)
0 +α(1)

1 = 3, (6.26)

Since p1 is a regular point in moduli space, α(1)
0 ,α

(1)
1 must be distinct non-negative integers,

so the only possibilities are (0,3) and (1,2). The former leads to either α0α1 = 0 or p1 = b4,1
or p1 = b4,2.

This in fact already follows from (A.6), since after taking p2 → p1 we have ℓτ = 12.
Since the α(I) must be distinct non-negative integers, the possible solutions to the above
equation are (0,3) or (1,2).

With α0α1 = 0, as noted before, we get the solution space to be 1-dimensional. Thus,
we can only have the exponents (0,3) if p1 = p2 = b4,1 or p1 = p2 = b4,2. At such points, one
factor cancels from the numerator and denominator of the (2,12) MLDE. Thus we get the
equation:

∂2
jχ(j)+

( 1
2(j−1728) + 2

3j−
2

j−p1

)
∂jχ(j)+ α0α1(j−b4,2)

j(j−1728)(j−p1)χ(j) = 0 (6.27)

In this case there is a constraint equation at third order, which is left as an exercise for the
reader.
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Now we return to the other possible set of exponents, namely (α(1)
0 ,α

(1)
1 ) = (1,2).

From (6.25) we then immediately find the condition:

α0α1(p1−b4,1)(p1−b4,2)
p1(p1−1728) = 2 (6.28)

Because the indices now differ by 1 (rather than 2 in the generic case), there is a
potential logarithmic singularity in the character χ0(j) manifested by a constraint arising
at first order beyond the indicial equation (as against second order in the generic case). The
mechanism has been discussed before — at this order the coefficient a0,1 will not appear
and instead we will get a constraint.

From the MLDE (6.23), this constraint is found to be:

p1
2 + 2(p1−1728)

3 −2(2p1−1728)+α0α1(2p1−B1) = 0, (6.29)

which is written in terms of the symmetric polynomial basis (see (5.4)).
In the symmetric polynomial basis, we can write (6.28) as:

α0α1
p1(p1−1728)(p2

1−B1p1+B2) = 2, (6.30)

Now we can solve for B1 and B2 using (6.29) and (6.30) to get:

B1 = 13824−17p1+12α0α1 p1
6α0α1

, (6.31)

B2 = p1(6α0α1 p1−5p1−6912)
6α0α1

, (6.32)

We now show that the solution is factorised, with one factor being a meromorphic
character and the other being a solution (not necessarily admissible) of the (2,0) MLDE.
Since the lower exponent is 1, we substitute:

χ(j) = (j−p1)ζ(j) (6.33)

in (6.23) to get:

(j−p1)
[
∂2

j ζ+
( 1

2(j−1728) + 2
3j

)
∂jζ+

( 1
2(j−1728)(j−p1)

+ 2
3j(j−p1)−

2
j(j−p1)2 + α0α1

j(j−1728)
j2−B1j+B2

(j−p1)2

)
ζ

]
= 0.

(6.34)

On inserting the values of R and S from (6.31) and (6.32), (6.34) simplifies to:

(j−p1)
[
∂2

j ζ+
( 1

2(j−1728) + 2
3j

)
∂jζ+ 1

j(j−1728)

(
α0α1−

5
6

)
ζ

]
= 0 (6.35)

which means ζ(j) solves the (2,0) MLDE if we identify:

(α0α1)ℓ=12 = (α0α1)ℓ=0+ 5
6 . (6.36)
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The above equation holds for factorised (2,12) solutions of the form: χ(ℓ=12) = (j−p1)χ(ℓ=0).
Now let us comment on tensor-product (2,12) CFTs of the above factorised form. Using
the valence formula in (6.36) and writing everything in terms of central charges, we get:
c(12) = 20−c(0) or c(12) = c(0)+24. Since the admissible central charge range of (2,0) solu-
tions is: 0<c(ℓ=0)< 8 and unitarity implies c(12)> 22, the first possibility gets ruled out.
So, we must have: c(12) = c(0)+24 implying 24<c(ℓ=12)< 32, for tensor-product (2,12)
CFTs. So, again we find an example where the central charge range for tensor-product
solutions lie in a smaller range compared to the full admissible range.

In this sub-section, we have shown that when two movable poles p1,p2 coincide with
each other (but not with an accessory parameter), the solutions of the MLDE factorise into
a product of a meromorphic character and a pair of characters ζi(j) satisfying an MLDE
with ℓ= 0. As we already discussed in sub-section 3.2, this factorisation can means one of
two things for an admissible character χi(j): either ζi(j) is itself an admissible character,
or ζi(j) is not admissible but becomes admissible upon multiplying by (j−p1).

To exemplify the above considerations, consider the example of (2,12) characters stud-
ied in section 5, (5.6). The conditions on the parameters N1,N2 are in (5.9). Now when
N2 = 2, we see that the parameter A in (5.16) vanishes and the poles p1,p2 merge. Now
the equations (5.7) and (5.8) become:

χA1
n=4;0+N1χ

A1
n=0;0+2χA1

n=−4;0

=q− 25
24
(
1+(−245+N1)q+(196144+3N1)q2+(22083427+4N1)q3+(929567063+7N1)q4+. . .

)
(6.37)

χA1
n=4;1+N1χ

A1
n=0;1+2χA1

n=−4;1

=q− 19
24
(
2+2(−247+N1)q+2(196639+N1)q2+6(7229968+N1)q3+(1772766794+8N1)q4+. . .

)
(6.38)

It is easily verified that the above two equations (6.37), (6.38) are in the form:

χA1
n=4+N1χ

A1
n=0+2χA1

n=−4 = (j+N1−992)χA1
n=0, (6.39)

thus they are factorised as in (6.33).

6.4 Analogous considerations for (2,8) and (2,14) cases

In this sub-section, we shall first take p1 → 0 and p1 → 1728 in the (2,8) case, and then take
p2 → p1 in the (2,14) case. We shall see that, as a result of this procedure, the equations
and expressions that come out will be very similar to the (2,6) and (2,12) cases discussed
in the previous sub-sections. So we shall focus on the main results and shall be very brief
about the intermediate steps.

