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1 Introduction and conclusions

Any N = 2 superconformal field theory in 4d contains a 2d chiral algebra1 subsector,
protected by a linear combination “Q+S” of super-charges and super-conformal charges of
the ambient theory [1]. Many such SCFTs are also equipped with a non-trivial moduli space
of super-Poincaré-invariant vacua. The space of vacua may include various “branches”,
distinguished by the type of BPS operators which acquire vevs. The Higgs branch of vacua
can be characterized as leaving unbroken the U(1)r R-symmetry of the SCFT. According
to a conjecture of [2], one can recover the Higgs branch of the space of 4d vacua as the
associated variety of the 2d chiral algebra,2 an algebraic tool introduced originally to study
the characters of a vertex algebra [6].

This conjecture is surprising: Higgs branch vevs break the 4d superconformal group
to the super-Poincaré group and in particular break the “Q + S” symmetry protecting
the chiral algebra subsector. The tension can be resolved by considering an alternative
definition of the chiral algebra subsector based on a B-type Ω-deformation of the physical
theory [7–9]: the B-type Ω-deformation setup only requires unbroken U(1)r R-symmetry3

1We use the terms 2d chiral algebra and vertex algebra interchangeably throughout the paper. Con-
ceptually, a 2d chiral algebra encodes the properties of holomorphic local operators supported on a two-
dimensional locus in some quantum field theory. Vertex algebras provide a mathematical formalization of
2d chiral algebra, essentially via Kaluza-Klein reduction on a circle.

2See also [3], and the reviews [4, 5].
3This should be contrasted to the Ω-deformation defined in [10], which is instead applicable to any

N = 2 SQFT.
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and thus appears compatible with Higgs branch vevs.4 This leads to the obvious question:
how does a Higgs branch vev affect the chiral algebra correlation functions computed in
the Ω-deformed theory?

In order to answer this question, we introduce the notion of translation-invariant vac-
uum for a 2d chiral algebra. A simple analysis, presented in section 2 of this note, leads to a
transparent physical interpretation of the associated variety: it coincides with the moduli
space of translation-invariant vacua of the 2d chiral algebra. The conjecture of [2] thus
identifies the Higgs branch vacua of the 4d N = 2 SCFT with the vacua of the correspond-
ing 2d chiral algebra. In the Ω-deformation setup, the identification maps the expectation
values of chiral algebra operators to the expectation values of the corresponding operators
in the 4d theory.

Correlation functions of a 2d chiral algebra in a non-trivial vacuum are a novel ob-
servable, which may be of mathematical interest.5 In the rest of the paper, we restrict our
attention to N = 2 SCFTs which have a type IIB holographic dual [11, 12]. Most of our
calculations will be done in the chiral algebra of N = 4 U(N) gauge theory, but can be
extended to other examples with some extra work.

One of the simplest variations of Maldacena duality [11] involves precisely correlation
functions of SU(N) N = 4 SYM computed in non-trivial super-Poincaré-invariant vacua,
i.e. the Coulomb branch,6 in flat space [13–17], where the six adjoint scalar fields Φ⃗ receive
diagonal vevs, with eigenvalues y⃗i of multiplicities Ni ≡ αiN , i = 1, . . . , n.

The dual IIB supergravity solutions are obtained from a near-horizon limit of multi-
center half-BPS D3-brane solutions:

ds2 = H(y⃗)−
1
2 dx2 +H(y⃗)

1
2 dy⃗ 2 , (1.1)

where x are the four directions parallel to the D3-branes and y⃗ the six directions transverse
to the D3-branes. The solutions involve a harmonic function H(y⃗) in R6:

H(y⃗) = L4
n∑
i=1

αi
|y⃗ − y⃗i|4

, (1.2)

with y⃗i being the transverse positions of the D3-brane stacks, each with a fraction αi of
the total number N of D3-branes.7

4We leave a proof of this fact to future work. We can find support for this assumption in the main
example in this paper: the chiral algebra of U(N) N = 4 SYM. If we identify the theory as the low-energy
worldvolume theory on D3-branes, the B-type Ω-deformation is induced by a string theory Ω-background,
which reduces the D3-branes to certain B-branes in the B-model topological string. These B-branes have a
moduli space of vacua parameterized by the Higgs branch of the physical theory.

