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Abstract: Boltzmann entropy-based thermodynamics of charged anti-de Sitter (AdS) black
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the understanding of black hole thermodynamics in a relativistic statistical framework,
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1 Introduction

It is widely believed that black hole (BH) physics provides a promising arena to explore the
quantum nature of gravity. After the pioneering discovery that BHs behave as thermody-
namic systems [1, 2], the study of their properties has received a boost of new interest, and
insights emerged toward the unification of general relativity, quantum theory and statistical
physics [3–5]. Yet, although BH dynamics can be fully described by a small number of
classical parameters (namely mass, angular momentum and charge — no hair theorem),
the microscopic degrees of freedom responsible for the thermal behavior of BHs have not
yet been adequately identified [6].

The development of thermodynamic geometry (geometrothermodynamics) based on
Weinhold [7] and Ruppeiner [8, 9] formalisms is an effort to extract, phenomenologically or
qualitatively, the microscopic interaction information of a given system from the axioms of
thermodynamics. The core idea is that, in ordinary thermodynamic systems, the curvature
of Weinhold and Ruppeiner metrics is related to the nature of interactions among the
underlying particles. For systems where the micro-structures interact attractively, the
curvature scalar carries a negative sign, whereas it is positive for predominantly repulsive
forces. Moreover, the metric is flat for non-interacting systems — such as the ideal gas —
or systems where interactions are perfectly balanced. This scheme has been tested for a
wide number of statistical physical models [9]. Interestingly enough, recent studies have
revealed that it is feasible for BHs too [10–19], providing an empirical tool to access the
microstructure of BHs from their macroscopic knowledge, despite the absence of a quantum
gravitational theory.
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Black holes in anti-de Sitter (AdS) spacetimes have been thoroughly studied in the last
decades due to their applications in holography [20]. The observation that asymptotically
AdS BHs can be described by dual thermal field theory has motivated a parallel study with
condensed matter systems. This has led to the discovery of first order phase transitions in
BHs [21–23] that resemble in many aspects the liquid-gas change of phase of van der Waals
fluids [24–26]. A constitutive ingredient of this picture is the (negative) cosmological constant
Λ, which is identified as pressure and included in the first law of BH thermodynamics
alongside its conjugate quantity — the thermodynamic volume [27, 28]. The ensuing
extended phase space allows to formulate the P = P (V, T ) equation of state and study
the critical behavior of AdS BHs [28, 29]. Recent applications have been considered for
rotating BHs [30] and Conformal Field Theory states that are dual to neutral singly-spinning
asymptotically AdS BHs in d-bulk spacetime dimensions [31].

A subtle concept in BH physics is thermodynamic entropy. According to the holographic
principle [32, 33] BHs could store information at the event horizon like holograms. In the
standard Boltzmann-Gibbs statistics, this behavior is encoded by the Bekenstein-Hawking
formula, which states that BH entropy scales like the surface area

SBH = Abh

A0
, (1.1)

where A0 is the Planck area.1 Clearly, this is an unconventional scaling. Indeed, if BHs
are physically identified with their event horizon surface, they can be then regarded as
genuine (2 + 1)-dimensional systems and SBH is with the correct (extensive) thermodynamic
entropy. However, if BHs are to be considered as (3 + 1)-dimensional objects (as arguably
more natural in a (3 + 1)-dimensional description of the spacetime background), the area
scaling would violate thermodynamic extensivity. Thus, Boltzmann-Gibbs theory may not
be the appropriate framework for studying the thermodynamics of BHs, and a generalized
non-additive entropy notion [34] or a quasi-homogeneous black hole thermodynamics [35]
could be needed for such non-standard systems.

To better understand the intimate nature of BH entropy, several extensions of Boltzmann-
Gibbs statistics have been considered in literature, motivated by either gravitational consid-
erations (Tsallis [34, 36], Barrow [37] and more generalized [38] entropies) or information
theory (Rényi [39] and Sharma-Mittal [40] entropies). Predictions of these models have
been tested in cosmology [41–46] and quantum physics [47–50]. Recently, a non-extensive
generalization inspired by the symmetries of the relativistic Lorentz group has been proposed
by Kaniadakis [51–55] based on the modified entropy

Sκ = −
∑

i

ni lnκ ni , (1.2)

1We adopt units where the reduced Planck’s constant ℏ, the speed of light c, the gravitational constant G,
the Boltzmann constant kb and some reference charge qp (eventually the Planck charge) are equal one. This,
in turn, amounts to setting the Planck mass, length, time, temperature and charge as reference quantities.
In this units setup, which will be simply referred to as Planck units, it is understood that all masses, lengths,
times, temperatures and charges, as well as derived units, are dimensionless, since they should be thought
of as being rescaled with respect to their corresponding reference quantities at Planck scale. For instance,
we shall implicitly mean that r+, M and Q denote the ‘normalized’ BH horizon radius r+ ≡ rphys/lp, mass
M = Mphys/mp and charge Q = Qphys/qp, respectively.
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where the κ-deformed logarithm is defined by

lnκ x ≡ xκ − x−κ

2κ
. (1.3)

The generalized Boltzmann factor for the i-th microstate is

ni = α expκ [−β (Ei − µ)] , (1.4)

where

expκ(x) ≡
(√

1 + κ2 x2 + κ x
)1/κ

, (1.5)

α = [(1 − κ)/(1 + κ)]1/2κ , (1.6)

1/β =
√

1 − κ2 T , (1.7)

with T and µ being the temperature and chemical potential of the system, respectively.
Deviations from Boltzmann-Gibbs statistics are quantified by the dimensionless param-

eter −1 < κ < 1. The classical framework is, however, recovered in the κ → 0 limit. Besides
theoretical arguments, we emphasize that phenomenological evidences for Kaniadakis statis-
tics come from the high-quality agreement between the modified distribution (1.4) and the
observed power-law tailed spectrum of cosmic rays [52].

One can show that, for the case of BHs, the dimensionless Kaniadakis entropy (1.2)
can be cast as [56–59]

Sκ = 1
κ

sinh (κ SBH) . (1.8)

We mention here that, since the above expression is an even function of κ, i.e. Sκ = S−κ,
in the following we shall restrict to the κ ≥ 0 domain.

Kaniadakis entropy in the form (1.8) has been mostly used for holographic applications
and, in particular, to infer corrections brought about in the Friedmann equations [57–61]
(see also [56] for a recent review). In the light of the gravity-thermodynamic conjecture,
preliminary studies in BH thermodynamics have been considered in [64] by computing
the κ-deformed temperature and heat capacity in the context of generalized Heisenberg
relations [65, 66]. Nevertheless, to the best of our knowledge, a dedicated analysis of
BH geometrothermodynamics and critical phenomena in Kaniadakis statistics has not yet
been conducted.

