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1 Introduction and summary

Our current understanding of fundamental particle physics rests on non-Abelian gauge field
theories. Simplest examples among these are pure Yang-Mills (YM) theories, the studies
of which constantly contribute to our ever-improving understanding of nonperturbative
aspects of Standard Model of particle physics. The lucrative simplicity of YM theories void
of fermionic matter is deceptive, however. The prime example is the inability to currently
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extract a satisfying narrative of the deconfinement phase transition. Attempts to extrapolate
obtained lessons to situations in the presence of fundamental quarks described within the
theory of strong interactions, quantum chromodynamics (QCD), falter. A description for the
deconfinement phase transition is inherently nonperturbative, which means that standard
diagrammatic methods based on weak coupling expansions may not be optimal starting
points. On the other hand, lattice approach hits the challenge of simulating fermions in
the fundamental representation of the gauge group. New approaches to shed light on this
immensely important and highly convoluted issue are certainly welcome.

Here we do not directly address the phenomenon of deconfinement phase transition.
Rather, we wish to point out another outstanding issue in pure YM theories, the lack of
understanding of the behavior of entanglement entropy (EE), SEE. Entanglement entropy
may though play a role in our quest to understand the deconfinement phase transition [1, 2]
as it is a probe of the underlying energy scale or the finite correlation length [3], an intrinsic
dynamical one in the cases of interest to us in this work. In somewhat similar fashion
to the case of deconfinement phase transition, computations of EE in non-Abelian gauge
field theories are highly complicated. Only existing results directly from the field theory
for slab subregions have been obtained at zero temperature from lattice simulations of
(3+1)-dimensional pure YM theories with SU(Nc), Nc = 2, 3, 4 [4–9] as well as at around
critical temperature in SU(3) [7].1 In addition, note that the (1+1)-dimensional case can
be solved exactly since the Migdal-Kadanoff decimation approach [17, 18] is exact. This
leads to trivial entanglement entropy [5, 19], i.e., in the sense of not depending on the
spatial extent of the subregion; in section 2 we provide a complementary exposition for
this fact. In the context of gauge/gravity duality, the Ryu-Takayanagi proposal [20] allows
extracting the entanglement entropy for spatial subregions in the large-Nc limit in a variety
of supersymmetric field theories in diverse dimensions at large coupling.

In this paper, we will report on extracting the lattice derivatives of the entanglement
entropy in pure SU(Nc) Yang-Mills theories using a powerful new method. Our treatment
is general, but we gear our attention to Euclidean three- and four-dimensional cases and
consider entanglement entropies for single strip and slab geometries, respectively. Similarly
to bulk thermodynamic quantities, as the entanglement entropy itself is not an observable,
we will measure the derivative of the entanglement entropy with respect to the width ` of
the strip (slab) for a given `: ∂SEE/∂`. More precisely, we utilize the replica method [21–23],
which on the lattice can be schematically summarized as follows. If we are interested in
region A, we construct a reduced density matrix by tracing over the degrees of freedom in
the complement, region B, ρA = trB(ρ), where ρ is the density matrix of the whole system,
A ∪B. The entanglement entropy,

SEE ≡ − tr(ρA log ρA) , (1.1)

associated with region A can then be written with the help of s replicas,

SEE = − lim
s→1

∂s log trA(ρsA) = − lim
s→1

∂s log Z(`, s)
Zs

. (1.2)

1Other echoing gauge theory computations of the entanglement entropy include [10–16].
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Figure 1. Left: we divide the system in spatial direction x by drawing an imaginary line at distance
`, which defines regions A and B. The Z is the associated partition function for field configurations
which are 1/T periodic in the Euclidean time direction. Right: we introduce s replicas. The fields
are s/T -periodic in the right part (region A), while only 1/T -periodic in the left part (region B). In
the sketch, the periodicity of each box, A, Bi, is represented by a pair of horizontal lines (a solid
one at the bottom and a dashed one at the top) which both carry the same label rA, resp. rBi ,
indicating that these two boundaries of the box are identified.

Here the first equality is an identity and the second one can be understood through the
connection to path integrals. Z is the partition function of the original system, where the
division to A and B is only imaginary, fields are periodic in 1/T , and hence Z does not
depend on ` (nor on s). The partition function Z(`, s) is for the field configurations which
have more complicated boundary conditions: for spatial coordinate values in the B region
the fields are 1/T periodic and for the spatial coordinate in the region A, the fields are
s/T -periodic; see figure 1 for a sketch.

As alluded to before, we are not interested in SEE, however, but its derivative with
respect to `. To this end, by acting with this derivative on (1.2) we get

∂`SEE = lim
s→1

∂`∂sF (`, s) ≈ F (`+ a, 2)− F (`, 2)
a

, (1.3)

where we replaced for the free energy F (`, s) = − log(Z(`, s)). In the latter step we
approximated the spatial derivative with a discrete derivative on the lattice, with lattice
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spacing a, and for the derivative with respect to replica number s we only consider the
dominant contribution. Higher replica numbers give rise to contributions whose sizes are
expected to be small [9]; in free field theories the ` dependence of EE and the second Rényi
entropy can even be shown to be the same [22, 24].

The right-hand-side of (1.3) is a free energy difference, a finite quantity that we extract
from the lattice. This will be detailed in section 2. Notice that there are no issues of gauge
invariance as long as one chooses not to pierce the cut through the sides of plaquettes [25].
Therefore, this lattice formulation does not suffer from the muddle associated with the
tensor decomposition of the physical Hilbert space that one promptly runs across in gauge
theories when formulating the tracing over the complement regions [26, 27].

Our results for extracting precise data for entanglement entropies are based on a novel
computational method. The advantage of our method is that it enables us to outperform
previous simulations, based on a clever interpolation ansatz for the free energies [26] needed
in (1.3) that we improve upon. This advancement mitigates the severe signal-to-noise
ratio, thus allowing more accurate simulations with still moderate computational resources.
We can push down statistical error margin considerably relative to previous works in the
field. Our method is, in principle, applicable for any number of colors (and dimensions),
and so although our main focus in this paper is three-dimensional field theory at non-
zero temperature, we will provide original results for the zero temperature SU(5) in four
dimensions elsewhere; see also [28] for the associated entanglement c-function that we have
amused on already.

Armed with the success in four dimensions, we continue the discussion in three-dimen-
sional case. Although we are limiting our focus on SU(2) theory, since the simulations are
costly, we will consider a novel scenario and consider entanglement entropies at non-zero
temperature. In addition to for the first time to extract entanglement entropies in three
dimensions, there are interesting features that we get to test. First of all, contrary to
four dimensions, there is no UV fixed point, so one does not get to exploit the underlying
conformal symmetry to claim success of the comparison to holographic result. Interestingly,
we will find support that the gravity dual to supersymmetric Yang-Mills theory at strong
coupling and in the limit of large-Nc elucidates many features that would be otherwise
unexpected from field theory point of view.

So, what is the gravity dual of the Euclidean three-dimensional pure Yang-Mills theory
that we consider? In an optimal scenario we should really be considering a supersymmetric
Yang-Mills theory on the lattice, e.g., as in [29]. Since the results that we obtain are
pretty encouraging, we believe that our work is a first step towards this direction and
similar methods that we construct could be considered in vastly more demanding cases
with fermions. We will review salient details of the holographic approach in section 3.

The key observation made in [30] is that the derivative (1.3) can be directly and very
effectively used to reconstruct selected components of the metric in the dual geometry to
an accuracy given by the statistical error in the measurements of (1.3). This boils down
to a few facts, that ∂SEE/∂` is independent of a regularization scheme and that it can be
written without an explicit integral that would otherwise be present in the evaluation of
the entanglement functional SEE. The derivative is instead written in terms of components
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of the background metric, evaluated on the position of the RT surface. This quantity can
be understood as the conjugate momentum that is conserved under translations of the
position of the strip (slab) [31] and it becomes a very simple expression when one chooses
to evaluate ∂SEE/∂` at the tip of the RT surface. In particular, in the limit ` → ∞ one
expects to probe the IR physics of the ambient field theory. On general grounds in the
deconfining phase, the finite part SEE/` should pick only the contribution from the degrees
of freedom on the black hole horizon and indeed the expression ∂SEE/∂`|`→∞ reduces to
the Bekenstein-Hawking entropy SBH ∝ N2

c T
7/3/λ1/3, where λ = g2

YMNc indicates the ’t
Hooft coupling [32, 33]. Thereby, per holographic dictionary, extracting the r.h.s. of (1.3)
will match onto the thermal entropy of Yang-Mills theory at strong coupling and large-Nc
when `→∞ is taken. We will show numerical evidence for this from our lattice simulations
in section 5. That the derivative of the entanglement entropy of some region A becomes in
the limit `→∞ proportional to the thermal entropy, Sth, can be understood also directly
from the definition of the entanglement entropy, eq. (1.1), by noting that in the limiting
case, where A represents the whole system, and its complement, B, shrinks to zero volume,
one has ρA → ρ, and therefore:

lim
B→∅

SEE(A) = − tr(ρ log(ρ)) = Sth,A . (1.4)

Now, as the thermal entropy is an extensive quantity, Sth,A grows linearly with the volume
of A, which in turn depends linearly on `. One would therefore expect that

lim
B→∅

∂SEE(A)
∂`

= ∂ vol(A)
∂`

sth,A , (1.5)

with sth,A being the density of thermal entropy in A, and ∂` vol(A) = |A⊥`| is simply the
area of the cross section of A that is perpendicular to the direction in which ` grows. We
will discuss this in more detail in section 4. The relation eq. (1.5) could also be of interest
for future thermodynamic studies, as it allows for a non-perturbative determination of the
thermal entropy of a system without having to fix integration constants.

At intermediate energy scales (or strip widths) we find evidence for the scaling SEE ∼
`−4/3 that is expected from (supersymmetric) YM theory at zero temperature in three
dimensions [34]. We present the results that we have obtained from lattice studies in
section 5. We also show that the corresponding geometry can be reconstructed using this
data. Although the reconstructed metric might give further information than the entropy
density on some field theory quantities, and possibly even make useful predictions, we defer
these investigations in the future.

Section 6 then contains our conclusions and a discussion on future outgrowths of our
work, and we supplement the article with an appendix A where we give a peek to other
novel results that we extracted from the lattice in the case of 3d YM at finite temperature.
We present data for the Polyakov loop and extract the potential V (L) between quarks
and anti-quarks, separated by a distance L. Among other things, in the intermediate
energy scales, we show evidence for the scaling V (L) ∼ L−2/3 [35] stemming from the same
D2-brane background in the UV as we utilized for the entanglement entropy. At the deep
IR, i.e., for very large separation, the D2-brane background suggests that the real part of
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the potential ReV ∼ L−10/3, while the imaginary part would grow as ImV ∼ L. Our results
are consistent with the former behavior though we cannot dissect it from the expectation of
the Debye screening behavior below Tc: ReV ∼ e−mDL/L1/2 where mD would be the Debye
mass [36].2 To this end, a systematic scan in the parameters is required, in particular to
analytically continue the Euclidean correlators to real time [38, 39] to see how the imaginary
part of the potential behaves.

2 Entanglement entropy on the lattice

In this section we describe in some more detail how the aforementioned replica method [21–
23] can be applied to determine entanglement measures in SU(Nc) Yang-Mills theories using
non-perturbative lattice Monte Carlo methods. For the reader who is unfamiliar with the
lattice formulation of Yang-Mills theory and Monte Carlo techniques, we refer to the text
books [40–43].

The first implementation of the replica method for SU(Nc) lattice gauge theory was
introduced almost 15 years ago [4] and used ever since [6–9]. We will here briefly review
the working principle of the original method and sketch the considerations that lead to our
new approach.

In appendix B we provide some more details on our update algorithm from which
also an argument arises for why in (1 + 1) dimensions the entanglement entropy must be
independent of the width, `, of the slab region A.

2.1 Established method

The replica method is based on a path-integral representation of matrix elements, 〈ψ1|ρ|ψ2〉,
of the density matrix ρ, which can be thought of as the (Euclidean) time-evolution operator
from some initial time xd1 to some final time xd2, and ψ1 and ψ2 represent instantaneous
states of the system at these times.