5It should be also be possible to insert non-trivial modules for the chiral algebra at points in the plane
and define conformal blocks in a non-trivial vacuum.

6The N = 4 Coulomb branch is (R6)N /SN . It includes the N = 2 Coulomb and Higgs branches, CN /SN

and (C2)N /SN , parametrized respectively by vevs of two and four of the six scalars Φ⃗.
7The solution for D3-branes in flat space has an extra “1” constant term in H, which drops out in the

near-horizon limit.
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The R4 holographic boundary8 lies at y⃗ → ∞ . The asymptotic deviation of H(y⃗)
from the AdS5 ×S5 reference value L4|y⃗|−4 encodes the vacuum expectation values of local
operators, according to the standard holographic dictionary.

The main objective of this note is to study the analogous setting for the twisted
holography correspondence of [18], which is expected to capture a protected subsector
of Maldacena’s duality. This correspondence relates the 2d chiral algebra subsector of 4d
N = 4 SYM [1] to the B-model topological string theory [19, 20] on appropriate (complex)
3-dimensional Calabi-Yau geometries [21] endowed with a holographic boundary.

The Calabi-Yau geometry dual to the 2d chiral algebra in the standard conformally-
invariant vacuum is the deformed conifold SL(2,C). We follow closely the derivation of [18]
and present in section 3 a family of candidate 3d Calabi-Yau geometries dual to the corre-
lation functions of the 2d chiral algebra in a non-trivial vacuum.

As a test of our proposal, we study correlation functions involving determinant oper-
ators in the chiral algebra. In the full physical theory, the insertion of such determinant
operators in the boundary theory is dual to “Giant Graviton” D3-branes approaching a
point of the holographic boundary of AdS5×S5. In twisted holography, the D-branes wrap
1-dimensional complex curves in the Calabi-Yau geometry [22]. In either case, the large N
saddles of correlation functions of multiple determinants should be dual to semi-classical
D-brane configurations in the bulk [22–25].

In the standard conformally-invariant vacuum, a spectral curve construction maps
the large N saddles of chiral algebra correlation functions to explicit complex curves in
SL(2,C) [22]. In section 4 we will use a similar but somewhat more intricate construction
to extend the match to the saddles which appear for non-trivial vacua.

2 Translation-invariant vacua and associated varieties

In this section we introduce the notion of translation-invariant vacua for a 2d chiral algebra
and propose it coincides with the associated variety of the chiral algebra.

A translation-invariant vacuum V is a collection of translation-invariant correlation
functions on the plane which satisfy OPE and have the cluster property: the correlation
functions factorize in the limit where a subset of the local operators is far from the rest.
In particular, correlation functions in the vacuum V should have a finite limit〈

O0(z)
∏
a

Oa(za)
〉

V
→ ⟨O0⟩V

〈∏
a

Oa(za)
〉

V
, z → ∞ , (2.1)

when one operator is brought to infinity.
We can use a standard strategy to determine the dependence of such correlation func-

tion on the position z of one operator: the OPE relations determine its poles as a function
of correlation functions of fewer operators and factorization controls the behaviour at in-
finity. Every correlation function can be reconstructed recursively in this manner, given
the one-point functions ⟨Oa⟩V .

8As these vacua are not conformally invariant, correlation functions do not naturally extend to the
four-sphere.
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The full OPE relations contain more information than the singular parts. The non-
singular part of the OPE places constraints on the one-point functions ⟨Oa⟩V . For example,
consider a two-point function

⟨Oa(z)Ob(0)⟩V = ⟨Oa⟩V⟨Ob⟩V +
∑
n≥0

z−n−1⟨[Oa;nOb]⟩V , (2.2)

reconstructed from the behaviour at large z and the singular part of the OPE.9 If we
compare this to the full OPE expansion,

⟨Oa(z)Ob(0)⟩V =
∑
n∈Z

z−n−1⟨[Oa;nOb]⟩V , (2.3)

we deduce the one-point functions of all operators which appear in the non-singular part
of the OPE:10

⟨[Oa;nOb]⟩V = 0 , n ≤ −2
⟨[Oa;−1Ob]⟩V = ⟨Oa⟩V⟨Ob⟩V . (2.4)

The space of operators of the form [Oa;nOb], n ≤ −2, forms a very nice subspace C2(V )
of the vertex algebra V .11 The quotient RV = V/C2(V ) equipped with the (commutative)
product Oa ·Ob ≡ [Oa;−1Ob] (modC2(V )) is called the Zhu’s C2-algebra of the VOA [26].