Starting from the above premises, in this work we address the thermodynamics of
AdS BHs from the Kaniadakis entropy perspective. We investigate the impact of eq. (1.8)
on small-large BH phase transitions and critical exponents by exploiting the language of
condensed matter physics. In this sense, the main effort here is to lay the foundation
towards formulating BH thermodynamics in a fully relativistic statistical context. We
then examine the underlying microstructure of BHs in Ruppeiner geometry, which reveals
predominantly repulsive intermolecular forces. In line with the discussion of [67–73], our
analysis shows that the development of BH thermodynamics based on a non-extensive
entropy notion involves a consistent redefinition of all other thermodynamic quantities,
including the Hawking temperature and thermodynamic energy.
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Figure 1. P − v diagram of van der Waals fluids. The red dot-dashed line indicates the critical
isotherm at T = Tc. We have set a = b = 1 (online colors).

The structure of the work is as follows: for later comparison with physics of BHs, the
next section is devoted to review phase transitions and critical phenomena of van der Waals
fluids. In section 3 we study thermodynamics of charged AdS BHs in Kaniadakis statistics,
while section 4 concerns geometrothermodynamic analysis. Conclusions and perspectives
are finally discussed in section 5.

2 P − V criticality of van der Waals fluids

In this section we basically follow the analysis of Kubiznak and Mann [26]. To keep
consistency with their notation and results, we here use the same conventions as in [26]. It
is well-known that Van der Waals model provides an effective description of real interacting
fluids and liquid-gas phase transitions. The characteristic equation is(

P + a

v2

)
(v − b) = T , (2.1)

where v = V/N , N , V , P and T denote the specific volume, number of constituents, global
volume, pressure and temperature of the van der Waals system, respectively. The positive
constant a and b quantify the attraction and finite size of the molecules in the fluid.

The qualitative behavior of P − V isotherms is displayed in figure 1. It can be seen
that the critical point of the liquid-gas phase transition occurs when P (v) has an inflection
point, which is obtained by imposing(

∂P

∂v

)
T

=
(

∂2P

∂v2

)
T

= 0 . (2.2)

In this way, we obtain

vc = 3b , Tc = 8a

27b
, Pc = a

27b2 , (2.3)

for the critical volume, temperature and pressure, respectively. It is immediate to check that

Pcvc/Tc = 3/8 , (2.4)

which is a universal number predicted for all fluids (independently of the constants a and b).
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Figure 2. Gibbs free energy G versus temperature T for various pressures P , for van der Waals
fluids. The red dot-dashed line indicates the critical isobar at P = Pc (online colors).

To gain more insights on the phase transitions of van der Waals fluids, let us introduce
the (specific) Gibbs free energy, G = G(P, T ). For fixed N , this is given by [26]

G(T, P ) = −T

{
1 + log

[
(v − b) T

3
2

λ

]}
− a

v
+ Pv , (2.5)

where v is to be understood as a function of pressure and temperature through eq. (2.1),
while λ is a (dimensional) specific constant of the gas. The behavior of G versus T is shown
in figure 2 for different P . Below the critical pressure (yellow dotted curve), it exhibits the
“swallow-tail” shape characteristic of first order phase transitions from liquid to gas. Such a
feature disappears for P > Pc (black solid line).

The behavior of the physical variables near the critical point is quantitatively described
by the critical exponents. Following [26], we introduce

t = T − Tc

Tc
= τ − 1 , ϕ = v − vc

vc
= ν − 1 . (2.6)

The basic critical exponents α, β, γ and δ are then defined as follows (for computational
details, see [74]):

- α governs the dynamics of the specific heat at constant volume Cv according to
Cv = T

(
∂S
∂T

)
v
∝ |t|−α . By explicit computation, one sees that Cv does not depend

on t, which implies α = 0.

- β describes the behavior of the order parameter η = vg − vl for a given isotherm
as η ∝ |t|β , where vg,l denote the volume of the gas and liquid phases, respectively.
From the equation of corresponding states for van der Waals fluids and the Maxwell’s
equal area law, it follows that β = 1/2.

- γ measures the isothermal compressibility κT of the fluid in compliance with
κT = − 1

v

(
∂v
∂P

)
T
∝ |t|−γ . By using again the equation of corresponding states, one

finds γ = 1.

- δ controls the difference |P − Pc| on the critical isotherm T = Tc according to
|P − Pc| ∝ |v − vc|δ. The study of the shape of the critical isotherm gives δ = 3.
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The above considerations provide the basics of our next analysis. Specifically, we
elaborate on the correspondence between phase transitions of BHs and van der Waals fluids
within Kaniadakis framework, with focus on the κ-deformed analogues of eq. (2.1)–(2.6).

3 Kaniadakis thermodynamics of charged AdS black holes

The general static and spherically symmetric metric that describes (3 + 1)-dimensional
charged AdS BHs is given by [75]

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2 , (3.1)

where dΩ2 = dθ2 + sin2 θdϕ2 is the angular part of the metric on the two-sphere. Here, we
have defined2

f(r) = 1 − 2M

r
+ Q2

r2 + r2

l2
, (3.2)

where M, Q, l are the normalized mass, electric charge and AdS radius of the BH (see
footnote 1). The latter is related to the (negative) cosmological constant by

Λ = − 3
l2

. (3.3)

Clearly, for Q = 0 and l ≫ r, eq. (3.1) reduces to the well-known Schwarzschild metric.
Additionally, the normalized event horizon r+ of the geometry (3.1) corresponds to the
largest root of f(r) = 0. One can use this solution to express the BH mass as

M(r+) = r+
2 + Q2

2r+
+

r3
+

2l2
. (3.4)

Before we proceed further, it is worth performing dimensional analysis, translating the
above relation to physical units. Taking footnote 1 into account, we naturally get

Mphys
mp

= r+phys
2lp

+
Q2

phys
q2

p

lp
2r+phys

+
r3

+phys
l3p

l2p
2l2phys

,

where the subscript phys indicates correct dimensional quantities in the international system.
The above equation is dimensionally consistent, since all the ratios in the left and right
sides are pure numbers. All other equations in the manuscript either follow from eq. (3.4)
or can be treated by using the same prescription.

The normalized surface area Abh of the BH horizon reads

Abh = 4πr2
+ . (3.5)

Returning to our system of Planck units, the Bekenstein-Hawking entropy based on the
classical Boltzmann-Gibbs statistics obeys

SBH = Abh

4 = πr2
+ . (3.6)

2Following the study of [76–80] in Tsallis and Barrow frameworks, here we assume that Kaniadakis model
only modifies BH entropy, while leaving the field equations of the theory unaffected. A comprehensive
analysis of BH thermodynamics involving an ab initio derivation of a lagrangian driven by the Kaniadakis
entropic index is reserved for the future.
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Notice that, according to the set of units we are using, this is a dimensionless measure of
the BH horizon entropy, namely the entropy rescaled by the number of bits associated with
a Planck-size area.