Let us now consider a pure SU(Nc) gauge theory on a d-dimensional, periodic, finite
lattice of temporal extent Nt. The ordinary Euclidean lattice partition function for this
system can be written as,

Z =
∫
D
[
U
]

e−SG[U ] (2.1)

where we choose SG to be the Wilson gauge action [44],

SG = βg
Nc

∑
x

∑
µ<ν

Re tr(1− Uµν(x)) , (2.2)

with βg = 2Nc
g2
0

being the inverse bare lattice gauge coupling and the Uµν(x) are the so-called
plaquette variables,

Uµν(x) = Uµ(x)Uν(x+ µ̂)U †µ(x+ ν̂)U †ν (x) =

x x+ µ̂

x+ µ̂+ ν̂x+ ν̂

Uµν(x) , (2.3)

2Notice that in the perturbative regime at zero temperature one finds the Coulomb-type logarithmic
potential [37], plus higher order corrections.
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which are formed from the elementary gauge degrees of freedom, the link variables:

Uµ(x) = exp(i aAµ(a x)) =
x

Uµ(x)

x+ µ̂
∀x ∈ Zd, µ ∈ {1, . . . , d} . (2.4)

We note that the g2
0 in the above expression for βg is the dimensionless lattice gauge coupling,

which in terms of the continuum theory gauge coupling, g2
c , and the lattice spacing, a, can

be written as g2
0 = g2

c a
4−d. Furthermore, we note that a finite temporal extent, Nt, of the

lattice corresponds to a finite temperature T = 1/(aNt).
Now, to define a matrix element 〈ψ1|ρ|ψ2〉 of the density matrix ρ for this theory, we

drop the temporal periodicity of the lattice and think of the initial and final states, ψ1 and
ψ2, as defining (up to gauge transformations) values for the gauge links that touch or are
within the time slices xd = 0 and xd = Nt:

〈ψ1|ρ|ψ2〉 = 1
Z

∫
U(x̄,0)=Uψ1 (x̄)
U(x̄,Nt)=Uψ2 (x̄)

D
[
U
]

e−SG[U ] = 1
Z

Nt

0

ψ2

ψ1

, (2.5)

where the Uψ are made up from link-variables (2.4). The normalization factor Z−1 is
obtained by noting that taking the trace over ρ means to identify the two boundaries at
xd = 0 and xd = Nt with each other and summing over all possible values. From the
normalization condition

tr(ρ) = 1 (2.6)

it then follows that:

tr(ρ) =
∫

dψ〈ψ|ρ|ψ〉 = 1
Z

∫
D
[
U
]

e−SG[U ] = 1 . (2.7)

By splitting the lattice system into two parts, A and B, as depicted in figure 2, matrix
elements for the reduced density matrix of part A can then be represented as

〈ψA,1|ρA|ψA,2〉 =
∫

dψB〈ψB ⊗ ψA,1|ρ|ψB ⊗ ψA,2〉 = 1
Z

rB

rB

ψA,2

ψA,1

AB , (2.8)

where only the temporal boundary states, ψB,1 and ψB,2 for part B get identified with each
other and summed over all possible values, indicated in the drawing after the last equality
sign by assigning the label rB to both temporal boundaries. The temporal boundaries for
part A are specified by the boundary states ψA,1, ψA,2.

With these definitions, it is now straightforward to obtain an expression for the so-called
Rényi entropy of order s ∈ N in terms of a ratio of two lattice partitions that represent
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Figure 2. Illustration in (2 + 1) dimensions of how we divide the system with fixed temporal
boundary states, ψ1 and ψ2, into two parts, A and B. After the partitioning, we have ψ1 = ψB,1⊗ψA,1
and ψ2 = ψB,2 ⊗ ψA,2, where ψB,1, ψB,2 represent the boundary states for part B and ψA,1, ψA,2
the boundary states for part A.

tr(ρsA):

Hs(`,Nt, Ns) = 1
1− s log tr(ρsA) = 1

1− s log Zc(`, s,Nt, Ns)
Zs(Nt, Ns)

= −1
1− s(Fc(`, s,Nt, Ns)− s F (Nt, Ns)) .

(2.9)

Here Zc(`, s,Nt, Ns) is the partition function for a system with the topology depicted on
the left-hand side of figure 3. The example shows the case of s = 2 in (2+1) dimensions
with region A having width ` = 2. The right hand side of figure 3 shows the same lattice
but with a different topology, so that it decomposes into a product of two copies of the
system described by the normal partition function Z(Nt, Ns).

Using the expression for entanglement entropy given in eq. (1.2), one finds with
these definitions:

SEE(`,Nt, Ns) = − lim
s→1

∂ log tr(ρsA)
∂s

= lim
s→1

∂Fc(`, s,Nt, Ns)
∂s

− F (Nt, Ns)

≈ Fc(`, 2, Nt, Ns)− 2F (Nt, Ns) , (2.10)

where on the last line we approximated
∂Fc(`, s,Nt, Ns)

∂s
≈ Fc(`, s+ ∆s,Nt, Ns)− Fc(`, s,Nt, Ns)

∆s (2.11)

with ∆s = 1, and used that for s = 1 one has Fc(`, 1, Nt, Ns) = F (Nt, Ns). With this
approximation, the entanglement entropy turns out to be just the Rényi entropy of order two:

SEE(`,Nt, Ns) ≈ H2(`,Nt, Ns) . (2.12)

As the entanglement entropy has a `-independent UV-divergence, it is convenient to
look at the derivative of SEE with respect to ` instead of SEE itself. On the lattice, this
corresponds again to a discrete lattice derivative,

∂SEE(`′, Nt, Ns)
∂`′

∣∣∣∣
`′=`+1/2

≈ Fc(`+ 1, 2, Nt, Ns)− Fc(`, 2, Nt, Ns) . (2.13)
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Figure 3. Illustration of two different topologies for a (2 + 1) dimensional lattice of size V =
N2
s × sNt with s = 2. The left-hand side shows the topology for the system described by the

partition function Zc(`, s,Nt, Ns) in eq. (2.9), and the right-hand side the system described by
Zs(Nt, Ns), i.e., the product of s copies of the system described by the ordinary lattice partition
function Z(Nt, Ns).

Apart from getting rid of UV divergences, eq. (2.13) has from lattice Monte Carlo perspective
also the advantage over eq. (2.10), that the change that has to be done to the system to
increase the width of region A from ` to (`+ 1) is in general much smaller than the required
change to get from width ` = 0 to `. However, also the change from ` to (`+ 1) represents a
highly non-local change that affects a large number of degrees of freedom. As a consequence
there is a bad overlap problem, meaning that link-variable configurations that contribute to
the partition function of the ` system play essentially no role for the partition function of
the (`+ 1) system, and vice versa.

To overcome the overlap problem, the authors of [4] proposed to define a one-parameter
family of interpolating partition functions, Z∗` (α), with α ∈ [0, 1], so that

Z∗` (0) = Zc(`, s,Nt, Ns) and Z∗` (1) = Zc(`+ 1, s,Nt, Ns) , (2.14)

where we leave the dependency of Z∗` on Nt and Ns implicit in order to avoid too lengthy
expressions. The interpolating partition function is chosen to be

Z∗` (α) =
∫
D
[
U
]

exp(−(1− α)SG,`[U ]− αSG,`+1[U ]) , (2.15)
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Figure 4. Interpolation function for eq. (2.17) (left) and the corresponding running free energy
difference eq. (2.18) (right) as functions of α. The data is taken from [6] and corresponds to a SU(3)
gauge theory on a (3+1)-dimensional lattice with Ns = 16, Nt = 16, s = 2, ` = 2 at βg = 6.0. The
displayed data does not include errors.

where SG,`[U ] and SG,`+1[U ] represent for a given configuration of link-variables, U =
{Ux,ν}x,ν , the two values of the gauge action where the subsystem A has width ` and (`+ 1),
respectively. The derivative of the entanglement entropy with respect to ` from eq. (2.13)
is then obtained as

∂SEE(`′, Nt, Ns)
∂`′

∣∣∣∣
`′=`+1/2

≈ −
1∫

0

dα∂ logZ∗` (α)
∂α

=
1∫

0

dα〈SG,`+1 − SG,`〉α , (2.16)

where the integration over α is performed by interpolating lattice results for the expecta-
tion values

∂ logZ∗` (α)
∂α

= 〈SG,`+1 − SG,`〉α , (2.17)

for a sufficiently dense set of α-values in the integration domain [0, 1]. An example for
a possible outcome of this procedure is shown in figure 4, using data for a SU(3) gauge
theory on a (3 + 1)-dimensional lattice with Ns = 16, Nt = 16, s = 2 and ` = 2 at βg = 6.0,
which has been extracted from [6]. The left-hand panel of figure 4 shows the interpolating
function for eq. (2.17) as function of α and the right-hand panel shows the corresponding
running free energy differences,

∆F`(α) =
α∫

0

dα′ 〈SG,`+1 − SG,`〉α′ , (2.18)

where ∆F`(1) corresponds to the value of eq. (2.16) we are interested in.
The example depicted in figure 4 illustrates the problem that arises when using the

just described method for interpolating between the partition functions (2.14). During
the interpolation process, the free energy has to pass through a huge maximum. This is
presumably due to the fact that the configurations that contribute to the interpolating
partition function from eq. (2.15) at 0 < α < 1 are simultaneously subject to both actions,
the one corresponding to a width ` of region A, and the one for region A having width
(`+ 1). As the configuration distributions sampled with either of two actions separately
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have very little overlap (overlap problem), the number of configurations that can give a
significant contribution to the interpolation partition function, eq. (2.15), must be highly
reduced when α ∼ 1/2, resulting in a significantly increased free energy. This is problematic
because the values of eq. (2.17) for different α values are determined with Monte Carlo
methods and therefore come with a statistical error. Upon integration over α, the positive
and negative values of eq. (2.17) that occur as α runs through the interval [0, 1] lead to
large cancelations, so that the total free energy difference, ∆F`(1), is again relatively small,
the errors in the measured values of eq. (2.17) cannot cancel but simply accumulate, giving
rise to a bad signal-to-noise ratio.

2.2 Improved method

To avoid the formation of huge free energy barriers and resulting bad signal-to-noise ratios,
we can use an alternative interpolation method. To this end, let us denote by C the set of
all plaquettes in a V = sNt ×Nd−1

s lattice, which are not affected by a change of temporal
boundary conditions. These are all plaquettes except for the temporal ones that touch from
below the time-slices with xd = r ·Nt for r = 1, . . . , s (cf. figure 5).

A generalized partition function can then be written as:

Z
(
β,s,Nt,Ns,{n}

)
=∫

D
[
U
]
exp

( β
Nc

( ∑
�∈C

Retr
(
U�

)
+
∑
x̄

d−1∑
ν=1

s∑
r=1

Retr
(
U

(nx̄,ν)
νd (x̄, r ·Nt−1)

)))
,

(2.19)

where x̄ = x1, . . . , xd−1 ∈ Zd−1 labels the spatial positions on the lattice and U (0)
νd (x) and

U
(1)
νd (x) are the two different values for the temporal plaquette

Uνd(x) = U
ν
(x)Ud(x+ ν̂)U †ν (x+ d̂)U †d(x) , (2.20)

depending on whether the plaquette is subject to the boundary conditions from outside or
inside region A (see figure 5: (0) corresponds to blue, (1) to red). Which of these two cases
applies is for each spatial link controlled by the value of a corresponding discrete variable
nx̄,ν ∈ {0, 1} ∀x̄ ∈ Zd−1, ν ∈ {1, . . . , d− 1}. If we set for example

nx̄,ν =

0, x1 < Ns − `
1, x1 ≥ Ns − `

, (2.21)

the generalized partition function (2.19) reduced to Zc(`, s,Nt, Ns) as introduced in the
previous section.

To describe how the interpolation between Zc(`, s,Nt, Ns) and Zc(`+ 1, s,Nt, Ns) can
be carried out, using the generalized partition function eq. (2.19), let us denote by

K = {(x̄i, νi)}i=1,...,NK (2.22)

the (somehow) ordered set of spatial links in the boundary region where Ns − `− 1 ≤ x1 <

Ns− `, and let Kj = {(x̄i, νi)}i=1,...,j be the subset of the first j elements of K. Let us then
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y
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Figure 5. The figure illustrates at the example of a (2+1)-dimensional lattice of size N2
s × sNt

with s = 2, how a change of temporal boundary conditions, associated to a change of the width ` of
region A from ` = 2 to ` = 3, affects the way in which plaquettes are computed.
The plaquette P1 in the top-left panel touches from below the dashed line rB1 , meaning that the
top-edge of P1 does not consist of the link variable that connects x1 and x2, but rather the link
variable that connects x′1 and x′2. Similarly, the upper edge of plaquette P2 does not consist of the
link between x′1 and x′2 but of the link between x1 and x2. In the top-right panel, the same temporal
plaquettes are marked in red and belong now to region A: this means that the link that closes the
plaquette P1 along its top-edge is now indeed the link variable that connects x1 and x2 and the link
that closes P2 along its top-edge is the one that connects x′1 to x′2.
The two lower panels show for ` = 2 (left) and ` = 3 (right) the spatial links over which the temporal
plaquettes are subject to the boundary conditions of region A (red) and region B (blue).

further define:

nix̄,ν =

0, ifx1 < Ns − `− 1 ∨ (x̄, ν) ∈ K \Ki

1, ifx1 ≥ Ns − ` ∨ (x̄, ν) ∈ Ki

, (2.23)

and abbreviate Zi = Z(β, s,Nt, Ns,
{
ni
}
) and Fi = − log(Zi). The expression for the

derivative of the entanglement entropy (2.13) then becomes:

∂SEE(`′, Nt, Ns)
∂`′

∣∣∣∣
`′=`+1/2

≈ − log(ZNK ) + log(Z0) = FNK − F0 . (2.24)

This free energy difference can be measured from a single simulation, using a form of multi-
canonical method [45] for discrete sets of states, known as Wang-Landau (WL) sampling [46].
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With this method one samples the modified partition function,

ZWL
(
β, s,Nt, Ns, {f}

)
=

NK∑
i=0

efi
∫
D
[
U
]
exp

( β
Nc

( ∑
�∈C

Re tr
(
U�

)
+
∑
x̄

d−1∑
ν=1

s∑
r=1

Re tr
(
U

(nix̄,ν)
x̄+(r·Nt−1)·d̂,νd

)))
,

(2.25)

and adjusts the set of parameters {f} = {fi}i=0,...,NK till the histogram {H} = {Hj}j=0,...,NK ,
with

Hj =
d log

(
ZWL

(
β, s,Nt, Ns, {f}

))
dfj

, (2.26)

is approximately flat. After appropriate values for the {f} have been found with the WL
method, one can start to accumulate high statistics for the histogram {H} while keeping
the {f} fixed, and obtain an improved estimator for the free energy difference by setting:

FNK − F0 = fNK − f0 + log(HNK )− log(H0) . (2.27)

Error bars for eq. (2.27) can be obtained from the measurements of the histograms in
eq. (2.26) using the jackknife method.