The relations (2.4) are equivalent to the statement that the 1-point functions ⟨Oa⟩V
define an algebra map from RV to the complex numbers. Essentially by definition,12 this is
the same as a point in the associated variety of the VOA, which is defined as the maximal
spectrum of the C2-algebra [6]:

XV = mSpecRV . (2.5)

Conversely, any algebra map from RV to the complex numbers gives us a collection of 1-
point functions, with the property that the 2-point functions derived from those via Ward
identities satisfy cluster decomposition and are compatible with the full OPE.

We expect this property to be sufficient to guarantee that all n-point-functions also
satisfy cluster decomposition and are compatible with the full OPE expansion. It would
be nice to prove this fact. With that assumption, we find that the space of vacua for V
coincides with XV .

The C2-algebra is also equipped with a Poisson bracket {Oa, Ob} ≡ [Oa;0Ob]. The cor-
responding Hamiltonian flows {Oa, ·} have a natural physical interpretation: they describe
the infinitesimal deformation of the vacuum induced by integrating Oa on a very large

9We use the mathematical conventions here, so that n = 0, 1, . . . correspond to the singular part and
n = −1,−2, . . . correspond to the finite part of the OPE.

10Notice that [Oa;nOb] for negative n is just the regularization of a ∂n−1Oa Ob composite operator. The
relations below just tell us that the regularization does not affect the factorization of vevs.

11If we take Ob to be the identity, we find that derivatives of any operator belong to C2(V ).
12The maximal spectrum mSpec R of a commutative C-algebra R is defined as the set of its maximal

ideals. Quotiening R by a maximal ideal results in the field C. Conversely, kernel of any algebra map from
R to C is a maximal ideal.
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circle.13 If O ≡ J is a dimension 1 current, the zero-mode of J defines a symmetry of V
and the Poisson bracket {J, ·} is the action of the same symmetry on RV . Equivalently,
the image of J in RV is the moment map for the symmetry associated to J .

2.1 Gauged βγ systems

As an example, we consider gauged βγ systems, which arise as chiral algebras of N = 2
Lagrangian gauge theories. We identify their associated varieties and translation-invariant
vacua as well as match them with the Higgs branches of the corresponding 4d theories.

First, consider a particularly simple example of associated variety, which occurs for βγ
system of free symplectic bosons Sb, with OPE

Y (z)X(0) ∼ 1
z
. (2.6)

It is easy to see that any operator which contains derivatives of the elementary fields
belongs to C2(Sb). Then RSb consists of polynomials in two variables x = [X] and y = [Y ]
(mod C2(Sb)) and the associated variety is XSb = C2, with the standard Poisson bracket
{y, x} = 1. Correspondingly, the translation-invariant vacua of Sb are labelled by the vevs

x = ⟨X(0)⟩x,y , y = ⟨Y (0)⟩x,y . (2.7)

The associated 4d N = 2 theory is a single free hypermultiplet, whose Higgs branch is
indeed C2. The generalization to multiple copies of the symplectic boson chiral algebra is
straightforward.

There exists a universal prescription for the associated variety of a gauged chiral algebra
in terms of the associated variety of the original chiral algebra. Consider a 2d chiral algebra
V equipped with a Kac-Moody symmetry G at level −2h, with h being the dual Coxeter
number of G. Such a Kac-Moody symmetry can be gauged to produce a new 2d chiral
algebra, which we denote V//G. Concretely, one adds a bc ghost system for G and takes
cohomology with respect to the standard BRST charge. The associated variety for V//G is
known to coincide with the complex symplectic quotient14 XV //G of the associated variety
of V [27, 28].

The proof in the last reference essentially shows that the operation of taking Zhu’s C2-
algebra RV commutes with BRST reduction, in the sense that RV//G is obtained from RV
by adding the ghost representatives [b] and [c] and defining a BRST charge as the Poisson
bracket with the representative of the BRST current {JBRST, ·}. The BRST reduction
of RV is a derived description of the complex symplectic quotient of the corresponding
associated variety: it makes the moment maps BRST-exact and imposes G-invariance.