As discussed in the Introduction, due to the area scaling of BH entropy, arguments from
multiple perspectives suggest that Boltzmann-Gibbs statistics may not be the appropriate
context for studying the thermodynamics of BHs. In particular, in a relativistic scenario
eq. (3.6) is expected to be generalized to Kaniadakis entropy (1.8), which we rewrite here
by dropping for simplicity the index κ

S = 1
κ

sinh (κ SBH) . (3.7)

Some comments are in order: first, it should be stressed that, although the Bekenstein-
Hawking entropy (3.6) is commonly used in the relativistic theory, it is essentially classical.
Indeed, according to the maximum entropy principle, it is maximized when a given system in
thermodynamic equilibrium is in a state described by the Maxwell-Boltzmann distribution,
which has the classical Boltzmann-Gibbs statistics as a natural frame. At first glance, one
might be tempted to generalize the Maxwell-Boltzmann factor to the Maxwell-Jüttner
distribution, which provides the first effort to construct a relativistic statistical theory [81].
However, this model is developed by naively replacing the classical energy-velocity relation
with its relativistic generalization into the Maxwell-Boltzmann distribution. In so doing, one
obtains a hybrid distribution that still maximizes the classical Boltzmann-Gibbs-Shannon
entropy. On the other hand, the non-extensive Kaniadakis entropy (3.7) stems from the
generalized distribution (1.4), which is built out from an ab initio relativistic statistical
framework — Kaniadakis statistics. As shown in refs. [51–55], the latter statistics is
relativistic in the sense that it respects the relativistic invariance and includes the relativistic
form of the energy-momentum relation. We thus believe that the present analysis provides
a first relevant step toward a comprehensive extension of black hole thermodynamics to a
general relativistic entropic scenario.

Furthermore, we observe that S is a monotonically increasing function of SBH and,
thus, of the horizon radius r+. Moreover, in order to provide analytical solutions, it proves
sometimes convenient to perform Taylor expansions of eq. (3.7) to the leading order [58, 82].
This assumption is substantiated by the agreement between theoretical predictions and
phenomenological implications of Kaniadakis model, which is obtained for κ = 0.2165 in
high-energy particle physics [52]. Note that in cosmological applications, κ is found to be
much closer to zero [60–62], for instance κ ∼ O(10−125) from Baryon acoustic oscillations
measurements. On the other hand, small but still appreciable effects are expected to arise
in the astrophysical context, which is the framework we are actually considering here. For
example, constraints on κ have been set in [63] by studying the impact of Kaniadakis entropy
on the physics of galaxy clusters. Although the classical Boltzmann-Gibbs statistics is
well-consistent with data, non-Gaussian effects cannot be completely ruled out, constraining
0 ≤ κ ≤ 0.034 at 1σ confidence level. Since, to the best of our knowledge, this is one of
the most accurate observational constraints on Kaniadakis entropy within the realm of
astrophysics, in what follows we stick to this bound as for the adopted values of the entropic
parameter κ. Additionally, we shall retain the exact expression of S as far as possible,

– 7 –



J
H
E
P
1
2
(
2
0
2
3
)
1
1
4

resorting to the leading order approximation of eq. (3.7)

S = SBH + S3
BHκ2

6 + O(κ4) , (3.8)

when necessary.
For κ ∼ O(10−2), in order for the above expansion to make sense, we need to restrict

to SBH ≪ O(102). In compliance with these caveats, we shall fix κ and SBH in such a way
that the ratio between the leading order correction and standard term is small enough and
the expansion (3.8) can be reasonably performed. The study of Kaniadakis effects on BH
thermodynamics for larger values of entropies (i.e. for very large BHs) requires developing
exact computations beyond the leading order expansion (3.8). Because of cumbersome
technicalities, this aspect is reserved for future investigation. In spite of this restriction,
we would however remark that our analysis still highlights suggestive results, such as a
non-trivial impact of non-extensive Kaniadakis entropy on BH phase transitions, the critical
parameters, the generalized law of corresponding states, the behavior near the critical point
and the thermodynamic (microstructure) interaction properties.

The thermodynamic picture of AdS BHs is completed by the introduction of an
extended phase space, where the pressure is identified with the cosmological constant and
the thermodynamic volume with its conjugate quantity, i.e.

P = − Λ
8π

= 3
8πl2

, (3.9)

V =
(

∂M

∂P

)
S,Q

= 4
3πr3

+ , (3.10)

respectively. Equipped with these new definitions, it is easy to check that BHs still obey
the first law of thermodynamics [26]

dM = TdS + φdQ + V dP , (3.11)

and Smarr relation
M = 2 (TS − V P ) + ΦQ , (3.12)

where
T =

(
∂M

∂S

)
P,Q

, Φ =
(

∂M

∂Q

)
S,P

, (3.13)

are the normalized temperature and electric potential, respectively.
Using the standard thermodynamic machinery, we now have all the ingredients to

compute the necessary BH thermodynamic variables. Since BH phase transitions have been
shown to occur in the canonical (fixed charge) ensemble [21, 22], we conduct our analysis
in this framework. As a first step, we express the mass parameter (3.4) in terms of the
Kaniadakis entropy, using the relation (1.8). This gives

M(S) = (πlQκ)2 + πl2κ ash (κS) + ash2 (κS)
2π

3
2 l2κ

3
2 ash

1
2 (κS)

, (3.14)

where we have introduced the shorthand notation

ash (x) ≡ arcsinh (x) . (3.15)
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Figure 3. The mass parameter M versus the entropy S for various values of κ and l = lc fixed
through the critical condition (3.26) (upper panel), l = 2lc (middle panel) and l = 0.5lc (lower panel)
(online colors).

One can verify that the limit for κ → 0 of eq. (3.14) reproduces the standard expression
of M for charged AdS BHs (solid black lines in figure 3).

The behavior of the κ-deformed mass (3.14) versus S is shown in figure 3 for various κ, l

and fixed Q = 0.25. As we can see, M remains positive and shows an initially decreasing
behavior (evaporation phase of the BH), followed by a later growth (absorption process).
While leaving the initial stage of the evolution nearly unaffected, Kaniadakis entropy
influences the final growth rate of M , with lower κ corresponding to a faster growth
and vice-versa. For the sake of comparison with recent literature, we emphasize that a
similar result has been found in the context of quantum gravity-induced deformations of
Boltzmann-Gibbs entropy [78] and in non-linear electrodynamics and the Einstein-massive
gravity [83].