Possible choices for ordering the spatial boundary link variables in K are illustrated
in figures 6 and 7 for the (2+1)-dimensional and the (3+1)-dimensional case, respectively.
These examples exploit the fact that gauge invariance ensures that a change of temporal
boundary conditions over spatial links for which at least one end is always (before and after
the update) either completely in region A or completely in region B, does not change the
free energy (cf. appendix B). This is the reason why the free energy graphs in figures 6 and 7
are flat at small i, where i is used to enumerate the boundary link variables. To determine
the total free energy difference in eq. (2.27), one therefore has to consider only the boundary
states for i > Nd−2

s . Note also, that with this choice of ordering of the spatial links in K,
the change in free energy as function of i is piecewise linear. This will be particularly useful
for future studies on larger systems, as it means that one does not have to measure the
change in free energy for all NK boundary states, but only has to determine the slope of
∆Fi as a function of i in each of the piecewise linear intervals.

3 Holographic approach

Entanglement entropy is a difficult quantity to compute in general QFTs and even if the
theory admits a lattice prescription the computation proceeds nontrivially as we have seen in
the previous section. However, if a QFT admits a holographic description, its computation
becomes easy using the Ryu-Takayanagi (RT) formula [20, 47, 48]. The RT-formula states
that the entanglement entropy is given by the area of a certain minimal bulk surface in the
holographic dual of the QFT.

In this section we will review salient details on the computation of the derivative of
entanglement entropy. In particular, we will show how the derivative can be used to solve
the inverse problem, to infer the dual background metric, which can only be obtained up to
statistical error inherent in the data of the derivative.
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Figure 6. Illustration of how in SU(2) gauge theory on a (2+1)-dimensional lattice with topology
as in the left-hand panel of figure 5, with Ns = 48, Nt = 8, s = 2, and βg = 96, the free energy
changes as spatial links are sequentially added to the boundary of region A to grow its width from
` = 2 to ` = 3. The left-hand panels show the total change in free energy as function of the number
i of spatial links added to region A. The red data points correspond to the initial Wang-Landau
estimate for ∆Fi, while the blue data points are the histogram-improved values. In each panel the
red-shaded area marks the change in free energy corresponding to an intermediate shape of region
A as sketched to the right. Note that the sketches show a much smaller lattice than the one used
for the simulations.
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Figure 7. Same as in figure 6 but for SU(3) on a (3+1)-dimensional lattice with Ns = 16, Nt = 16,
s = 2, and βg = 6.0. After all spatial links perpendicular to the boundary of region A have been
added, one continues to add spatial so as to form complete cubes that fill one row after the other.
Note that the sketches on the right-hand side show a much smaller lattice than the one used to
obtain the data in the left-hand plots. The sketches are meant to illustrate why the free-energy
difference as a function of n changes slope for a certain points. The total free energy difference for
the here discussed example is the same as in figure 4 but is obtained without having to overcome a
equally huge free energy barrier.
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Figure 8. The holographic bulk surface used in computing SEE(A) using the RT-prescription. The
QFT lives on the boundary Bd = A ∪B, and the dual gravity theory lives in the bulkMd+1 (times
the internal geometry). The bulk codimension-2 surface ΣA is anchored to the boundary of A so
that ∂ΣA = ∂A. The bulk metric inMd+1 is such that it causes ΣA to hang in the bulk when its
area is being minimized.

3.1 Derivative of the entanglement entropy

In a holographic theory the subsystems A and B are regions on the conformal boundary of
the bulk dual theory. The QFT is said to live on this conformal boundary while the dual
gravity theory lives in the bulk enclosed by the boundary. The boundary QFT and bulk
gravity descriptions are dual in the sense that they encode the same physical information.
The two descriptions are equivalent but some quantities might be much easier to compute
on one side of the correspondence than on the other. A great example is the entanglement
entropy which is given by

SEE(A) = 1
4G(10)

Nc

Area(ΣA) , (3.1)

where ΣA is the minimal area surface associated to the boundary region A and G(10)
Nc is

the ten-dimensional bulk Newton constant which can be written explicitly in terms of
gauge theory quantities if the dual theory is known. We consider the dual to be Yang-Mills
theory and imagine 1/G(10)

Nc ∝ N
2
c . Here, we are assuming that the external bulk geometry

is (d+ 1)-dimensional, i.e., that the boundary QFT is d-dimensional. The 8-dimensional
bulk surface ΣA has to be anchored to the boundary region A whose entanglement entropy
we wish to compute, that is, ∂ΣA = ∂A. Additionally, ΣA has to be homologous to A
in the bulk meaning that one has to be able to retract ΣA smoothly close to A through
the bulk. There is an infinite family of bulk surfaces that satisfy these conditions. The
RT-formula then instructs to pick the surface with minimal area as measured by the bulk
metric tensor. The area of this minimal surface then gives SEE(A). Note that since the
region A is defined on a boundary time slice, the bulk surface ΣA is of codimension two.
Also note that we are working with an asymptotically AdSd+1 bulk theory and therefore
the area of ΣA is divergent because it has to reach all the way to the boundary of the
spacetime. This divergence dominates the entanglement entropy, and this implies that the
holographic formula follows the area law. This is the RT-prescription for static cases which
is the case of interest to us in the present work, but there are extensions of the prescription
applicable to more general situations [49].
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In this paper, we consider slab-like entangling regions A. That is, regions defined by

A = { ~x | − `/2 ≤ x1 ≤ `/2} , (3.2)

where ` is the width of the slab. We will always orient the slab orthogonal to the first
spatial boundary dimension x1. The slab is assumed to be large in directions other than x1.
This slab shape combined with the translation invariance of the theory implies that the
profile of the bulk surface can be represented by a single function x1 = x1(z), where z is
the holographic coordinate orthogonal to the boundary.

We are interested in the entanglement of such slabs in (3 + 1) and (2 + 1) dimensions.
We will start with the former case. Consider a bulk metric in the Einstein frame of the form

ds2 = R2

z2

(
− b(z)
a(z)2 dt2 + a(z)2

b(z) dz + d~x2
)

+R2dΩ2
5 , (3.3)

where b(z) = 1 − z4/z4
h and R is the radius of curvature. This metric describes a family

of asymptotically AdS5 spacetimes if a(0) = 1. The holographic coordinate z is such that
z = 0 corresponds to the conformal boundary. The function b(z) is the usual blackening
factor of the AdS planar black hole, which puts our theory to a finite temperature. Further,
we will only consider functions a(z) such that a(zh) = 1, where zh is the black hole horizon
position. The choice of this family of metrics is mainly motivated by simplicity and the
assumption that metrics generalized from the simple AdS planar black hole are useful in
reproducing properties of finite temperature entanglement entropy results obtained from
lattice simulations in (3 + 1) dimensions. We add a single parameterized function a(z) to
the temporal and holographic directions of the metric, thus preserving symmetries of the
transverse and internal spaces. The function a(z) is introduced squared in the metric so
that the integrals for slab width and entanglement entropy we shortly derive will have more
convenient forms. It follows that the dual QFT is at temperature

T = 1
πzh

. (3.4)

It is worth pointing out that since we consider a static situation, the entanglement entropy
actually does not depend on the metric component gtt at all. We chose to fix the relationship
between gtt and gzz so that later we will be able to infer the complete bulk metric.3 The
entanglement entropy is then given by the integral

SEE(`) = V R3

2G(5)
Nc

∫ z∗

0

dz
z3

√
a(z)2

b(z) + x′1(z)2 , (3.5)

where x′1(z) = ∂z x1(z), V is the regularized volume of the slab in directions x2 and x3,
and we have simply integrated over the internal space so that its volume is absorbed into
the definition of the five-dimensional Newton constant G(10)

Nc = G
(5)
NcR

5Vol(Ω5). The point
z = z∗ is called the turning point of the bulk surface, which is the deepest point in the bulk

3Note that we are omitting any compact internal spaces from our bulk which would be present if the
metric was derived top-down from a full 10-dimensional string theory.
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reached by the minimal surface. The profile of the surface x1(z) has to be such that its
area is minimized. This happens when x1(z) satisfies the Euler-Lagrange equation with
the Lagrangian L given by the integrand of (3.5). Since x1(z) itself does not appear in
the integrand, we immediately find a conserved quantity ∂x′1L. We can fix the value of
this constant at the turning point z = z∗ where x′1(z)→ ±∞ and find an equation for the
profile which minimizes the area:

x1(z)
z3
√
a(z)2/b(z) + x1(z)2 = ± 1

z3
∗

(3.6)

→x1(z) = ±z
3

z3
∗

a(z)√
b(z)

1√
1− (z/z∗)6 , (3.7)

where the ± refers to the two different branches of ΣA as a function of z. After we now
know the profile, we can give explicit integrals for the slab width ` and the entanglement
entropy SEE:

T`(z∗) = 2
πzh

∫ z∗

0

z3

z3
∗

a(z)√
b(z)

1√
1− (z/z∗)6 dz (3.8)

4G(5)
Nc

R3V T 2SEE(z∗) = 2π2z2
h

∫ z∗

ε

1
z3

a(z)√
b(z)

1√
1− (z/z∗)6 dz (3.9)

= π2
[
z2
h

ε2
− z2

h

z2
∗

+ 2z2
h

∫ z∗

0

1
z3

(
a(z)√
b(z)

1√
1− (z/z∗)6 − 1

)
dz
]
. (3.10)

On the last line we have separated the UV-divergence from the z = ε limit of the integral.
It is instructive to study the behavior of SEE(`) for small `, that is, in the UV-limit.

This limit is easily obtained from the integrals (3.8) and (3.10). The UV-limit is equivalent
to assigning a(z) = 1 and b(z) = 1, which corresponds to the zero-temperature N = 4
supersymmetric Yang-Mills theory. In this limit the integrals can be computed and one finds

SEE(`) = N2
c V

2πε2 − 2
√
π

Γ
(

2
3

)3

Γ
(

1
6

)3
N2

c V

`2
, T `� 1 , (3.11)

where ε is the UV-cutoff we used in the integral (3.10). Note that here we displayed the
canonical field theory example of N = 4 SU(Nc) super Yang-Mills theory on flat space,
dual to AdS5×S5, wherein we plugged in known expressions for the parameters in terms of
field theory quantities using Vol(S5) = π3, R4 = 4πgsα′2Nc and G(10)

Nc = 8π3α′4g2
s . The first

term reflects the expected UV-divergence of SEE(`). On the QFT side, it originates from
short-range correlations across the entangling surface. On the gravity side, the divergence
has a geometric interpretation, as mentioned already above: since the surface ΣA has to
reach all the way to the boundary, its area is infinite because the boundary is infinitely far
away. Note that SEE is indeed proportional to V , the volume of directions parallel to the
slab: this is the area law of entanglement entropy.

The diverging term is not particularly interesting since it is independent of the slab
width `. The occurence of this divergence is actually related to the fact that the entanglement
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entropy itself is not an observable, similarly to say the total free energy of a system, which is
typically infinite. In order to bypass this problem, one can focus on the finite piece in (3.11)
or on its change. To this end, it is easy to show that the derivative of SEE(`) takes the
following simple form [30]:

4G(5)
Nc
V

dSEE(`)
d` = R3

z3
∗
, (3.12)

where we recall that the width ` is obtained by inverting z∗ = z∗(`). The expression (3.12)
is particularly nice since all integrals cancel each other out and the right-hand side reduces
to a simple function of the metric coefficients. If we were to reconstruct the bulk geometry
using lattice measurements of entanglement entropy in (3+1) dimensions, we could use the
formula (3.12) very effectively. Notice further that when considering the infinite width limit
` → ∞, the tip of the RT surface approaches z∗ → zh, and the only contribution to the
finite piece stems from (3.12), which gives the thermal entropy

Sth = V R3`

4G(5)
Ncz

3
h

= π2N2
c

2 V ` T 3 , (3.13)

where in the latter expression we again wrote the result for N = 4 SU(Nc) super Yang-Mills
theory on R4 at temperature T .

Having reviewed a few key holographic ideas we will next introduce the (2 + 1)-
dimensional model we utilize. We use the following bulk geometry in the string frame:

ds2 =
(
rp
z

) 5
2
(
− b(z)
a(z)2 dt2 + d~x2

)
+
(
z

rp

) 3
2 a(z)2

b(z) dz2 + r
3
2
p
√
zdΩ2

6 (3.14)

eφ =
(
z

zp

) 5
4

, (3.15)

where zp is a length scale playing the role of the radius of curvature and eφ is the dilaton.
Notice that the our ansatz for the dilaton is not crucial; using Weyl rescaling we could
aim for reconstructing in the Einstein frame instead. We stick to the string frame to
allow for easier comparison with results in the string literature. The blackening factor
is b(z) = 1 − (z/zh)5, where zh is the horizon position. This background for a(z) = 1
can be derived from type IIB string theory by considering a stack of D2-branes [50] and
we assume that the generalized metric with a(z) 6= 1 could result in a useful model for
finite-temperature lattice results in (2 + 1) dimensions. Furthermore, we want to keep
the metric ansatz simple so we keep the transverse and internal space symmetries, only
modifying temporal and holographic directions. This is a top-down holographic model, so
the metric includes a compact internal space; we keep the ten-dimensional Newton constant
explicit below. The temperature in this family of geometries, assuming again a(zh) = 1, is

T = 5
4π

√
zp

z
3/2
h

. (3.16)

The integrals for the strip width and entanglement entropy can be derived in the same way
as in the (3 + 1)-dimensional case. The relevant integrals are

T`(z∗) = 5
2π

1
z

3/2
h z

7/2
∗

∫ z∗

0

a(z)√
b(z)

z4√
1− (z/z∗)7 dz (3.17)
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1
TV

SEE(z∗) = 16π4z
17/2
p

75G(10)
Nc
√
zh

[
z2
h

ε2
− z2

h

z2
∗

+ 2z2
h

∫ z∗

0

1
z3

(
a(z)√
b(z)

1√
1− (z/z∗)7 − 1

)
dz
]
. (3.18)

Like before, the derivative of SEE(`) is a simple function, free of integral expressions:

4G(4)
Nc
V

dSEE
d` = z

7/2
p

z
7/2
∗

, (3.19)

where if interested in this relation in terms of ten-dimensional Newton constant one uses
Vol(S6) = 16π3/15 for the volume of the internal space.

