
J
H
E
P
1
2
(
2
0
2
2
)
1
4
8

Published for SISSA by Springer

Received: September 26, 2022
Revised: November 21, 2022

Accepted: December 12, 2022
Published: December 27, 2022

Charting the Higgs self-coupling boundaries

Gauthier Durieux,a Matthew McCullougha and Ennio Salvionib
aTheoretical Physics Department, CERN,
Esplanade des Particules 1, Geneva CH-1211, Switzerland

bDipartimento di Fisica e Astronomia, Università di Padova and INFN, Sezione di Padova,
Via Marzolo 8, Padua I-35131, Italy
E-mail: gauthier.durieux@cern.ch, matthew.mccullough@cern.ch,
ennio.salvioni@unipd.it

Abstract: Could new physics first manifest itself in Higgs self-coupling measurements?
In other words, how large could deviations in the Higgs self-coupling be, if other Higgs
and electroweak measurements are compatible with Standard Model predictions? Using
theoretical arguments supported by concrete models, we derive a bound on the ratio of
self-coupling to single-Higgs coupling deviations in ultraviolet completions of the Standard
Model where parameters are not fine-tuned. Broadly speaking, a one-loop hierarchy is
allowed. We thus stress that self-coupling measurements at the LHC and future colliders
probe uncharted parameter space, presenting discovery potential even in the absence of
emerging hints in single-Higgs coupling measurements. For instance, if other observables
show less than two-sigma deviations by the end of the LHC programme, the Higgs self-
coupling deviations could still exceed 200% in the models discussed, without introducing
fine-tuning of ultraviolet parameters.

Keywords: Anomalous Higgs Couplings, SMEFT, Specific BSM Phenomenology

ArXiv ePrint: 2209.00666

Open Access, c© The Authors.
Article funded by SCOAP3.
Corrected publication 2023

https://doi.org/10.1007/JHEP12(2022)148

mailto:gauthier.durieux@cern.ch
mailto:matthew.mccullough@cern.ch
mailto:ennio.salvioni@unipd.it
https://arxiv.org/abs/2209.00666
https://doi.org/10.1007/JHEP12(2022)148


J
H
E
P
1
2
(
2
0
2
2
)
1
4
8

Contents

1 Introduction 1

2 General perspective on δh3/δV V 3
2.1 h̄ as a guide 3
2.2 Higher-dimension potential terms 4
2.3 Phenomenological implications 5

3 |δh3| � |δV V | at tree level: custodial weak quadruplet 6
3.1 Integrating out weak quadruplets 6
3.2 The custodial quadruplet 10

3.2.1 Vacuum stability 11
3.2.2 Perturbative unitarity 12
3.2.3 Direct searches 13
3.2.4 δh3/δV V ratio 14

4 |δh3| � |δV V | for a pNGB Higgs: Gegenbauer potentials 15
4.1 Effective field theory expansion 16
4.2 Perturbative unitarity 17
4.3 δh3/δV V ratio 17

5 Comparison to previous work 18

6 Conclusions 19

A Custodial quadruplet decomposition 20

B Vacuum stability at dimension-8 20

1 Introduction

Defined as the coefficient of the on-shell three-Higgs amplitude (in complex kinematics),
the Higgs self-coupling is firmly predicted in the Standard Model (SM), being fixed at
tree level by the Higgs mass and Fermi constant. As with the other Higgs interactions,
we still wish to test the SM prediction by measuring the self-coupling at colliders. This
is a fiendishly challenging task, however, making the Higgs self-coupling somewhat of the
white whale of Higgs physics. The HL-LHC will only probe order-one departures from
the SM prediction and pushing the energy frontier further will be required to gain an
order of magnitude in precision. In contrast, the Higgs coupling to vector bosons will be
measured to the few-percent level by the HL-LHC, and to the per-mille level at proposed
next-generation facilities.

Defining the fractional deviations relative to the SM predictions,

δh3 ≡
Ch3 − CSM

h3

CSM
h3

, δV V ≡
ChV V − CSM

hV V

CSM
hV V

, (1.1)
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a model builder may argue that, in many well-motivated theories beyond the SM (BSM),
one finds that δV V and δh3 are of similar magnitudes. Hence, a constraint on δV V may,
in practice, limit the magnitude of δh3 one should expect. On the other hand, a more
phenomenologically minded physicist may advance that, in full generality, we have very
little information on δh3 beyond established direct experimental constraints. Here, we
aim to bridge this potential gap in perspective by studying, with both general theoretical
arguments (section 2) and explicit models (section 3 and 4), the range of values allowed for
the ratio ∣∣∣∣ δh3

δV V

∣∣∣∣ , (1.2)

in generic ultraviolet (UV) completions. In this paper, we call ‘generic’ any UV completion
in which no parameters allowed by symmetries have been arbitrarily fine-tuned to achieve a
specific value of the Higgs self-coupling. We stress that the Higgs naturalness problem is a
different, though related, question. In all models considered here, the Higgs self-coupling
is calculable in terms of the fundamental parameters of the theory. However, this is not
always the case for the Higgs mass and vacuum expectation value. In models where these
are not calculable, we ignore the question of Higgs naturalness.

Assuming that new physics is sufficiently heavy to be described by an effective field
theory (EFT) at collider energies, we argue in section 2 that there is indeed an effective upper
limit on the |δh3/δV V | ratio in generic UV completions. Thus one does have some notion
for the expected maximum magnitude of self-coupling corrections given an experimental
constraint on δV V . However, in practice, this limit is relatively weak as it is essentially given
by a loop factor (4π)2 ≈ 160. An example generic UV completion [1, 2] illustrating that this
limit can be saturated is presented in section 3. The existence and weakness of this bound
has important consequences for future collider discussions. By the end of HL-LHC running,
if single-Higgs couplings are still measured to be SM-like within experimental errors, then a
significant Higgs self-coupling deviation, and hence new physics discovery, is still possible in
generic UV theories.

We emphasise that we do not mean ‘generic’ to imply that the UV completion is a
commonly studied theory, such as the classic supersymmetric or composite Higgs scenarios.
Therefore, the relatively weak upper bound we find on |δh3/δV V | reveals an important
limitation to charting the physics landscape of future facilities using solely the canon of
BSM models that have been put forward to address outstanding questions in the SM, since
such models may not map the full extent of what is theoretically possible for the Higgs
self-coupling.

In section 4, we study this question further in the context of a recently proposed class of
pseudo-Nambu-Goldstone boson (pNGB) Higgs models, which can realise natural electroweak
symmetry breaking by means of non-minimal symmetry breaking parameters [3, 4]. Here
again, working within an EFT description, we find that the ratio in eq. (1.2) can be
significantly enhanced without resorting to fine-tuning. Furthermore, in this setting, we
find that a dimension-6 truncation of the EFT description can fail to capture the physics
of the Higgs self-coupling. This signals a need for caution: in some scenarios, as concerns
the Higgs self-coupling, operators of even higher dimension (> 6) may have significantly
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enhanced Wilson coefficients, making them equally or more important than the dimension-6
contributions. We also study the question of perturbative unitarity within this class of
models, finding moderate constraints.

This paper is far from the first study of the theoretical landscape of the Higgs boson
self-coupling, see for instance [5–27]. Thus in section 5, we compare and contrast our
approach and results with some recent literature. Conclusions are presented in section 6.