The (2,8) MLDE is the second line of (3.2) with r= 1. The indicial equation obtained
after taking p1 → 0 in this equation results in the same equation as (6.3) with the second
term being 2

3 instead of 1
3 . Thus, now the sum of roots become, α(ρ)

0 +α(ρ)
1 = 5

3 . So the
choice of exponents are:

(α(ρ)
0 ,α

(ρ)
1 ) =

(
0, 53

)
,

(1
3 ,

4
3

)
,

(2
3 ,1

)
(6.40)
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The first of these cases corresponds to, as before, b4,1 = 0 and non-factorised characters.
Regarding the second case, we notice that the difference between the two critical exponents
is an integer. This solution is ruled out, as already observed in [27], because the monodromy
about τ = ρ would become reducible. The third case allows us to write χ(j) = j

2
3 ζ(j) with

ζ(j) having ℓ= 0, and in this case, α0α1b4,1 = 1152. One can show that ζ(j) satisfies a
(2,0) MLDE and this in turn gives the following relation,

(α0α1)ℓ=8 = (α0α1)(ℓ=0)+ 1
3 . (6.41)

(6.41) is true for factorised (2,8) solutions of the form: χ(ℓ=8) = j
2
3χℓ=0. Using the valence

formula in (6.41) and expressing everything in terms of central charges, we obtain the
following two possibilities,

c(ℓ=8) = 12−c(ℓ=0), c(ℓ=8) = 16+c(ℓ=0) (6.42)

Now unitarity implies, h(ℓ=8) = c(ℓ=8)−14
12 > 0. Thus, c(ℓ=8)> 14 and this rules out the

first possibility. Hence, for such factorised solutions, we have: c(ℓ=8) = 16+c(ℓ=0). Since
the admissibility range of (2,0) solutions fall in, 0<c(ℓ=0)< 8, we conclude that tensor-
product (2,8) CFTs of the form χ(ℓ=8) = j

2
3χℓ=0 lie in the range: 16<c(ℓ=8)< 24. Recall

that, from 3.6, we had the admissibility range for (2,8) solutions as: 16<c(ℓ=8)< 24 and
40<c(ℓ=8)< 48. So, this is an example where the central charge range for tensor-product
solutions lie in a smaller range compared to the full admissible range. This is in contrast
to the tensor-product (2,6) CFT case.

Next we consider p1 → 1728 in the (2,8) MLDE. The analysis parallels that of the
(2,6) case with very slight modifications. In this case, the indicial equation remains the
same and hence the choice of exponents also remain the same: (0, 3

2) or (1
2 ,1). The first

choice lead to, b4,1 = 1728 and to non-factorised solutions while the second choice leads to
solutions of the form: χ= (j−1728)

1
2 ζ(j). ζ(j) solves the (2,2) MLDE which in turn leads

to the following relation,

(α0α1)ℓ=8 = (α0α1)ℓ=2+ 1
3 , (6.43)

Let us make a comment about the factorised case: χ(ℓ=8) = (j−1728)
1
2χ(ℓ=2). Using the

valence formula in (6.43) and replacing every exponent in terms of central charges we get:

c(ℓ=8) = 16−c(ℓ=2), c(ℓ=8) = 12+c(ℓ=2). (6.44)

If we consider admissible (2,8) solutions, for which c(ℓ=8)> 14, then the first case is ruled
out. The second case implies, 28<c(ℓ=8)< 36. However, from the central charge range of
(2,8) admissible solutions (3.60), we know there are no admissible solutions in the above
range. hence we conclude that there are no admissible solutions of the above factorised
form.

Now we consider coalescing of poles p2 → p1 in the (2,14) MLDE. This analysis parallels
the p2 → p1 case in the (2,12) MLDE with slight modifications. The (2,14) MLDE obtained
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after taking p2 → p1 is similar to (6.23) with the only difference being in the second term
inside the coefficient of the ∂jχ term. It is now 1

3j instead of 2
3j .

The indicial equation obtained from this is the same as in the (2,12) case and hence the
choice of exponents remains the same: (0,3) or (1,2). The first choice leads to p1 = p2 = b4,1
or p1 = p2 = b4,2 and to non-factorised solutions. Considering the second choice of exponents
we recover (6.28). As explained before, since the indices now differ by 1 we get a constraint
equation at first order beyond the indicial equation. Using, the symmetric parameters B1
and B2 (see (5.4)), this constraint equation becomes,

p1
2 + p1−1728

3 −2(2p1−1728)+α0α1(2p1−B1) = 0, (6.45)

Using the indicial equation (6.28) and (6.45), we can solve for B1 and B2, as before, in
terms of α0α1 and the movable pole p1.

Note that, since the lower exponent, at j= p1, is 1 we can have the following substitu-
tion:

χ(j) = (j−p1)ζ(j) (6.46)

which we can plug in the (2,14) MLDE (with p2 → p1) to get,

(j−p1)
[
∂2

j ζ+
( 1

2(j−1728) + 1
3j

)
∂jζ+

( 1
2(j−1728)(j−p1)

+ 1
3j(j−p1)−

2
j(j−p1)2 + α0α1

j(j−1728)
j2−B1j+B2

(j−p1)2

)
ζ

]
= 0.

(6.47)

On inserting the values of B1 and B2 obtained above, (6.47) simplifies to:

(j−p1)
[
∂2

j ζ+
( 1

2(j−1728) + 1
3j

)
∂jζ+ 1

j(j−1728)

(
α0α1−

7
6

)
ζ

]
= 0 (6.48)

which means ζ(j) solves the (2,2) MLDE if we identify:

(α0α1)ℓ=14 = (α0α1)ℓ=2+ 7
6 . (6.49)

The above equation holds for factorised (2,14) solutions of the form: χ(ℓ=14) = (j−p1)χ(ℓ=2).
Now let us make a comment on tensor-product (2,14) CFTs of the above factorised form.
Using the valence formula in (6.49) and writing everything in terms of central charges, we
get: c(14) = 28−c(2) or c(14) = c(2)+24. Since the admissible central charge range of (2,2)
solutions is: 16<c(ℓ=2)< 24 and unitarity implies c(14)> 26, the first possibility gets ruled
out. So, we must have: c(14) = c(2)+24 implying 40<c(ℓ=14)< 48, for tensor-product (2,14)
CFTs. Here again we find an example where the central charge range for tensor-product
solutions lie in a smaller range compared to the full admissible range.

6.5 Merging of movable poles in the general case

Here we examine the general case, namely ℓ= 6r,6r+2,6r+4 for arbitrarily large values
of r, the number of movable poles. Now from the poles p1,p2, · · ·pr, we send pr → 0, or
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pr → 1728, or pr → pr−1. In each of these situations, the poles p1,p2, · · · ,pr−2 are held
fixed.