We can work out the UV limit of SEE by studying (3.17) and (3.18) in the limit z∗ � z0.
The result is [34],

1
TV

SEE(`) = 16π4z
17/2
p

75G(10)
Nc
√
zh

z2
h

ε2
− 3π7/6

71/398
Γ
(

5
7

)7/3

Γ
(

17
14

)7/3
z2
h

z
2/3
p `4/3

 , T `� 1 . (3.20)

We note that in order to avoid flowing to the weakly coupled Yang-Mills regime, we need to
work with finite UV cutoff ε, however, we are only interested in terms depending on ` in
this work.

On the other hand, in the large width limit

1
TV

SEE(`) = 16π4z
17/2
p

75G(10)
Nc
√
zh

z2
h

ε2
+
√
zp

z
3/2
h

`+
2
√

2Γ
(
−2

5

)
5Γ
(

1
10

)
 , T `� 1 . (3.21)

Here one should also be wary that the strict IR limit is probably not trustworthy at face
value, but better captured using 3D superconformal field theory via M2-branes [32, 47].
Our focus is on the middle term in the bracket in (3.21) (or actually that in (3.19)) that
arises solely from black hole horizon and corresponds to the thermal behavior. We believe
that it universally describes the thermal entropy of the deconfining phase in the field theory.
Indeed, below we show evidence for the leading SEE ∼ T 7/3` (as follows from plugging (3.16)
in (3.21)) behavior as extracted from lattice computations.

3.2 Bulk reconstruction

We now have expressions for the holographic entanglement entropy in both (3+1) and (2+1)
dimensions. In this work, however, we only consider the reconstruction in (2+1) dimensions
since this is the case for which we have sufficient data from the lattice. The formulas require
as input the bulk metric and output entropies. Since we have also computed the derivative
of SEE(`) with lattice simulations, it is interesting to ask whether it is possible to find such
a bulk geometry for which the holographic predictions would agree with the lattice results.
Schemes like this where the holographic bulk geometry is inferred from QFT quantities is
called bulk reconstruction. We will use statistical methods for reconstructing the bulk from
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lattice data [30]. The lattice data consists of a set of M measurements of dSEE/d` and
corresponding uncertainties, σ, for different widths `:{( 1

T 2V

dSEE
d`

)
i
, `i , σi

}
, i ∈ {1, . . . ,M} . (3.22)

The bulk geometry contains only one free function, a(z), which we parametrize as

a(z) = 1 +
Nbasis∑
i=1

ai

[(
z

zh

)i
−
(
z

zh

)Nbasis+1
]
, (3.23)

with ai ∈ R ∀i ∈ {1, . . . ,M}. The expressivity of the ansatz is controlled by the number
of free parameters, Nbasis. Furthermore, the ansatz is built so that a(0) = a(zh) = 1 by
construction, which keeps the geometry asymptotically conformally AdS and the horizon at
a constant temperature. We note that if we were interested in very low temperatures and
the confining phases of the theory, a metric ansatz with a collapsing cycle at the IR end of
the geometry (a ‘cigar’) would seem more appropriate.

Our statistical model then has the parameters

{a1, a2, . . . , aNbasis , c} , (3.24)

where c ≡ (64π5z
17/2
p )/(375√zhG

(10)
Nc ) is the multiplicative constant on the right hand side

of (3.19). We will link strip widths `i to entropy derivatives by assuming a likelihood( 1
T 2V

dSEE
d`

)
i

∣∣∣∣∣{~a, c} ∼ N
(
c

(
zh

z∗(~a, `i)

)7/2
, σi

)
, (3.25)

with N (µ, σ) being the normal distribution with mean µ and standard deviation σ. We
will use weakly informative normal priors for ~a and c with standard deviation 5 and 1,
respectively, around their maximum likelihood estimates. The priors represent our beliefs
about the bulk geometries that might reproduce the experimental results obtained from
the lattice simulations: the standard deviations are wide so that we prefer values closer
to values which maximize (3.25) but still want the posterior parameter estimates to be
primarily informed by experimental data instead of our priors. We combine the priors with
the information from our experimental data by bringing in their likelihood (3.25) to form a
posterior distribution for the model parameters. The posterior distribution is of the form

p

(
~a, c

∣∣∣∣∣
{( 1

T 2V

dSEE
d`

)
i
, `i, σi

})

∝
M∏
i=1

1
σi

exp

− 1
2σ2

i

(( 1
T 2V

dSEE
d`

)
i
− c
(

zh
z∗(~a, `i)

)7/2
)2


× exp
{
− 1

2 · 12 (c− cMLE)2
}
×
Nbasis∏
i=1

exp
{
− 1

2 · 52 (ai − ai,MLE)2
}
. (3.26)

Finally, we sample this posterior distribution of ~a and c with Hamiltonian Monte Carlo
(HMC) which is a type of Markov chain Monte Carlo method. More specifically we
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employ a HMC variant called No U-Turn Sampler which reduces the number of sampling
related parameters that need hand-tuning [51], making it a good method for sampling
high-dimensional distributions like (3.26). Furthermore, this sampling approach reduces the
autocorrelation between samples which reduces the number of samples needed to obtain a
good estimate of the posterior distribution. It is important to note that for a given strip
width `i there might be multiple turning points z∗ corresponding to it. If this is the case,
we select the turning point corresponding to the true global minimum of entanglement
entropy in accordance with the Ryu-Takayanagi prescription [20].

The posterior parameter distributions can then be used to find the distribution of bulk
metrics consistent with the lattice entanglement entropy data. In a sense this is like using
the AdS/CFT duality “in reverse”. Then, having access to the bulk gravity model, we could
use the AdS/CFT dictionary in the usual direction to derive other quantities of interest, for
example, quark-antiquark potentials.

4 Entanglement and thermal entropy

In this section we would like to show that

SEE(`, T ) ≈ Sth,A(`)(T ) if ` T � 1 , (4.1)

which tell us that at sufficiently large width ` of the entangling region A, the entanglement
entropy, SEE(`, T ), of A reduces to the thermal entropy, Sth,A(T ), in A. Note that Sth,A(T )
is an extensive quantity and grows therefore linearly with the volume of A(`), i.e. linearly
with `. A more straightforward way to write this is, to show that the derivative of SEE with
respect to `, becomes `-independent for large `:

lim
`�T−1

1
|A⊥`|

∂SEE(`, T )
∂`

= sth,A(T ) , (4.2)

where |A⊥`| is the `-independent area of a cross section of the entangling region A perpen-
dicular to `, and sth,A is the thermal entropy density for region A.

As mentioned in the introduction, in terms of density matrices, one can see that the
relation in eq. (4.1) should hold, by noting that the entanglement entropy in region A is
defined by:

SEE(A, T ) = − trA(ρA(T ) log(ρA(T ))) , (4.3)

where ρA(T ) = trB(ρ(T )) is the reduced density matrix for region A, obtained by taking
the partial trace of the full density matrix, ρ(T ), with respect to a basis for the complement,
B = Ac, of region A. In the limiting case, where A represents the whole system, and B is
empty, one has ρA(T )→ ρ(T ) and therefore

lim
B→∅

SEE(A, T ) = − tr(ρ(T ) log(ρ(T ))) = Sth,A(T ) , (4.4)

i.e. the expression for the entanglement entropy reduces to the expression for the thermal
entropy if the region A is entangled with nothing. This makes it plausible that eq. (4.1)
holds as soon as A is much bigger than the thermal screening radius, rT ∼ T−1, as then
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most of A will not “feel” that B has been traced out; only the part of A that is within a
distance rT from the boundary to B can experience entanglement with region B.

In the following, we will provide an additional argument for why eq. (4.1) resp. Eq. (4.2)
should hold, based on a comparison of the replica trick expression for the entanglement
entropy and the expression for the thermal entropy in terms of a Euclidean path integral.
In order to have well-defined path integral expressions, we will consider directly lattice
regularized theories. However, the provided relations should apply also when using other
valid regularization schemes.

4.1 Thermodynamics in terms of a Euclidean (lattice) field theory partition
function

Let us define the lattice free energy, FL(Nt, V,N) as

FL(Nt, V,N) = − log(Z(Nt, V,N)) , (4.5)

where Z(Nt, V,N) is a canonical, Euclidean lattice partition function, depending on the
temporal lattice size, aNt, the spatial lattice volume, a3 V , and a conserved charge N .
We keep the dependency on the lattice spacing, a, implicit as we are interested in the
properties of a lattice system at fixed a. If the theory under consideration does not
contain any conserved charges, one can drop the dependency on N ; similarly, if there are
multiple conserved charges, one will have to extend the formalism to an appropriate set of
charges, {Ni}i=1,2....

The pure gauge system we study in this paper does not contain any conserved charges
in which we are interested, but we keep the N -dependency for the moment, in order to
emphasize the relation between FL and the usual Helmholtz free energy F (T, V,N), which
is given by

FL(Nt, V,N) = Nt F (T (Nt), V,N) . (4.6)

From eq. (4.6) it follows that the differential of FL in therms of the usual thermodynamic
quantities, T = 1/Nt (temperature), p (pressure), µ (chemical potential), S (entropy), V
(spatial volume) and N (conserved charge number), is given by:

dFL = F dNt +Nt dF = U dNt − pNt dV + µNt dN , (4.7)

where after the second equality sign we have used that the internal energy U is related to
F by

U = F + T S︸︷︷︸
S
Nt

= F + S

Nt
, (4.8)

and that
dF = −S dT︸ ︷︷ ︸

S

N2
t

dNt

−p dV + µ dN = S

N2
t

dNt − p dV + µ dN . (4.9)

In order to express the thermal entropy S in terms of FL, we can use eq. (4.8) and (4.7)
to write:

S = Nt (U − F ) = Nt U − FL = Nt
∂FL
∂Nt

∣∣∣∣
V,N
− FL . (4.10)

– 23 –



J
H
E
P
1
2
(
2
0
2
3
)
1
3
7

rB1

rB1

rB2

rB2

rA

rA

Nt

Nt

2Nt

Ns

ℓx

t f L
(N

t
)

f L
(N

t
)

rB1

rB1

rB2

rB2

rA

rA

Nt

Nt

2Nt

Ns

ℓ+ 1x

t

f L
(2

N
t
)

Figure 9. The figure illustrates how the width ` of region A can be increased by removing a slice
(which is parallel to the interface between regions A and B) from deep within region B, changing the
temporal boundary conditions of the slice from those of region B to those of region A (cf. figure 5),
and then re-inserting the slice to the system deep inside region A.

4.2 Relation between entanglement and thermal entropy

To demonstrate the relation from eq. (4.1), we note that in order to determine eq. (2.13),
one does not necessarily have to implement the change `→ (`+ 1) in the width ` of the
region A by changing the temporal boundary conditions as described in figure 5 along the
current boundary of region A; one could just as well increase ` by removing a slice of width
∆` from deep inside region B, change the temporal boundary conditions of that slice, and
insert it again somewhere in the interior of region A, as illustrated in figure 9.

Let us now assume that the width ` of region A and the width (Ns − `) of region B are
both sufficiently large, so that the effect of the interfaces between the two regions, located
at x = 0 and x = Ns − `, can be neglected for describing the thermodynamic properties of
the system deep inside of either of the two regions. Similarly we assume that the change in
the volumes of the two regions, A and B, when `→ (`+ 1) can be neglected. In this case,

– 24 –



J
H
E
P
1
2
(
2
0
2
3
)
1
3
7

deep inside region B, the system consists of two copies of a system that can be described
by the lattice free energy density

fL(Nt) , (4.11)

whereas deep inside region A, the system consists of just one copy of a system that is
described by a lattice free energy density

fL(2Nt) . (4.12)

In terms of these lattice free energy densities, the derivative of the entanglement entropy
from eq. (2.13) is given by

1
N

(d−2)
s

∂SEE(`′, Nt, Ns)
∂`′

∣∣∣∣
`′=`+1/2

≈ fL(2Nt)− 2 fL(Nt) , (4.13)

where N (d−2)
s is the spatial area (in lattice units) perpendicular to the x-direction, so that

N
(d−2)
s ∆` with ∆` = 1 is the spatial volume of the slice that is moved from region B to

region A.
Now, as discussed around eq. (2.12), the lattice expression for SEE actually corresponds

to the second order Rényi entropy, defined in eq. (2.9). This is a consequence of approximat-
ing in eq. (2.10) the derivative with respect to the replica number, s, in the limit (s→ 1)
by a discrete forward derivative:

SEE(`,Nt, Ns) = − lim
s→1

∂ log tr(ρsA)
∂s

= lim
s→1

∂Fc(`, s,Nt, Ns)
∂s

− F (Nt, Ns)

≈ Fc(`, 2, Nt, Ns)− 2F (Nt, Ns) .
(4.14)

The expression on the right-hand side of eq. (4.13) is therefore a consequence of this forward
derivative approximation in (4.14). If one tries to reverse-engineer what the right-hand side
of eq. (4.13) would look like if the discrete derivative approximation in eq. (4.14) were not
necessary, one quickly finds as possible solution that:

fL(2Nt)− 2 fL(Nt) ≈
∂fL(sNt)

∂s

∣∣∣∣
s=1
− fL(Nt) = Nt

∂fL(Nt)
∂Nt

− fL(Nt) , (4.15)

in which case one would have:
1

N
(d−2)
s

∂SEE(`′, Nt, Ns)
∂`′

∣∣∣∣
`′=`+1/2

= Nt
∂fL(Nt)
∂Nt

− fL(Nt) = sth,A , (4.16)

with sth,A being the density of thermal entropy, Sth,A, of region A, as follows from eq. (4.10).
With eq. (4.16), one could therefore compute the thermal entropy of a quantum

field theory directly from a single lattice Monte Carlo simulation, using the method for
determining the derivative of the entanglement entropy, described in section 2.2. This is not
possible by using only eq. (4.10), as this would involve knowledge of the lattice free energy,
FL, itself. Instead one would have to measure for example ∂TS(T ), where T = 1/Nt, for
multiple values of T , that will allow one to numerically approximate the integral in

S = S0 +
T∫

0

dT ′ ∂S(T ′)
∂T ′

, (4.17)
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and where the integration constant, S0 = S(T = 0) = 0, is fixed by the 3rd law of
thermodynamics. This latter procedure can be computationally very expensive, as one has
to simulate low temperatures, which means large Nt and therefore large lattices.

