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1 Introduction

The Standard Model (SM) provides a very good description of all elementary particle
interactions observed at laboratory experiments. It is therefore important to test this
model by precision measurements of the interactions of quarks and leptons with the Higgs
and SM gauge fields. In particular, the measurement of the muon anomalous magnetic
moment by the Muon g − 2 collaboration at Fermilab [1], together with the previous
Brookhaven measurement of this quantity [2], shows a 4.2 σ deviation with respect to
the SM predictions [3] and provides an intriguing hint towards new physics. An updated
measurement from the Muon g − 2 collaboration [4] further reinforces the discrepancy.
Reconciling the theoretical prediction for aµ = gµ−2

2 with the experimental results has
recently been a productive topic of examination. Many investigations have proposed models
with direct modifications that enhance the muon magnetic moment (see e.g. [5–15]).

However, there is disagreement between the theoretical predictions for aµ obtained by
computing the hadronic vacuum polarization contribution through two different methods:
first through dispersion relations of the experimental observations of the cross section
σhad = σ(e+e− → hadrons), and second through the lattice-QCD prediction computed by
the BMW collaboration [16]. While the value of aµ derived from the hadronic cross section
observations, which we will denote as aee

µ , disagrees with the g−2 and Brookhaven combined
measurement aexp

µ at the previously mentioned 4.2 σ level, the anomalous magnetic moment
derived from the BMW lattice-QCD calculation is consistent with aexp

µ at the 1.6 σ level.
Although the total result for aHVP

µ obtained by the BMW collaboration has yet to be
confirmed, the contribution from the intermediate time window, which accounts for about
a third of aHVP

µ , has been successfully tested by several lattice-QCD groups [17–22].
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It is therefore conceivable that one may partially resolve the gµ − 2 anomaly by intro-
ducing new physics that reconciles the hadronic vacuum polarization effects extracted from
e+e− observations with the computation by the BMW collaboration. Previous works have
examined this possibility [23–25], concluding that the modification of the hadronic vacuum
polarization by new physics is ruled out by electroweak precision measurements or by the
experimental constraints on the hadronic and leptonic couplings of the required light gauge
boson. An alternative approach introducing a new Z’ coupled to electrons and muons and
with a mass very close to the KLOE center of mass energy, leading to not only a change in
gµ − 2 by new physics but also to a modification of the KLOE luminosity determination,
has also been proposed to reconcile the theoretical and experimental determinations of
gµ−2 [26, 27]. Additional long-lived neutral hadrons have also been proposed as a solution
to this discrepancy [28].

In this work, we focus on the approach proposed by [25], which introduces a Z ′ boson
coupled to first-generation leptons and quarks. While the original work concluded that
LEP-2, BaBar, and isospin breaking observables constrain the model such that an expla-
nation of g−2 is impossible, we note a few modifications and caveats that may avoid these
bounds, and discuss further challenges to make this framework a realistic one.

This paper is structured as follows. In section 2, we provide more detailed background
on the gµ − 2 anomaly and the disagreement in σhad, and introduce the Z ′ model. In
section 3, we address the relevant constraints on this model and the manner in which they
may be avoided. We further examine the consequences for gµ − 2 in section 4. We reserve
section 5 for our conclusions.

2 Background and model

2.1 The gµ − 2 anomaly

The anomalous magnetic moment of the muon is defined as aµ = (gµ − 2)/2, and has been
measured by the E821 and Fermilab Muon g − 2 experiments to be [1, 2]

aexp
µ = 116 592 061(41)× 10−11. (2.1)

This result is in tension with the SM estimate from the Muon g − 2 theory initiative [3],

aSM
µ = 116 591 810(43)× 10−11. (2.2)

The SM contributions to aµ may be broken down as

aSM
µ = aQED

µ + aEW
µ + aLbL

µ + aHVP
µ , (2.3)

where the superscript QED, EW, LbL and HVP refer to the pure QED, electroweak Higgs
and gauge boson, hadronic light by light, and the hadronic vacuum polarization contri-
butions, respectively. Of these contributions, the least well understood is the one coming
from the hadronic vacuum polarization effects, aHVP

µ , which is determined using a compi-
lation of experimental data on σhad. In this analysis, the contribution from loop integrals
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containing insertions of HVP in the photon propagator can be extracted from dispersion
integrals over the cross section of a virtual photon decaying to hadrons. In particular, the
calculation in terms of σhad is

(aHVP
µ )ee = 1

4π3

∫ ∞

m2
π0

ds K(s) σhad(s), (2.4)

with a kernel K(s) ≃ m2
µ/(3s) for s ≫ m2

µ. Based on the observed σhad, one finds a
hadronic vacuum polarization contribution of

(aHVP
µ )ee = 6931(40)× 10−11. (2.5)

However, a recent lattice-QCD calculation by the BMW collaboration finds the hadronic
vacuum polarization contribution to be [16]

(aHVP
µ )BMW = 7075(55)× 10−11. (2.6)

Thus, in addition to the tension between the experimentally-measured muon anomalous
magnetic moment and the SM prediction, there is also a tension between theory predictions.
In fact, while the measured value of aµ and the SM prediction derived from σhad are in
tension at more than the 4.2 σ level, there is disagreement at only 1.6 σ between the
experimental measurement and the BMW prediction. As such, one may be able to resolve
the gµ − 2 tension by modifying σhad rather than directly enhancing aµ. Recent results
from the CMD-3 experiment [29] have found a larger HVP contribution to aµ from the
e+e− → π+π− cross section, potentially lessening the tension between the two calculations.
A careful analysis that accounts for the various experimental approaches is required to
properly combine these results; in this work we focus on resolving the discrepancy between
the previous result from the g−2 theory initiative, specifically employing data from CMD-2
and KLOE, and the BMW lattice-QCD calculation as an illustration. To reconcile these
calculations, one may introduce new physics that interferes with the SM contribution to
σhad in order to suppress the observed rate.