The exponents around the special points pr = 0,1728 and around pr = pr−1 can now be
derived by inspection of the general MLDEs (3.2). But in fact there is a simpler way to find
the same results. The behaviour at special points for ℓ= 0,2 and at a generic isolated pole
has long been understood (starting with [27]) and we have listed the possible exponents in
eqs. (3.23), (3.24), (3.29). Now when a pole merges with any of the above, we need to add
1 to either of the exponents, keeping the lower one distinct from the upper and also not
allowing an integral difference between the exponents in the case of the points (0,1728).
Morever at these two points the added exponent of 1 can be broken into factors of 1

3 or 1
2

respectively. The result is as follows:

ℓ Limit Exponents
6r pr → 0 (0, 4

3),(1
3 ,1)

pr → 1728 (0, 3
2),(1

2 ,1)
pr → pr−1 (0,3),(1,2)

6r+2 pr → 0 (0, 5
3),(2

3 ,1)
pr → 1728 (0, 3

2),(1
2 ,1)

pr → pr−1 (0,3),(1,2)
6r+4 pr → 0 (1

3 ,
5
3),(2

3 ,
4
3)

pr → 1728 (0, 3
2),(1

2 ,1)
pr → pr−1 (0,3),(1,2)

From the exponents we learn whether, and what, we can factorise from the solution.
If the lower exponent is 0 we have a non-factorisable solution, while if it is 1

3 ,
2
3 ,1 we can

factorise j
1
3 , j

2
3 ,(j−pr−1) respectively. In particular this means that if pr → pr−1 then the

character ζ after extracting (j−pr−1) loses its dependence on the merged pole entirely.

7 Illustrative examples of genuine CFTs

The main focus of this paper has been on finding admissible solutions to MLDE with ℓ≥ 6.
In general one expects that some, though not all, of the admissible solutions will be actual
CFTs. Completely classifying these is a major project, perhaps an unachievable one, but
one may check whether at least some illustrative CFTs can be found for each of the classes
we have considered. We do this here.

There are two cases for which CFTs are already known: the (2,6) and (2,8) MLDEs
with the movable pole away from the boundary of moduli space. For the (2,6) case, this
has been done in [30] making use of a relation derived in eq. (3.6) of [25] that relates three
Wronskian indices: L for a meromorphic theory which is the numerator in a coset relation,
ℓ for the denominator theory and ℓ̃ for the coset theory.14 We write the equation for the
case of two characters:

ℓ̃= 2(L+1)−6n−ℓ (7.1)
14The equation as written in [25] involves N ≡ c

24 where c is the central charge of the meromorphic theory,
but it is easily verified that 6N = c

4 =L.
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Here n≥ 1 is an integer labelling the sum of dimensions of the non-trivial primary for
the denominator and coset theories. One finds n= 2 whenever the coset is of the type
where a simple factor of a Kac-Moody algebra is deleted by a corresponding denominator,
and n= 1 for non-trivial embeddings of Kac-Moody algebras in the numerator. Now, [30]
considers L= 8 and ℓ= 0, corresponding to cosets of a c= 32 meromorphic theory, where
the embedding is of the “deletion” type with n= 2. This results in ℓ̃= 6. Nearly 150
CFTs of this form are listed in appendix A of [30]. These belong to a class with complete
Kac-Moody algebras, which means the stress tensor is pure Sugawara with no additional
contribution.

For (2,8), a number of CFTs can be found in [18]. Although Wronskian indices are not
the main focus of this paper, some of the cosets considered are of meromorphic theories
with c= 24 (and hence L= 6) with a non-trivial embedding of the Kac-Moody algebra of a
denominator with ℓ= 0. Thus n= 1 and (7.1) gives ℓ̃= 8. Several theories of this type are
included in table 1 of that paper. It may be mentioned that the method used in that work
only reproduces theories in the range c< 25. However for the (2,8) case, (3.60) also allows
the range c∈ (40,48). This can potentially be realised with L= 12 and n= 3 in (7.1), but
it is not clear if n= 3 is allowed for two-character meromorphic cosets, so we leave this
question for the future.

Next we move on to the case of (2,12) with generic poles. (7.1) tells us that this
can be realised by a non-trivial embedding of Kac-Moody algebras (with n= 1) in a c= 32
meromorphic CFT (for which L= 8). Such embeddings have not been completely classified,
even for the complete KM algebra case, but one can start with the meromorphic CFTs
corresponding to the 132 even, unimodular Kervaire lattices [47] and take a coset by non-
trivially embedding A1,1 into any of the simple factors of the numerator. This will result in
the desired (2,12) CFT and one expects that most of them will satisfy MLDEs with generic
(non-coincident) poles. As an example, take the Kervaire lattice with root system A2

9,1E
2
7,1

and quotient by A1,1, embedding it in E7,1. The quotient theory has central charge 31 and
algebra A2

9,1D6,1E7,1 with m1 = 397.
Similarly, the coset of a c= 48 meromorphic theory by A1,1 with a trivial embedding

of the KM algebra (n= 2) will give ℓ= 14. We are not aware of a classification of even,
unimodular lattices of dimension 48 even under the restriction of having complete root
systems, but one possibility is A48

1,1 and the trivial embedding deletes one of the 48 factors
leaving an ℓ= 14 CFT with Kac-Moody algebra A47

1,1. There will surely be many more
examples, most of which should have generic poles.

Now we turn to a CFT example for (2,6) with p1 → 0, a limit studied above that
effectively corresponds to coincident poles. As we saw in Sub-section 6.1, in this limit
there are two possible sets of exponents at 0, namely (0, 4

3) and (1
3 ,1). As explained there,

these correspond respectively to characters of non-factorisable and factorisable type.
Within the factorisable or (1

3 ,1) type, we can easily find a set of tensor-product (2,6)
CFTs with characters of the form in (6.6), namely χi(j) = j

1
3 ζi(j) where ζ(j) are the char-

acters of a (2,2) CFT. The latter have central charges c∈ (16,24) and are enumerated
in [25]. Since multiplication by j

1
3 increases c by 8, the result has central charge c∈ (24,32)

consistent with the expected range from (3.60). The question now is whether we can get a
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(2,6) CFT with factorised characters where ζi(j) does not represent a CFT, though χi(j)
does. This is easily answered. For χi(j) to be admissible, ζi(j) must at least be a quasi-
character, as then it is possible for multiplication by j

1
3 to turn the negative coefficients

positive. However, the central charge associated to ζ must still lie in the range c∈ (16,24).
But in this range there are no quasi-characters as we can see from (D.7). We conclude
that there are no factorised (2,6) characters other than those of admissible CFT (this in
contrast to the case of (2,4) discussed in sub-section 3.3).