The relation eq. (4.16) might therefore in the future also be useful to study the
thermodynamic properties of strongly interacting field theories.

5 Results

In this section we will discuss results that we have obtained from running simulations on
the lattice as described in section 2.2. A comparison between results obtained with our new
method and corresponding literature results for the case of four-dimensional Yang-Mills
theory has been briefly exposed in [28, 52]. In the following we will present our results on the
entanglement entropy in (2+1)-dimensional pure SU(2) gauge theory at high temperatures.
Along the way we recall how the holographic approach, as described in section 3, guides
us, e.g., in picking correct power laws for fitting. We provide an example for how the
replica trick, used to determine the entanglement entropy, can be utilized to determine
also the thermal entropy, resorting to lim`→∞ ∂` SEE(`) ∝ Sthermal, as discussed in section 4.
In the final subsection we reconstruct the bulk geometry from the entanglement entropy
measurements.

5.1 Three-dimensional Yang-Mills theory at high temperature

We are interested in lattice results on the behavior of the derivative of the entanglement
entropy with respect to the slab-width, `, at high temperatures (T > Tc) and large slab-width
(` > T−1), where T is the temperature and Tc the critical temperature for deconfinement,
which serves as physical reference energy scale.

We have performed simulations at five different values of the lattice spacing, a, and
various different temperatures. The list of simulated setups is given in table 1.

Note that due to our interest in the high-temperature regime, we are forced to go to
rather large values of the inverse gauge coupling, βg. As discussed in [32], this means that
the criteria for the applicability of the classical approximation for the bulk theory in which
the holographic computations in section 3 are carried out, are satisfied only at relatively
large values of the slab-width `, compared to the lattice spacing a. The range of validity as
function of βg and ` in lattice units is sketched in figure 10 for Nc = 2, using the inequalities
from [32]:

1
Nc g2

c

� `c �
1

N
1/5
c g2

c

, (5.1)

where g2
c is the continuum theory gauge coupling. In terms of lattice quantities, using the

relations βg = 2Nc/g
2
0, g2

0 = a g2
c , and `c = a `, the inequalities take the form:

βg
2N2

c
� `� βg

2N6/5
c

. (5.2)

Our lattice data for the derivative of the entanglement entropy might therefore at
short distances not conform with the power law behavior, expected from the discussion in
section 3.
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βg Ns a Tc Nt T/Tc `min/a `min Tc `max/a `max Tc

16. 48 0.0976593 2 5.11984 2.5 0.244148 20.5 2.00202
4 2.55992
6 1.70661
8 1.27996

24. 48 0.0641104 4 3.89953 2.5 0.160276 15.5 0.99371
6 2.59968
8 1.94976

32. 64 0.0477628 4 5.2342 2.5 0.119407 20.5 0.979136
6 3.48947
8 2.6171
10 2.09368

48. 96 0.0316115 6 5.27234 2.5 0.0790287 29.5 0.932539
8 3.95426
10 3.16341
12 2.63617

64. 128 0.0236208 8 5.29194 2.5 0.0590521 40.5 0.956643
12 3.52796
16 2.64597

Table 1. Simulation parameters and corresponding lattice spacing- and T/Tc-values for SU(2) pure
gauge theory on a (2+1)-dimensional lattice, as used for the study of the large distance behavior of
dSEE/d` at high temperatures. The number of replica is always s = 2.

0 20 40 60

0

5

10

15

βg

l

Nc=2

Figure 10. The range of validity for the holographic entanglement entropy formula derived in the
weak gravity limit as function of the inverse gauge coupling, βg and the slab width, ` in lattice units,
using eq. (5.2) for Nc = 2.
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[Λ cr-

2
]

βg=64, aTc=0.0236
fit: y = a (x-x0)

-7/3+b a=0.0100(8) b=22.85(9) x0=0.024(2)

 a=0.016(2) b=8.8(2) x0=0.018(2)

 a=0.016(2) b=4.3(2) x0=0.017(2)

data:

V=81282, T/Tc=5.292
V=121282, T/Tc=3.528
V=161282, T/Tc=2.646

Figure 11. Example of fitting the lattice equivalent of dSEE/d` as a function of ` for SU(2) in
(2+1) dimensions at three different temperatures T ∼ 1/Nt with Nt=8,12,16 for a spatial lattice
size of V = 1282. As T/Tc > 1, the derivative of the entanglement entropy with respect to `

approaches at large ` a temperature-dependent plateau-value. The length unit Λcr corresponds to
the inverse critical temperature, i.e., Λcr = 1/Tc. The faint vertical lines represent the lower and
upper limit of the holography-validity interval from eq. (5.2). Note that the data, corresponding
to different Nt-values (i.e. different temperatures), does not yet lay on a unique curve at short
distances, indicating that our lattice data does not resolve a sufficiently high UV-regime at which
the temperature would no longer matter. Furthermore, we note that the short distance data lays
outside the holography-validity range and does not follow the expected pure power law ∼ x−7/3

(black line); we had to allow for a shift, x0, in order to fit the data (red lines).

With this in mind, we will allow for certain corrections to the expected behavior
discussed in section 3 when performing fits to our lattice data. An example is shown in
figure 11. From holography (cf. eq. (3.20)), we would expect our lattice data for dSEE/d` as
function of ` to behave in the UV like a power law ∼ `−7/3. As our simulations are carried
out at temperatures, T , which are 2–5 times the critical temperature Tc, this power law
behavior is almost completely screened by the plateau within the range of validity for the
holographic predictions from eq. (5.2) resp. figure 10.

However, our focus in this section is not on the ` dependency of dSEE/d` at small `,
but on its T/Tc dependency at large `. More precisely, we aim to verify that for T/Tc � 1
one has

lim
`→∞

1
|∂A|

∂` SEE(`) = sth,0 (T/Tc)7/3 , (5.3)

which follow from lim`→∞ ∂` SEE(`) ∝ sth,A(`) (cf. section 4), in combination with the
holographic prediction that for a (2 + 1)-dimensional SU(N) gauge theory the thermal
entropy behaves like Sth ∝ (T/Tc)7/3 for T/Tc � 1.
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(T
Λ c)-7

3 |∂A
-
1
ΔS/Δ

l
[Λ c-

2
] aTc=0.048

fit: y=a x-7/3+ b a=0.0186(5) b=0.5259(4)

fit: y=b b=0.5286(4)

data:

V=4642, T/Tc=5.234
V=6642, T/Tc=3.489
V=8642, T/Tc=2.617
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l T

(T
Λ c)-7

3 |∂A
-
1
ΔS/Δ

l
[Λ c-

2
] aTc=0.032

fit: y=a x-7/3+ b a=0.006(2) b=0.487(2)

fit: y=b b=0.488(2)

data:

V=6962, T/Tc=5.272
V=8962, T/Tc=3.954
V=10962, T/Tc=3.163
V=12962, T/Tc=2.636
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l T

(T
Λ c)-7

3 |∂A
-
1
ΔS/Δ

l
[Λ c-

2
] aTc=0.024

fit: y=a x-7/3+ b a=0.012(2) b=0.469(3)

fit: y=b b=0.471(3)

data:

V=81282, T/Tc=5.292
V=121282, T/Tc=3.528
V=161282, T/Tc=2.646

0 0.02 0.04 0.06

0.40

0.45

0.50

0.55

a Tc

s
th
,0

fit: y=b + a x a1=2.37(6) b=0.412(3) χ2/dof=0.199
fit: y=b + a x a1=2.47(7) b=0.410(4) χ2/dof=0.876

Figure 12. The three upper panels show dSEE/d` for SU(2) in (2+1) dimensions, rescaled by
a factor of (T/Tc)−7/3 = (T Λcr)−7/3, as function of ` T at three different lattice spacing values,
corresponding to β = 32 (top), β = 48 (second from top), and β = 64 (third from top). Included
is only data for T/Tc > 2.5 as the scaling dSEE/d` ∝ (T/Tc)7/3 is expected to hold only at large
temperatures, away from the critical point. As can be seen, for the two finest lattice spacings,
corresponding to β = 48, 64, the data collapses nicely. The plateau value is fitted by two different
ansatzes, as indicated (red: y = a x−7/3 + b, blue: y = b). The bottom panel shows the continuum
extrapolation of the plateau values, b, obtained in the previous three panels with the two different
fit ansatzes in red and blue.
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As a first test of the scaling law from eq. (5.3), we show in the first three panels of
figure 12 our lattice results for ∂` SEE(`), rescaled by (T/Tc)−7/3 and as function of (` T ) for
βg = 32 (top), 48 (second from top), and 64 (third from top). The ratio T/Tc as function
of βg, Ns, and Nt is determined as described in appendix A.2.3. For each value of βg the
plots consist of data from various temperatures. Thanks to the rescaling of ∂` SEE(`) by
(T/Tc)−7/3, the plateau data corresponding to different temperatures coincides. This is in
particular true for βg = 48, 64, corresponding to lattice spacing values a Tc ≈ 0.024, 0.032.
For βg = 32, resp. a Tc = 0.048 the data does not collapse as nicely anymore, and for the
even lower βg-values, resp. larger lattice spacings, it would look even worse. The bottom
panel in figure 12 shows a linear extrapolation of the rescaled plateau values, which provides
a first rough estimate of the continuum value of the proportionality factor, sth,0 in eq. (5.3).

In order to be able to use correction terms in the continuum extrapolation of our lattice
data for the plateau values lim`→∞ ∂`SEE(`) and refine the estimate for sth,0 obtained in the
bottom panel of figure 12, we extract the plateau values lim`→∞ ∂`SEE(`) for all simulated
values of βg and T/Tc = T Λc separately by fitting the ansatz

y = a (x− x0)−7/3 + b (5.4)

to our data, where (x, y) ∈
{(
`/Λc,Λ2

c N
−1
s dSEE/d`

)
| ∀`
}
. The ratio T/Tc is again deter-

mined as described in appendix A.2.3 and a Tc = 1/(Nt (T/Tc)). The shift x0 in eq. (5.4) has
been added to account for expected deviations from the pure ∼ `−7/3 power law behavior of
dSEE/d`, mentioned at the beginning of this section. The form of the chosen correction is
not important, as long as it does not significantly affect the fit results for the parameter b.
Alternatively, one could perform constant fits (y = b) on restricted data for which ` > T−1

(cf. figure 12).
The so obtained plateau values, b, are plotted in figure 13 as function of the reduced

temperature τ = T/Tc − 1. Superimposed to the data is for each value of βg separately a
fit of the form

y = a0 (1 + x)7/3
(
1 + a1(1 + x)−1

)
, (5.5)

with (x, y) ∈ {(τ, b(τ)) | ∀τ}. As before, this fit ansatz is motivated by the identification
of the plateau value with the thermal entropy density. The latter should, according to
holography, for T � `−1 behave like sthermal ∝ (T/Tc)7/3 = (1 + τ)7/3, and we include
a leading correction term, whose relative magnitude is parametrized by a1. The fits are
performed on data for which T/Tc > 1.9, as lower temperatures would require higher order
corrections. The only exception is the case of βg = 16, where T/Tc > 1.7 is used as lower
bound in order to have a minimum of three data points to fit the two parameters a0 and a1.
However, as can be seen, the quality of fit for βg = 16 is poor. This is on the one hand
due to the extended lower bound of the fit-range which, as mentioned before, would require
higher order corrections, and on the other hand due to the fact that the lattice is too coarse
at βg = 16, so that Nt = 2 for the highest temperature, T/Tc ≈ 5.12. We therefore exclude
the βg = 16 data from further analysis.

The data from the remaining βg-values is used to perform a continuum extrapolation
(βg →∞) in two different ways (black and cyan bands).
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Figure 13. Plateau values of dSEE/d` at large ` for SU(2) in (2+1) dimensions for various
temperatures T/Tc > 1. The different colors represent data for different lattice spacing values, a Tc
(in units of the critical temperature, Tc), and the corresponding fits to their temperature dependency.
The black line shows the continuum extrapolation (β →∞).

The first extrapolation (black) is obtained using the fitted functions and corresponding
error bands to obtain values and errors for b at fixed T/Tc but different lattice spacing
values, a Tc, and perform a fit:

y = b0 + b1 x , (5.6)

with (x, y) ∈ {(a Tc, b(a T, T/Tc)) | ∀ a Tc}. This is repeated for different values of T/Tc ∈
{2.0, 2.2, . . . , 5.0} while keeping track of the values of b0 as function of τ = T/Tc − 1. A
few examples of such fits are shown in figure 14. To the so obtained data we then fit again
eq. (5.5) with (x, y) ∈ {(τ, b0(τ)) | ∀τ ∈ {1.0, 1.2, . . . , 4.0}}, which yields the black curve and
corresponding error band from figure 13.