2 General perspective on δh3/δV V

Consider a UV completion of the SM featuring new states at a mass scale M above the
direct reach of current measurements. At energies below M , this theory will imprint itself on
higher-dimension SM operators and leave traces in Higgs couplings. We wish to understand
how large of a hierarchy there can be between the Higgs self-coupling modification δh3 and
other signals of the new physics, such as corrections to the Higgs couplings to weak vector
bosons δV V and the precision electroweak T̂ parameter. Given an arbitrarily fine-tuned UV
completion, these hierarchies could in principle be arbitrarily large. However, here we are
interested in UV completions which are not fine-tuned for this purpose.

From an EFT perspective, this would at first glance correspond to asking whether a
generic UV completion can generate the dimension-6 operator

O6 = − 1
M2 |H|

6 , (2.1)

and also operators such as

OH = 1
M2 (∂µ|H|2)2 , OR = 1

M2 |H|
2|DµH|2 , OT = 1

M2 |H
†DµH|2 , (2.2)

but with coefficients |c6| � |cH,R,T |. The |H|4D2 operators in eq. (2.2) affect Higgs couplings
to weak gauge bosons and fermions, as well as the T̂ parameter.

2.1 h̄ as a guide

Let us first investigate possibilities based on h̄ counting, which can equivalently be phrased
in terms of coupling dimensions (see e.g. [28, 29]), or naïve dimensional analysis weight [30].
The Wilson coefficient c6 has four powers of coupling dimension. Crucially, this is unique
within the SMEFT at dimension-6. Motivated by this observation, consider a UV completion
with typical mass scale M and a coupling parameter κ in the infrared (IR), which carries
four powers of coupling dimension and dominates the interactions between the Higgs and
new physics. Importantly we assume 4

√
κv/M < 1 and all dimensionless coefficients to be

of order one,1 such that the EFT expansion converges.
Let us now map this power-counting scheme onto the SMEFT.2 At dimension-6 and

tree-level, we may only have c6. To generate the other Wilson coefficients at dimension-6
requires absorbing two coupling factors with an h̄, and thus a loop suppression. Since

1Note that, due to coefficients that are not of order one, operators of dimension higher than six dominate
self-coupling corrections in the scenario of section 4.

2Alternative power counting schemes leading to sizeable self-coupling modifications were, for instance,
considered in [13, 21]. We also note that the argument we present in the following does not apply, if the
electroweak symmetry is not linearly realised in the EFT.
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fields —unlike derivatives— may also absorb coupling factors, important contributions could
also arise at tree-level and dimension-8, through operators involving two extra Higgses.
Should such a UV completion exist and be generic, we would expect the following pattern
of Wilson coefficients:

c6 ∼ κ , cH,R,T ∼
κ

16π2 , cH8,R8,T8 ∼ κ , (2.3)

where we have defined the dimension-8 operators containing two extra Higgs fields as
OH8,R8,T8 ≡ |H|2 OH,R,T /M2.

In terms of observable corrections to Higgs couplings, we then expect the follow-
ing pattern:

δh3 ∼ κ
v4

M2m2
h

, δV V ∼ κ
v2

M2 max
[

1
16π2 ,

v2

M2

]
, (2.4)

where v2 ≡ (
√

2GF )−1 ≈ (246 GeV)2.
The generic expectations for contributions to the T̂ parameter, which are

∆T̂ ∼ κ v
2

M2 max
[

1
16π2 ,

v2

M2

]
, (2.5)

may be further suppressed if the UV interactions leading to κ respect custodial symmetry.
More on this later.

Based on these arguments, we may sketch an expected upper bound on the ratio of
Higgs coupling deviations in a generic UV completion∣∣∣∣ δh3

δV V

∣∣∣∣ . min
[(4πv

mh

)2
,

(
M

mh

)2
]
, (2.6)

which reaches (4πv/mh)2 ≈ 600 forM & 4πv ≈ 3TeV. Note that this is a bound and not an
expectation since many UV completions, including known models, will not come anywhere
close to saturating it without fine-tuning in the UV. On the other hand, although large
ratios are not expected in general, we see that there is in principle ample room for Higgs
self-coupling modifications to be significantly greater in magnitude than the modifications
of single-Higgs couplings. In section 3, we present an explicit example of a generic UV
completion where the bound in eq. (2.6) is saturated.

2.2 Higher-dimension potential terms

The previous analysis should hold true for generic UV completions, however there is an
additional caveat to this logic that will prove relevant in this work.

In an EFT, there are constraints on the relative magnitude of subsequent terms in the
momentum expansion of certain scattering amplitudes. For instance, UV contributions to
identical operator two-point functions or four-point forward scattering amplitudes, captured
in a Taylor series as

∑
j cj(p2/M2)j , are known to form a convergent series where |cj+1| ≤ |cj |,

at least from dimension-8 onwards [31, 32]. This means that for a given cj , even if the
higher-order terms are unknown, their impact on scattering amplitudes may be bounded
from above.

On the other hand, for the Higgs potential, we are interested in the field expansion
and not in the momentum expansion. To our knowledge, in this case, no such convergence
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condition exists. Higher-dimension operators may therefore, in principle, contribute to δh3

comparably to O6, or even more significantly. This could occur even in scenarios which are
accurately described by an EFT where the electroweak symmetry is linearly realised.

This caveat raises a potential loophole to general considerations of Higgs coupling
deviations based solely on the O6 operator. Such an analysis could be overly naïve
in the sense that it may a) underestimate the magnitude of δh3 by missing important
corrections of higher dimensions, b) overestimate vacuum stability constraints on δh3 by
underestimating the size of stabilising higher-order terms, or, relatedly, c) overestimate
unitarity constraints on δh3 by underestimating unitarity-preserving cancellations from
operators of different dimensions that may be present in n-point scattering amplitudes as a
result of UV symmetries. The explicit example models discussed in sections 3 and 4 expose
these three caveats.

2.3 Phenomenological implications

There are important implications of eq. (2.6) for Higgs phenomenology. The foremost arises
when we consider what magnitude of self-coupling correction could remain undetected at
present. Consider the current status of LHC measurements, which constrain |δV V | . 0.07
at the two-sigma level [33, 34]. Eq. (2.6) thus leaves room in generic UV completions for
|δh3 | . 40. On the other hand, present experimental constraints on the Higgs self-coupling
are at the level of −2 < δh3 < 5.6 [33, 35]. Thus, at the moment, self-coupling analyses are
actually competitive with single-coupling measurements in probing the parameter space
of generic UV completions of the SM. This will remain true during the rest of the LHC
programme. The HL-LHC is expected to achieve a two-sigma sensitivity3 of 2.6% on
δV V [36], allowing for |δh3 | . 15 in generic UV completions, while a 100% two-sigma
precision can be expected from Higgs pair production measurements.

Looking further towards the future, if all single-Higgs measurements were consistent
with the SM after FCC-ee operation, then one would have |δZZ | . 0.34% at the two-sigma
level [36]. This would imply a generic theoretical upper bound of |δh3 | . 200%, which
indirect constraints from the same machine would already surpass with a 48% sensitivity [36–
38]. FCC-hh would moreover probe Higgs self-coupling deviations down to the 10% level at
the two-sigma level [36]. So, even if Higgs measurements at FCC-ee were SM-like, there
would still remain the possibility of finding deviations in Higgs self-coupling measurements
at FCC-hh, generated by generic UV completions.