In particular, we wish to source a shift in σhad such that one obtains

∆aHVP
µ = (aHVP

µ )BMW − (aHVP
µ )ee = 1.44(68)× 10−9, (2.7)

where we have combined the uncertainties in quadrature. This implies that the observed
hadronic cross section is smaller than the one expected by the BMW lattice-QCD hadronic
vacuum polarization determination. A modification to the hadronic cross section from new
physics, denoted by ∆σhad, will need to be subtracted off from the computation of the
HVP contribution to the muon magnetic moment, giving a shift of

∆aHVP
µ = 1

4π3

∫ ∞

m2
π0

ds K(s)(−∆σhad(s)). (2.8)

We will analyze the new physics which may give a destructive interference to the observed
σhad, thus sourcing a positive shift in the expected aHVP

µ .
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Figure 1. Relevant Feynman diagram for γ- and Z ′-mediated e+e− → π+π− scattering.

2.2 Model and parameter values

In this paper, we focus on the addition of a Z ′ with vector couplings to the electron and
first generation quarks, as proposed in ref. [25]. We start with the interactions:

L ⊃ (ge
V ēγ

µe+ gu
V ūγ

µu+ gd
V d̄γ

µd)Z ′
µ, (2.9)

which may be understood as an effective theory, without any assumed structure in the
values of ge,u,d

V . Given the behavior of the kernel K(s), which goes approximately as 1/s,
the greatest contribution to aµ from σhad comes from the

√
s ≲ 1GeV region, in which the

dominant process is e+e− → π+π−. This region of energies is also preferred by precision
electroweak measurements, since corrections to the hadronic cross section at higher energies
lead to sizable corrections to α(MZ), the electromagnetic structure constant at the MZ

scale [24, 30].
As such, the primary Z ′ process of interest for σhad is the process e+e− → Z ′ → π+π−.

Given the above Lagrangian and taking the Z ′ to mix with the vector mesons in a manner
similar to the photon, the modification from an off-shell Z ′ to the SM cross section for
electron-positron annihilation to pions may be written as [25]

σSM+Z′
ππ

σSM
ππ

(s) =
∣∣∣∣∣1− ge

V (gu
V − gd

V )
e2

s

s−m2
Z′ + imZ′ΓZ′

∣∣∣∣∣
2

. (2.10)

We show the relevant diagram in figure 1; the mixing with the ρ, which couples to the
π+π− final state, is included in the effective vertex defining the pion form factor and will
be discussed in more detail in later sections.

The width ΓZ′ has two main contributing decays: to π+π− and e+e−. The decay
widths for the electron and pion decays are given by

Γ(Z ′ → e+e−) = 1
3
(ge

V )2

4π mZ′

√
1− 4 m

2
e

m2
Z′

(
1 + 2 m

2
e

m2
Z′

)
(2.11a)

Γ(Z ′ → π+π−) = 1
3
(gud

V )2

4π mZ′

√
1− 4

m2
µ

m2
Z′

(
1 + 2

m2
µ

m2
Z′

)
R(m2

Z′), (2.11b)
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where for convenience we have defined gud
V ≡ gu

V − gd
V , and R(s) is defined as

R(s) =
σSM

e+e−→had
σSM

e+e−→µ+µ−
(s), (2.12)

where σSM
e+e−→had is the SM cross section to hadrons; because the cross section to hadrons is

dominated by the e+e− → π+π− process within the range of energies we are interested in,
we will refer to this quantity as σSM

ππ . We emphasize that in the absence of any additional
decay channels, the width ΓZ′ must be calculated from the couplings using eq. (2.11) and
depends on the specific choices for ge

V and gud
V .

Let us define the effective coupling g̃ ≡ −ge
V (gu

V − gd
V )/e2, and denote the observed

cross section by σobs
ππ . The resulting σobs

ππ is given by:

σobs
ππ (s) = σSM

ππ (s)
(
1 + g̃2s2 + 2g̃s(s−m2

Z′)
(s−m2

Z′)2 +m2
Z′Γ2

Z′

)
≡ σSM

ππ (s)
(
1 + δ(g̃, s)

)
(2.13)

and thus the Z ′ modification to the observed cross section is given by

∆σNP
ππ (s) = σobs

ππ (s)− σSM
ππ (s)

= σobs
ππ (s)

(
δ(g̃, s)

1 + δ(g̃, s)

)
(2.14)

We can immediately see that the new physics contribution can interfere destructively with
the SM depending on the relative signs of g̃ and s−m2

Z′ .
We interpolate the CMD-2 [31, 32] and SND [33] σ(e+e− → π+π−) data and the

KLOE [34] and BaBar [35] σ(e+e− → π+π−(γ)) results to obtain a curve for each of
the observed σobs

ππ employed by the g − 2 theory initiative. These data sets represent two
different types of experiments: CMD-2 and SND are energy scan experiments, while KLOE
and BaBar use initial-state radiation (ISR) to gather data for a range of energies. These
two experimental approaches have complementary advantages and disadvantages. While
energy scan experiments have high energy resolution, they operate at fixed center of mass
energies and therefore lack data for energy ranges between data points; ISR experiments, on
the other hand, have lower resolution due to binning, but yield a continuous measurement
of the cross section. We examine how a Z ′ would affect each type of experiment.

Although the absence of a visible resonant feature similar to a Z ′ peak in the cross
section data may be due to the low experimental resolution in certain energy regimes of
these experiments, in our work we will assume that these features may be observed and
therefore demand the absence of any unexplained compensating feature in the SM hadronic
cross section. One manner in which this may be achieved is by an enhancement of the width
by taking larger gud

V and a Z ′ mass near the ρ resonance mass of 770 MeV. As we will see
in section 3, the pion mass difference places constraints on the values of gud

V . Although
a full non-perturbative analysis is in order to determine the precise bounds, an estimate
based on the Cottingham method [36–39] leads to allowed values of order gud

V ≲ 0.1. We
thus find benchmark points which obtain ∆aHVP

µ = 1.44 × 10−9 for mZ′ = 0.79GeV and

– 5 –
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gud
V = 0.1 of

ge
V =



−3.3× 10−3 (CMD− 2)
−2.6× 10−3 (KLOE)
−3.4× 10−3 (SND)
−2.7× 10−3 (BaBar)

(2.15)