More physically, this theorem tells us that a vacuum for V//G is the same as a BRST-
invariant vacuum for the combination of V and the ghosts. The BRST variation of the

13The insertion of such contour integral indeed preserves translation symmetry and the cluster property:
the contour can be translated and can also be deformed to separately encircle two collections of well-
separated local operators.

14Recall that the complex symplectic quotient X//G of a variety X with Hamiltonian G-action is defined
by quotiening the vanishing locus for the moment maps by (the complexification of) G. The moment maps
are the Hamiltonians for the G-action.
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vacuum is computed as an integral of the BRST current on a large circle, which is the
same as the Poisson bracket with the current representative in RV . This statement is fully
compatible with the conjectural relation between associated varieties and Higgs branches.
Indeed, consider a 4d N = 2 SCFT with global symmetry G. As long as the U(1)r
symmetry does not become anomalous, gauging G (in an N = 2 sense) results in a new 4d
N = 2 SCFT. The Higgs branches of the two theories are related by a complex symplectic
quotient and the 2d chiral algebras of the two theories are related by gauging as well.
Incidentally, this reasoning also proves the conjecture for all Lagrangian theories, which
give rise to gauged βγ systems [1, 2].

2.1.1 Chiral algebra of N = 4 SYM

In the case of N = 4 SYM, the βγ system is a pair symplectic bosons X, Y in the adjoint
representation of U(N) [1]. The OPE is

Zab (u; z)Zcd(v;w) ∼ 1
N

u− v

z − w
δadδ

c
b , (2.8)

where Z(u; z) is the linear combination

Z(u; z) ≡ X(z) + uY (z) . (2.9)

The purpose of the auxiliary variable u is to write expressions which are covariant under
the SL(2)R symmetry15 rotating X and Y into each other, which acts as fractional linear
transformations on u.

The moment map is [X,Y ] and we can select a vacuum where the X and Y receive
vevs that are any commuting diagonal matrices, with eigenvalues (xi, yi) appearing with
multiplicity Ni (by definition,

∑
iNi = N). The vev eigenvalues represent the positions of

stacks of Ni D-branes in the transverse C2.
The simplest set of single-trace BRST-closed local operators, the A-tower, consist of

the individual terms of the expansion of

An(u; z) = N TrZ(u; z)n (2.10)

in powers of u, i.e.
An;s(z) = NSTrXn−sY s(z) , (2.11)

where STrXn−sY s is the symmetrized trace. These form an irreducible representation of
SL(2)R of dimension (n+ 1).

In a vacuum parametrized by eigenvalues (xi, yi) of X and Y of multiplicity Ni, they
receive vacuum expectation values

⟨STrXnY m⟩ =
∑
i

Nix
n
i y

m
i , (2.12)

which we will give a holographic interpretation in the next section.
15This is a subgroup of the R-symmetry of the 4d theory.
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3 Coulomb branch geometry

In this section, we generalize the analysis of section 4 of [18] and compute the backreaction
of a collection of parallel non-coincident D-branes in the B-model/BCOV theory. We
identify the backreacted geometry as dual to the chiral algebra of N = 4 SYM in the
non-trivial vacua studied above.

Consider B-model branes wrapping parallel C’s in C3. We use coordinates (x, y, z) ∈ C3

so that Ni = αiN branes wrap C defined by equations x = xi, y = yi. The back-reaction
is described by a Beltrami differential16

β =
n∑
i=1

αi
(x̄− x̄i)dȳ − (ȳ − ȳi)dx̄
(|x− xi|2 + |y − yi|2)2 ∂z , (3.1)

which deforms the complex structure of C3 \
⋃
i{x = xi, y = yi}.

We can also give a Čech description of this Beltrami differential. The description
involves 2n patches of C3, in which, for each i = 1, . . . , n, either x−xi or y−yi is non-zero.
We denote a patch by an index I and denote as Ix the collection of i’s for which x− xi is
non-zero and as Iy the collection of i’s for which y − yi is non-zero. We can trivialize the
Beltrami differential in each patch by a gauge transformation, giving us a new holomorphic
local coordinate zI .17 The coordinates x and y are holomorphic and coincide in all patches.

On the intersection of two patches I and I ′ which differ by the ith choice only, where
Iy and I ′x include i, we have a coordinate transformation

zI = zI′ + αi
(x− xi)(y − yi)

. (3.3)

More generally, zI − zI′ is a sum of terms, with positive sign for each i included both in Iy
and I ′x or with negative sign for each i included both in Ix and I ′y.