The second continuum extrapolation in figure 13 (cyan) is obtained by considering
directly the lattice spacing-dependency of the fit results for the parameters a0 and a1 for
βg = 24, 32, 48, 64. As shown in figure 15, we perform quadratic fits to the data for a0 and
a1 as functions of a Tc. The so obtained fit results for the constants a0,0 and a1,0 and their
errors are then used to draw the cyan curve and error band in figure 13. As can be seen,
the two continuum extrapolations are in good agreement.

Finally, let us also perform a quick check of whether in eq. (5.3) a power law different
from (T/Tc)7/3 would be consistent with the data. To this end, we fit to the plateau data
from figure 13 for each value of βg separately the function form

y = c0 (1 + x)c1 , (5.7)
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Figure 14. Example of fits used to perform continuum extrapolations of the plateau value, b, of the
entanglement entropy, as determined from the fit results shown in figure 13 for βg = 24, 32, 48, 64.

where (x, y) ∈ {(τ, b(τ))|∀τ} as before in the fits with eq. (5.5). As our data sets cover for
some βg values of only three different reduced temperature values, τ , we do not include in
eq. (5.7) the leading corrections from eq. (5.5) to keep the number of fit parameters at 2.
As can be seen in figure 16, which summarizes the results of the fits of the form eq. (5.7)
to the data, without the leading correction term, ∼ a1, in the fit function the achievable
quality of fit is generally worse than in figure 13. But, with increasing βg the fit quality
improves in figure 16 as the correction parameter a1 in the corresponding fits in figure 13
becomes smaller in magnitude with increasing βg. As βg increases, the fitted exponent
c1 in figure 16 approaches the expected value 7/3 ≈ 2.33 and the value of the amplitude
parameter, c0, approaches the value of a0 from figure 13.

In figure 17 we perform continuum extrapolations for the c0 and c1 parameters, based
on the fit results for different βg, shown in figure 16. These extrapolations are analogous
to the continuum extrapolations performed in figure 15 for the a0 and a1 parameters for
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Figure 15. Continuum extrapolation of the parameters a0 and a1, obtained from the fits in figure 13
for βg = 24, 32, 48, 64.
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fit: y=(1 + x)c1 c0βg=16, aTc=0.0977 c0=0.354(3) c1=2.735(4) χ2/dof=217.414
βg=24, aTc=0.0641 c0=0.350(5) c1=2.65(2) χ2/dof=15.580

βg=32, aTc=0.0478 c0=0.408(5) c1=2.491(7) χ2/dof=3.409
βg=48, aTc=0.0316 c0=0.43(2) c1=2.41(2) χ2/dof=0.563

βg=64, aTc=0.0236 c0=0.43(2) c1=2.38(3) χ2/dof=0.667

Figure 16. Plateau values of dSEE/d` at large ` for SU(2) in (2+1) dimensions for various
temperatures T/Tc > 1. The different colors represent data for different lattice spacing values, a Tc
(in units of the critical temperature, Tc), and the corresponding fits to their temperature dependency.
The black line shows the continuum extrapolation (β →∞).
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Figure 17. Continuum extrapolation of the parameters c0 and c1, base on linear (red) and quadratic
(blue) fits to the c0 and c1 parameters shown in figure 16 for the different βg values. The linear fits
use the data from βg = 32, 48, 64 while the quadratic fits use also βg = 24.

different βg values listed in figure 13. However, as in figure 16, the quality of fit for the
βg = 24 data is much worse than was the case in figure 13, we show in figure 17 in addition
to the extrapolations based on quadratic fits (blue) to the data for βg = 24, 32, 48, 64 also
extrapolations based on linear fits to the data for βg = 32, 48, 64. Both extrapolation
methods yield within errorbars consistent continuum values for c0 and c1 and the results
for c1 are consistent with 7/3 ≈ 2.33.

5.2 Reconstructed bulk geometries

In section 3 we have discussed our statistical model which we use to connect the metric
tensor of the holographic dual to entanglement entropy values. We will now use data of the
derivative of entanglement entropy with respect to the slab width obtained from the lattice
to find which metric fits these observations. More specifically, the data is for SU(2) lattice
gauge theory on a V = 1282 lattice at temperature T/Tc = 2.646. Since the gauge theory
is in (2 + 1) dimensions, the appropriate holographic background is the asymptotically
D2-brane geometry.

We are sampling the posterior distribution of the parameters which define the metric
tensor to find metrics which would fit the lattice data well under the assumption that the
holographic model represents the gauge theory well. The results are shown in figure 18.
There is a pronounced bump in the metric towards the UV-region of the geometry. It would
be interesting to analyze the ramifications for this feature on some derived quantities. We
have also plotted the predictions for dSEE/d` using the maximum likelihood holographic
geometry and find good agreement with the lattice gauge theory data.
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Figure 18. Left: maximum likelihood fit (red dashed line) of the derivative of entanglement entropy
in (2 + 1) dimensions. Black dots are a subset of the interpolated lattice data for dSEE/d`. Right:
the metric function reconstructed from lattice data in (2 + 1) dimensions. Red dashed line is the
maximum likelihood estimate of the data. The black dashed line is the median in the distribution of
gzz = a(z)2/b(z). The dashed gray lines represent the 50% and 95% central confidence intervals of
the metric. Both figures use Nbasis = 3. The utilized lattice data is the same as in figure 13.

6 Discussion and outlook

We demonstrated that holography has entered a new phase, precision science. Gravity
duals of realistic field theories can be reconstructed from underlying data that is always
bound to be imprecise, a fact which subsequently feeds in likelihood estimates on any
holographic computations. Systematically reducing the statistical uncertainties on the
extracted quantities from the lattice leads to an increasingly accurate metric of the dual
geometry. The current work is a proof-of-concept and we did not yet investigate much
which operators drive the renormalization group flow away from the UV or what predictions
the bulk reconstruction yields, other than the computation of the thermal entropy per usual
identification with the Bekenstein-Hawking entropy of the dual black hole.

Given the formidable route to establishing the dual quantum geometry at finite numbers
of colors, we advocate that there seems to be a (naive) way to quantify the trustworthiness
of classical dual geometry. The holographic entanglement c-function has a sudden jump
across the energy scale marked by the deconfinement-confinement transition. This can be
associated with the degrees of freedom scaling as O(N2

c ) and O(N0
c ) in the respective phases.

This jump is likely an artifact of the Nc → ∞ limit, and is less drastic for finite values
of Nc, as first illustrated in [8] for Nc = 3 and later in [9] for Nc = 2, 3, 4. Nevertheless,
if one sticks to the deconfining phase, the reconstructed dual metrics behave smoothly
as a function of Nc, giving one in principle means to interpolate the emerging classical
geometries. There are of course many complications along the way to making this precise,
especially if the entanglement entropy is being used as a tool to reconstruct the metric, since
the RT formula is expected to be modified in the presence of quantum corrections [53]. It
is clearly interesting to study further the entanglement entropies for higher rank Yang-Mills
theories. We hope to report on entanglement c-functions in (3+1) dimensions for Nc > 4 in
the future.
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Other possible avenues for further research include the shape dependence on the
entangling region. In principle, parts of this information is already encoded in our link
updates and one could not only extract, say, the corner contribution [54], but globally
extend the entangling region to spherical shapes. In addition to this, aspects of multipartite
entanglement measures are clearly interesting targets. Simplest extension of the present
work being to that of two strips (slabs) and questions related with mutual information,
entanglement negativity [55], or purification [56]. In particular, it would be interesting to
analyze if in the last case scenario one finds non-monotonous behavior as a function of the
energy scale as suggested by the holographic dual quantity [57] known as the entanglement
wedge cross section [58].

Entanglement measures are by far not the only data with which one can reconstruct
the bulk geometry; work in this direction include [30, 59–63]. Other quantities that have
been investigated in the literature include operators [64, 65], four-point correlators [66],
differential entropy [67, 68], fidelity [69], complexity [70], light-cone cuts [71, 72], chiral
condensate [73, 74], conductivity [75], hadron spectra [76], and magnetization [77] with
varying degree of assumptions about the dual classical bulk gravity. To all of these cases
one could incorporate the Hamiltonian Monte Carlo approach discussed in section 5.2 to
also infer the maximum likelihood estimates of the reconstructed duals. In addition to these
examples, one can also use the Wilson/Polyakov loops to infer the bulk metric [30, 78],
though the fundamental string breaking at finite temperature limits the most straightforward
application and only part of the geometry is visible to the boundary. In an upcoming
work [79] the authors overcome this limitation and reconstruct the full geometry. Besides
the murky status of Debye screening at strong coupling as revealed in appendix A, the
ability to use Polyakov loop data also for the reconstruction will further motivate putting
extra effort in a more systematic study of quark-anti-quark potentials already in the pure
Yang-Mills theory in any dimension. Having simultaneous access to bulk metric both in the
string and the Einstein frame by reconstruction from qq̄ potential and entanglement entropy
data, respectively, would enable us to make a direct comparison with the beta function of
SU(Nc) Yang-Mills theory at strong coupling.

Finally, to address the deconfinement phase transition and lower temperatures in
general in the bulk gravity side, one seeks for an alternative ansatz for the metric other than
those (3.3), (3.14) where a black hole is assumed to reside at the bottom of the geometry.
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A Quark-anti-quark potential

In this appendix we slightly extend the discussion in the main text to cover also the Polyakov
loop which give rise to a potential between quarks and anti-quarks. This is to illustrate
that the D2-brane background, which lead to the rather unconventional power law behavior
for the entanglement entropy SEE ∝ `−4/3, predicts also an unexpected power law behavior
for the quark-anti-quark potential at small separation ∝ L−2/3. We will see that the lattice
data that we will generate seems to conform with this and thus lends more support on the
usage of the gravity dual of (2+1)-dimensional super Yang-Mills theory at largish energy
scales. In addition to this matching, we learned from EE studies that at finite temperature,
the black hole present in the D2-background also explains the behavior of the entanglement
entropy at large subregions sizes. It is therefore not completely unreasonable to ask if the
large separation behavior of the qq̄-potential be also within grasp via D2-brane black holes
in this regime. Indeed, our frugal results from the lattice seem to conform with ∝ L−10/3

behavior at large separation, extractable from the D2-brane background. If this result
persists under further scrutiny, then the holographic approach predicts that the analytic
continuation of the lattice results to real time cf. [39] would result in an imaginary part of
the potential linear in the qq̄ separation L.

A.1 Static quark potential from thermal D2-brane background

To derive these qq̄-potential results we start with the metric (3.14) with a(z) = 1 and
b(z) = 1−

(
z
z0

)5
. This is a black hole geometry with a horizon at z = zh. The potential is

found by studying a string whose endpoints are at the boundary, separated by a distance L
in the x1-direction. The action of such a string is

SNG = 1
2πα′

∫ √
det g2 , (A.1)

where g2 is the metric induced on the string worldsheet. The action can be written in terms
of the profile function x1 = x1(z) which determines the shape of the hanging string in the
bulk as

SNG =
τz2

p

2πα′
∫ 1
z2

√
1 +

(
zp
z

)
b(z)x′1(z)2 dz , (A.2)

where τ is the time interval spanned by the string worldsheet. The qq̄-potential can be
found by studying the equation of motion for the string profile x1(z). The Euler-Lagrange
equation is

d
dz

 b(z)x′1(z)
z3
√

1 + zpb(z)x′1(z)2/z

 = 0 . (A.3)

The solution with the boundary conditions x1(z = 0) = L/2 and x′1(z → z∗)→ −∞ is

x1(z) = L

2 −
z4

4z1/2
p z

5/2
∗

√
1− z5

∗/z
5
h F1

(
4
5; 1

2 ,
1
2; 9

5; z
5

z5
h

,
z5

z5
∗

)
, (A.4)
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where F1 is the Appell hypergeometric function. The constants L and z∗ are the quark
separation and string turning point, respectively. They are connected by the equation
x1(z = z∗) = L/2, that is

L(z∗) =
√
πΓ
(

9
5

)
z

3/2
∗

2Γ
(

13
10

)
z

1/2
p

√
1− z5

∗
z5
h

2F1

(
1
2 ,

4
5; 13

10; z
5
∗
z5
h

)
. (A.5)

The string action can be evaluated by plugging x′1(z) from (A.4) into (A.2). One finds

2πα′

τz2
p

SNG = 2
ε
−
√
πΓ
(

4
5

)
Γ
(

3
10

)
z∗

2F1

(
−1

2 ,−
1
5; 3

10; z
5
∗
z5
h

)
, (A.6)

where ε is the usual UV-cutoff to regulate the otherwise divergent action. Now we can find
the UV-behavior of the potential by studying (A.5) and (A.6) in the limit z∗ → 0

L =
√
πΓ
(

9
5

)
2√zpΓ

(
13
10

)z3/2
∗ (A.7)

2πα′

τz2
p

SNG = 2
ε
−

2
√
πΓ
(

4
5

)
z∗Γ

(
3
10

) . (A.8)

Together, these formulas imply that when z∗ is small the action behaves as

2πα′

τz2
p

SNG = 2
ε
−

21/34π5/6Γ
(

4
5

)5/3

32/3Γ
(

3
10

)5/3
z

1/3
p L2/3

. (A.9)

The qq̄-potential is defined

V (L) = −(SNG(L)− Re[SNG(L→∞)])/τ . (A.10)

There are different ways to do the regularization, often the potential is computed from the
difference of the string action and the action of two straight disconnected strings hanging
from the boundary. This time we choose a different method, namely we find it useful to
regulate so that the real part of the potential goes to zero at large separations. We will
shortly show that the latter term in (A.10) is a constant. Therefore, the potential indeed is
V (L) ∝ L−2/3 at small separations.