In calculating the impact of ∆σNP
ππ on the observed data and the resulting inferred SM

cross section, we account for a resolution of 10−3√s in the CMD-2 and SND experiments,
a resolution of 0.002 GeV2 and a binning of 0.01 GeV2 in s for the KLOE data, and a
resolution of 0.006 GeV and a binning of 0.002 GeV in

√
s for the BaBar data. To account

for the energy resolution of each experiment, we smear the ∆σ curve in s using a Gaussian
with a width determined by the respective experimental resolution; for the KLOE and
BaBar binning, we average the resulting smeared curve within each bin. We find that
the required benchmark parameters do not depend strongly on the choice of data set.
As we will discuss in section 3, the choice of such a suppressed lepton coupling relative
to the hadronic coupling additionally arises from requiring consistency with the strong
constraints on leptonic dark photon decays imposed by the BaBar experiment [40] as well
as the electron anomalous magnetic moment ge−2. We show the experimental cross section
data, ∆σNP, and inferred SM cross section for these benchmark points assuming the data
is a representation of the total cross section in figure 2. To illustrate the shape of the cross
section for a different choice of Z ′ mass, we additionally show an alternative benchmark
for KLOE with a mass of mZ′ = 0.82GeV in figure 3. For this plot, we employ couplings
of ge

V = −2.7× 10−3 and gud
V = 0.1.

Because there is an uncertainty on the discrepancy between the two HVP evaluations,
we also present benchmark points in which we solve for a shift of ∆aHVP

µ = 0.76 × 10−9.
Again for mZ′ = 0.79GeV and gud

V = 0.1, we find

ge
V =



−2.0× 10−3 (CMD-2)
−1.7× 10−3 (KLOE)
−2.1× 10−3 (SND)
−1.9× 10−3 (BaBar).

(2.16)

It should be noted that this Z ′ mass is close to the ω meson mass, mω ∼ 782MeV,
and that the ρ–ω mixing is relevant to explain the observed features in the hadronic cross
section at these energies. In the next section, we discuss this consideration in more detail.

2.3 Additional model considerations

An examination of figures 2 and 3 suggests that some parameter choices are more consistent
with our understanding of SM photon physics than others: the shape of the Z ′ peak means
that there must be a complementary feature in the photon cross section, as there is no
obvious feature present in the observed cross section. A peak in the photon spectrum
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Figure 2. New physics modifications to CMD-2 (upper left), KLOE (upper right), SND (lower
left), and BaBar (lower right) which give ∆aHVP

µ = 1.44×10−9 with mZ′ = 0.79GeV and gud
V = 0.1.

The values of the electron coupling are ge
V = {−3.3,−2.6,−3.4,−2.7} × 10−3 for CMD-2, KLOE,

SND, and BaBar, respectively. The red lines show the linear interpolation of the ∆σNP
ππ points,

which is used to estimate the resulting ∆aHVP
µ . We also show the resulting inferred SM cross

section (blue).
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Figure 3. New physics modifications to KLOE for mZ′ = 0.82GeV with ge
V = −2.7 × 10−3 and

gud
V = 0.1.
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below 1 GeV away from the ρ and ω resonances has no presently-understood physical source.
We examine two cases in which an unreasonable feature in the photon cross section may
potentially be avoided.

In the first case, illustrated in figure 2, the Z ′ mass is close to the ρ and ω resonance
masses. The Z ′ interference would affect the fits of the ρ–ω mixing in the vector meson
dominance (VMD) framework,1 as an enhancement in the ρ resonant feature such as the
one shown in figure 2 would require a greater ω interference to produce the sharp kink
in the SM cross section. As the primary data employed in these fits of the mixing is the
σ(e+e− → hadrons) data itself, one might attempt to adjust the strength of the ρ resonance
and the ρ–ω mixing. However, the results of such analysis must also be compatible with
the three pion production data, which directly constrains the ω and ρ properties. Fits to
these data prefer a smaller value for the ρ–ω mixing [42, 43] than the two pion fits. As
any modification from the Z ′ in this energy region would require a larger ρ–ω mixing to
reproduce the two-pion data, this scenario becomes a far-fetched possibility that is unlikely
to be behind the explanation of the hadronic vacuum polarization discrepancy.

On the other hand, a Z ′ mass further away from the ρ and ω masses provides an
unacceptable fit to the data. Indeed, the shape shown in figure 3 extends the ω feature
beyond the ω mass region of 780 MeV and contains an additional sharp resonant feature
at about 820 MeV, and thus presents an implausible scenario.

Alternatively, one can reduce the Z ′ effects by demanding it to reconcile the two
hadronic vacuum polarization corrections at the one sigma level. The result is that if
a weaker correction to the cross section is demanded, the resonant feature become also
understandably less prominent. However, the presence of the resonant feature and the
requirement of the proximity of the Z ′ mass to the ρ and ω masses remain in place,
increasing the plausibility of this scenario only marginally.

A more likely and alternative approach to the Z ′-induced resonant feature is to increase
the width of the Z ′, thus suppressing the strength of the resonant peak. For the choice
of parameters presented above, the value of γZ′ ≡ ΓZ′/mZ′ is of order (1 − 2) × 10−3 for
gud

V = 0.1; we find that a strong suppression of the Z ′-induced feature may be obtained for
γZ′ of the order of 5×10−2, requiring a significant enhancement relative to the width arising
only from pion and electron decays. The enhancement of the width is phenomenologically
challenging and demands, for instance, a new fermion or scalar charged under Z ′ and
with a mass below mZ′/2. In addition, such a new particle should not predominantly
decay purely leptonically or to purely invisible final states in order to avoid experimental
constraints such as the ones imposed by dark photon searches at the BaBar experiment.