Turning now to the non-factorisable case, where the indices are (0, 4
3) and the CFT

is irreducible. As shown in sub-section 6.1, this case arises when p1 and b4,1 vanish to-
gether. As an example, in eqs. (4.43), (4.44) this happens when m1 = 2875. Similarly
there is a unique m1 that achieves this for all the other cases in sub-section 4.3. Now all
non-factorisable examples that arise as cosets of 32d lattices having complete Kac-Moody
algebras were listed in appendix A of [30]. The relation between N of that appendix and
the above m1, which we temporarily denote mcoset

1 , is easily seen to be mcoset
1 =N−mdenom

1
where mdenom

1 is the dimension of the KM algebra of the denominator in the coset. With
this one finds that in none of the cases can the character with indices (0, 4

3) be associated
with a coset CFT. We do not know of a deep reason why this should be the case.

We move on to (2,8) with p1 → 0. Here the possible indices are (0, 5
3) and (2

3 ,1). We
again see that factorised solutions corresponding to the latter case are trivially possible and
they lie in the sub-range c∈ (16,24). To populate the other sub-range in (3.60), namely
c∈ (40,48), we now have a possibility: consider quasi-characters for ℓ= 0 in the range
24<c< 32, for example the c= 25 quasi-character in the A1 series. While this is not
admissible, multiplying it by j

2
3 makes it admissible and it has c= 41. In this case, the

result is a tensor product of E8,1 times the exotic c= 33 theory of [9]. But more general
non-tensor-product theories could well exist.

Finally we look at the case of (2,12). In the coincident limit p2 → p1, one can look for
factorisable as well as non-factorisable characters. In the factorisable case one simply has
(j−p1)ζ(ℓ=0)

i where ζi is an MMS character hence lies in the range c∈ (0,8). The result is
in the range c∈ (24,32) and will have indices (1,2). Searching for the non-factorisable case
with indices (0,3) is more trivial and we leave it for the future.

8 Discussion and conclusions

Since this has been a lengthy discussion, let us review the chain of arguments that led to
our understanding of MLDEs with movable poles. The first step is to suitably parametrise
the MLDE. This was done in section 2 in the τ parameter and section 3 in the j parameter.
The next several steps use the latter form of the equation. Assuming a generic location
of poles, we examined the behaviour of solutions around each movable pole and thereby
derived a constraint equation (the “accessory equation”) relating the accessory parameters
to the poles (sub-sections 3.4, 3.5). The accessory equations describe an r-dimensional sub-
manifold of the 2r-dimensional space of poles and accessory parameters (it is an algebraic
variety if we rationalise all denominators to make the equations polynomial, though the
form of the equations in the general case is simpler without doing so). We then took one of
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the poles to infinity and were thereby led to the boundary of this sub-manifold. The original
accessory equations now reduced to two types of equations: accessory equations for the case
with one less movable pole, but with a modified accessory parameter, and an equation that
determines the ratio of the accessory parameter and the pole on the boundary. Together,
these determined the critical exponents (hence c,h) of solutions with r movable poles in
terms of solutions with r−1 movable poles. Applying this recursively gave us the allowed
central charges for any number of movable poles, displayed in section 3.6.

Next, in section 4 we returned to the single-pole MLDE as a function of τ and computed
the Frobenius solution. Inserting the known allowed values of c then determined both the
characters completely up to an arbitrary integer. One cannot reduce further since it is
known [3, 6] that there is exactly one free integer parameter for each movable pole. We
were also able to relate our results precisely with the quasi-character construction of [6]
which constructs admissible characters for generic Wronskian index without any use of
the corresponding MLDE, and precise agreement was found. An analogous discussion in
section 5 considered the case of two movable poles. In section 6 we considered what happens
when one violates the genericity assumption by merging poles. The equation and solutions
remain well-defined when one pair of poles is merged, though they become singular if we
simultaneous merge more than two poles. Finally in section 7 we gave just a few examples
of CFTs for the various cases we considered, showing that they are populated by genuine
CFTs, and leaving a more detailed analysis for the future.

Our analysis makes it clear that whenever there are movable poles, there is an equal
number of free integer parameters in the admissible solutions. This fact has previously
been noted in [6], but here we have re-obtained it directly from MLDE. This means there
is an infinite set of admissible characters for every ℓ≥ 6. However it can be argued that the
number of CFTs for a given ℓ≥ 6 is finite. For example, a result of [18] implies that every
(2,6) CFT with c< 32 is a coset of a c= 32 meromorphic CFT. At the same time, (3.60)
makes it clear that there are no (2,6) admissible characters (hence no CFT) for c≥ 32. So
in fact, all (2,6) CFTs are cosets of c= 32 meromorphic theories. It is expected that the
latter are finite in number (though the number is enormous) which implies that the former
number is also finite.

We conclude with a discussion of some open questions. For any number n of characters,
movable poles are present for ℓ≥ 6 but the corresponding MLDEs do not appear to have
been studied at all. Even for low values like n= 3,4,5, the classifications in the literature [2,
10, 13–15, 22, 25, 26] are all at ℓ= 0. Things are only slightly better using the alternate
approaches of Hecke operators and quasi-characters. Ref. [3] constructed some admissible
characters for the (3,6) case as Hecke images of the Ising model characters. Several sets of
quasi-characters solving the (3,0) MLDE were found in [8] and their linear combinations
were shown to provide admissible characters with ℓ= 6. A concrete example of a (3,6) CFT
was also provided in this reference. Beyond this, the space of admissible characters and
CFT for n≥ 3 characters arising from MLDE with movable poles, is essentially unexplored.
It should certainly be possible to gain some insights into at least the (3,6) case from the
MLDE following the methods used here.

Another space of MLDEs that is largely unexplored is the (n,0) class — with n char-
acters but no poles. Like the (2, ℓ) case studied in the present paper, (n,0) also involves
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a proliferation of parameters for n≥ 6, however clearly these do not correspond to poles
or accessory parameters and one has to find a useful interpretation. Moreover the number
of exponents is n, if this is large the analysis may be quite difficult. Nevertheless, as the
existing literature shows, a lot can be learned bout RCFT by exploring modular differential
equations, and we hope to report on more of the open problems in the future.
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A Critical indices at the poles

In this appendix we review the leading behaviour of the character χ(j), about various
points in the upper half plane, following [27].