A high-energy lepton collider such as CLIC could achieve |δZZ | . 0.78% [36], leaving
open the possibility of having |δh3 | . 480%. Di-Higgs production with a two-sigma reach of
22% on the trilinear self-coupling [36] would then cover a sizeable amount of untouched
generic parameter space. The same conclusion would also hold at higher-energy muon
colliders, although the associated prospects are more speculative. With 10 ab−1 at 10TeV,
one could indeed expect single-Higgs coupling precisions in the same ballpark as that of
the FCC-ee (0.14%) and a self-coupling determination with a reach similar to that of the
FCC-hh (11%) [39].

3It is customary to quote one-sigma sensitivities for future collider prospects. To ease comparisons with
existing constraints, here and in the following we apply a naive factor of two to approximate two-sigma
sensitivities. For precise measurements, non-Gaussianities can be expected to be moderate.
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In UV completions without custodial protection, the scaling of eq. (2.6) would also apply
to the |δh3/∆T̂ | ratio. A Z-pole run at the FCC-ee would improve the current two-sigma
constraint on |∆T̂ | by an order of magnitude, down to about 10−4 [36]. A theoretical upper
bound of |δh3 | . 6% would then arise for generic UV completions. A one-loop suppression
of dimension-6 contributions to custodial symmetry violation is thus insufficient to allow
for any testable modification of the Higgs self-coupling in non-custodial UV completions,
showing the power of precision Z-pole physics. On the other hand, custodially symmetric
UV completions would still allow for sizeable self-coupling modifications, as we discuss
in section 3.2.

Finally, note that the hierarchy in eq. (2.6) allows self-coupling modifications entering in
single-Higgs production and decay processes at one loop factor greater than single-coupling
modifications to have an impact on the final observable that is comparable in magnitude.
Thus, for an agnostic analysis of coupling deviations, it is advisable to include higher-order
self-coupling effects. Relatedly, due to the high coupling dimension of c6, such contributions
are guaranteed to be finite in single-Higgs production and decay processes, in contrast
with the rest of the SMEFT landscape where the inclusion of dimension-6 operators at
one-loop will generically lead to a logarithmically divergent contribution.4 These two aspects
are fortuitously linked, in that the coupling dimension of c6 allows for a large hierarchy
in coupling deviations, but it also permits the higher-loop contributions of self-coupling
deviations to physical processes to be finite, lending support to efforts to probe the Higgs
self-coupling in this manner [21, 36–38, 44–54].

With all of this in mind, let us now explore some generic UV completions which can
saturate the bound of eq. (2.6).

3 |δh3| � |δV V | at tree level: custodial weak quadruplet

As a first class of generic models realising |δh3 | � |δV V |, we consider simple renormalisable
scenarios which involve heavy scalar SU(2)L quadruplets with hypercharge Y = 1/2 or
3/2. Assuming that these new states are sufficiently heavy for an EFT description to
be accurate at low energies, O6 is the only operator generated at dimension-6 and tree
level [1, 2, 12, 55–59]. We proceed by studying in more details the EFT they give rise to.

3.1 Integrating out weak quadruplets

A weak quadruplet can be described by the symmetric three-index tensor representation of
SU(2)L, Φijk. The four complex canonically normalised propagating degrees of freedom
ω1 ... 4 are embedded as

Φ111 = ω1 ,

Φ112 = Φ211 = Φ121 = ω2/
√

3 ,
Φ122 = Φ221 = Φ212 = ω3/

√
3 ,

Φ222 = ω4 .

(3.1)

For convenience, we work with the three-index representation.
4This is intimately related to the fact that O6 renormalises only itself at one loop, as demonstrated in [40–

42]. Interestingly, the non-renormalisation theorem of [43] goes further, showing that the renormalisation of
operators of the |H|4D2 class by |H|6 vanishes at two loops.
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Y = 1/2. The relevant Lagrangian for Φ ∼ 41/2 is

LΦ = Lkin − λΦH
∗H∗(εH)Φ + h.c.− VZ2 , (ε ≡ iσ2) , (3.2)

where SU(2)L indices have been suppressed, while the quadratic Lagrangian reads explicitly
Lkin = Tr[DµΦ∗DµΦ−M2

ΦΦ∗Φ] where Tr[Φ∗Φ] = Φ∗ijkΦijk and the covariant derivative is
a six-index tensor. Due to the hypercharge assignment, the additional terms in VZ2 respect
a Z2 symmetry acting on Φ. Note that certain couplings must be present in VZ2 to ensure
vacuum stability (see below).

Assuming λΦ to be real and integrating Φ out at tree level, we obtain

L6
EFT = λ2

Φ
3M2

Φ
|H|6 (3.3)

at dimension-6, i.e. c6 = −λ2
Φ/3, and

L8
EFT = λ2

Φ
3M4

Φ

(
cR8 |H|4|DµH|2 + cH8 |H|2∂µ|H|2∂µ|H|2 + cT8 |H|2|H†DµH|2

)
(3.4)

at dimension-8, with cR8 = 7, cH8 = 2, and cT8 = −6, where the covariant derivative is
the appropriate one for the Higgs doublet.5 The leading corrections to Higgs couplings,
normalised to their SM values are, from eq. (3.3) at dimension-6,

δh3 = c6
M2

ΦG
2
Fm

2
h

, (3.5)

and from eq. (3.4) at dimension-8

δZZ = λ2
Φ

48G2
FM

4
Φ

(4cR8 − 4cH8 + 3cT8) ,

δWW = λ2
Φ

48G2
FM

4
Φ

(
4cR8 − 4cH8 − cT8

(
3 + 2s̄2

w

1− 2s̄2
w

))
, (3.6)

δff = − λ2
Φ

48G2
FM

4
Φ

(4cH8 + cT8) ,

5We comment briefly on the relation of our results to previous work. We have checked the exact
equivalence of eq. (3.2) with [12], where the interaction of ΘJ

1 ∼ 41/2 (J = 1, 2, 3, 4) with the Higgs field is
written as LΘ1 = −λΘ1 (H†σaH)CIaβ(εH∗)βεIJΘJ

1 + h.c. with appropriately defined CIaβ and εIJ , provided
one identifies ωJ = ΘJ

1 and λΦ = −λΘ1/
√

2. Similarly, the notation of [12] for the ΘJ
3 ∼ 43/2 is equivalent

to ours for λΦ̃ =
√

3/2λΘ3 .
Furthermore, our c6 result for the 41/2 is a factor of 3 larger than those of [57, 58], whereas the correction to

the T̂ parameter in [58] should have an opposite sign. For the 43/2, our c6 and cT8 results agree with [57, 58].
We have checked that the c6, cR8 , cH8 , cT8 coefficients that we obtain in both 41/2 and 43/2 cases match
those of [59] (arXiv v4). On the other hand, the custodial sum of 41/2 and 43/2 pieces in [2] has relative c6
and cR8 , cH8 contributions differing from ours by a factor of 2.
Finally, the one-loop results reported in eq. (3.9) for the 41/2 agree with the 23 June 2022 update of

the supplementary material in [60] (where the quadruplet is denoted by Σ). We thank the authors for
correspondence about these results.
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Figure 1. Illustrative diagrams involved in the loop-level matching of the weak quadruplet models
to Higgs operators violating custodial symmetry at dimension-6 and -8.