Here we present a possible realization of such an enhancement to the width. We shall
assume that the Z ′ gauge boson couples with a coupling of order one to a fermion ψ2, and
there is an additional fermion state ψ1, which does not couple to Z ′. The mass eigenstates
are admixtures of these states, with the mixing being small, sin θmix ≃ ϵ

χ2 ≃ ψ2 + ϵψ1 (2.17)
χ1 ≃ ψ1 − ϵψ2, (2.18)

1For an overview of VMD and ρ–ω mixing, see for example ref. [41].
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mZ′ (GeV) gud
V

ge
V × 103

Benchmark CMD-2 KLOE SND BaBar
1 0.60 0.08 7.5 8.3 8.5 8.1
2 0.60 0.07 8.6 9.4 9.7 9.2
3 0.65 0.08 7.6 7.8 7.1 7.7
4 0.65 0.07 8.6 8.9 8.1 8.7
5 0.65 0.06 10.0 10.4 9.4 10.2
6 0.90 0.09 −8.0 −8.3 −7.9 −8.2
7 0.90 0.08 −9.0 −9.4 −8.9 −9.2

Table 1. Example benchmark points with an enhanced width of γZ′ = 5 × 10−2 that satisfy
∆aHVP

µ = 1.44× 10−9 for the respective listed experiment.

where mZ′ > 2 mχ2 > 2 (mχ1 + mπ), and mπ is the neutral pion mass. Under these
circumstances, Z ′ will decay promptly to a pair of χ2 states. Due to the mixing, which
induces a small Z ′

µχ̄2γµχ1 coupling, the χ2 state will subsequently decay into pions and a
χ1 state (it would decay into an electron positron pair, instead of pions, if the pion channels
were kinematically closed).

We require that the Z ′ decay mode into χ2 pairs is the dominant one, so that the
Z ′ production will lead to pions and missing energy in the final state, which fulfills the
phenomenological requirement stated above. The width of the Z ′ decay into χ2 will be
given by

Γ(Z ′ → χ2χ2) = mZ′N2
g2

2
12π

√
1−

4m2
χ2

m2
Z′

(
1 +

2m2
χ2

m2
Z′

)
, (2.19)

where N2 denotes the χ2 (and χ1) multiplicity. For definiteness, let us assume that ϵ ∼
10−3, the χ1 mass is of order 10 MeV, while the χ2 mass is about 250 MeV. Due to the
smallness of ϵ, the Z ′ coupling to χ1 and therefore the invisible decay width of Z ′ is
sufficiently suppressed. In order to enhance the total decay width to obtain γ = 5× 10−2,
we must demand

N2 g
2
2 ≃ 2. (2.20)

Therefore, one can obtain a plausible scenario by choosing reasonable, perturbative cou-
plings where g2

2/(4π) ≲ 0.16/N2.
The suppression of the resonant feature in this case allows for more flexibility in the

choice of Z ′ mass and couplings and hence a more realistic scenario. In table 1, we show a
few example benchmarks with ∆aHVP

µ = 1.44×10−9; note that because the increased width
suppresses the strength of the peak near the Z ′ mass, one requires larger values for |ge

V |.
We present masses both above and below the ρ resonance; note that due to electroweak
precision considerations, the lower masses of mZ′ ≲ 0.7GeV are preferred over those above
the resonance [30]. Masses lighter than around 0.6GeV start to come into tension with
BaBar leptonic decay and pion mass bounds, which will be discussed in more detail in the
next section. In figure 4, we show the cross sections for a choice of γZ′ = 5 × 10−2, with
mZ′ = 0.60 and gud

V = 0.08.
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Figure 4. The observed cross section for e+e− → π+π− (black) from CMD-2 (top left), KLOE (top
right), SND (lower left), and BaBar (lower right), compared to the change in cross section induced
by a Z ′ (red) with mZ′ = 0.60GeV, gud

V = 0.08, γ = 5×10−2, and ge
V = {7.5, 8.3, 8.5, 8.1} for CMD-

2, KLOE, SND, and BaBar, respectively. For these benchmarks, we find ∆aHVP
µ = 1.44 × 10−9.

We also show the resulting inferred SM cross section (blue).

As an illustration, we also calculate example benchmark values for resolving the tension
at 1σ, solving for ∆aHVP

µ ≃ 0.76× 10−9. For mZ′ = 0.6GeV and gud
V = 0.08,

ge
V =



4.0× 10−3 (CMD-2)
4.5× 10−3 (KLOE)
4.4× 10−3 (SND)
4.6× 10−3 (BaBar).

(2.21)

We show the resulting curves for these benchmarks in figure 5.
Let us add in closing that although in this scenario there will be a Z ′ resonant con-

tribution to the two pion final states associated with its decays into χ2 states, such a
contribution is suppressed by (ge

V )2 and becomes small with respect to the one induced by
the mixing of the photon and Z ′ with the QCD meson states, considered above.

3 Constraints

There are a number of experimental bounds that constrain this scenario, arising from
flavor physics, collider physics, and precision measurements. We provide a summary and
discussion of these constraints below.
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Figure 5. The observed cross section for e+e− → π+π− (black) from CMD-2 (top left), KLOE (top
right), SND (lower left), and BaBar (lower right), compared to the change in cross section induced
by a Z ′ (red) with mZ′ = 0.60GeV, gud

V = 0.08, γ = 5×10−2, and ge
V = {4.0, 4.5, 4.4, 4.6} for CMD-

2, KLOE, SND, and BaBar, respectively. For these benchmarks, we find ∆aHVP
µ = 0.76 × 10−9.

We also show the resulting inferred SM cross section (blue).

Electron g−2: precision measurements of the electron anomalous magnetic moment [44],
which will receive contributions from Z ′ loops. This places a mass-dependent bound on
the value of |ge

V |, and becomes more constraining for lighter Z ′ masses. We find that [45]

∆aZ′,loop
e ∼ (4.0× 10−13)

(600MeV
mZ′

)2 ( ge
V

8× 10−3

)2
. (3.1)

The current bound on ae depends on the comparison of the theoretical predictions [46,
47] and the most recent experimental determination [48], but is also affected by the current
uncertainty in the value of the electromagnetic structure constant [49, 50]. An approximate
bound may be set,

|∆aZ′,loop
e | ≲ 10−12. (3.2)

For masses of 0.6GeV, we find that this translates to a bound of |ge
V | ≲ 12.5 × 10−3,

which is satisfied for the relevant benchmark couplings shown in table 1. A resolution
of the outstanding theoretical questions about the electron g − 2 and an order of magni-
tude improvement of the experimental precision would allow one to probe the lighter-mass
benchmarks presented in table 1. Meanwhile, for a Z ′ mass of order 0.9 GeV, the bound
on |ge

V | is on the order of 19× 10−3.