About τ = ρ we have j→ 0 and the leading behaviour of the characters are parametri-
sed as:

χ0 ∼ jα
(ρ)
0

χ1 ∼ jα
(ρ)
1

α
(ρ)
0 and α

(ρ)
1 must be non-negative multiples of 1

3 to ensure regularity of the characters
around τ = ρ. Now let us compute the leading behaviour of the Wronskian W (j) about
τ = ρ:

W (j)∼ jα
(ρ)
0

(
−jE6

E4

)
∂j(jα

(ρ)
1 )

∼ jα
(ρ)
0 +α

(ρ)
1

(
E6
E4

)
∼ jα

(ρ)
0 +α

(ρ)
1 − 1

3 = j
ℓρ
6 (A.1)

where we used the fact that E4 = j
1
3 ∆

1
3 and both ∆ and E6 are non-vanishing at τ = ρ.

Thus, we get:

α
(ρ)
0 +α(ρ)

1 − 1
3 = ℓρ

6 . (A.2)
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About τ = i we have j→ 1728 and the leading behaviour of characters is parametrised as:

χ0 ∼ (j−1728)α
(i)
0

χ1 ∼ (j−1728)α
(i)
1

with α
(i)
0 and α

(i)
1 being non-negative multiples of 1

2 . This is to ensure regularity of char-
acters around τ = i. Now let us compute the leading behaviour of the Wronskian W (j)
about τ = i:

W (j)∼ (j−1728)α
(i)
0

(
−jE6

E4

)
∂j(j−1728)α

(i)
1

∼ (j−1728)α
(i)
0 (j−1728+1728)(j−1728)α

(i)
1 −1

(
E6
E4

)
∼ (j−1728)α

(i)
0

[
(j−1728)(j−1728)α

(i)
1 −1+1728(j−1728)α

(i)
1 −1

](
E6
E4

)
∼ (j−1728)α

(i)
0 +α

(i)
1
[
1+1728(j−1728)−1

](E6
E4

)
note, E6 = (j−1728)

1
2 ∆

1
2 .

From this we get:

W (j)∼ (j−1728)α
(i)
0 +α

(i)
1 − 1

2 (E−1
4 ∆1/2)∼ (j−1728)α

(i)
0 +α

(i)
1 − 1

2 ∼ (j−1728)
ℓi
6 (A.3)

where we used the fact that E4 and ∆ are finite at τ = i. Then we have:

α
(i)
0 +α(i)

1 − 1
2 = ℓi

6 . (A.4)

Next let us study the leading behaviour of the Wronskian about a movable pole say,
j= p1. We parametrise this by:

χ0 ∼ (j−p1)α
(1)
0

χ1 ∼ (j−p1)α
(1)
1

with α
(1)
0 and α

(1)
1 being non-negative integers to ensure regularity of characters around

j= p1. Now the leading behaviour of the Wronskian W (j) about j= p1 is:

W (j)∼ (j−p1)α
(1)
0 +α

(1)
1 −1 ∼ (j−p1)

ℓτ
6 (A.5)

and we find:

α
(1)
0 +α(1)

1 −1 = ℓτ
6 . (A.6)

B ℓ is even for 2-character solutions

In this appendix we will show that for 2-character solutions, ℓ is always even. This result
was first obtained in [27] using monodromy arguments for solutions around τ = i. It was
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shown that if ℓ is odd then the monodromy is reducible, implying the solution space becomes
one-dimensional and hence is not allowed. Here we will approach the problem in a slightly
different way but will arrive at the same conclusion.

Using equations (2.12) and (2.13) we write the (2, ℓ) MLDE in the j-plane for ℓ=
6r+1,6r+3 and 6r+5.

ℓ= 6r+1: ∂2
jχ(j)+

[
−

r−1∑
I=1

1
j−pI

]
∂jχ(j)+ α0α1

j2(j−1728)

r∏
I=1

(j−b4,I)

r−1∏
I=1

(j−pI)
χ(j) = 0.

ℓ= 6r+3: ∂2
jχ(j)+

[
2
3j−

r∑
I=1

1
j−pI

]
∂jχ(j)+ α0α1

j(j−1728)

r∏
I=1

(j−b4,I)
r∏

I=1
(j−pI)

χ(j) = 0.

ℓ= 6r+5: ∂2
jχ(j)+

[
1
3j−

r∑
I=1

1
j−pI

]
∂jχ(j)+ α0α1

j(j−1728)

r∏
I=1

(j−b4,I)
r∏

I=1
(j−pI)

χ(j) = 0 (B.1)

Comparing the above MLDEs to the ones given in (3.25), we notice a striking difference,
namely the term 1

2(j−1728) is missing in the first-derivative term. We shall see that the
absence of this term is crucial to ruling out odd ℓ values.

Suppose we expand the characters around τ = i as given in (3.7). The indicial equation
in all the above cases gives (α(i)

0 ,α
(i)
0 ) = (0,1). In fact we could have already found these

values from (A.4). Now the next order is interesting. Due to the absence of 1
2(j−1728) in

the linear derivative term, we get no contribution from this term at this order. So for the
character with exponent α(i)

0 = 0, we find at this order:

α0α1

r∏
I=1

(1728−b4,I) = 0, (B.2)

The above implies either α0α1 = 0 or b4,I = 1728 for some 1≤ I ≤ r. The second choice is
ruled out since it leads to removal of the pole at j= 1728 in the last term. Since 1

2(j−1728)
is also absent in the middle term, the MLDE has now no poles about j= 1728 and thus
the expansion (3.7) does not make sense. So we must rule out this possibility.

Now let us move on to the other possibility α0α1 = 0. From the footnote in section 6.1
we know that whenever this happens, the solution space becomes 1-dimensional. So this
too is ruled out.

Thus, the above considerations rule out all odd ℓ values for two-character solutions.