where we have used {α,mZ , GF } as electroweak input parameters and defined

s̄2
w ≡ 1

2

(
1−

√
1− 4πα√

2GFm2
Z

)
. (3.7)

Note that cT8 6= 0 implies δZZ 6= δWW , signalling the violation of custodial symmetry. The
latter is most strongly constrained by the electroweak T̂ parameter, which is corrected as

∆T̂ = − cT8λ
2
Φ

24G2
FM

4
Φ

(3.8)

at tree level.
One also expects dimension-6 corrections at the one-loop level which, depending on the

separation between the electroweak and new physics scales, may be more important than
the dimension-8 tree-level contributions. From the λΦ interaction at one-loop, we find

L6
EFT = λ2

Φ
12π2M2

Φ

(
c

(1)
R |H|

2|DµH|2 + c
(1)
H ∂µ|H|2∂µ|H|2 + c

(1)
T |H

†DµH|2
)
, (3.9)

where c(1)
R = 5, c(1)

H = 1, and c(1)
T = −3. The associated Higgs coupling corrections are

δZZ = λ2
Φ

48π2
√

2GFM2
Φ

(
2c(1)
R − 4c(1)

H + c
(1)
T

)
,

δWW = λ2
Φ

48π2
√

2GFM2
Φ

(
2c(1)
R − 4c(1)

H − c
(1)
T

(
3 + 2s̄2

w

1− 2s̄2
w

))
, (3.10)

δff = − λ2
Φ

48π2
√

2GFM2
Φ

(
4c(1)
H + c

(1)
T

)
,

and the T̂ parameter is

∆T̂ = − c
(1)
T λ2

Φ
24π2

√
2GFM2

Φ
. (3.11)

Since we have not specified VZ2 , we will not calculate the corrections originating from it,
noting that they scale in the same way. Thus, if the quartic couplings in VZ2 are comparable
in magnitude to λΦ, they may be equally as important (see the first two diagrams in
figure 1). We focus on those generated by λΦ since they are an irreducible contribution
directly correlated with the Higgs self-coupling correction.

Other operators are also generated at the one-loop level, including those containing
two derivatives and two electroweak field-strength tensors, which are related to the W and
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Figure 2. Parameter space of the scalar weak quadruplet models with Y = 1/2 (left) and
Y = 3/2 (right).

Y parameters. In particular, one finds W = g2
2m

2
W /(96π2M2

Φ) [55, 60]. Existing constraints
from LEP2 (and from Drell-Yan processes at the LHC, where the high-energy tail lies
beyond the EFT validity) are not competitive with direct searches for the quadruplet
states, see section 3.2.3. This will remain true at future colliders. In addition, operators
involving two electroweak field-strength tensors and four/two Higgs fields are generated at
the one-loop/two-loop levels, respectively. They notably contribute to the Higgs decay to
two photons, which is also loop-induced in the SM. The resulting sensitivity is however not
expected to surpass that of other Higgs coupling measurements.

Y = 3/2. For the Φ̃ ∼ 43/2 quadruplet, the UV Lagrangian reads

LΦ̃ = Lkin −
λΦ̃√

3
H∗H∗H∗Φ̃ + h.c.− VZ2 , (3.12)

with the obvious replacements in Lkin. The normalisation of the coupling is chosen such
that the resulting tree-level effective theory is analogous to eqs. (3.3) and (3.4), with
λΦ → λΦ̃ and MΦ → MΦ̃, but now cR8 = 3, cH8 = 0 , and cT8 = 6. At one loop, we find
c

(1)
R = 3, c(1)

H = 0 , and c(1)
T = 3 in the conventions of eq. (3.9).

In figure 2, we show the Higgs coupling corrections and precision electroweak constraints
on these two custodial violating models. For MΦ/λΦ of O(1)TeV, self-coupling deviations
of tens of percent are compatible with current |∆T̂ | < 0.15% constraints [61]6 and are only
accompanied by sub-percent δV V corrections. On the other hand, a future Tera-Z stage
at FCC-ee leading to |∆T̂ | < 0.015% would exclude the majority of parameter space with
significant Higgs self-coupling deviations, showing the powerful synergy between a Tera-Z
programme and Higgs physics.

6This is an approximate two-sigma bound, which neglects the slight preference of data for positive
T̂ [61]. This preference would become strong if we were to include the recent CDF II measurement of the W
mass [62]. Given the unclear current picture of the electroweak fit, we prefer to make a conservative choice.

– 9 –



J
H
E
P
1
2
(
2
0
2
2
)
1
4
8

3.2 The custodial quadruplet

Custodial symmetry is violated in the previous two models, at dimension-8 and tree level,
as well as at dimension-6 and one-loop level. As discussed in section 2 and confirmed above,
a one-loop suppression of dimension-6 effects is insufficient to allow for a modification of
the Higgs self-coupling larger than O(10)% in custodial violating UV completions. We thus
turn our attention to a custodially symmetric quadruplet model [1, 2].

The custodial symmetry is SO(4) ' SU(2)L×SU(2)R, broken in the SM by the Yukawas
and the hypercharge gauge coupling. Both previously considered complex quadruplets
naturally arise as a 16 irreducible representation of SO(4), coupled as Φ̂abchahbhc where
the four real degrees of freedom of the Higgs are written as a fundamental of SO(4), ha.
Similarly, in terms of SU(2)L × SU(2)R the two quadruplets arise in the decomposition of
the (4,4), coupled as Φ̂ IJK

ijk H∗iIH
∗j
JH∗kK , where we have written the four Higgs degrees

of freedom as furnishing a bifundamental (2,2) representation, H. At the renormalisable
level, the potential of the custodial quadruplet model may contain, in addition to Φ̂H3, also
Φ̂2H2, Φ̂4, and Φ̂3H terms [1] (to preserve invariance under hypercharge, the last operator
always involves both Φ and Φ̃). We do not include these terms in our analysis, but discuss
their role in ensuring vacuum stability below.

A possible UV motivation for this setup would be a model where both the Higgs and
custodial quadruplet fields emerge among the pNGBs of a new strong sector. For instance,
a spontaneous global SO(21)→ SO(20) breaking yields a 20 of Goldstone bosons. These
could be split into (4,1) + (1,16) of the block-diagonal SO(4)× SO(16) subgroup, which
are also (4,1) + (1,16) of a suitably-defined SO(4)× SO(4) subgroup. Under the diagonal
SO(4) of the latter, the pNGBs would thus transform as a 4 and a 16. In the following, we
will however remain agnostic about a deeper UV origin of the custodial quadruplet.