The usage of eq. (3.14) along with the first law of thermodynamics (3.11) allows us to
derive the κ-temperature of the thermal radiation emitted by BHs as

T (S) =
(

∂M

∂S

)
P

(3.16)

= − (πlQκ)2 + πl2κ ash (κS) + 3 ash2 (κS)

4π
3
2 l2
[
(1 + κ2S2) κ ash3 (κS)

] 1
2

,
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Figure 4. The temperature T versus the entropy S for various values of κ and l = lc fixed through
the critical condition (3.26) (upper panel), l = 2lc (middle panel) and l = 0.5lc (lower panel). In order
to properly display all features of the T −S diagrams, in the middle panel we have slightly restricted
the domain of S. The vertical solid lines in the middle panel separate Region II — Intermediate
Black Hole (IBH) — from Region I — Small Black Hole (SBH) — and Region III — Large Black
Hole (LBH) — see text (online colors).

which, in the limit of κ → 0, still recovers the usual result (solid black line in figure 4)

Tκ→0(S) = 3S2 + πl2
(
S − πQ2)

4π
3
2 l2S

3
2

. (3.17)

We further notice that the above relation has the well-defined Schwarzschild limit
T = 1/(4πr+) for Q → 0 and l → ∞.

Equation (3.16) is plotted as a function of S in figure 4 for various κ, l and fixed
Q as before. The points where the slope of the T − S graphs vanishes are of special
interest, as they signal a potentially critical behavior of BHs (see the next section for more
quantitative discussion). From figure 4, we see that T exhibits one, two or no stationary
points, depending on the value of l (or, equivalently, of P ). Specifically, from the upper
panel we observe that T has one stationary point as far as S is kept small enough to comply
with the condition (3.8)). Notice also that this point occurs for Planck-size BHs for the
specific setup of model parameters. It is easy to check that it shifts toward higher S for
higher values of Q.

An interesting behavior is also exhibited as S increases. Indeed, eq. (3.16) reveals that,
while the standard BH temperature Tκ=0 is a monotonically increasing function that blows

– 10 –



J
H
E
P
1
2
(
2
0
2
3
)
1
1
4

up asymptotically, Tκ ̸=0 starts decreasing for S large enough and ultimately vanishes. We
thus infer that sufficiently large Kaniadakis AdS BHs should appear colder than standard
AdS BHs of equal size. Such a behavior could signal the emergence of suggestive new
physics in this regime with respect to the κ = 0 case. However, a detailed analysis of this
feature lies outside the applicability of the present formalism. Indeed, although we are
able to provide the exact expressions of the κ-modified temperature, our thermodynamic
considerations on the phase structure and transitions of AdS black holes make sense as
far as the leading order approximation (3.8) remains meaningful. Such an approximation
is in fact needed to derive the analytic expressions of the critical parameters and explore
the behavior near the critical point (see the discussion in section 3.1). Therefore, a proper
treatment of this behavior requires going beyond the leading order approximation and
possibly develop exact analytic calculations.

On the other side, from the lower panel of figure 4, we observe that T increases
monotonically and has no stationary point for entropies consistent with eq. (3.8). As
discussed above, the study of Kaniadakis BH thermodynamics for large values of S might
reveal non-trivial behaviors. However, it breaks down the approximation (3.8) and will be
thus discussed in a future analysis.

Finally, the middle panel of figure 4 shows that T increases for small (Region I —
Small Black Hole (SBH)) and large (Region III — Large Black Hole (LBH)) values of the
entropy, while it decreases in the intermediate domain (Region II — Intermediate Black Hole
(IBH)). These regions are separated by two stationary points, which have been marked by
vertical solid lines for better visual clarity. Effects of Kaniadakis entropy manifest through
a variation of the width of the IBH region, with higher κ yielding a larger IBH domain
and vice-versa. Below, we shall see this behavior of T − S graph is peculiar to a first-order
phase transition between SBH and LBH, which resembles in many aspects the liquid-gas
change of phase of van der Waals fluids.

In this picture, the larger amplitude of the IBH domain for higher κ can be understood
in terms of the non-extensive character of Kaniadakis entropy by looking at the BH structure
on a molecular level (see section 4). For higher κ, indeed, the repulsive forces among BH
microstructures tend to be weaker, at least in the first stage of BH evolution, which implies
a slowed small-to-large phase transition of BH. To carry on the similarity with van der
Waals-like systems (where, however, interparticle forces are mostly attractive), one can
think of a Kanidakis BH as a fluid with stronger attraction for larger κ. In this case,
more heat is necessary to the internal molecules to overcome these attractive interactions,
which results in a delayed liquid-gas change of phase. Again, we here mention that some
non-trivial behavior could be exhibited for very large entropies. This regime is however
outside the scope of this work.

Finally, regardless of the value of l, the condition T (S0) = 0 gives the physical limitation
point of BHs. Indeed, for S < S0 the temperature becomes negative, which means this
region is physically inaccessible.

Before moving on, we remark that the employment of generalized (non-extensive)
entropies like that in eq. (1.8) leads to multiplicity in the temperature value of BHs. In [71]
it has been observed that three different scenarios may occur, depending on the assumed
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energy and temperature definitions. In compliance with [77, 78], here we are considering
the energy definition of GR, the first law of thermodynamics and the thermodynamic
temperature definition as fundamental. An alternative viewpoint has been adopted in [71],
based on the assumption that the Hawking temperature must be kept unaffected. It is
interesting to explore whether, and if so, how the present results get modified in such a
complementary approach. Investigation along this direction is left for future work.

3.1 Heat capacity and critical point

With the help of the temperature (3.16), one can obtain the heat capacity at constant
pressure as

Cp(S) = T

(
∂S

∂T

)
P

=−2
κ

(
1+κ2S2

) 3
2 ash(κS)

[
(πlQκ)2−ash(κS)

(
πl2κ+3ash(κS)

)]
×
{

3(πlQκ)2
(
1+κ2S2

)
−ash(κS)

{
πl2κ

[
1+κ2S

(
S−2πQ2(1+κ2S2)

1
2
)]

+ash(κS)
[
−3+κ2S

(
−3S+2πl2(1+κ2S2)

1
2
)

+6κS ash(κS)
(
1+κ2S2

) 1
2
]}}−1

,

(3.18)

which for κ → 0 consistently reduces to (solid black line in figure 5)

Cp,κ→0 =
2πr2

+
[
3r4

+ + l2
(
r2

+ − Q2)][
3r4

+ + l2
(
3Q2 − r2

+
)] . (3.19)

It is important to note that Cp > 0 corresponds to local stability of BHs, while for
Cp < 0 even small perturbations may cause BH disappearance. Also, discontinuities
potentially indicate a critical behavior of BHs.