– 11 –



J
H
E
P
1
2
(
2
0
2
3
)
0
7
1

BaBar leptonic decay: seach for e+e− → Z ′γ, Z ′ → e+e− [40]. This places a bound
on the Z ′ coupling |ge

V |; because this bound depends on the respective branching fractions
of the Z ′ decays, the precise bound depends on the model interpretation.

The BaBar bound on the mixing of a dark photon A′ with the SM photon is ap-
proximately ϵA′ ≲ 10−3 for mA′ ≃ 0.8GeV and ϵZ′ ≲ 6 × 10−4 for mA′ ≃ 0.6GeV. The
bound on the mixing ϵ translates to an upper bound of approximately ge

lim ≃ 3.3 × 10−4

and 2.0 × 10−4 for mZ′ = 0.8 and 0.6 GeV, respectively. In the dark photon analysis
presented in ref. [40], the branching ratios are calculated assuming that the A′ picks up
charge-proportional couplings to the quarks, electron, and muon through kinetic mixing.

In the case examined here, the large hierarchy between the quark and lepton cou-
plings, as well as the enhancement of the width through additional decays, means that the
branching ratio to electrons is heavily suppressed. As such, one must rescale the bound on
(ge

V )2 by the ratio of the branching ratio to electrons in the two respective models, evalu-
ating the inequality (ge

V )2 ≲ (ge
lim)2BRA′→ee/BRZ′→ee(ge

V , g
ud
V , γZ′). One finds a resulting

bound for the Z ′ model of |ge
V | ≲ 5.5 × 10−3 for gud

V = 0.1 with unenhanced width and
mZ′ ≃ 0.8GeV, and |ge

V | ≲ 1.2× 10−2 for γZ′ = 5× 10−2 and mZ′ ≃ 0.6GeV. An examina-
tion of the example parameters shown in table 1 thus indicates that one cannot take values
of gud

V lower than about 0.06, which would be preferred by pion mass constraints, without
violating BaBar bounds due to the larger required values of ge

V . Note that the dark photon
analysis presented by BaBar assumes a narrower width than one obtains in this Z ′ model;
accounting for this difference would further weaken the bounds, and we therefore do not
undertake a more detailed analysis in this direction.

BaBar invisible decay: search for e+e− → Z ′γ, Z ′ → invisible [51]. This process
places a bound on ge

V as long as the new boson has relevant purely invisible decays. In
our proposed model, the Z ′ either does not include any couplings to invisible particles or
decays to final states that include pions alongside missing energy, which does not pass the
selection criteria for this search.

Belle-II: search for e+e− → µ+µ−Z ′ with invisible Z ′ decays [52]. This is a similar bound
to that from BaBar, but also includes a bound on the coupling to the muon, depending on
whether Z ′ decays to an invisible final state. In our model, we do not include a coupling
to muons.

LEP2: measurement of e+e− → qq̄ [53]. This places an effective bound on g̃, as the
process is sensitive to ge

V and gq
V . This bound can be avoided for small enough |ge

V g
q
V | [25].

Since the measurement does not distinguish between light quarks, one may express this
bound in a more precise way, by including all gauge boson contributions and demanding
that the variation of the cross section is smaller than about one percent, which is the
characteristic precision of the LEP2 hadronic cross section measurement. Although all
quarks, apart from the top quark, can be produced in pairs at LEP2, we shall conservatively
concentrate on the production of up and down quarks, which are the ones that couple in a
relevant way to the new gauge boson.
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The LEP2 center of mass energies are high enough that the gauge boson mass mZ′ ,
as well as the gauge boson width effects, may be neglected in this analysis. Defining the
chiral coupling

Df = g

cos θW
(T f

3 −Qf sin2 θW ), (3.3)

and
fZ = s

s−M2
Z

, (3.4)

where T f
3 and Qf are the chiral fermions weak isospin and electromagnetic charges, the

different hadronic cross section contributions are proportional to

σZ ∝ 0.25f2
Z(D2

eL
+D2

eR
)
∑

q=u,d

(D2
qL

+D2
qR
),

σγ ∝ e4Q2
e(Q2

u +Q2
d),

σZ′ ∝ (ge
V )2

(
(gu

V )2 + (gd
V )2

)
,

σZγ ∝ 0.5fZe
2Qe(DeL +DeR)

∑
q=u,d

Qq(DqL +DqR),

σZ′Z ∝ 0.5fZg
e
V (DeL +DeR)

∑
q=u,d

gq
V (DqL +DqR),

σZ′γ ∝ 2e2Qeg
e
V

∑
q=u,d

Qqg
q
V . (3.5)

In the above, σZ , σγ , σZ′ , σZγ , σZ′Z and σZ′γ represents the Z, γ and Z ′ contributions as
well as the Zγ, Z ′Z and Z ′γ interference contributions, respectively. The phenomenological
requirement may be expressed as

δσ

σ
= σZ′γ + σZ′Z + σZ′

σZ + σZγ + σγ
≲ 0.01. (3.6)

In figure 6 we plot the absolute value of the relative variation of the cross section for
benchmark scenario gud

V = 0.08, ge
V = 9.0 × 10−3 for values of gu

V = −gud
V , 0, and gud

V . As
can be seen from this figure, the variation becomes larger for larger values of gu

V , but stays
at values lower than the LEP2 bound, eq. (3.6), for gu

V = −gud
V .