In order to study the potential at large separations we need to analyze the string
profile carefully. Usually the large separation limit is somewhat trivial as often the string
is assumed to break at some critical separation making the potential constant at larger
separations. It is possible, however, to extract non-trivial IR-behavior of the potential
by analytically continuing L(z∗) and SNG(z∗) to the complex z∗-plane [80]. The quark
separation L is always non-negative and real but the turning point z∗ need not be. In
figure 19 we show a curve along which L is real and non-negative, corresponding to complex
string configurations. The curve represents the solutions to (A.5) when solving for z∗ and
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Figure 19. The curve in the complex z∗-plane which corresponds to positive real quark separations
in (A.5). At quark separation L = 0 the corresponding turning point is z∗ = 0 and L increases as
one moves to the right along the curve. At small separations z∗ is real but moves to the complex
plane shortly after the separation where the string would break.

setting L to fixed non-negative real values. At small separations z∗ is real as usual. The
separation at which the string would break into the disconnected configuration happens
in this region. Shortly after that separation the turning point becomes complex. Also the
conjugate of this curve solves the equation but we choose to focus on the Im[z∗] ≥ 0 branch.

The large separation limit can be worked out by first inverting (A.5) at large L. We find

z∗
zh

=
52/3Γ

(
4
5

)4/2

214/15π2/3Γ
(

3
5

)2/3

(
zpL

2

z3
h

)1/3

+
4(−1)3/1021/3(5−

√
5)(5π)1/6Γ

(
4
5

)5/3

9Γ
(

3
10

)5/3

(
z3
h

zpL2

)1/6

+O
(
L−4/3

)
. (A.11)

This can be used together with (A.6) to see that the action at large separations behaves as

2πα′

τz2
p

SNG(L→∞) = 2
ε
− iz

1/2
p L

z
3/2
h

+ 2(−1)4/5
√
π

Γ
( 7

10

)
Γ
(4

5

)
+O

(
L−1

)
. (A.12)

In the definition of the qq̄-potential, we can now see that the real part of the IR-action will
cancel the 1/ε-divergence present in SNG(L). The constant term in (A.12) contributes to
the counter term in (A.10) and makes the real part of V (L) vanish at large separations. We
can also immediately see that Im[V (L→∞)] = −iz1/2

p L/z
3/2
h +O(1). Further, analyzing

subleading terms of (A.6) we can find that Re[V (L→∞)] behaves as L−10/3 like we claimed
in the beginning of this section.

A.2 Static quark potential from the lattice

The lattice gauge theory formalism was introduced by K. G. Wilson in 1974 to show
that quarks are confined in QCD [44]. The static quark potential was therefore from the
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beginning of primary interest in lattice Monte Carlo studies of SU(Nc) gauge theories [81]
and various observables have been employed to study its properties. In particular Wilson
loops, which are traces over parallel transporters along closed loops, and Polyakov loops,
which are Wilson loops that wrap around a compact direction (usually the Euclidean time
direction), played an important role in understanding the non-perturbative properties of
QCD, as, e.g., showing that SU(2) pure gauge theory is both, confining and asymptotically
free [82], and that the asymptotically free and the confining region of parameter space are
separated from each other by a deconfinement transition [83].

With increasing computer performance and the development of improved simulation
techniques [84] these non-perturbative studies of the properties of the static quark potential
have been extended first to SU(3) [85–87] and then to higher Nc and spacetime dimensions
different from (3+1) [88]. Results at T = 0 in (2+1) dimensions can for Nc = 2, for example,
be found in [89, 90], for Nc = 3 in [91], and for Nc = 5 in [92]. Recall that the static quark
potential can also be computed perturbatively [37].

At T = 0 the determination of the static quark potential using Polyakov loops suffers
from a bad signal to noise ratio as the magnitude of Polyakov loop correlation function
drops exponentially with 1/T . At T = 0 the static quark potential is therefore usually
determined from Wilson loops [86]. As we are in the present work interested not in the
zero but in high temperature properties of SU(Nc) gauge theory, we will use Polyakov loop
correlators to determine the static quark potential.

A.2.1 Static quarks and Polyakov loops

In this section we illustrate the relation between Polyakov loops and static quarks. Starting
point is Wilson’s lattice fermion action

SF
[
U, ψ̄, ψ

]
=
∑
x,y

ψ̄(x)Dx,y[U ]ψ(y) , (A.13)

with ψ(x) and ψ̄(x) being Euclidean Dirac spinors appropriate for d dimensions and Dx,y[U ]
is the corresponding Wilson-Dirac operator,

Dx,y[U ] = δxy1− κ
d−1∑
ν=1

(
δx+ν̂,y(1− γν)Uν(x) + δx−ν̂,y(1 + γν)U †ν (x− ν̂)

)
︸ ︷︷ ︸

Sxy

− κ
(
δ
x+4̂,y(1− γ4) eµ U4(x) + δ

x−4̂,y(1 + γ4) e−µ U †4(x− 4̂)
)

︸ ︷︷ ︸
Txy

,

(A.14)

with the hopping parameter, κ = 1/(2(m0 + d)), which is related to the bare quark mass,
m0 = amc, and {γν}ν=1,...,d are Euclidean Dirac matrices in d dimensions. We have added
a quark chemical potential, µ, to eq. (A.14) in order to be able to keep track of whether a
terms correspond to a quark or an anti-quark in what follows.

In the Euclidean path integral,

Z =
∫
D
[
U,ψ, ψ̄

]
e−SF [U,ψ̄,ψ]−SG[U ] , (A.15)
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the integration over the spinor fields ψ(x) and ψ̄(x) is a multi-dimensional Grassmann
integral which upon evaluation yields a so-called fermion determinant:

Zf [U ] =
∫
D
[
ψ, ψ̄

]
e−SF [U,ψ̄,ψ] = Det(D[U ]) , (A.16)

in terms of which:
Z =

∫
D
[
U
]

Det(D[U ]) e−SG[U ] . (A.17)

Now, if we are interested in static quarks, i.e., in quarks that do not perform spatial hops but
simply move along straight lines around the time direction, we can in eq. (A.14) drop the
spatial hopping terms, Sx y, and keep only the temporal hopping terms, Tx y. In this case,
the fermion determinant in eq. (A.16) simplifies significantly. If we stick for the moment to
d = 4, it takes the form:

Det(D[U ]) = Det(1− κT ) =∏
x̄

(
det2

c

(
1 + (2κ)Nt eµNt P (x̄)

)
det2

c

(
1 + (2κ)Nt e−µNt P †(x̄)

))
,

(A.18)

where the subscript c of the detc-operator is meant to indicate that it acts only in color-space
(i.e., that the operand is a matrix with only color indices) and the product runs over all
spatial locations x̄.

As can be seen from eq. (A.18) and (A.17), the static quarks couple to the gauge field
through the Polyakov and anti-Polyakov loops. The Polyakov loop, P (x̄) at spatial location
x̄, is given by the ordered product of all temporal link-variables (cf. eq. (2.4)) over x̄, to
form a parallel transporter that connects the site x = (x̄, t = 0) with itself by wrapping
once on a straight temporal trajectory around the periodic time-direction:

P (x̄) = Ud(x̄, 0)Ud(x̄, 1) . . . Ud(x̄, Nt − 1) . (A.19)

Its hermitian conjugate, P †(x̄), does the same thing but in opposite direction, as illustrated
in figure 20.

Now, as we forced the fermions in eq. (A.18) to be static, it is reasonable to require
them as well to be heavy, in which case κ becomes very small and the color-determinants
in eq. (A.18) can be written as

detc
(
1 + (2κ)Nt eµNt P (x̄)

)
= 1 + (2κ)Nt eµNt tr

(
P (x̄)

)
+O

(
(2κ)2Nt

)
, (A.20a)

resp.

detc
(
1 + (2κ)Nt e−µNt P †(x̄)

)
= 1 + (2κ)Nt e−µNt tr

(
P †(x̄)

)
+O

(
(2κ)2Nt

)
. (A.20b)

As can be seen from eq. (A.20) by counting the powers of eµ resp. e−µ: having a static
quark or anti-quark winding around the time direction over a spatial site x̄ is accompanied
by a Polyakov loop resp. anti-Polyakov loop located on that site.
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Nt

Ns

x

t

P † P

L

Figure 20. Illustration of a pair of anti-Polyakov loop, P †, and Polyakov loop, P , separated by a
spatial distance L. Both loops are wrapping around the periodic time extent of the lattice, but in
opposite directions.

A.2.2 Static quark potential from Polyakov loops

We can now define the static quark potential, V (L, T, βg), in terms of the spatial correlation
function between a traced Polyakov loop, P , and a traced anti-Polyakov loop, P † (cf.
figure 20), using the relation [93],

e−V (L,T,βg)/T = 1
N2

c

〈
tr
(
P †(x̄)

)
tr
(
P (ȳ)

)〉
βg
, (A.21)

with L = |ȳ − x̄| and T = 1/Nt (in lattice units). Note that eq. (A.21) is particularly useful
at finite temperatures, i.e., when Nt is not too large. As the formula indicates, at low
temperatures, the magnitude of the correlation function decays quickly with Nt = 1/T and
develops a bad signal to noise ratio. If one is interested in the static quark potential at low
or zero temperatures, one therefore typically uses a different approach which is based on
so-called Wilson loops [94].

The potential V (L, T ) in eq. (A.21) has an explicit temperature-dependency, which
is particularly prominent for T/Tc > 1, where the potential approaches for L � T−1 a
temperature-dependent plateau value. We will subtract this plateau value and consider the
subtracted potential, the binding energy (in units of the critical temperature scale),

Vs(L, T, βg) = V (L, T, βg)− V (∞, T, βg)
Tc

= − T
Tc

log


〈

tr
(
P †(x)

)
tr
(
P (y)

)〉
βg∣∣〈tr(P )〉

βg

∣∣2
 , (A.22)

instead of V (L, T, βg) itself. Figure 21 shows Monte Carlo results for eq. (A.22) as function
of L in the case of SU(2) in (2 + 1) dimensions at different temperatures and for two different
lattice spacings, i.e., different values of βg.
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Figure 21. Subtracted static quark potential from eq. (A.22) for SU(2) at finite temperature in
(2+1) dimensions, plotted as function of distance L for five different temperatures T > Tc. The two
panels corresponds to different lattice spacings, a Tc = 0.032 (left) and a Tc = 0.048 (right). Error
bars are smaller than the plot markers.

A.2.3 Setting the scale

We use the critical temperature, Tc, as reference energy scale. To be able to do so, we need
to determine the ratio T/Tc as function of the inverse lattice coupling βg and the spatial and
temporal lattice sizes Ns, Nt. We therefore want a function CR(βg, Nt, Ns) = T/Tc, which
can be obtained along the lines described in [95, section 4.3–4.4]. Using the expression
given in [95] for the pseudo-critical lattice coupling as function of Nt and Ns,

βg,c(Nt, Ns) = Nt

(
4 cr − d2

(
Nt

Ns

)ρ)
−
(

4 c1 + d1

(
Nt

Ns

)ρ)
− 1
Nt

(
4 c2
cr

+ d0

(
Nt

Ns

)ρ)
,

(A.23)

as well as the function

C(Nt, Ns) = Nt

(
4 cr − d2

(
Nt

Ns

)ρ)
+ 1
Nt

(
4 c2
cr

+ d0

(
Nt

Ns

)ρ)
, (A.24)

where [95]
c1 = −0.176(5) , c2 = 0.0675(5) , cr = Tc

g2
c

= 0.3757(5) , (A.25)

and
d0 = −0.51(9) , d1 = 0 , d2 = 0.134(4) , and ρ = 2.61(9) , (A.26)

one can define a preliminary

CR,c(βg, Nt, Ns) = 1 + βg − βg,c(Nt, Ns)
C(Nt, Ns)

. (A.27)

The subscript c in eq. (A.27) indicates that T/Tc ≈ CR,c(βg, Nt, Ns) is only valid if βg is
sufficiently close to its pseudo-critical value βg,c(Nt, Ns).
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βg Ns a Tc Nt T/Tc

16. 48 0.0976593 2 5.11984
4 2.55992
6 1.70661
8 1.27996

32. 64 0.0477628 4 5.2342
6 3.48947
8 2.6171
10 2.09368
12 1.74473

48. 96 0.0316115 8 3.95426
10 3.16341
12 2.63617
14 2.25958
16 1.97713

Table 2. Simulation parameters and corresponding lattice spacing- and T/Tc-values for SU(2) pure
gauge theory on a (2+1)-dimensional lattice.

To obtain an expression for CR(βg, Nt, Ns) that is valid for arbitrary values of βg, Ns

and Nt, We note that (a Tc) depends only on βg and Ns, and the lattice spacing a itself is
controlled merely by βg. At constant βg and Ns (which implies also constant a(βg)), we
therefore have [95]:

T (βg, Nt, Ns)
Tc(βg, Ns)

= T (βg, Nt, Ns)
T (βg, N ′t , Ns)

T (βg, N ′t , Ns)
Tc(βg, Ns)

= N ′t
Nt

T (βg, N ′t , Ns)
Tc(βg, Ns)

, (A.28)

which allows us to define the function CR(βg, Nt, Ns) = T/Tc for arbitrary values of βg, Ns

and Nt by:

CR(βg, Nt, Ns) = N ′t(βg, Ns)
Nt

CR,0
(
βg, N

′
t(βg, Ns), Ns

)
, (A.29)

with
N ′t(βg, Ns) = bNtc|Nt:βg,c(Nt,Ns)=βg , (A.30)

i.e., N ′t(βg, Ns) is the value of Nt ∈ N for which (βg − βg,c(Nt, Ns)) assumes its smallest,
positive value for given βg and Ns.