Integrating out the heavy Φ̂, we expect to generate O6 together with very suppressed
custodial violation. We may show this by recycling the previous results, since the decompo-
sition of the (4,4) of SU(2)L × SU(2)R (or equivalently, the 16 of SO(4)) under the SM
electroweak gauge group leads to the two complex scalar fields

(4,4)→ 41/2 + 43/2 , (3.13)

under SU(2)L ×U(1)Y . The explicit embedding is provided in section A. Due to custodial
symmetry, the two scalar multiplets couple to the Higgs as

LSO(4) = −λ
(
H∗H∗(εH)Φ + 1√

3
H∗H∗H∗Φ̃

)
+ h.c. (3.14)

and have equal mass. In other words, the custodial model gives rise to the sum of eqs. (3.2)
and (3.12) with λΦ = λΦ̃ = λ and MΦ = MΦ̃ = M , thus generating at tree level the
effective operators

L6
EFT = 2λ2

3M2 |H|
6 , (3.15)

i.e. c6 = −2λ2/3 at dimension-6, and

L8
EFT = 2λ2

3M4

(
5|H|4|DµH|2 + |H|2∂µ|H|2∂µ|H|2

)
, (3.16)
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i.e. cR8 = 10, cH8 = 2, and cT8 = 0 at dimension-8. As anticipated, this is custodially
symmetric. Furthermore, at one-loop and dimension-6 we find

L6
EFT = λ2

12π2M2

(
8|H|2|DµH|2 + ∂µ|H|2∂µ|H|2

)
, (3.17)

i.e. c(1)
R = 8, c(1)

H = 1, and c
(1)
T = 0, which also respects custodial symmetry. The

custodial symmetry persists at one-loop and dimension-6 due to the power counting, since
Wilson coefficients can involve only λ2 and no other coupling at this order. As the scalar
interactions are custodially symmetric, they alone cannot generate OT . Thus we expect
custodial symmetry violation to occur only at two loops and dimension-6 or one loop and
dimension-8 (see the last two diagrams in figure 1).

The magnitude of these higher-loop effects can be estimated by examining the known
renormalisation-group mixing into custodial symmetry violating operators. From ap-
pendix C.3 of [42], the mixing of cH� into cHD, defined as the coefficients of the Warsaw
basis dimension-6 operators QH� = −OH and QHD = OT , is proportional to 5g2

1/12π2.
The anomalous dimension matrix between dimension-8 bosonic operators has been studied
in [63, 64]. In the latter reference, c(2)

φ6 contains a custodial violating component (see the
definition in table 1 of [65]). According to the associated ancillary material, it receives
a mixing from c

(1)
φ6 proportional to 5g2

1/24π2. The mixing of two dimension-6 operators
into a dimension-8 one, computed in [66], would be subleading in our case. For M in
the few-TeV range, cH8 and c(1)

H of O(1) at that scale would therefore induce a custodial
violation through cT8 and c(1)

T of O(1)% at the Z-pole. Contributions to the T̂ parameter are
therefore expected to be further suppressed by about two orders of magnitude compared to
the custodial violating cases. At this level of suppression, not even the electroweak precision
measurements of the FCC-ee would be competitive with Higgs coupling determinations at
the LHC.

3.2.1 Vacuum stability

Vacuum stability requirements become relevant in regions with significant corrections to the
Higgs self-coupling (see e.g. [22, 25, 45]). Let us follow the approach of [25] and consider,
in addition to O6, a dimension-8 contribution to the Higgs potential:

− LBSM = c6
M2 |H|

6 + c8
M4 |H|

8 . (3.18)

This is sufficient for ensuring vacuum stability at small field values. The situation at large
field values could depend on even higher-dimension operators, or need to be studied in the
full UV model.

Vacuum stability at small field values qualitatively demands that a large h3 coupling be
compensated by an even larger h4 one (scaling as the square of δh3 , see details in section B).
In turn, this requires that δh3 receives a minimal contribution from the dimension-8 operator
|H|8. Decomposing δh3 into pieces arising respectively from |H|6 and |H|8,

δh3 = δ
(6)
h3 + δ

(8)
h3 , δ

(6)
h3 = 2c6v

4

M2m2
h

, δ
(8)
h3 = 4c8v

6

M4m2
h

, (3.19)
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one obtains for c6 < 0, as in the custodial quadruplet model, that

δ
(8)
h3 ≥ −δ(6)

h3 + 1−
√

1− 2δ(6)
h3 for δ(6)

h3 < 0 and δ
(8)
h3 < −δ(6)

h3 . (3.20)

Hence, beyond δ(6)
h3 ≤ −400%, the relative dimension-8 contribution to the self-coupling

starts becoming significant:
∣∣δ(8)
h3 /δ

(6)
h3

∣∣
min ≥ 1/2. An assessment of the magnitude of δh3

based only on the dimension-6 contribution then becomes inaccurate. More generally, the
EFT expansion could also start breaking down at this point, since contributions from
different orders would become of similar magnitude.

In the custodial quadruplet model, ignoring quartic potential terms with more than
one power of Φ̂ (such as |Φ̂|2|H|2, Φ̂3H, or |Φ̂|4) is therefore no longer justified when the
trilinear Higgs self-coupling computed from |H|6 reaches large negative values. In this region,
including the minimal dimension-8 contributions required for vacuum stability would for ex-
ample take the dimension-6 estimate of δ(6)

h3 = −400% to δh3 = 1− (1− 2 δ(6)
h3 )1/2 = −200%.

Additionally, the sizeable |Φ̂|2|H|2 quartic needed to generate the necessary |H|8 operator
would give rise to significant contributions to single-Higgs couplings. For δ(6)

h3 . −400%,
our analysis based on the sole Φ̂H3 quartic potential term is thus no longer reliable. Based
on estimates within a toy version of the custodial model, we however expect the δh3/δV V
ratio to be more robust against these additional quartic corrections than the individual
coupling modifications.

3.2.2 Perturbative unitarity

As discussed in [25], the large |H|8 contribution which ensures vacuum stability when
δh3 becomes sizeable is constrained by perturbative unitarity. Vacuum stability for
instance requires

− δh3 ≤
2
√

2c8 v
3

M2mh
≈
√
c8

(4π)3

(26TeV
M

)2
(3.21)

in the region where δh3 < 0 and c8 > 0. Recalling that c8 carries six powers of coupling
dimension and using the traditional value of 4π as the strong coupling limit, M must
therefore be pushed to more than 20TeV to obtain constraints of order one on δh3 . For
new physics in the TeV range and self-coupling deviation of a few, vacuum stability does
therefore not seem to push us out of the perturbative regime.

A stronger requirement derives from the model-independent analysis of tree-level
unitarity in multi-boson scattering [24], leading to

|δh3 | .
(13.4 TeV

Emax

)2
, (3.22)

where Emax is the energy scale at which perturbativity is lost. It indicates that self-coupling
deviations of order one require new physics to arise around 10TeV. Comparing eq. (3.22)
to the dimension-6 relation,

δ
(6)
h3 = 2c6v

4

M2m2
h

≈ c6
(4.4)4

(13.4TeV
M

)2
, (3.23)
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Figure 3. Parameter space of the custodial quadruplet model. Top left: single-Higgs coupling
and self-coupling deviations. In the grey region, vacuum stability requires sizeable contributions
from potential terms not included in our analysis. They would affect both δh3 and δV V coupling
modifications by order-one factors, although their ratio may be relatively stable. Top right: regions
probed, at the two-sigma level, by different types of future measurements at the LHC and FCC.
Some prospects are only qualitatively estimated rather than robustly established. Bottom left: same,
but assuming a 3TeV lepton collider as future project. Bottom right: same, but assuming a 10TeV
muon collider as future project.

indicates that strong coupling could be reached towards 4.4 instead of 4π. In the custodial
quadruplet model where c6 = −2λ2/3, this corresponds approximately to λ ≈ 8π which
is parametrically obtained by demanding |Re a0| < 1/2 on the l = 0 partial wave of the
HH → Φ̂H scattering.