Equation (3.18) is plotted as a function of S in figure 5 for various κ, l and fixed Q

as before. In compliance with the discussion below eq. (3.16), it is observed that Cp has
one (upper panel), two (middle panel) or no (lower panel) discontinuity, depending on the
value of l. The SBH, IBH and LBH regions are clearly distinguishable from the middle
panel (the vertical lines correspond to the two stationary points of the T − S graphs in the
middle panel of figure 4). While SBH and LBH are thermodynamically stable (Cp > 0),
IBH is unstable (Cp < 0). As discussed, for instance, in [26] this gives rise to a transition
between the SBH and LBH “phases”. As l progressively decreases to a certain critical value
(upper panel), the IMB range reduces to a point, which in turn corresponds to the single
stationary point of the T − S graph in the upper panel of figure 4. By further decreasing
l (lower panel), Cp is always continuous and keeps positive values. In this case, BHs are
locally stable and do not undergo any transition (see also the corresponding T − S graphs
in the lower panel of figure 4).

To better understand the origin of this critical value of l, we now derive the analogue
of the equation of state (2.1) for BHs in the extended phase space. By using eq. (3.9)
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Figure 5. The heat capacity at constant pressure Cp versus the entropy S for various κ values,
and for l = lc fixed through the critical condition (3.26) (upper panel), l = 2lc (middle panel) and
l = 0.5lc (lower panel). For visual clarity, we have only considered two values of κ in the middle
panel (online colors).

and (3.16), after some algebra we get

P (r+) = cosh
(
πκr2

+

) T

2r+
+ Q2

8πr4
+
− 1

8πr2
+

, (3.20)

which is now straightforward to match with the κ → 0 limit [26]

Pκ→0(r+) = T

2r+
+ Q2

8πr4
+
− 1

8πr2
+

. (3.21)

Once more, it could be interesting translate the above relation in Planck units to
physical units. Focusing on the first term in the right-side (for comparison with eq. (3.12)
of [26]) and following the prescription in footnote 1, we obtain

Pphys = cosh
(

πκphys r2
+phys

kb

l2p

)
Tphys

2r+phys

kb

l2p
+ . . . ,

which is dimensionally self-consistent and coincides with eq. (3.12) of [26] for κphys → 0.
To directly compare eq. (3.20) with eq. (2.1), we follow [26] and identify the horizon

radius r+ with the specific volume of van der Waals fluid as [26]

v = 2r+ . (3.22)
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In this way, we obtain

P (v) = cosh
(

πκv2

4

)
T

v
+ 2Q2

πv4 − 1
2πv2 . (3.23)

As discussed for van der Waals fluids, the critical point of phase transitions can be
derived from the conditions (2.2). However, analytical expressions for the critical specific
volume, temperature and pressure can only be obtained to the leading order in κ. In this
approximation, we are allowed to write down

vc = 2
√

6Q + 144
√

6π2Q5κ2 + O(κ3) , (3.24)

Tc = 1
3
√

6πQ
+ 3

√
6πQ3κ2 + O(κ3) , (3.25)

Pc = 1
96πQ2 + 2πQ2κ2 + O(κ3) , l2c = 3

8πPc
, (3.26)

all reducing to the standard critical expressions for κ → 0 [26]. Notice that, for Q > 0,
Kaniadakis corrections are positive. In particular, from eqs. (3.24) and (3.25) we infer that
Kaniadakis BHs are hotter and larger than standard BHs at the critical point of phase
transition. Furthermore, the relation (3.24) allows us to derive the thermodynamic volume
corresponding to the critical volume vc as

Vc = 4
3πr3

c = 8
√

6πQ3 + 1728
√

6π3Q7κ2 + O(κ3) . (3.27)

It is worth noting that vc → 0, while Tc, Pc → ∞ for Q → 0 regardless of κ, which
means that the critical transition described above is characteristic of charged BHs also in
Kaniadakis entropy model (on the other hand, in [84] it has been found that AdS BHs in
Gauss-Bonnet gravity undergo small-large transitions in the uncharged case too).

Interestingly enough, the critical parameters (3.24)–(3.26) satisfy the relation

Pcvc

Tc
= 3

8 + 315
4 π2Q4κ2 + O(κ3) . (3.28)

We deduce that Kaniadakis entropy-based BHs slightly deviate from pure van der Waals
behavior, due to the κ-dependent correction. The latter behavior is, however, recovered
for κ → 0.

Now, by introducing the re-scaled variables

p = P

Pc
, ν = v

vc
, τ = T

Tc
, (3.29)

the equation of state (3.23) can be rearranged as

8τ = 3ν

(
Ap + 2B

ν2

)
− D

ν3 , (3.30)
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Figure 6. P − v diagrams for κ = 0.01 (top panel) and κ = 0.015 (bottom panel). In each panel,
the temperature of the isotherms decreases from top to bottom. The red dot-dashed line indicates
the critical isotherm at T = Tc (online colors).

where

A = 8Pcvc

3Tc cosh
(

πκv2

4

)
= 1 + 6π2Q4

(
35 − 3ν4

)
κ2 + O(κ3) , (3.31)

B = 2
3πTcvc cosh

(
πκv2

4

)
= 1 − 18π2Q4

(
7 + ν4

)
κ2 + O(κ3) , (3.32)

D = 16Q2

πTcv3
c cosh

(
πκv2

4

)
= 1 − 18π2Q4

(
15 + ν4

)
κ2 + O(κ3) . (3.33)

Equation (3.30) has the same structure as the law of corresponding states for fluids [26]

8τ = 3ν

(
p + 2

ν2

)
− 1

ν3 . (3.34)

It is easy to check that this equation is correctly restored for κ → 0, since A = B = D = 1
in this limit.

3.2 P − v diagram

We proceed by investigating the P − v diagrams of AdS BHs as given in eq. (3.23). These
diagrams are displayed in figure 6 for various κ, T and fixed Q as before. By comparison
with figure 1, we see that the isotherms at T < Tc (green and yellow curves) have van
der Waals-like oscillations with a local minimum and maximum. This behavior appears
even more evident from the plot of the derivative of P with respect to v in figure 7, which
shows that ∂vP is continuous and varies from initially negative to positive values, and
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Figure 7. Plot of ∂vP versus v for two different values of T < Tc. We set κ = 0.01 (top panel) and
κ = 0.015 (bottom panel). The two stationary points where ∂vP vanishes spot the local minimum
and maximum of P − v curves (online colors).

finally negative again. These ranges are interpreted as the oscillating branch of a van der
Waals-like phase transition. The two intermediate points where ∂vP = 0 represent a local
minimum and maximum, respectively (one can further compute the second derivative and
check that it is positive in the first point, while negative in the second). Notice also that
such stationary points fall within the domain of validity of the expansion (3.8). Indeed, they
lie at v ≲ 4 =⇒ r+ ≲ 2. This implies that the ratio between the leading order correction
and standard term in the expansion (3.8) is of order ≲ O(10−3), thus validating the usage
of (3.8).