We can equivalently use coordinates

wI = zI

∏
i∈Ix

(x− xi)

∏
i∈Iy

(y − yi)

 , (3.4)

which extend to globally defined functions on the whole geometry and satisfy relations

wI(x− xi) − wI′(y − yi) = αi

∏
j∈Ix

(x− xj)

∏
j∈I′y

(y − yj)

 , (3.5)

whenever I and I ′ differ at the ith entry only, where Iy and I ′x include i.
16For convenience, we set the topological string coupling to N−1.
17In a patch I, β can be written as β = ∂̄γI , where

γI =
∑
i∈Ix

(
ȳ − ȳi

x − xi

)
αi

|x − xi|2 + |y − yi|2
−
∑
i∈Iy

(
x̄ − x̄i

y − yi

)
αi

|x − xi|2 + |y − yi|2
. (3.2)

The new holomorphic local coordinate is then zI = z − γI .
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The holographic boundary is at x, y → ∞. The coordinate z ∼ zI parameterizes the
boundary and is identified with the holomorphic coordinate on the 2d chiral algebra plane.18

Holographic boundary conditions were formulated in a holomorphic language in [18].
The holomorphic formulation of the boundary conditions makes use of an “internal”

CP1 defined by the ratio x/y as x and y are sent to ∞. In our chosen gauge, the intricacies
of the deformed geometry appear asymptotically in a neighbourhood of the poles of the
internal CP1: directions with generic x/y belong to the intersection of all patches I. Near
the North and South poles of CP1, we can assume we are sitting respectively in either of
the two “extremal” patches, I0 where y − yi are all non-zero or I∞ where x − xi are all
non-zero. The coordinate transformation between the two patches is

z0 − z∞ =
n∑
i=1

αi
(x− xi)(y − yi)

=
∑
k≥0

∑
l≥0

1
xk+1yl+1

n∑
i=1

αix
k
i y
l
i . (3.6)

Each individual 1
xk+1yl+1 term after the first describes a deformation of the standard

SL(2,C) geometry19

z0 − z∞ = 1
xy

(3.7)

obtained by backreation of a coincident stack of branes at x = y = 0.
The deformation decays as we approach the boundary and represents holographically

the vevs
⟨STrXkY l⟩ =

n∑
i=1

Nix
k
i y
l
i (3.8)

of the corresponding chiral algebra local operators in a vacuum where X and Y go to
commuting expectation values at ∞, with eigenvalues (xi, yi) of multiplicity Ni.

This confirms our identification of the geometry as a description of the chiral algebra
correlation functions in a non-trivial vacuum.

3.1 Restoring SL(2)R invariance

The original C3 geometry has an SL(2)R symmetry rotating the x and y coordinates,
which was broken by our choice of trivializations: the coordinates we use come from the
trivializations

x̄dȳ − ȳdx̄

(|x|2 + |y|2)2 = ∂̄

(
ȳ

x(|x|2 + |y|2)

)
= ∂̄

(
− x̄

y(|x|2 + |y|2)

)
, (3.9)

which privilege respectively the x or y coordinates.
A more general trivialization would be

x̄dȳ − ȳdx̄

(|x|2 + |y|2)2 = ∂̄

(
ȳ − vx̄

(x+ vy)(|x|2 + |y|2)

)
, (3.10)

which interpolates between the two as we vary the parameter v.
18As we mentioned in a previous footnote, correlation functions in this non-conformal setup are only

defined on a plane. We do not add a point at infinity to extend the holographic boundary to CP1, as was
done in [18].

19Using coordinates w0 = z0y, w∞ = z∞x, we get the familiar SL(2,C) relation: xw0 − yw∞ = 1.
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Such a trivialization gives us another family zv−1 of local coordinates on the deformed
geometry (in a patch avoiding the x+ vy = xi + vyi loci):

zv−1 = z0 −
n∑
i=1

αi
(x− xi + v(y − yi))(y − yi)

= z∞ +
n∑
i=1

αiv

(x− xi)(x− xi + v(y − yi))
.

(3.11)
Different members of the family are related as

zu−1 − zv−1 =
n∑
i=1

αi(u− v)
(x− xi + u(y − yi))(x− xi + v(y − yi))

. (3.12)

These coordinates will be useful below.