C Frobenius solutions of MLDEs

C.1 (2,0) and (2,2) MLDEs

Here we review the well-established method for recursively solving the MLDE in the cases
ℓ= 0,2. The (2,0) MLDE in the τ -plane is given in (2.22). It is a one-parameter MLDE,
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the only parameter is the rigid parameter: α0α1 =− c(c+4)
576 . Its solutions are:

χ0(q) = q−
c

24

∞∑
k=0

m
(0)
k (c)qk, χ1(q).= q

c+4
24 D

∞∑
k=0

m
(0)
k (−c−4)qk. (C.1)

Here D is the apparent degeneracy of the non-identity character. The m(0)
k (c)’s are rational

functions of the central charge c; the superscript indicates the fact that these belong to the
l= 0 solution. We give here the first few: we have m(0)

0 (c) = 1 and then for k≥ 1:

m
(0)
k (c)≡ (−1)kN

(0)
k (c)

D
(0)
k (c)

. (C.2)

The D(0)
k (c) are the denominator polynomials:

D
(0)
k (c) = k! Πk−1

l=0 (c−10−12l) (C.3)

and the N (0)
k (c)’s are the numerator polynomials, of which the first few are:

N
(0)
1 (c) = 5c2+22c

N
(0)
2 (c) = 25c4+175c3+508c2+804c

N
(0)
3 (c) = 125c6+975c5+10330c4+68308c3+148872c2+33344c

N
(0)
4 (c) = 625c8+4250c7+136475c6+1359450c5+6793624c4+22169872c3

+38327216c2+18775968c
N

(0)
5 (c) = 3125c10+12500c9+1464375c8+16026500c7+1629216204c6+1246732800c5

+5241174800c4+12353480000c3+14698399680c2+2755008000c
N

(0)
6 (c) = 15625c12−9375c11+13815625c10+132866875c9+2911676350c8+32677746940c7

+238017546040c6+1317574464400c5+4550303524000c4+8002202756160c3

+6057775308160c2+2846891980800c (C.4)

We note that D(0)
k (c) is a polynomial of degree k, N (0)

k (c) is a polynomial of degree 2k
with the leading coefficient being 5k and vanishing constant term. Examples that will be
relevant to the main text are:

m
(0)
1 =−5c2+22c

c−10

m
(0)
2 = 25c4+175c3+508c2+804c

2(c−10)(c−22)

m
(0)
3 =−125c6+975c5+10330c4+68308c3+148872c2+33344c

6(c−10)(c−22)(c−34)

(C.5)

The (2,2) MLDE in the τ -plane is given in (2.23). It is a one-parameter MLDE, the
only parameter is the rigid parameter: α0α1 =− c(c−4)

576 . It’s solutions are:

χ0(q) = q−
c

24

∞∑
k=0

m
(2)
k (c)qk, χ1(q).= q

c−4
24 D

∞∑
k=0

m
(2)
k (−c+4)qk. (C.6)

– 60 –



J
H
E
P
1
2
(
2
0
2
3
)
1
4
3

Here, as before, D is the apparent degeneracy of the non-identity character. The m(2)
k (c) are

rational functions of the central charge c and the superscript indicates the fact that these
belong to the l= 2 solution. We give here the first few: again we start with m

(2)
0 (c) = 1

and then for k≥ 1 we get:

m
(2)
k (c)≡ (−1)kN

(2)
k (c)

D
(2)
k (c)

. (C.7)

D
(2)
k (c)’s are the denominator polynomials

D
(2)
k (c) = k! Πk−1

l=0 (c−14−12l) (C.8)

and the N (2)
k (c)’s are the numerator polynomials, the first few are:

N
(2)
1 (c) = 5c2−142c

N
(2)
2 (c) = 25c4−1465c3+8980c2−45420c

N
(2)
3 (c) = 125c6−11325c5+159550c4−1931740c3+7672440c2−19603520c

N
(2)
4 (c) = 625c8−77750c7+1850075c6−37721430c5+336005080c4−2291330800c3

+7121862320c2−12830855520c
N

(2)
5 (c) = 3125c10−500000c9+17589375c8−523745000c7+7785543020c6−93188748960c5

+632315675600c4−3135002595200c3+8096425231680c2−11243426250240c
N

(2)
6 (c) = 15625c12−3084375c11+148590625c10−5971718125c9+130232057350c8

−2331666656740c7+26060719253080c6−228682548002800c5

+1273810283284000c4−5062375605466560c3+11295987759233920c2

−13145822789068800c (C.9)

Examples that will be relevant to the main text are:

m
(2)
1 =−5c2−142c

c−14

m
(2)
2 = 25c4−1465c3+8980c2−45420c

2(c−14)(c−26)

m
(2)
3 =−125c6−11325c5+159550c4−1931740c3+7672440c2−19603520c

6(c−14)(c−26)(c−38)

(C.10)

We will now use the above results to understand the case of MLDEs with movable
poles, specifically (2,6) and (2,8).

C.2 (2,6) and (2,8) MLDEs

Now we exhibit the Frobenius solution of MLDEs with one movable pole. This sub-section
contains formulae that will be referred to in the main text of the paper. In section 4.1,
we solved the (2,6) MLDE. In the first step, one computes the first three orders of the
Frobenius solution for the identity character and obtains (4.3) and (4.4) where the functions
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f1(c,p1, b4,1) and f2(c,p1, b4,1) are given by:

f1(c,p1, b4,1) = − 1
48(c−22)(240c(c−94)+c(c+4)p1−c(c−20)b4,1) (C.11)

f2(c,p1, b4,1) = 1
96(c−34)

(
−720c(243c−17294)−240

(
c2+50c−1392

)
m

(6)
1 +

+
(
24c(c+8)−(c−20)(c−24)m(6)

1

)
p1+c(c−20)(216+m(6)

1 )b4,1
)
.

(C.12)

In the next step, we solved for three parameters in terms of objects associated to the
identity character viz. the central charge c, the Fourier coefficients m(6)

1 and m(6)
2 . For the

non-rigid parameters, we obtained the equations (4.5) and (4.6) where f3(c,m(6)
1 ,m

(6)
2 ) and

f4(c,m(6)
1 ,m

(6)
2 ) are given by:

f3(c,m(6)
1 ,m

(6)
2 ) = 1

c(5c+22)+(c−10)m(6)
1

(
285c(9c−554)+24(21c−92)m(6)

1

−(c−22)(m(6)
1 )2+2(c−34)m(6)

2

)
(C.13)

f4(c,m(6)
1 ,m

(6)
2 ) = 1

c(c−20)(c(5c+22)+(c−10)m(6)
1 )

(
15c2

(
251c2−17010c−75192

)
+24c(41c2−1224c+8064)m(6)

1 +2c(c+4)(c−34)m(6)
2

−(c−20)(c−22)(c−24)(m(6)
1 )2

)
(C.14)

We then used the accessory equation and obtained a relation between m
(6)
2 , m(6)

1 and c

in (4.7) where the A2(c) and B2(c) are:

A2(c) =−25c4−2135c3+41140c2+224940c
2(c−22)(c−34) , B2(c) =−(c−24)(5c−98)

c−34 (C.15)