A.2.4 Data and interpolation to arbitrary temperatures

In table 2 we summarize the simulation parameters for which we have produced data. As
can be seen, although the data for different lattice spacings covers a similar temperature
range, the simulated temperatures are in general different. In order to be able to directly
compare the static quark potentials obtained at different lattice spacings, we will have to
interpolate between the simulated temperature values.
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y=-x-γ α + δ α=0.07(2) δ=0.00014(8) γ=3.6(3), χ2/dof=0.85

Figure 22. Two examples of fits of the form (A.31) to the subtracted static quark potential from
eq. (A.22) for SU(2) in (2+1) dimensions, considered as function of T/Tc at fixed (βg, L), resp.
(a Tc, L Tc). The error bands correspond to the 65% confidence band.

We perform this interpolation as follows: we pick one of the simulated βg and a value
of L, and fit for this choice the form

y = αxγ + δ (A.31)

to the data (x, y) ∈ {(T/Tc, Vs(L, T, βg))}T , with Vs(L, T, βg) from eq. (A.22) considered
as function of T . This fit yields a function

Ṽs,(L,βg)(T ) = α(L,βg)

(
T

Tc

)γ(L,βg)
+ δ(L,βg) , (A.32)

which allows us to obtain for the given values of βg and L the subtracted potential at
arbitrary T . This procedure is then repeated for all available L and βg. The error in
the value for the subtracted potential, given by eq. (A.32) at arbitrary T , is obtained
by determining the 65% confidence band for eq. (A.32). Some fit examples are shown in
figure 22 and figure 23 provides an overview over the fitted parameter values at different
lattice spacings a and different distances L.

Note that the chosen form of the fit function, eq. (A.31), is essentially a power law
with a small additive correction, δ, to account for the fact that we subtract in eq. (A.22)
effectively the log of 〈|P |〉2βg instead of |〈P 〉βg |

2, in order to avoid cancellations between
contributions to the Polyakov loop observable coming from the two degenerate vacua that
exist in the deconfined phase for SU(2), where Re(P ) is either positive or negative. Provided
that the ansatz (A.31) works well and assuming that the parameter δ indeed just accounts
for the systematic error caused by using 〈|P |〉2βg instead of |〈P 〉βg |

2 in (A.22), we could in
principle subtract δ(L,βg) from eq. (A.32) in order to get rid of this systematic error. Instead
of eq. (A.32) we would therefore use,

Ṽs,imp,(L,βg)(T ) = α(L,βg)

(
T

Tc

)γ(L,βg)
, (A.33)
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Figure 23. The panels show the values of α(L,βg) (left), γ(L,βg) (middle), and δ(L,βg) (right), used
to parametrize eq. (A.32). The parameters are plotted as functions of LTc for three different lattice
spacings, corresponding to βg = 16 (black circles), 32 (blue triangles), and 48 (red diamonds).

with the same values of α(L,βg) and γ(L,βg). However, as our spatial lattices are relatively
large, δ(L,βg) is typically very small (cf. figure 23, right) and whether one uses eq. (A.33) or
sticks with eq. (A.32), does not give rise to significantly (within error bars) different results.

A.2.5 Scaling of deconfined potential at short and large distances

As discussed in section A.1 holographic considerations suggest that the static quark potential
in the deconfined phase of a strongly coupled gauge theory in (2 + 1) dimensions should
follow different power laws at short and long distances, namely V(LT�1)(T, L) ∝ L−2/3 and
V(LT�1)(T, L) ∝ L−10/3.

In figure 24 we fit these power law ansatzes to the short and long distance pieces of
the interpolated potential (A.32) (as function of LTc) at fixed T/Tc = 2.646 (left) and
fixed T/Tc = 1.8 (right) for different lattice spacing values. In order to stay away from the
region around LT ≈ 1, where the log-log plots in figure 24 have clearly visible curvature,
we included for the short distance fits only data with LT < 0.3, and for the long distance
fits only data with LT > 1.7. The short distance fit could therefore only be performed for
the two smaller lattice spacing values, as for the largest one with a Tc = 0.98, there is only
one point satisfying the criterion LT < 0.3.

At the current stage, these fits should of course not be taken too seriously, as the
available data is of limited statistics and does also not sufficiently cover the asymptotic
short- and long-distance regimes. In both regimes, we see at most the onset of a possible
linear behavior of the subtracted potential in the log-log plots in figure 24. It should also be
mentioned that at short distances, the displayed data contains also the points corresponding
to L = 1 a, which can be expected to suffer from relevant finite-lattice spacing effects. At
large distances one can infer that the data does not cover a sufficiently large range to decide
whether the potential really approaches a power law and starts to follow a straight line in
the log-log plots in figure 24, or whether its slope will continue to become even steeper with
increasing L.

To this end, we attempted to fit also a screened power law, i.e., the form

y = x−s e−mx , (A.34)
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Figure 24. Static quark potential for SU(2) in (2+1) dimensions as function of distance L at finite
temperature T = 2.646Tc (left) and 1.8Tc (right) for three different lattice spacings a =0.098T−1

c

(black), 0.048T−1
c (blue), and 0.032T−1

c (red). At short distances, well below L ∼ T−1, the behavior
of the potential appears compatible with an asymptotic power-law, ∼ L−2/3 (dashed lines). The
displayed fits were performed on data for L < 0.3T−1 (where available). At distances above L ∼ T−1,
the potential appears to behave like ∼ L−10/3 (dotted lines). Here the fits were obtained on data
for L > 1.7T−1.
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Figure 25. Same data as in figure 24, but fitted with a global (i.e., all L-values with L > a)
screened power-law ansatz.
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Figure 26. Same data as in figure 25, but using eq. (A.33) instead of eq. (A.32) to obtain the
values of the subtracted potential at the specified values of T/Tc.

to the same data, where (x, y) ∈
{(
LTc, Ṽs,(L,βg)(T )

)
|L/a > 1 , L Tc < 1.35

}
, with the

interpolating potential from eq. (A.32). The results from these fits are summarized in
figure 25. Note that these are global fits in L, where we have excluded only the points
at L/a ≤ 1 to avoid the most-severe finite lattice spacing effects, and the points with
LTc > 1.35 where for the two smaller lattice spacings the finite lattice volume would start
to become visible. As can be seen, these fits worked out quite well for the given quality of
the data.

In order to confirm that the use of eq. (A.33) instead of eq. (A.32) to interpolate our
data for the subtracted static quark potential between the simulated temperature values,
would not significantly affect the fit results, we show in figure 26 the analogous plots to
those in figure 25, using the improved interpolating potential form eq. (A.33). These latter
fits might appear slightly cleaner than the ones in figure 25, in regards of the lattice spacing
dependency of the fitted parameters. But, the fitted parameters in figure 25 and figure 26
are mutually compatible within error bars.

B Change of temporal boundary conditions and gauge invariance

Recall from section 2.2 that when updating the boundary of region A by changing the
temporal boundary conditions over spatial links, so that they change from region B

to region A or vice versa, we undergo transitions between different partition functions
{Zi}i=0,..., as introduced above eq. (2.24). We are interested in the free energy difference
between subsequent Zi, which we determine numerically by probing the overlap between
the distributions of gauge field configurations of neighboring Zi.

When changing from one Zi to a neighboring one, it turns out that it makes a huge
difference whether the spatial link over which the temporal boundary conditions are changed
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Figure 27. The two panels show the spatial links corresponding to regions A (red) and B (blue)
at two intermediate stages during the process of interpolating between the situations depicted on
the left- resp. right-hand side of figure 5. The spatial link that is highlighted by a red frame in
the left-hand panel is at the moment blue and belongs therefore to region B. The spatial site x1
is touched only by spatial links belonging to region B, while the spatial site x2 is touched only by
spatial links belonging to region A, except for the highlighted spatial link. If the highlighted link
changes from region B to region A, the spatial site x2 will be surrounded merrily by spatial links
from region A, while the spatial site x1 will now also be touched by one link from region A. However,
before and after the change of the highlighted spatial link from region B to region A, one of its
ends is connected to spatial site that is touched by spatial links of only one region. In contrast: the
spatial sites at both ends of the highlighted spatial link in the right-hand panel are always touched
by spatial sites from both regions, A and B, no matter whether the highlighted link is still in region
B or changes to region A.

has before and after the update at least one of its ends connect to a spatial site that is
either completely in region A or completely in region B (cf. figure 27, left), or the spatial
link touches before and/or after the update at both ends a spatial site at which spatial
links from both regions meet (cf. figure 27, right).

In order to illustrate why this is the case, we look at a transition between some Zi and
corresponding neighboring Zi+1, which will require a spatial link to change from region B
to region A. We recall from figure 5 that when a spatial link changes from region B to
region A or vice versa, two temporal plaquettes over that spatial link, denoted in figure 5
by P1 and P2, switch their top links, due to the change of temporal boundary conditions.
Such an update is in general gauge-dependent: if it were, e.g., possible to use a local
gauge transformation to make the to-be-swapped links the same before doing the change of
temporal boundary conditions, then the Euclidean action would remain unchanged when
changing form Zi to Zi+1. Such a gauge-dependency is okay here as we are sampling
the overlap between gauge configuration distributions of different systems with different
temporal boundary conditions and therefore different sites identified with each other. The
latter, i.e., the fact that in the two systems different sites are identified, affects locally
the amount of gauge-freedom the system has as one cannot perform independent local
gauge-transformations on identified sites. The overlap between the gauge configuration
distributions of neighboring Zi has therefore an entropic component coming from the change
in the amount of gauge freedom due to the identification of different numbers of sites.
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Consider as a concrete example the situation depicted on the left-hand side of figure 27:
if the indicated link between x1 and x2 belongs to region B (blue), we are in the system
described by Z1, and if the link changes to region A (red), we would be in the system
described by Z2. If the link under consideration is currently part of region B, i.e., we are in
the Z1-system, the spatial site x1 is touched only by spatial links that belong to region B,
and as explained in the left-hand panel of figure 28, we could therefore apply independent
gauge transformations over x1 to make the two links the same that would be swapped
between the plaquettes P1 and P2 from figure 5 when the temporal boundary conditions
are changed to those from region A. The same is true for the opposite move, where the
marked spatial link from the left-hand panel of figure 27 between the spatial sites x1 and
x2 is initially part of region A. In this case the site x2 is touched only by links from region
A and would allow for the required local gauge transformations to make the to-be-swapped
top-links of plaquettes P1 and P2 identical. We can therefore define a Metropolis update
that connects a gauge configuration of Z1 to a gauge configuration of Z2: if the system
currently belongs to Z1, the update proposes to pick a local gauge transformation over
x1 that makes the link-swap trivial, to then perform the link swap, and to finally do an
inverse gauge transformation over x2; if the system belongs currently to Z2, the Metropolis
update would do the same thing in the opposite direction, i.e., with initial local gauge
transformation over x2 and inverse gauge transformation over x1 after the swap. As the
freedom in choosing the appropriate gauge transformations is for both directions the same,
and the action does not change during the move, the corresponding transition probability is
always 1. Although the way in which sites are identified changes during such an update due
to the change of temporal boundary conditions, the number of identified points remains the
same. Note also that, although we can achieve that the swapped links themselves are the
same before and after such a move, the gauge field around them gets changed, as the local
gauge transformations that are applied at the beginning and end of the move are applied at
different spatial locations.

As a second concrete example consider now the situation depicted in the right-hand
panel of figure 27. The spatial link emphasized there by the red frame connects the sites x1
and x3. If the link belongs to region B, the system is described by Z7 and if the link belongs
to region A by Z8. Both spatial sites, x1 and x3, are touched by links from both regions, A
and B. As explained in the right-hand panel of figure 28, this means that it is not possible
to find a local gauge transformation that makes the links, that are swapped between P1
and P2 in figure 5 when the temporal boundary conditions change, the same. Spatial sites
that are touched by spatial links from both regions, A and B, are (indirectly) subject to
both temporal boundary conditions simultaneously, meaning that the corresponding site
at time t = 0 over such a spatial site is not just identified with either the site at the same
spatial location at time t = Nt (as inside region B) or time t = 2Nt (as inside region A)
but with both.

Note that in (1 + 1) dimensions, the situation from the second example cannot occur
and one is always in the analogous situation to the first example. In (1 + 1) dimensions,
the boundary update of region A is always trivial and the derivative of the entanglement
entropy with respect to the width, `, of region A has therefore to be identically zero.
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Figure 28. Left: the four sites highlighted by a red, orange, blue and green circle are fully inside of
one of the two regions A (red,orange) or region B (blue,green) and therefore touched only by links
that are all subject to the same type of temporal boundary conditions: either those of region A, or
those of region B. If is therefore possible to apply independent local gauge transformations at the
green and blue, as well as the red and orange sites, which will affect the correspondingly colored
links.
Right: if one applies a local gauge transformation to the site highlighted by a solid-lined black circle,
which is touched by links from both regions, A and B, the situation is more complicated. In region
B, a gauge transformation at this site changes the link l1. From the point of view from region A,
however, the link l1 is connected to the site highlighted by the dashed black circle, on which we
therefore have to apply the same local gauge transformation as on the site with the solid black
circle in order to leave the gauge action unchanged, which will affect all the links highlighted by
dashed lines. The same conclusion is reached by focusing on the link l2 instead of l1. The gauge
transformation on the site with the black circle changes in region A directly the link l2. In region B,
the link l2 is connected to the site with the dashed black circle, on which we therefore have to apply
the same gauge transformation as on the site with the solid-lined black circle.
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