In order to understand qualitatively the behavior of δσ/σ, one can neglect the Z

contribution. In this case, and ignoring the small σZ′ contribution, the LEP2 bound can
be rewritten as

2|ge
V |

|Qug
u
V +Qdg

d
V |

e2(Q2
u +Q2

d)
≲ 0.01, (3.7)

or, equivalently ( |ge
V |

2× 10−3

) ∣∣∣gu
V + gud

V

∣∣∣ ≲ 0.5. (3.8)

As can be seen from eq. (3.8) and also shown for the complete expression in figure 6, one can
satisfy this bound by relating the up and down couplings such that the modifications to the
individual up- and down-quark production rates cancel one another. The Z contribution

– 13 –



J
H
E
P
1
2
(
2
0
2
3
)
0
7
1

100 120 140 160 180 200 220 240√
s [GeV]

0.000

0.002

0.004

0.006

0.008

0.010

|δσ
/

σ
|

gu
V = −0.08

gu
V = 0.0

gu
V = 0.08

Figure 6. Relative variation of the hadron cross section at LEP2 due to the contribution of the
new gauge boson, as a function of the center of mass energy, for gud

V = 0.08, ge
V = 9.0× 10−3, and

values of gu
V = −0.08 (green), 0.0 (red), 0.08 (blue).

introduces an energy dependence of ∆σ/σ that generically weakens the LEP2 bound for
values of gu

V away from the cancellation region gud
V ≈ −gu

V .
Observe that the couplings required to resolve the discrepancy between the BMW

lattice-QCD and data-driven calculations can be close to the limit imposed by LEP2,
depending on gu

V , making this channel a potential method for probing such a Z ′. Future
e+e− colliders such as FCC-ee, which would provide improved precision on the e+e− → qq̄

rate, present an opportunity to search for this new physics.

Neutrino-electron scattering: observations of νee
− → νee

−, and other neutral current
variations on this process, from Borexino [54], TEXONO [55, 56], and CHARM II [57],
which restricts the product ge

V g
ν
V ≲ 10−6 (see e.g. ref. [58]). In our model, we do not

induce a neutrino coupling, so these bounds are avoided.

Flavor changing meson decays: measurements of the flavor-changing decays of mesons,
including B → Kν̄ν, B → Ke+e−, K+ → π+ν̄ν, and B → Kπ+π− [59–61]. Since
the quark couplings of the Z ′ are of order 0.1, meson decay bounds may be relevant.
In particular, one may have penguin diagrams where the initial bottom/strange quark
is converted to an up quark through a W loop, with the up then radiating a Z ′; an
example diagram is shown in figure 7. However, three considerations reduce the strength
of these bounds for our model. Firstly, the processes B → Kν̄ν and K+ → π+ν̄ν can
probe new physics if the new physics decays invisibly or is long-lived; with the choice of
couplings included in this model, the Z ′ decays visibly and is not long-lived. Secondly, the
contribution to the process B → Ke+e− is suppressed by the small branching ratio of the
Z ′ to leptons.

This leaves the B → Kπ+π− processes as the final consideration. To evaluate the
contribution arising from Z ′ diagrams, we rescale the B → Kγ branching ratio by the
appropriate factors relative to the SM case, as this process is the analogous SM process
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Figure 7. Example penguin diagram for B → K flavor-changing processes involving a radiated Z ′.

to the Z ′ penguin diagram, and compare with the measured branching fraction BR(B →
Kπ+π−) ≃ 5× 10−5. Because the Z ′ does not couple to the heavier quarks in this model,
the rate of Z ′ processes is suppressed by a factor of |Vub|2|Vus|2 = 6.7×10−7 relative to the
SM processes with |Vtb|2|Vts|2 = 1.7× 10−3. Additionally, these processes are associated to
dipole operators that are therefore chirally suppressed by powers of the light quark masses
to the charged gauge boson mass, thus picking up an additional factor of (mu/mW )2 ≃
10−9. Rescaling BR(B → Kγ) ≃ 3.5 × 10−4 by these factors and comparing with the
measured branching ratio of BR(B → Kπ+π−) ≃ 5 × 10−5, we find that flavor violating
constraints are insignificant for the present scenario.

Isospin breaking processes: measurements and lattice-QCD calculations of the pion
mass splitting, ∆mπ ≡ mπ+ − mπ0 , place bounds on the allowed values of |gu

V − gd
V |.

However, due to the fact that the lattice-QCD simulations are performed for the case of
the massless photon [62] and the Z ′ mass in our case is of order of 600 MeV, the bounds
should be reevaluated considering the gauge boson mass suppression effects. Rescaling the
mass splitting computed in the lattice by a simple mass factor (mπ/mZ′)2 leads to values of
∆mπ ≃ 0.018× (gud

V /0.1)2 MeV, which for gud
V ≃ 0.1 is within the order of the uncertainty

in the lattice-QCD computation of this quantity.
Alternatively, one can estimate the effect of the isospin breaking interactions by taking

the mean electromagnetic interactions effect and replacing the Coulomb potential e2/r by
a Yukawa one (gud

V )2e−mr/r. Comparing the relevant factors in the two potentials, one
finds that the Z ′ shift can be approximated by (4.6MeV)×(gud

V )2e−mr/e2. Taking the pion
charge radius as the characteristic quark separation and using m ≃ 0.6GeV, this leads to
a pion mass shift of order (0.044–0.056)× (gud

V /0.1)2 MeV, depending on whether one uses
rπ = 0.66 fm [63] or rπ = 0.74 fm [64]. For gud

V ≃ 0.1, these results imply a shift that is
within the ∆mπ lattice-QCD computation uncertainty [62].

Finally, one may instead employ the Cottingham method [36–39] to estimate the effect
of the Z ′ on the pion mass splitting. In this approach, which is more reliable than the
previous estimates, we calculate the contribution from the Z ′ as [39]

∆m2
π

∣∣∣
Z′

= (gud
V )2

32π2

∫ ∞

0
ds

s

s+m2
Z′
(F V

π (−s))2
(
4W + s

m2
π

(W − 1)
)
, (3.9)
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where W =
√
1 + 4m2

π/s. We employ an approximate analytical expression for F V
π (−s) =

(Aργ/e)gρπ/(s+m2
ρ) to evaluate the integral, where Aργ , which will be discussed in more

detail in the π+π− scattering analysis, parametrizes the mixing of the photon with the
ρ. While this expression for F V

π is not normalized to F V
π (0) = 1, it provides a decent

approximation of the integral as the infrared provides a subdominant contribution. We
find a bound of gud

V ≲ 0.09 for mZ′ = 0.9GeV and gud
V ≲ 0.08 for mZ′ = 0.6GeV, in

approximate agreement with ref. [39].
Note that these bounds become more stringent for lighter Z ′ masses. Although these

bounds may be avoided by decreasing gud
V , this consequently requires an increase in ge

V ,
which is bounded by the electron g−2 and which also becomes more constrained for lighter
Z ′ masses. These bounds therefore create preference for heavier Z ′ masses. The range of
masses around 0.6–0.7 GeV are able to satisfy these bounds while remaining consistent with
the electroweak precision measurements, which prefer mZ′ ≲ 0.7GeV.