Next we rewrote the pole and accessory parameters only in terms of c and m
(6)
1 ; after

substituting (4.10) in (4.3) and (C.11). We obtained (4.11) and (4.12) where the f5(c,m(6)
1 )

and f6(c,m(6)
1 ) are given in:

f5(c,m(6)
1 ) = − [c(5c−94)+(c−22)m(6)

1 ][5c2−470c+6912+(c−22)m(6)
1 ]

(c−22)[c(5c+22)+(c−10)m(6)
1 ]

, (C.16)

f6(c,m(6)
1 ) = − [c(5c−94)+(c−22)m(6)

1 ][c
(
5c2−590c−2544

)
+(c−22)(c−24)m(6)

1 ]
c(c−22)[c(5c+22)+(c−10)m(6)

1 ]
,

(C.17)

In the next step, we obtained the third Fourier coefficient of the identity character in (4.13)
where A3(c) and B3(c) are given by:

A3(c) = 250c6−32700c5+1373240c4−18801040c3+90660480c2+892610560c
6(c−46)(c−34)(c−22) ,

B3(c) = (c−24)
(
25c3−1625c2+35308c−256188

)
2(c−46)(c−34) .

(C.18)
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We also obtained the fourth Fourier coefficient of the identity character in (4.15) (with
k= 4), where A4(c) and B4(c) are given by:

A4(c) = −1875c8+333750c7−21989925c6+680543850c5−12260107560c4+97916677200c3

24(c−58)(c−46)(c−34)(c−22) ,

+−87462415440c2−3618704872800c
24(c−58)(c−46)(c−34)(c−22)

B4(c) = −(c−24)
(
125c5−14025c4+636730c3−14585852c2+168166728c−778842496

)
6(c−58)(c−46)(c−34) .

(C.19)

We now give formulae that will be referred to in the main text of the paper, for the
(2,8) MLDE. In the first step, one computes the first three orders of the Frobenius solution
for the identity character and obtains (4.22) and (4.23) where the functions f̃1(c,p1, b4,1)
and f̃2(c,p1, b4,1) are given by:

f̃1(c,p1, b4,1) = − 1
48(c−26)(48c(5c−634)+c(c−4)p1−c(c−28)b4,1) (C.20)

f̃2(c,p1, b4,1) = 1
96(c−38)

(
−144c(1615c−167794)−48

(
5c2+326c−13104

)
m

(8)
1

−
(
24c(9c+208)+(c−24)(c−28)m(8)

1

)
p1+c(c−28)(456+m(8)

1 )b4,1
)
.

(C.21)

In the next step, we solved for three parameters in terms of objects associated to the
identity character viz. the central charge c, the Fourier coefficients m(8)

1 and m(8)
2 . For the

non-rigid parameters, we obtained the equations (4.24) and (4.25) where f̃3(c,m(8)
1 ,m

(8)
2 )

and f̃4(c,m(8)
1 ,m

(8)
2 ) are given by:

f̃3(c,m(8)
1 ,m

(8)
2 ) = 1

c(5c−142)+(c−14)m(8)
1

(
3c(855c−71426)+24(21c−52)m(8)

1

−(c−26)(m(8)
1 )2+2(c−38)m(8)

2

)
(C.22)

f̃4(c,m(8)
1 ,m

(8)
2 ) = 1

c(c−28)(c(5c−142)+(c−14)m(8)
1 )

(
3c2

(
1255c2−136926c+1726152

)
+24c

(
41c2−2088c+25344

)
m

(8)
1 +2c(c−38)(c−4)m(8)

2 −((c−28)(c−26)(c−24))(m(8)
1 )2

)
(C.23)

Next we rewrote the pole and accessory parameters only in terms of c and m
(6)
1 ; after

substituting (4.26) in (4.24) and (4.25). We obtained (4.27) and (4.28) where the f̃5(c,m(6)
1 )

and f̃6(c,m(6)
1 ) are given in:

f̃5
(8)

(c,m(8)
1 ) =− [c(5c−634)+(c−26)m(8)

1 ][5c2−634c+13824+(c−26)m(8)
1 ]

(c−26)[c(5c−142)+(c−14)m(8)
1 ]

, (C.24)

f̃6
(8)

(c,m(8)
1 ) =− [c(5c−634)+(c−26)m(8)

1 ][c
(
5c2−754c+8304

)
+(c−26)(c−24)m(8)

1 ]
c(c−26)[c(5c−142)+(c−14)m(8)

1 ]
,

(C.25)
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D Some (2,8) MLDE solutions and quasi-characters

Here we analyse the (n,ℓ) = (2,8) MLDE in the same was as was done for (2,6) in section 4.
The MLDE in the j-coordinate is given by:(

∂2
j +
( 1

3j+ 1
2(j−1728)−

1
(j−p1)

)
∂j + α0α1(j−b4,1)

j(j−1728)(j−p1)

)
χ(j) = 0 (D.1)

Using the series expansion χi =
∞∑

k=0
a

(1)
i,k (j−p1)k+α

(1)
i , a

(1)
i,0 ̸= 0, the indicial equation around

j= p1 is:

α
(1)
i (α(1)

i −2) = 0 (D.2)

At first subleading order, for the solution α
(1)
0 = 0 we get:

a
(1)
0,1 = α0α1(p1−b4,1)

p1(p1−1728) (D.3)

At second order beyond this, we find (as expected) that the a(1))
0,2 terms cancel resulting in

a constraint equation:

α0α1(p1−b4,1)2+
(

1152− 7p1
6

)
(p1−b4,1)+p1(p1−1728) = 0 (D.4)

Now one analyses the Frobenius solution by going back to the (2,8) MLDE in the
τ -plane: (

D2+
(
E6
3E4

+ E2
4E6

E3
4−pI∆

)
D+α0α1E4

(
E3

4−b4,1 ∆
)(

E3
4−p1 ∆

) )
χ(τ) = 0 (D.5)

and using the methods explained in section 4, we obtain:

p1 = −738720α2
0−12α0 ((m1−504)m1−2m2+214278)−13m2

1+624m1+38m2
(12α0+7)m1−24α0 (60α0+71)

b4,1 = 1
α0 (6α0+7)

(
1440α2

0+1704α0−12α0m1−7m1
)(6505920α4

0+29576016α3
0

+15535368α2
0+72α3

0m
2
1−70848α3

0m1−144α3
0m2+234α2

0m
2
1−150336α2

0m1

−252α2
0m2+253α0m

2
1−76032α0m1−38α0m2+91m2

1

)
(D.6)