4 Determinant correlation functions in a Coulomb background

Recall, the chiral algebra subsector [1] of N = 4 SYM is a gauged system of symplectic
bosons X,Y in the adjoint representation of U(N).

We will now compute correlation functions of determinant operators in a translation-
invariant vacuum V of the 2d chiral algebra, where X and Y vevs are diagonal matrices
with eigenvalues (xi, yi) of multiplicity Ni.

The determinant operators we study are

D(m;u; z) ≡ det (m+ Z(u; z)) =
∫

dψdψ̄ emψ̄ψ+ψ̄Z(u;z)ψ , (4.1)

which can be expressed in terms of auxiliary (anti)fundamental fermions ψ and ψ̄.
Holographically, the insertion of such a determinant represents the presence of a “Gi-

ant Graviton” D-brane wrapping a 1-dimensional complex curve which approaches the
boundary at a point z, along the line x+ uy +m = 0 [22].

In order to study correlation functions of multiple determinants, we follow the treat-
ment of [23], also implemented in [22, 29, 30].

We can use fermionization and normal ordering to express a correlator of determinants
as

k∏
a=1

D(ma;ua; za) =
∫

dψdψ̄ : e
∑

a[maψ̄aψa+ψ̄aZ(ua;za)ψa] : e−N
−1
∑

a<b

ua−ub
za−zb

ψ̄aψbψ̄bψ
a

.

(4.2)
Then, we apply the Hubbard-Stratonovich transformation i.e. introduce an auxiliary
bosonic k × k matrix ρ, with ρaa = ma:

k∏
a=1

D(ma;ua; za) = Z−1
ρ

∫
dψdψ̄ d′ρ : e

∑
a,b

ρa
b ψ̄aψb+

∑
a
ψ̄aZ(ua;za)ψa

: eN
∑

a<b

za−zb
ua−ub

ρa
bρ

b
a ,

(4.3)
where d′ρ is the integration measure for the off-diagonal components of ρ and Zρ is a
normalization factor. We evaluate the correlation function of chiral algebra fields in the
vacuum V: 〈

: eψ̄aZ(ua;za)ψa :
〉
V

= eψ̄aψa
∑n

i=1 Ni(xi+uayi) (4.4)

– 9 –
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The correlation function then becomes

〈 k∏
a=1

D(ma;ua; za)
〉
V

= Z−1
ρ

∫
d′ρ e

N
∑

a<b

za−zb
ua−ub

ρa
bρ

b
a

n∏
i=1

[
det
a,b

ρab + (xi + uayi)δab
]Ni

. (4.5)

Introducing diagonal k × k matrices ζ, µ with entries za and ua respectively, the large N
saddle equations become

[ζ, ρ] +
[
µ,

n∑
i=1

αi
1

ρ+ xi + µyi

]
= 0 (4.6)

or

[ζ, ρ] =
n∑
i=1

αi
1

ρ+ xi + µyi
[µ, ρ] 1

ρ+ xi + µyi
. (4.7)

4.1 The spectral curve

In this section, we will map large N saddles of determinant correlation functions studied
above to complex curves in the dual geometry (3.6) using a spectral curve construction [22].

For each saddle ρ satisfying the equations (4.6)–(4.7), we can define k × k matrices,
functions of a spectral parameter y:

X(y) ≡ −µy − ρ

Z0(y) ≡ ζ −
n∑
i=1

αi
y − yi

1
ρ+ xi + µyi

. (4.8)

The definition is such that

[X(y), Z0(y)] = [ζ, ρ] +
[
µy + ρ,

n∑
i=1

αi
y − yi

1
ρ+ xi + µyi

]
= 0 . (4.9)

We can look at simultaneous eigenvectors of X(y) and Z0(y) as a function of y, with
eigenvalues x(y) and z0(y), away from y = yi. This defines a holomorphic spectral curve
Sρ in the I0 patch of the expected dual geometry.

We can also consider the matrix

Z∞(y) = Z0(y) −
n∑
i=1

αi
y − yi

1
X(y) − xi

= ζ −
n∑
i=1

αi
y − yi

[ 1
ρ+ xi + µyi

− 1
ρ+ xi + µy

]
.