While these calculations provide an estimate of the effect of the Z ′ isospin breaking
interactions on ∆mπ and the order of magnitude of the bounds on gud

V , a lattice-QCD
calculation is in order to provide a more precise evaluation.

π+π− scattering: measurements of the cross section for π+π− → π+π− scattering place
bounds on the allowed values of gud

V . For the mass region we are interested in, we compare
with data from refs. [65, 66]; within the center-of-mass energy range close to the Z ′ mass,
we expect the contribution from the Z ′ to induce a feature similar to that induced in the
e+e− → π+π− scattering. In this case, the contribution is not suppressed by a factor of
ge

V and is instead proportional to (gud
V )2, making this a particularly relevant bound.

We show diagrams for this process involving a ρ mediator and a single Z ′ insertion in
figure 8. To gain a rough sense of the impact a Z ′ feature would have on the π+π− scattering
cross section, we employ the following formalism, which is similar to that discussed in
ref. [67]. The propagator for the ρ,

D(ρ) = 1
s−m2

ρ + imρΓρ
, (3.10)

will be modified by insertions of the Z ′, leading to a series in powers of Z ′ insertions

D(ρ) → D(ρ) +D(ρ)AρZ′D(Z ′)AρZ′D(ρ) + . . . (3.11)

=
∞∑

n=0
D(ρ)(A2

ρZ′D(Z ′)D(ρ))n (3.12)

= D(ρ)
1−A2

ρZ′D(Z ′)D(ρ)
, (3.13)

where AρZ′ is the mixing between the Z ′ and the ρ. We also account for ρ–ω mixing,
which includes similar diagrams as the Z ′–ρ mixing, but which also leads to the addition
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Figure 8. Diagrams for π+π− → π+π− scattering with a ρ mediator (left) and π+π− scattering
with a single Z ′ insertion (right).

of diagrams with insertions of both Z ′ and ω. The above modification therefore becomes

D(ρ) →
∞∑

n=0
D(ρ)(A2

ρZ′D(Z ′)D(ρ) +A2
ρωD(ω)D(ρ))n (3.14)

= D(ρ)
1− (A2

ρZ′D(Z ′)D(ρ) +A2
ρωD(ω)D(ρ))

. (3.15)

Taking the same approach as above for the e+e− → π+π− process, we find that the
contribution involving the photon for this process may be written in terms of

D(γ)AργD(ρ) +D(γ)AργD(ρ)AργD(γ)AργD(ρ) + · · · = D(γ)AργD(ρ)
1−A2

ργD(γ)D(ρ) . (3.16)

where Aργ is the mixing of the photon with ρ, and is related to AρZ′ as Aργ =
(

e
gud

V

)
AρZ′ .

As a check, we may first employ this formalism to reproduce the expression written in
eq. (2.10). With the addition of a Z ′, the higher-power insertions may include either a Z ′

or a photon, leading to a common term in the denominator for the modified photon and
Z ′ propagators. This leads to a ratio between the two contributions of

ge
V D(Z ′)AρZ′

−eD(γ)Aργ
(3.17)

where ge
V and −e account for the respective vertices with the initial e+e−. Thus, we find

σSM+Z′
ππ

σSM
ππ

=
∣∣∣∣∣1− ge

V g
ud
V

e2
D(Z ′)
D(γ)

∣∣∣∣∣
2

(3.18)

=
∣∣∣∣∣1− ge

V g
ud
V

e2
s

s−m2
Z′ + imZ′ΓZ′

∣∣∣∣∣
2

(3.19)

which agrees with the expression quoted in eq. (2.10). In taking this approach, we have
made the simplifying assumption that the the mixing of the photon and Z ′ with the ω also
scale with e and gud

V , respectively.
We extract the mixing Aργ and Aρω from the quantity R(s), and find Aργ ≃ 0.033GeV2

and Aρω ≃ −0.006GeV2; the details are contained in the appendix. In fitting the observed
R(s) to extract mixing parameters, we have assumed SM physics; we have also checked the
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Figure 9. Comparison of data for π+π− → π+π− scattering with the expected cross section includ-
ing Z ′ modifications for mZ′ = 0.6GeV and gud

V = 0.1. In this plot, the Z ′ width is γZ′ = 5× 10−2.

case where we account for the impact of the Z ′ on R(s), and find that the results of the
π+π− scattering analysis do not depend strongly on this assumption. We use the relation
AρZ′ =

(
gud

V
e

)
Aργ to obtain AρZ′ from Aργ .

We may now solve for the modification of the ρ-mediated π+π− scattering due to the
Z ′. The ratio of the modified ρ propagator relative to the SM one is

D(ρ)SM+NP

D(ρ) (s) = 1
1−A2

ρZ′D(Z ′)D(ρ)−A2
ρωD(ω)D(ρ)

(3.20)

and thus the expected ratio of cross sections will be proportional to

∆ππ(s) ≡
σSM+NP

π+π−→π+π−

σSM
π+π−→π+π−

(s) =
∣∣∣∣∣ 1
1−A2

ρZ′D(Z ′)D(ρ)−A2
ρωD(ω)D(ρ)

∣∣∣∣∣
2

. (3.21)

As an illustration, we calculate σSM
π+π−→π+π− as a vector-mediated scalar scattering process,

focusing on the s-channel diagrams which will be most relevant near the ρ resonance, finding
the expression

σSM
π+π−→π+π−(s) =

g4
ρπ

48π
s

(s−m2
ρ)2 + Γ2

ρm
2
ρ

. (3.22)

In figure 9 we compare the expected cross section σSM+NP
π+π−→π+π− in our model with the

observed data; we account for a binning of 50 MeV in
√
s. We employ a value of αρπ =

g2
ρπ/4π = 2.7 for the central values in figure 9, while the errorbars for the model prediction

indicate the range of values for αρπ ∈ [2.4, 2.9] [68]. We find that the deviations of our
prediction from the data are on the order of the uncertainty in the data in the region of the
Z ′ and ρ features. The authors of ref. [66] emphasize that while they expect the qualitative
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behavior of their results to be correct, the quantitative values may have systematic devi-
ations due to the extrapolation procedure; we conclude that the π+π− scattering process
does not rule out the presence of a Z ′.