3.2.3 Direct searches

Beside Higgs (self-)coupling measurements, direct searches for the various components of
the custodial quadruplet provide complementary probes of the (M,λ) parameter space.
The earliest probes in different regions are summarised in figure 3 for the LHC, FCC, and
lepton colliders with either 3 or 10TeV centre-of-mass energies.

At the LHC, pair production of electroweak states has a reach in mass of a few hundreds
of GeV. An ATLAS search exploiting the full run-2 dataset for instance sets a two-sigma
bound at 350GeV on the mass of the doubly charged scalar of the Georgi-Machacek
model [67]. The HL-LHC two-sigma reach estimated in [2] for the custodial quadruplet
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is just below 600GeV. At FCC-hh, masses up to about 3TeV can likely be probed. In
the left-right symmetric model, the pair production of doubly charged scalars decaying
to lepton pairs was for instance estimated to have a three-sigma reach of 800GeV at the
HL-LHC and between 2.5 and 6TeV at the FCC-hh [68]. Instead of charged leptons, the
doubly charged components of the custodial quadruplet would mostly decay into pairs of
gauge bosons.

The single production of doubly and singly charged states through vector boson
fusion was searched for by CMS, in the W±W± and W±Z channels, using the run-2
double-differential mjj ,m

V V
T distribution [69]. Bounds provided in the sH ,mH5 plane

for the Georgi-Machacek model can approximately be translated to our parameter space
by taking sH ∝ λv2/M2. They then cover the upper-left corner of figure 3 and only
become competitive with Higgs coupling measurements towards λ . 3. This would remain
true until the end of the HL-LHC programme. ATLAS obtains similar constraints in
the fully leptonic WZ channel by training an artificial neural network on eight variables
includingmjj ,∆φjj , ηV , HT , E

miss
T to define signal and background regions before performing

a likelihood fit on mWZ [70, 71]. A simple estimate for the sensitivity at FCC-hh can be
obtained by using, as background, the SM vector-boson-fusion production of WZ pairs for
mWZ above the probed charged scalar mass, assuming an overall efficiency factor of 1%
(including leptonic branching ratios) for both signal and background. Such a procedure
reproduces the actual LHC sensitivity and, for the FCC-hh, indicates that the reach of
single production is similar to that of pair production, in the region not already probed by
Higgs coupling measurements at FCC-ee.

At future lepton colliders collecting 5 ab−1 at 3TeV or 10 ab−1 at 10TeV, the reach of
single production estimated in the same way is comparable to that of the HL-LHC in the
range of parameters shown in figure 3. On the other hand, pair production can be expected
to probe masses close to half of the centre-of-mass energy.

3.2.4 δh3/δV V ratio

In summary, we have considered a model that is custodially symmetric up to small corrections,
renormalisable, and generates only O6 at tree level and dimension-6. It thus evades
constraints on the T̂ parameter. Single-Higgs couplings are moreover only modified at
one-loop and dimension-6, or at tree-level and dimension-8. The model also provides
an opportunity to examine the δh3/δV V ratio quantitatively, since both corrections are
calculable. Putting aside vacuum stability considerations and including the sole Φ̂H3 quartic
potential term, we find

− δV V
δh3

= 3
(
mh

4πv

)2
+
(
mh

M

)2
≈ 1

200 + 1
580

(3 TeV
M

)2
, (3.24)

which is remarkably similar to the estimate of eq. (2.6). The structure of this explicit model
is indeed such that it respects the power counting introduced in section 2. The coupling of
the quadruplet to the Higgs is a scalar quartic interaction, thus of coupling dimension 2,
which is invariant under the λ→ −λ, (Φ, Φ̃)→ −(Φ, Φ̃) parity transformation. Thus, after
integrating out the heavy quadruplet, the coupling can only enter in the low energy EFT as
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κ = λ2, which has coupling dimension 4. On the one hand, this model demonstrates that
UV completions with this power counting can exist and that we should thus be cautious
about applying theory priors related to specific models in weighing the importance of future
Higgs physics measurements. On the other hand, the custodial quadruplet model seems to
be the only working example at tree-level and is thus relatively unique.

The introduction of an additional |Φ̂|2|H|2 quartic potential term to ensure vacuum
stability extends the power counting discussed in section 2. In particular, it allows for
the presence of a |H|8 operator at tree level in the EFT. The perturbativity of such |H|8

contribution needed for vacuum stability at small field values is less constraining than that
of multi-boson scattering. For perturbativity up to scales of the order of 6TeV, the latter
allows self-coupling modifications of order |δh3 | ≈ 5. Although our study of the δh3/δV V
ratio does not include the potential terms required for vacuum stability, one would expect
that δV V constraints would be dominant in determining the range of allowed self-couplings.
Values of about δh3 ≈ −400% should still be consistent with HL-LHC prospects on δV V ,
but an EFT treatment including only operators of lowest dimension starts breaking down in
this regime. At foreseeable future colliders, direct searches would push the quadruplet mass
into the TeV region and self-coupling measurements would still probe untouched parameter
space. Similar considerations would apply if the additional quartics Φ̂3H and |Φ̂|4 were
included, leading to the appearance in the EFT of |H|10 and |H|12 operators at tree level.

4 |δh3| � |δV V | for a pNGB Higgs: Gegenbauer potentials

To further illustrate the points of section 2, we now examine the Higgs potential of the
recently proposed ‘Gegenbauer Higgs’ class of pNGB Higgs models [3, 4]. In particular,
we focus on the Gegenbauer’s Twin model of [4]. In this model, the Higgs is a pNGB of a
spontaneous SO(8)→ SO(7) global symmetry breaking at the scale f . The block-diagonal
SO(4) subgroups of SO(8) are gauged such that six of the Goldstone bosons are eaten,
leaving only one pNGB to be identified as the SM Higgs.

The top sector Yukawas explicitly break the global symmetries, leading to an estimable
contribution to the Higgs potential of the form [72–74]

Vt ≈
3y4
t f

4

64π2

[
sin4 h

f
log a

sin2 h
f

+ cos4 h

f
log a

cos2 h
f

]
, (4.1)

in the unitary gauge. Here, a is a dimensionless O(1) constant calculable within specific
UV scenarios, which materialises the logarithmic-only dependence of the potential on
coloured particle masses that is typical of Twin Higgs models. In addition to this top-sector
contribution and to the subdominant gauge one, the Gegenbauer’s Twin setup assumes
an extra source of explicit symmetry breaking in the UV which corresponds to a non-zero
value for a spurion in the n-index tensor irreducible representation of the global SO(8)
symmetry, breaking it to SO(4)×SO(4). This additional contribution to the scalar potential
is radiatively stable, in that UV corrections at any loop order preserve its form. As shown
in [4], its expression is

VG = εf4G3/2
n (cos 2h/f) , (4.2)
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Figure 4. Left: the magnitude of the coefficients in the expansion of the Gegenbauer potential,
eq. (4.3), for various choices of n. Right: corrections to the Higgs self-coupling for n = 6 and 10 (solid
lines), as compared to the results found from dimension-6 (dashed) and dimension-8 (dot-dashed)
truncations of the full potential.

where G3/2
n is the Gegenbauer polynomial of index 3/2 and order n. The purpose of this

work is not to expound upon the details of the model, but instead to use it as an example
scenario to investigate the physics of self-coupling corrections and other potential features
in pNGB Higgs models.