(4.10)
We can also write it as

Z∞(y) = ζ +
n∑
i=1

αi
1

ρ+ xi + µyi
µ

1
X(y) − xi

. (4.11)

This matrix is regular at y = yi for i = 1, . . . , n and well-defined away from x(y) = xi. It
commutes with X(y). We can look at simultaneous eigenvectors of X(y) and Z∞(y) as a
function of y, with eigenvalues x(y) and z∞(y).
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If y ̸= yi, the matrix also commutes with Z0(y) and

z∞(y) = z0(y) −
n∑
i=1

αi
y − yi

1
x(y) − xi

. (4.12)

That means x(y) and z∞(y) extend the definition of the spectral curve Sρ to the I∞ patch
of the expected dual geometry (3.6).

More generally, the collection of matrices

ZI(y) = Z0(y) −
∑
i∈Ix

αi
y − yi

1
X(y) − xi

, (4.13)

commute with X(y) and their eigenvectors zI(y) satisfy (3.3) and therefore extend the
spectral curve to all the patches of the expected dual geometry. The spectral curve Sρ is
thus a curve in the full geometry.

We conjecture that the spectral curve Sρ is the support of a B-model D-brane which
is dual to the gauge theory saddle ρ. As a basic test, it approaches the boundary at k
locations, which at the leading order are at x = −uay, z0 = za, a = 1, . . . , k in the I0
patch. At sub-leading order, we find x(y) + uay + ρaa = 0. As ρaa = ma, this is the desired
boundary condition of a brane dual to an insertion of a determinant D(ua; za;ma).

We can also compute the sub-leading behaviour of z0(y):

z0(y) ∼ za − y−1
n∑
i=1

αi

[ 1
ρ+ xi + µyi

]a
a

. (4.14)

Following the holographic dictionary [22], we expect the coefficients on the right hand side:

pa ≡
n∑
i=1

αi

[ 1
ρ+ xi + µyi

]a
a

(4.15)

to be the conjugate momentum to ma on the B-model side, i.e. the derivative of the D-brane
action with respect to ma. At the same time, we recognize pa = ∂S

∂ma
for the semiclassical

action S at the gauge theory saddle. This ensures that the action for this B-model D-brane
matches the semiclassical action for the gauge theory saddle, up to m-independent terms.

4.2 Restoring SL(2)R invariance

Our formalism in this section is not manifestly covariant under SL(2)R.
Let us first consider how the spectral curve transforms under inversion µ → −µ−1,

ρ → ρµ−1. When acting on an eigenvector V of X(y) and Z∞(y) with eigenvalues x and
z∞ we have

xV = −µyV − ρV (4.16)

z∞V = ζV +
n∑
i=1

αi
1

ρ+ xi + µyi
µ

1
x− xi

V , (4.17)
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which can be rewritten as

yµV = (−xµ−1 − ρµ−1)µV (4.18)

z∞µV =
(
ζ +

n∑
i=1

αi
x− xi

1
ρµ−1 + yi + xiµ−1

)
µV . (4.19)

That means µV is a simultaneous eigenvector for matrices:

Y (x) ≡ −xµ−1 − ρµ−1 (4.20)

Z∞(x) ≡ ζ +
n∑
i=1

αi
x− xi

1
ρµ−1 + yi + xiµ−1 , (4.21)

with eigenvalues y(x) and z∞(x). These are built just as X(y) and Z0(y), with µ→ −µ−1,
ρ → ρµ−1. Therefore, the spectral curve transforms under inversion as y → −x, x → y,
z0 → z∞.

More generally, we can define

Zv−1(y) ≡ Z0(y) −
n∑
i=1

αi
(y − yi)

1
X(y) − xi + v(y − yi)

, (4.22)

which can be rewritten as

Zv−1(y) = ζ +
n∑
i=1

αi
1

ρ+ xi + µyi
(µ− v) 1

X(y) − xi + v(y − yi)
. (4.23)

When acting on an eigenvector V of X(y) and Zv−1(y) with eigenvalues x and zv−1 we have

xV = −µyV − ρV (4.24)

zv−1V = ζ +
n∑
i=1

αi
1

ρ+ xi + µyi
(µ− v) 1

x− xi + v(y − yi)
, (4.25)

which can be rewritten as

y(µ− v)V =
(
−(x+ vy)(µ− v)−1 − ρ(µ− v)−1

)
(µ− v)V (4.26)

zv−1(µ− v)V = ζ(µ− v)V (4.27)