4 Loop contributions to aµ

The primary aim of this model is to reconcile experimental determinations of σhad with
the lattice-QCD calculation by the BMW collaboration. However, there is still a 1.6 σ

discrepancy between the value of aµ obtained from the BMW lattice-QCD calculation of
the hadronic vacuum polarization effects and the measured value for aµ. Moreover, the large
hierarchy between the values of ge

V and gud
V required to obtain the necessary shift ∆aHVP

µ

while also satisfying experimental constraints raises the question of why these couplings
differ by orders of magnitude. One possibility is that only the quark couplings appear in
the Lagrangian at tree level, with the couplings to other SM particles induced by a kinetic
mixing ϵ between the Z ′ and the photon. This mixing could be partially induced by a loop
contribution of the up and down quarks, which are charged under Z ′ and electromagnetic
interactions. Thus, interactions between the new Z ′ and the electron are induced at the
loop level and are suppressed relative to the quark couplings. Note that in this case, a
small coupling to the muon is also induced:

ge
V = gµ

V . (4.1)

It is then reasonable to ask whether this model under the above assumptions may rec-
oncile BMW’s lattice-QCD calculation with the experimental measurement. In particular,
the contribution from Z ′ loops gives a modification of [45]

∆aZ′,loop
µ = (1.56× 10−8)

(600MeV
mZ′

)2 ( ge
V

8× 10−3

)2
. (4.2)

We can compare this to the discrepancy between the lattice-QCD BMW determination and
the experimentally-measured value of aµ, which is approximately ∆aBMW-exp

µ ≃ 1 × 10−9.
For the benchmark values presented in eqs. (2.15), the predicted correction would be of
order 0.9 × 10−9 to 1.5 × 10−9. However, for the more realistic enhanced-width cases
presented in table 1, the correction is of order 10−8; for the relaxed 1σ benchmark in
eq. (2.21), meanwhile, the correction is of order 5 × 10−9. Hence, the explanation of the
small ge

V coupling proceeding from a kinetic mixing with the photon becomes unacceptable
in this case.

5 Conclusions

In this article we study the possibility of including new physics that affects the Standard
Model hadronic cross section σ(e+e− → hadrons) in order to reconcile the hadronic vac-
uum polarization contributions computed from dispersion relations and the one recently
obtained by the lattice-QCD BMW collaboration. This may be done by introducing a new
vector that interferes destructively with the photon-induced cross section. We showed that
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a successful model demands a large hierarchy between the quark and lepton couplings.
Most phenomenological constraints may be fulfilled in such a case, although the presence
of resonant features in the hadronic production spectrum demands the Z ′ to be close in
mass to the ρ and ω, making the scenario implausible. A more realistic scenario is obtained
when the resonant feature is avoided due to an enhanced width, and we described a possible
realization of such scenario. For the parameter values considered in this work, improved
precision from a future e+e− collider and improved determinations of ae would allow one
to probe this scenario. While we have employed pre-existing results for the tension in
the aµ theory prediction and for the experimental data, more precise measurements will
concretely determine the required benchmark values.

The model we described may be understood as a low energy effective theory. Reconcil-
ing this effective theory with the electroweak interactions is challenging due to the required
isospin breaking couplings of the Z ′ to up and down quarks, which are not consistent with
the SU(2)L × U(1)Y gauge symmetry of the SM and hence should appear as effective low
energy interactions after electroweak symmetry breaking.2
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A ρ–ω mixing

In the examination of π+π− scattering, we employed a formalism that accounted for con-
tributions from the Z ′ by modifying the the ρ propagator with insertions of ρ–Z ′ mixing.
In this section, we discuss the way in which one may model the ω-induced feature in
e+e− → π+π− in this formalism. We start by making the assumption that the dominant
contribution due to ω mixing will come from diagrams in which the ω mixes with the
photon, and subsequently the higher order insertions arise from mixing with the ρ. We
show example diagrams in figure 10. The diagrams in which the ω does not mix with the γ
require an additional insertion of mixing at leading order, and we thus take the diagrams
with γ–ω mixing as the dominant contribution.

2Note that in the absence of an ultraviolet completion, one obtains infrared enhanced contributions to
the decays of the W and Z bosons, which provide a bound on gq

V of the same order as that from the pion
mass splitting; see e.g. [69].
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Figure 10. Leading diagrams for e+e− → π+π− that include ω insertions.
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Figure 11. Comparison of the predictions for R(s) from our formalism for mρ = 0.769GeV (red
dashed) and mρ = 0.765GeV (blue) compared with the observed R(s) from CMD-2 data (black
points).

The expression for the propagator thus includes a new term proportional to the ω

propagator, leading to

D(γ)
(

Aργ +AγωD(ω)Aρω

1−A2
ργD(γ)D(ρ)−A2

ρωD(ω)D(ρ)

)
D(ρ) (A.1)

where the denominator includes a resummation over high-order insertions of both γ and
ω. We compare this expression with R(s) as

R(s) = 1
4

∣∣∣∣∣D(γ)
(

Aργ +AγωD(ω)Aρω

1−A2
ργD(γ)D(ρ)−A2

ρωD(ω)D(ρ)

)
D(ρ)

∣∣∣∣∣
2 (

gρπ

e

)2
(A.2)

where the factor 1/4 arises from the difference in spin of the final state particles. In our
analysis, we employ the values mω = 782MeV, Γω = 8MeV, and g2

ρπ/4π = 2.8. We present
the results for both the PDG average mρ = 769MeV and for the case in which we allow
mρ to be a fit parameter, finding that the prediction best models the ρ − ω feature for
mρ = 765MeV. For mρ = 769MeV, we find a best fit in the region of the ρ resonance
for values around Aργ = 0.0330GeV2, Aγω = 0.008GeV2, and Aρω = −0.006GeV2; for
mρ = 765MeV, we find a best fit for Aργ = 0.0334GeV2, Aγω = 0.009GeV2, and Aρω =
−0.006GeV2. We show a comparison of our predictions with the data in figure 11.
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