Next we exhibit the quasi-characters for ℓ= 6r+2 cases, for which the initial quasi-
characters solve the ℓ= 2 MLDE. These solutions exist for the following values of c:

dual Lee-Yang family: c= 2(6n−1)
5 , n ̸= 1 mod 5

dual A1 family: c= 6n−1
dual A2 family: c= 4n−2, n ̸= 1 mod 3
dual D4 family: c= 12n−4

(D.7)

– 64 –



J
H
E
P
1
2
(
2
0
2
3
)
1
4
3

Of these, the central charges:

c= 82
5 ,17,16, 94

5 ,20, 106
5 ,22,23, 118

5 (D.8)

correspond to admissible characters15 with ℓ= 2 [25]. As before, linear combinations of
these quasi-characters make up admissible characters with increasing values of ℓ, this time
in the family ℓ= 6r+2, and all such characters are generated.

We can now list the admissible (2,8) solutions and express them in terms of quasi-
characters.

Admissible Solutions (i).

c= 82
5 , m1 = 410+87m, m2 = 64739+5510m, m3 = 2089934+95323m, 0<m≤ 2

For this case,

p1 = 4(m1−497)(m1+943)
m1−410 (D.9)

b4,1 = −4(m1+943)(19m1−11603)
41(m1−410) (D.10)

The equations (D.9) and (D.10) satisfy (D.4). This solution is equal to the following sum
of quasi-characters:

χℓ=8 =χL̃Y
n=7+N1χ

L̃Y
n=−3

with the identification m=N1.

Admissible Solutions (ii).

c= 17, m1 = 323+11m, m2 = 60860+649m, m3 = 2158575+10480m, 0<m≤ 40

For this case,

p1 = 3(m1−499)(m1+1037)
m1−323 (D.11)

b4,1 = −3(m1+1037)(7m1−5797)
17(m1−323) (D.12)

The equations (D.11) and (D.12) satisfy (D.4). This solution is equal to the following sum
of quasi-characters:

χℓ=8 =χÃ1
n=3+N1χ

Ã1
n=−1

with the identification, m=N1. This solution appears in [18].
15Again these all correspond to CFTs, except for the first and last cases that are Intermediate Vertex

Operator Algebras [44]. A new feature here is that a single set of admissible characters corresponds to more
than one CFT.
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Admissible Solutions (iii).

c= 18, m1 = 234+5m, m2 = 59805+258m, m3 = 2482242+3690m, 0<m≤ 171

For this case,

p1 = 2(m1−504)(m1+1224)
m1−234 (D.13)

b4,1 = −2(m1−1368)(m1+1224)
3(m1−234) (D.14)

The equations (D.13) and (D.14) satisfy (D.4). This solution is equal to the following sum
of quasi-characters:

χ(8) =χÃ2
n=5+N1χ

Ã2
n=−1

with the identification m=N1.

Admissible Solutions (iv).

c= 94
5 , m1 = 188+46m, m2 = 62087+2093m, m3 = 2923494+27002m, 0<m≤ 26

For this case,

p1 = 3(m1−510)(m1+1410)
2(m1−188) (D.15)

b4,1 = −3(m1+1410)(13m1−26790)
94(m1−188) (D.16)

The equations (D.15) and (D.16) satisfy (D.4). This solution is equal to the following sum
of quasi-characters,

χℓ=8 =χL̃Y
n=8+N1χ

L̃Y
n=−2

with the identification m=N1. This solution appears in [18].

Admissible Solutions (v).

c= 20, m1 = 140+m, m2 = 69950+36m, m3 = 3983800+394m, 0<m≤ 1807

For this case,

p1 = (m1−524)(m1+1780)
(m1−140) (D.17)

b4,1 = −(m1−3980)(m1+1780)
5(m1−140) (D.18)

The equations (D.17) and (D.18) satisfy (D.4). The quasi-character sum for this solu-
tion is:

χ(8) =χD̃4
n=2+N1χ

D̃4
n=0, (D.19)

with the identification m=N1. This solution appears in [27] with m= 960.
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Admissible Solutions (vi).

c= 106
5 , m1 = 106+17m, m2 = 84429+442m, m3 = 5825442+4063m, 0<m≤ 155

For this case,

p1 = 2(m1−548)(m1+2332)
3(m1−106) (D.20)

b4,1 = −2(m1+2332)(7m1−59996)
159(m1−106) (D.21)

The equations (D.20) and (D.21) satisfy (D.4). This is equal to the following sum of
quasi-characters:

χℓ=8 =χL̃Y
n=9+N1χ

L̃Y
n=−1

with the identification m=N1. This solution appears in [18].

Admissible Solutions (vii).

c= 22, m1 = 88+m, m2 = 99935+19m, m3 = 7846300+155m, 0<m≤ 3436

For this case,

p1 = (m1−574)(m1+2882)
2(m1−88) (D.22)

b4,1 = −(m1−16126)(m1+2882)
22(m1−88) (D.23)

The equations (D.22) and (D.23) satisfy (D.4). This is equal to the following sum of
quasi-characters:

χ(8) =χÃ2
n=6+N1χ

Ã2
n=0

with the identification, m=N1. This solution appears in [27] with m= 1782.

Admissible Solutions (viii).

c= 23, m1 = 69+5m, m2 = 131905+49m, m3 = 12195106+345m, 0<m≤ 996

For this case,

p1 = (m1−629)(m1+3979)
3(m1−69) (D.24)

b4,1 = −(m1−49013)(m1+3979)
69(m1−69) (D.25)

The equations (D.24) and (D.25) satisfy (D.4). This solution is equal to the following
sum of quasi-characters:

χ(8) =χÃ1
n=4+N1χ

Ã1
n=0

with the identification, m=N1. This solution appears in [18].
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Admissible Solutions (ix).

c= 118
5 , m1 = 59+11m, m2 = 164315+44m, m3 = 16778125+285m, 0≤m≤ 591

For this case,

p1 = (m1−686)(m1+5074)
4(m1−59) (D.26)

b4,1 = −(m1−164846)(m1+5074)
236(m1−59) (D.27)

The equations (D.26) and (D.27) satisfy (D.4). This solution is equal to the following sum
of quasi-characters:

χℓ=8 =χL̃Y
n=10+N1χ

L̃Y
n=0

with the identification m=N1.

Open Access. This article is distributed under the terms of the Creative Commons
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