As T increases to Tc (red curve), the oscillating branch squeezes and the two stationary
points collapse into the inflection point (Pc, vc, Tc) (see eqs. (3.24)–(3.26)). This behaviour
is reminiscent of the van der Waals fluid transition. Though not changing the qualitative
behavior of the isotherms, Kaniadakis entropy non-trivially affects the critical pressure and
temperature at which such transition occurs. For T > Tc (blue and black curves), there are
no more stationary points and P decreases monotonically along each isotherm as far as v

is small enough to comply with the expansion (3.8). Interestingly enough, from eq. (3.23)
one can see that the pressure becomes an increasing function for very large volumes. This
behavior appears quite peculiar. On one hand, it may convey the idea that some new physics
could emerge in the large-volume limit of Kaniadakis BHs, on the other hand it could simply
be the consequence of extrapolating results in a regime where the approximation (3.8)
starts becoming less efficient. As pointed out above, understanding the large-volume regime
requires much more technical effort and will be postponed to later study.

3.3 Gibbs free energy

Let us now explore the global stability of charged AdS BHs in Kaniadakis thermodynamics.
For this purpose, we compute the Gibbs free energy as [26, 85]

G(T, P ) = M − TS =
3
(
Q2 + r2

+
)

+ 8πPr4
+

6r+
(3.35)

+
[
Q2 − r2

+
(
1 + 8πPr2

+
)]

4πκr3
+

tanh
(
πκr2

+

)
,
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Figure 8. The Gibbs free energy G versus the temperature T , for κ = 0.01. The red dot-dashed
line indicates the critical isobar at P = Pc. SBH denotes Region I — Small Black Hole, IBH denotes
Region II — Intermediate Black Hole and LBH denotes Region III — Large Black Hole, see text
(online colors).

where r+ is to be regarded as a function of P and T through the equation of state (3.20).
Once more, one can check that the κ → 0 limit gives back the classical Gibbs free energy
for charged AdS BHs

Gκ→0(T, P ) = 3Q2

4r+
+ r+

4 − 2
3 πPr3

+ . (3.36)

The behavior of eq. (3.35) as a function of T is shown in figure 8, to be compared
with figure 2. Consistently with the previous discussion, it is observed that, below the
critical pressure (dotted yellow line), G exhibits has the swallow tail behavior typical of
first order phase transitions. Specifically, in the first branch BHs are in the SBH domain.
As T increases to the critical point O, SBH and LBH phases coexist, since they have the
same Gibbs free energy. As noted in [26], the coexistence line in the P − T plane can be
derived by using Maxwell’s equal area law or finding a curve for which G and T coincide for
SBH and LBH. This line is plainly visible from the 3D plot in figure 9. Above the critical
temperature, LBH becomes the preferred thermodynamic state because of its lower Gibbs
free energy. Therefore, there is a first-order small-large phase transition at the point O.
Clearly, owing to the definition (1.8) of entropy, different horizon areas for the SBH and
LBH during this transition correspond to a discontinuity in the entropy (and also in the
thermodynamic volume, see eq. (3.10)) and, thus, to the release of latent heat.

3.4 Behavior near the critical point

For quantitative discussion of the behavior of BHs approaching the critical point, we now
calculate the critical parameters as defined at the end of section 2. First, we introduce the
free energy

F (T, V ) = G − PV . (3.37)

By using eqs. (3.10) and (3.35), we get

F = 1
2

[
Q2

r+
+ r+ −

2T sinh
(
πκr2

+
)

κ

]
. (3.38)
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Figure 9. 3D plot of the Gibbs free energy G versus pressure the P and temperature T , for κ = 0.01.
The coexistence line between the SBH and LBH phases in the P − T plane is visible.

Accordingly, the entropy is

S(T, V ) = −
(

∂F

∂T

)
V

=
sinh

(
πκr2

+
)

κ
, (3.39)

consistently with eq. (1.8). In turn, from the definition below eq. (2.6), we find that CV = 0,
which yields α = 0.

In order to compute β, we approximate eq. (3.30) around a critical point. We use the
re-scaled coordinates (2.6), here rewritten for convenience as

t = T

Tc
− 1 , ω = V

Vc
− 1 . (3.40)

In the approximation of small κ, we obtain

p = 1 +
(8

3 − 512π2Q4κ2
)

t +
(
−8

3 + 704π2Q4κ2
)

tω

+
(
−4

3 + 1120π2Q4κ2
)

ω3 + O
(
tω2, ω4

)
, (3.41)

where the various terms have been grouped together in this specific way for a direct
comparison with [26]. It is worth noting that the re-scaled pressure as appears in eq. (3.41)
contains terms of order higher than the qudratic in κ, due to the implicit κ-dependence of
t, ω. However, for our purpose of computing Kaniadakis corrections to critical exponents, it
is useful to present eq. (3.41) et seq. in their current form and restore the leading order at
the end. For more details on the validity of the series expansion respect to t, ω, see [26].

Now, differentiation of eq. (3.41) respect to ω at a fixed t < 0 gives

dp =
[(

−8
3 + 704π2Q4κ2

)
t +

(
−4 + 3360π2Q4κ2

)
ω2
]

dω . (3.42)
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By employing Maxwell’s equal area law∮
vdP = 0 , (3.43)

along with the knowledge that there is no pressure variation during the phase transition,
we obtain

1 +
(8

3 − 512π2Q4κ2
)

t +
(
−8

3 + 704π2Q4κ2
)

tωl +
(
−4

3 + 1120π2Q4κ2
)

ω3
l

= 1 +
(8

3 − 512π2Q4κ2
)

t +
(
−8

3 + 704π2Q4κ2
)

tωs +
(
−4

3 + 1120π2Q4κ2
)

ω3
s

(3.44)

and
0 =

∫ ωs

ωl

ω

[(
−8

3 + 704π2Q4κ2
)

t +
(
−4 + 3360π2Q4κ2

)
ω2
]

dω , (3.45)

where ωs,l denote the “specific volume” of the small and large phases of BHs, respectively.
One can verify that the only non-vanishing solution that reduces to the standard one for
κ → 0 is [26]