4.1 Effective field theory expansion

To commence, it is enlightening to investigate the accuracy of the EFT description of the
Higgs potential, to understand in particular how well a truncation at dimension-6 performs.
To this end, first consider the Taylor expansion of the Gegenbauer potential,

G3/2
n (cos 2h/f) = Nn

∞∑
j= 0

cj

(
h

f

)j
, (4.3)

where we have chosen Nn, the overall normalisation factor, such that max {cj} = 1. In
the left panel of figure 4, we show the magnitudes of the cj for n between 4 and 10. They
grow rapidly, up to j = 2n, after which they begin asymptotically decreasing, providing a
concrete realisation of a theoretical possibility discussed in section 2.

As a result of this behaviour, one expects that a description truncated at dimension-6
should fail to accurately capture the local form of the Higgs potential and, in particular,
the corrections to the Higgs self-coupling. To quantify this, we show in the right panel of
figure 4 the Higgs self-coupling modification, relative to the SM value, for n = 6 and n = 10.
In each case, the full potential V = Vt + VG is used (solid lines) and compared against the
result found from the truncation, at dimension-6 and -8, of its SU(2)L gauge-invariant form
in terms of the doublet H. To this end, we map sin2 h/f in the unitary gauge to 2|H|2/f2.
Clearly, a low-dimension EFT truncation of the potential fails to accurately capture the
nature of the Higgs self-coupling corrections, especially as n is increased. This implies that
any analysis of vacuum stability or unitarity violation based on a dimension-6, and perhaps
even dimension-8, truncation may be inaccurate when applied to concrete models.7

7These conclusions are not restricted to the specific model considered here. For instance, for a single
U(1) pNGB with a small source of explicit breaking U(1)→ Zq, the relevant Wilson coefficients scale as
|cj | = qj/j!. Thus the pattern of rapid growth up to a maximum, as seen in figure 4, followed by factorial
decrease is also found for this textbook U(1) pNGB example.
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Figure 5. The ratio of self-coupling to hV V corrections in the Gegenbauer’s Twin model of [4], for
several values of n. In the empty upper-left corner of the figure, the SM vacuum is no longer the
global minimum of the potential and therefore becomes unstable. Grey contours show the fine-tuning
of the Higgs mass and vacuum expectation value in this model.

4.2 Perturbative unitarity

Given that large Higgs self-coupling corrections are possible in this model, it is natural to
consider the scale at which perturbative unitarity breaks down. Furthermore, given that
the operators with the largest coefficients have high dimensions (see left panel of figure 4),
one would expect that the most relevant constraints arise from high-multiplicity scattering.
In [24], such higher-point scattering processes were considered in general terms, leading to
their eq. (2.13) which gives the highest possible energy consistent with perturbative unitarity.

Applying that result to the Gegenbauer’s Twin model, and focusing on processes
involving Higgs bosons, we find that the lowest scale for perturbative unitarity breakdown is
E & 6TeV for all of the parameter ranges considered and n ≥ 6. Furthermore, we find that
for 6 ≤ n ≤ 12 the strongest limit arises from N -point scattering with 10 ≤ N . 40. Slightly
lower scales would be obtained by including processes involving longitudinalW,Z bosons [24].
While these limits are only approximate, as one is considering energies where higher-order
perturbative contributions are becoming important, they nonetheless demonstrate that one
may have a large energy range where the EFT description remains valid. For comparison,
the cross section for Higgs pair production used to extract δh3 is dominated by mhh . 1 TeV
even at FCC-hh [75]. Depending on their exact nature, new states arising at about 6TeV
could, however, be directly discovered at FCC-hh.

4.3 δh3/δV V ratio

Finally, we consider the δh3/δV V ratio which is the focus of this paper. In figure 5, we show
this quantity for a range of single-Higgs coupling deviations δV V , given by the standard
pNGB Higgs expression

√
1− v2/f2 − 1 , and a variety of n values. Contours of the

fine-tuning of the Higgs mass and vacuum expectation value are also shown. In parameter
regions with negligible fine-tuning, self-coupling corrections can be an order of magnitude
larger than single-Higgs coupling corrections, qualitatively consistent with the estimate

– 17 –



J
H
E
P
1
2
(
2
0
2
2
)
1
4
8

in eq. (2.6). For instance, δh3/δV V ≈ 30 is obtained for n = 6 and ∆ ≈ 60%. In absolute
terms, this corresponds to δh3 ≈ −200% and δV V ≈ −6% which is approximately matching
current LHC constraints on single-Higgs couplings. The same self-coupling deviation can
be achieved together with δV V ≈ −2.6%, which corresponds to the HL-LHC reach, for
n = 10 and a mild fine-tuning of ∆ ≈ 25%. An even larger δh3/δV V ≈ 75 ratio is then
obtained. Pushing δh3 further requires higher n, increasing the fine-tuning, and is ultimately
constrained by vacuum stability. In summary, Gegenbauer’s Twin provides yet another
class of models for which Higgs self-coupling measurements probe otherwise untouched
parameter space.

5 Comparison to previous work

There is already a significant literature considering BSM modifications of the Higgs self-
coupling, including [5–27]. Here, we briefly discuss those references which have compared
single-Higgs to self-coupling deviations in specific scenarios.

Reference [10] considered Higgs self-coupling modifications in models with mixed-in
singlet scalars, composite Higgs, and supersymmetric theories, concluding that in any
scenario where nothing else is discovered at the HL-LHC the maximum deviations are likely
to be at the ∼ 20% level, much less than found for the models considered in this work.
This can be understood as follows. The perturbative scenarios considered in [10] do not
have the same power-counting as the custodial quadruplet model, and hence display much
more modest corrections. The composite Higgs scenario assumes O(1) Wilson coefficients,
in contrast with the Gegenbauer’s Twin setup, again limiting the coupling corrections to
moderate values.

Reference [22] considered vacuum stability constraints, concluding that knowledge of
the full set of higher-dimension operators is required in order to make a definitive statement.
Both models discussed here illustrate this important caveat well. Perturbative unitarity
constraints were considered, concluding that large self-coupling deviations are possible.
Explicit models were also examined; in particular, large self-coupling modifications were
found when adding a scalar singlet to the SM.8 Weak triplet and quadruplet models were
also studied, with the conclusion that in these cases the self-coupling correction could be
at most a few percent. However, introducing only one electroweak multiplet at a time did
not realise the custodial limit, in which significant self-coupling corrections can be achieved
while remaining consistent with precision electroweak measurements.

Finally, [25] considered fine-tuning and vacuum stability aspects. Vacuum stability
constraints of the type of eq. (3.21) were used to derive |δh3 | . 2 for couplings of order
g∗ = c

1/4
6 = c

1/6
8 ≈ π and ξ = (g∗v/M)2 ≈ 0.1 (so M ≈ 2.4TeV). In the custodial

quadruplet model of section 3, larger couplings and smaller masses are however presently
8The authors of [21] note that this comes at the additional cost of some fine-tuning in the Higgs quartic.