+
n∑
i=1

αi
(x+ vy) − (xi + vyi)

1
ρ(µ− v)−1 + yi + (xi + vyi)(µ− v)−1 (µ− v)V . (4.28)

Therefore, (µ− v)V is a simultaneous eigenvector for matrices parametrized by x+ vy:

Y (x+ vy) ≡ −(x+ vy)(µ− v)−1 − ρ(µ− v)−1

Zv−1(x+ vy) ≡ ζ +
n∑
i=1

αi
(x+ vy) − (xi + vyi)

1
ρ(µ− v)−1 + yi + (xi + vyi)(µ− v)−1 ,

with eigenvalues y(x + vy) and zv−1(x + vy). These are built just as X(y) and Zv−1(y),
with µ→ −(µ− v)−1, ρ→ ρ(µ− v)−1, y → −(x+ vy), x→ y.

This shows that the construction of the spectral curve Sρ is SL(2)R-covariant.
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4.3 Single-trace insertion and bulk-to-boundary propagator

A single-trace insertion in the correlation function of determinants can also be evaluated in
the large N limit [23]. Without loss of generality, we can look at the insertion of TrY n(w),
or better a generating function

NTr log (ŷ − Y (w)) = NTr log ŷ −
∞∑
n=1

1
nŷn

NTrY (w)n . (4.29)

The main effect of vacuum vevs on Feynman diagrams is that Y fields can either be
contracted with a propagator or replaced by their vev. The dominant Feynman diagrams
have the topology of a disk, with the auxiliary fermions running along the boundary.

After some combinatorial manipulations analogous to these in [22], the correlation func-
tion is the sum of the classical vev NTr log (ŷ − Y∞) and the leading quantum correction

−NTrk×k log
(

1 − 1
w − ζ

n∑
i=1

1
ŷ − yi

αi
ρ+ xi + µyi

)
. (4.30)

This can be written in the I0 patch as

−NTrk×k log w − Z0(ŷ)
w − ζ

= N
k∑
a=1

log(w − za) −N log det (w − Z0(ŷ)) . (4.31)

The second term on the right hand side can be computed from a contour integral∮
log
(
ŷ − y′

)
∂y′ log det

(
w − Z0(y′)

)
=
∑
y′∗(w)

log
(
ŷ − y′∗(w)

)
(4.32)

and evaluated as a sum over the intersection points y′∗ of the spectral curve and the surface
z0 = w.

We can now compare this with a B-model calculation of the leading Witten diagram:
the integral of a boundary-to-bulk propagator on the conjectural D-brane world-volume20∫

Sρ

∂−1αw . (4.33)

Analogously to [22], we expect to have a representative for the bulk-to-boundary propagator
sourced by TrY k(w) that is supported on the complex surface z0 = w:

∂−1αk;w = ykδz0=w . (4.34)

Thus the bulk-to-boundary propagator for the insertion (4.29) is

∂−1αw[ŷ] = log(ŷ − y)δz0=w . (4.35)

It is straightforward to integrate ∂−1αw[ŷ] on the spectral curve: in the I0 patch, it only
receives contributions from the intersections between the spectral curve and z0 = w and
reproduces (4.32).

20See appendix F of [18] for a review of the coupling of KS fields to D1-branes.
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In order to explore other patches we can rewrite (4.34) as

∂−1αk;w = ykδ∆(w) , (4.36)

where ∆(w) is a complex surface defined in the I0 patch by

(z0 − w)
n∏
i=1

(y − yi) = 0 . (4.37)

In the I∞ patch it is given byz∞ − w +
n∑
j=1

αj
(x− xj)(y − yj)

 n∏
i=1

(y − yi) = 0 . (4.38)

This surface reaches the boundary in the neighborhood of y = yi for all z∞ ̸= w, eg.

y ∼ y1 + α1
x(z∞ − w) + α1x1

x2(z∞ − w) − α1
x2(z∞ − w)2

∑
i>1

αi
(y1 − yi)

+ . . . (4.39)

These regions of the surface contribute terms to the propagator which decay with the power
law near the boundary and represent the vevs of other local operators in the presence of
the insertion at z = w, starting with the vev of the identity operator:

∂−1αk;w ∼
∑
i

yki δ y
x

=0 + . . . . (4.40)
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