ωs = −ωl =
√
−2t

(
1 + 288π2Q4κ2

)
. (3.46)

Thus, from the definition of the critical exponent β below eq. (2.6), it follows that

η = Vc (ωl − ωs) = 2Vcωl ∝
√
−t =⇒ β = 1

2 . (3.47)

As concerns the exponent γ, we need to differentiate eq. (3.41) as
(

dV

dP

)
T

= Vc

Pc

(
dω

dp

)
T

= −3
8

Vc

Pc

1
t

(
1 + 264π2Q4κ2

)
. (3.48)

Hence, the isotherm compressibility κT of BHs takes the form

κT = − 1
V

(
∂V

∂P

)
T
∝ 1

Pc

1
t

, (3.49)

which implies γ = 1.
Lastly, the shape of the critical isotherm t = 0 and the related δ-exponent are given by

p − 1 =
(
−4

3 + 1120π2Q4κ2
)

ω3 =⇒ δ = 3 . (3.50)

In spite of the non-trivial modifications induced by the κ-deformed entropy to the
critical pressure, volume and temperature, the basic critical exponents remain unaffected.
This allows to conclude that the qualitative similarity between Kaniadakis BHs and van
der Waals fluids near the critical point holds at quantitative level too.
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Figure 10. The sparsity η̃κ versus the entropy S, for various κ and l = 2. The vertical lines
represent the physical limitation entropy S0 for each curve. For comparison, we have also depicted
the sparsity of Schwarzschild BHs with emission of massless bosons (yellow curve) (online colors).

3.5 Sparsity of black hole radiation

Although BHs nearly behave like a black body and spontaneously emit particles at a
temperature proportional to their surface gravity, the flow of Hawking radiation exhibits
some peculiar features. For instance, it is known to be more sparse than black body radiation.
Quantitatively speaking, such a difference can be estimated through the computation of
the so-called sparsity, which is a measure of the average time-gap between the emission of
successive quanta defined by

η̃ = C

g

(
λ2

t

Aeff

)
, (3.51)

(we have used the symbol η̃ instead of the traditional η to avoid confusion with the critical
exponent (3.47)). Here, the constant C is dimensionless, while g, λt = 2π/T and Aeff =
27πr2

+ denote the spin degeneracy factor of the emitted quanta, the thermal wavelength
and the effective (dimensional) horizon area of the BH, respectively. For Schwarzschild BHs
and emission of massless bosons, one has λt = 2π/TH = 8π2r+, which entails

η̃H = 64π3

27 ≈ 73.49 ≫ 1 . (3.52)

For comparison, we remind that η̃ ≪ 1 in the case of a black body.
Effects of deformed entropies on sparsity of Schwarzschild BHs have been recently

considered in literature (see [64, 86–88] and references therein). For instance, in [64] it has
been shown that generalized models of Heisenberg relation combined with non-extensive
(Rényi, Tsallis-Cirto, Kaniadakis, Sharma Mittal and Barrow) entropies lead to substantial
modifications of the sparsity, which turns out to be mass dependent. A similar statement
has been claimed in [88] in rainbow gravity. The question arises as to how such results
appear for charged AdS BHs in Kaniadakis framework.

To compute the κ-deformed sparsity, we resort to the definition (3.51) equipped with
eq. (3.16). Straightforward calculations yield

η̃κ = η̃H
π2l4κ2 (1 + κ2S2) ash2 (κS)[

− (πlQκ)2 + πl2κ ash (κS) + 3 ash2 (κS)
]2 . (3.53)
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We notice that in the Schwarzschild limit (i.e. Q = 0 and sufficiently large AdS radius l),
the ensuing expression reduces to the result of [64] for Schwarzschild BHs. By further
imposing κ → 0, we have η̃κ = η̃H , as expected.

The behavior of the κ-modified sparsity (3.53) for various κ and fixed l = 2, Q = 0.25
is plotted in figure 10. To better appreciate the difference with respect to the standard
case, we have here considered slightly higher values of κ and restricted the range of S

accordingly, so as to keep eq. (3.8) meaningful. We notice that the κ-sparsity shows an
apparent divergence for a certain (κ-dependent) value of S. This singularity, however, lies
at the physical limitation point S0 (see the discussion below eq. (3.16)), as it is easy to
understand from the definition (3.51). Thus, it is unphysical and we only have to consider
the region S > S0 delimited by the vertical line. We can see that the κ-deformed sparsity
lies always above the κ = 0 (black) curve, in such a way that increasing the value of κ

directly results in sparser Kaniadakis BH radiation. This is in line with the result of [64].
On the other hand, η̃κ is greater than the sparsity η̃H of Hawking radiation of Schwarzschild
BHs (yellow curve) for sufficiently small entropies, where it significantly departs from the
black body-like behavior, while it falls below as S increases.

4 Geometrothermodynamics of charged AdS black holes

Since it is possible to define a temperature for BHs, it is natural to think of an associated
substructure. Recently, special care has been devoted to analyze the microscopic constituents
and underlying interactions of BHs [10–19], which can be described in the same fashion as
the molecules of a non-ideal fluid.

To investigate phenomenologically the nature of interactions among BH microstructures,
the common technique consists in studying the thermodynamic geometry of the whole
macroscopic system. In this perspective, the analysis of Weinhold [7] and Ruppeiner [8, 9]
geometries has proved to give qualitative insights on the internal dynamics of ordinary
thermodynamics systems via exploring the sign of the corresponding metric curvature.
Specifically, negative (positive) scalar curvatures emerge for prevailing attractive (repulsive)
microinteractions, while flatness characterizes non-interacting systems, such as the ideal
gas, or systems where interactions are perfectly balanced.

In the effort to probe the character of BH microinteractions, Weinhold and Ruppeneir
formalisms have been adapted to BH thermodynamics. This kind of study has been
first developed for Banados, Teitelboim and Zanelli (BTZ) BHs [10] and later extended
to Reissner-Nordström, Kerr and Reissner-Nordström-AdS BHs [89]. In the plethora
of results obtained so far, there is general consensus that the scalar curvature of BH
systems with charged molecules should be positive, revealing a repulsive behavior of
microinteractions [11–13, 15].