We have not commented on Higgs naturalness for the custodial quadruplet, since the Higgs bilinear and
quartic are not strictly calculable quantities in this model. In contrast to a singlet scalar, the quadruplet
only induces, in general, contributions to the Higgs bilinear and quartic couplings at one h̄ order higher
than corrections to the Higgs self-coupling (the Φ̂H3 quartic term alone would only contribute to the Higgs
bilinear at the two-loop level, as can also be inferred from the power counting of section 2). The correlation
between Higgs naturalness and self-coupling corrections is thus weaker than in the singlet model.
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permitted since modifications of the single-Higgs couplings and T̂ parameter are further
suppressed in the EFT and loop expansions, compared to the correction to the Higgs
self-coupling. In the Gegenbauer’s Twin example of section 4, the Higgs potential receives
sizeable contributions from operators of dimension higher than 8, which were neglected
in the above vacuum stability considerations. Our all-order analysis, however, shows that
these do not allow to relax significantly fine-tuning and vacuum stability constraints on
self-coupling modifications.

6 Conclusions

If the most readily accessible Higgs boson couplings are SM-like, then how non-standard
could others, such as the self-coupling, reasonably be? In this work, we have attempted to
answer this question quantitatively. We have found on general theoretical grounds that the
ratio of BSM self-coupling modifications to vector coupling modifications, for generic UV
completions that are not fine-tuned, will satisfy∣∣∣∣ δh3

δV V

∣∣∣∣ . min
[(4πv

mh

)2
,

(
M

mh

)2
]
, (6.1)

where M is the lowest mass scale of new physics. This formula is essentially a consequence
of h̄ counting in classes of models primarily generating the |H|6 operator. As a supporting
proof-of-principle, we have presented a simple renormalisable extension of the SM by a
custodial weak quadruplet, which saturates the ratio in eq. (6.1) as a result of exhibiting
the required power-counting in the microscopic interactions. Furthermore, we have studied
a pNGB-like Higgs scenario, Gegenbauer’s Twin, which also comes close to saturating this
ratio in addition to solving the naturalness problem of the SM. Both of these models
populate an important corner of theory space in which Higgs self-coupling modifications
are dominant.

The punchlines for the experimental particle physics programme are simple. Even
though current LHC self-coupling analyses may appear weak as compared to more readily
testable coupling deviations, for certain classes of models they are already probing parameter
space that would otherwise be inaccessible at present. For future programmes, this will
remain true. Even if a Higgs factory like the FCC-ee yields a hZZ coupling measurement
at two-sigma precision of |δZZ | . 0.34%, the self-coupling deviations could in principle
remain as large as |δh3 | . 200% according to eq. (2.6), though in the models considered
here we found slightly more moderate values, |δh3 | . 50%. Any measurement bettering
this precision, whether at the 100% level at the LHC or down to the 10% level at future
colliders, would be a highly valuable probe of unexplored microscopic Higgs terrain. New
physics could first manifest itself in Higgs self-coupling measurements.

We conclude by emphasising that, if a deviation in the self-coupling were indeed
observed first, measuring the single-couplings would be of critical importance to characterise
the new physics. A global view of Higgs observables will be necessary in order to pin down
the underlying BSM theory. Given a deviation in δh3 , our results may then be interpreted
as providing a lower bound on δV V expected in generic models.
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A Custodial quadruplet decomposition

To understand the decomposition of the custodially symmetric representations into elec-
troweak quantum numbers, we work with the Φ̂ ∼ (4,4) representation of SU(2)L×SU(2)R.
The bifundamental Higgs field is written in terms of the doublet as

H =
(
εH∗ H

)
=
(
H∗2 H1
−H∗1 H2

)
.

The Lagrangian for the custodial quadruplet is

LΦ̂ = Lkin −
λ√
3

Φ̂ IJK
ijk H∗iIH

∗j
JH
∗k
K , (A.1)

where Lkin = 1
2Tr[DµΦ̂∗DµΦ̂−M2Φ̂∗Φ̂] and Tr[Φ̂∗Φ̂] = Φ̂∗ ijkIJKΦ̂ IJK

ijk . The Φ̂ decomposes
into two complex SU(2)L quadruplets, Φ ∼ 41/2 and Φ̃ ∼ 43/2 , as

Φ̂ 222
ijk = Φ̃ijk ,

Φ̂ 221
ijk = Φ̂ 212

ijk = Φ̂ 122
ijk = Φijk/

√
3 ,

Φ̂ 112
ijk = Φ̂ 121

ijk = Φ̂ 211
ijk = −εiaεjbεkcΦ∗ abc/

√
3 ,

Φ̂ 111
ijk = εiaεjbεkcΦ̃∗ abc ,

(A.2)

where Φ, Φ̃ are canonically normalised. Using Hi 1 = (εH∗)i and Hi 2 = H i we see that the
custodially symmetric interaction decomposes as

− λ
(
H∗H∗(εH)Φ + 1√

3
H∗H∗H∗Φ̃

)
+ h.c., (A.3)

where SU(2)L indices are suppressed. Thus, the full SU(2)L × SU(2)R symmetry enforces
the couplings in eq. (3.14).

B Vacuum stability at dimension-8

Following [25], we consider vacuum stability at small field values in an EFT featuring only
the dimension-6 and -8 contributions to the Higgs potential, eq. (3.18). Including operators
of even higher dimension would not qualitatively affect the implications of vacuum stability
on perturbative unitarity and the convergence of the EFT expansion.
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Similarly to eq. (1.1), let us define

δh4 ≡
Ch4 − CSM

h4

CSM
h4

(B.1)

from the coefficient of the on-shell, momentum-independent, four-Higgs amplitude. Quali-
tatively, vacuum stability at small field values demands that a large δh3 be compensated
by an even larger δh4 . Including only |H|6 and |H|8 operators, the exact vacuum stability
requirements are:

δh4 ≥


6 δh3 for δh3 ∈ [0, 2] ,
14 δh3 − 16 for δh3 ∈ [2, 4] ,
6 δh3 + (δh3)2 elsewhere .

(B.2)

In turn, this demands a minimal contribution to δh3 from the dimension-8 operator |H|8.
Recalling the decomposition of eq. (3.19) and defining the ratio r8

6 ≡ δ
(8)
h3 /δ

(6)
h3 , one ob-

tains that

δ
(6)
h3 ≤

8/(3r8
6 + 4) for r8

6 ≥ 0 ,

2r8
6/(1 + r8

6)2 for − 1 < r8
6 < 0 .

(B.3)

The second inequality is equivalent to eq. (3.20). For δ(6)
h3 ∈ [−4, 16/11], vacuum stability

at small field values does therefore not require the relative contribution of the dimension-8
operator |H|8 to be larger than 50%, i.e. |r8

6| ≤ 1/2.
The vacuum stability requirements of eq. (B.2) imply allowed intervals on δh3
1−

√
1− 2δ(6)

h3 for δ(6)
h3 < 0

δ
(6)
h3 for δ(6)

h3 ∈ [0, 2]
≤ δh3 ≤


1 +

√
1− 2δ(6)

h3 for δ(6)
h3 < −4

(8− δ(6)
h3 )/3 for δ(6)

h3 ∈ [−4, 2]
,

−
√

2δ(8)
h3 ≤ δh3 ≤


δ

(8)
h3 /4 + 2 for δ(8)

h3 ∈ [0, 4]√
2δ(8)
h3 for δ(8)

h3 > 4
,

(B.4)
which depend on c6, c8, and M through the combinations

δ
(6)
h3 = 2c6v

4

M2m2
h

≈ c6
(4π)4

(110TeV
M

)2
,

δ
(8)
h3 = 4c8v

6

M4m2
h

≈ c8
(4π)6

(22TeV
M

)4
.

(B.5)

In particular, this leads to eq. (3.21).
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