In order to figure out to what extent Kaniadakis’ prescription (1.8) affects the above
conclusion, let us compute Weinhold and Ruppeneir scalar curvature in Kaniadakis entropy-
based thermodynamics. Toward this end, we remind that Weinhold metric is defined as the
second derivative of internal energy of the system with respect to given thermodynamic
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Figure 11. The Ruppeiner scalar curvature RRup versus the entropy S, for various values of κ.
The parameter l is fixed to l =

√
2lc defined through the critical condition (3.26). The vertical lines

represent the physical limitation entropy S0 for each curve (online colors).

variables [7]. For the case of BHs, by identifying the internal energy with the mass, we obtain

gw
ij = −∂i∂jM(S, P, Q) =⇒ ds2

w = gw
ijdxidxj , (4.1)

where we have we have generically denoted the independent fluctuation coordinates by xi.
Similarly, in Ruppeiner formalism one considers the entropy as basic thermodynamic

potential, i.e.
gRup

ij = −∂i∂jS . (4.2)

From eqs. (3.16), (4.1) and (4.2), it follows that the line elements of Weinhold and
Ruppeiner are connected each other via the conformal transformation [90]

ds2
R = ds2

w

T
. (4.3)

We focus our next geometrothermodynamic analysis on eq. (4.3). Considering the
entropy and pressure as the fluctuation coordinates, while keeping Q fixed, we obtain the
following expression for the Ruppeiner scalar curvature:

RRup(S, P ) =
(
1 + κ2S2

)− 1
2 [ash (κS)]−1

× κ2
[
−2πQ2κ + ash (κS)

]
×
{

π (Qκ)2 − ash (κS) [κ+8P ash (κS)]
}−1

, (4.4)

which reduces to the standard curvature for charged AdS BHs in the κ → 0 limit [13]

RRup
κ→0(S, P ) = 2πQ2 − S

S [−πQ2 + S (1 + 8PS)] . (4.5)

The curvature (4.4) versus S is displayed in figure 11 for various κ and fixed Q = 0.6,
P = 0.5Pc. As discussed for the sparsity above, in order to better appreciate the difference
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Figure 12. 3D plot of the Ruppeiner scalar curvature RRup versus entropy S and pressure P , for
κ = 0.1 and Q = 0.6.

with respect to the κ = 0 case, we have here slightly increased κ and restricted the domain of
S for consistency with the approximation (3.8). Once again, the physical region is delimited
by S > S0 (vertical lines). Although eq. (4.4) is non-trivially modified comparing to the
classical curvature, Kaniadakis entropy does not affect the overall sign of RRup, which is
still positive and indicates prevailing repulsive interactions among BH microstructures. As
S increases, RRup gradually decreases, which means that the repulsion progressively fades,
possibly due to thermal fluctuations and/or molecular collisions. Kaniadakis corrections
here manifest through a variation of the rate of decrease, with higher κ corresponding to
faster decrease for sufficiently small S. This tendency is reversed as S increases. The former
behavior resembles the physics of composite systems with non-extensive (and, in particular,
superadditive) entropy. Indeed, for such systems the single constituents tend to merge more
strongly than the classical extensive case [91], thus balancing swiftly the effects of internal
repulsive forces. Asymptotically, the internal microstructures end up being so far apart
that RRup → 0, which reveals that BHs behave as effectively non-interacting.

Finally, figure 12 shows the 3D plot of RRup versus S and P for κ = 0.1 and fixed Q as
before. We can see that the scalar curvature remains positive even for varying P , which
supports previous arguments on the repulsive nature of BH micro-interactions.

5 Conclusions and discussion

Geometrothermodynamics and phase transitions of charged AdS BHs have been addressed
within the framework of Kaniadakis theory, which arises from a self-consistent relativistic
generalization of the classical statistical mechanics. The latter is coherently recovered by
setting the deformation parameter κ to zero. We would like to stress that the highlight of
the present analysis is to deepen our knowledge of BH thermodynamics in a fully relativistic
statistical scenario. As far as we know, this is the first work where this scenario is addressed.
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Following the standard literature, the study has been conducted by identifying the
cosmological constant and its conjugate quantity with the thermodynamic pressure and
volume, respectively. In the ensuing extended phase space, we have examined the impact of
Kaniadakis entropy on the formal duality black-hole/fluid, showing that Kaniadakis BHs
still exhibit a van der Waals-like first order phase transition.

Although Kaniadakis corrections do not affect the qualitative behavior of P − v

diagrams and the basic critical exponents, the critical volume, pressure and temperature
are non-trivially modified, even at the leading order in the deformation parameter κ (see
eqs. (3.24)–(3.26)). Should we have access to the phenomenology of AdS BHs and measure
such quantities, we could elaborate more on the role of Kaniadakis entropy in BH physics
and possibly constrain κ-corrections. We have finally probed the nature of interactions
among BH micro-structures. Using the picture of fluid-like interacting molecules, we have
applied Ruppeiner geometrothermodynamic formalism and computed the scalar curvature
of the associated metric. The investigation of the sign of the Ruppeiner scalar curvature
RRup reveals that these micro-interactions are prevailing repulsive and tend to vanish for
sufficiently large BH horizon radii, with the κ-parameter ruling the rate of decrease. In
passing, we mention that a possible explanation for this behavior can be provided based
on the physics of the two fluid model, where the dominant character of interactions is
determined by the relative number densities of the molecules of the two fluids [13].

As future prospects, we intend to extend the present study beyond the leading order
expansion (3.8) of Kaniadakis entropy and possibly develop exact analytic computations of
the critical parameters (3.24)–(3.26) and exponents (3.47)–(3.50). Besides technicalities,
such an extension could disclose non-trivial features that are peculiar to Kaniadakis AdS
BHs and have no correspondence in the standard case. For instance, from the temperature-
entropy relation (3.16), we can see that Tκ ̸=0 becomes a decreasing function for S large
enough and asymptotically vanishes, while the usual expression Tκ=0 keeps on increasing
and finally blows up. In other words, sufficiently large Kaniadakis AdS BHs turn out to be
much colder than standard AdS BHs of equal size. Similarly, the equation of state (3.23)
shows that the pressure of large AdS BHs is ultimately an increasing function of volume
rather than a decreasing one, which could signal interesting new physics in this regime.
Unfortunately, a comprehensive examination of these aspects and the related implications
on the critical behavior of Kaniadakis AdS BHs lies outside the applicability of the present
treatment, since the approximation (3.8) breaks down for entropies large enough. Work
is already in progress to settle this issue and will be presented as a future upgrade of
this study.

Furthermore, it would be interesting to enrich the above analysis by considering the
presence of global monopoles, which are known to have non-trivial effects on BH physics [92–
96]. Additionally, one can study Kaniadakis entropy-based thermodynamics of other BHs,
such as rotating or exotic BTZ BHs, and additionally examine its effect on the primordial
black holes and stochastic gravitational waves [97, 98]. On the other hand, inspired by [64],
it is suggestive to understand how BH critical phenomena appear in the context of modified
uncertainty principles [99, 100] combined with nonextensive entropies, and possibly connect
the two frameworks. The study of these aspects is under active consideration and will be
developed elsewhere.
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