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1 Introduction and summary

The dream of a bootstrapper is to map out the space of consistent Quantum Field Theories
(QFTs). Given the vastness of this space, in practice, one can only plot its projection onto
a few cleverly chosen coordinates in theory space. Ideally, these coordinates correspond
to physical observables that characterize the QFT across all length scales, from the UV
Conformal Field Theory (CFT) to the IR, which we assume to be gapped. On the one hand,
the S-matrix bootstrap focuses on IR observables like ratios of masses of stable particles and
coupling constants defined in terms of scattering amplitudes, for recent progress see [1–34].1

On the other hand, the conformal bootstrap focuses on UV data like scaling dimensions
and Operator Product Expansion (OPE) coefficients of the UV CFT, for a review see [36].2

In this work, we extend the S-matrix bootstrap method in four spacetime dimensions to
gain access to the a-anomaly of the UV CFT, which is a precise measure of its degrees of
freedom. This is similar to the spirit of [20] in two spacetime dimensions, that incorporated
the central charge of the UV CFT into the S-matrix bootstrap framework.

Our strategy is to follow Komargodski and Schwimmer [38] and probe the QFT with
an external massless scalar field ϕ(x) which creates a massless particle B from the vacuum,
usually called the dilaton.3 As we review in section 2, this construction does not affect the
scattering amplitudes of the original QFT but it generates non-trivial scattering between
dilaton particles. In particular, the a-anomaly aUV of the UV CFT can be read off from
the low energy behavior

T̃BB→BB = aUV (s2 + t2 + u2) + . . . , (1.1)

where s, t, u are the standard Mandelstam invariants for two to two scattering.
For simplicity, we study QFTs with a Z2 symmetry and a single stable scalar particle of

mass m and Z2 odd, which we shall denote by A. The combined system QFT + dilaton has
two asymptotic states: the original scalar particle A and the new massless particle describ-
ing the dilaton B. We study the complete set of 2 to 2 scattering amplitudes in this system,
see figure 1. Then we write all crossing equations and unitarity conditions such a system
must satisfy. All the details of this setup are given in section 3. In addition, we impose the
universal soft behavior of T̃AB→AB derived in section 4. In order to obtain concrete results
we employ the numerical approach of [3, 9]. Let us now briefly summarize our main findings.

We define non-perturbative couplings in terms of the physical scattering amplitude. In
this work we focus on

TAA→AA(s0, t0, u0), ∂2
sTAA→AA(s0, t0, u0), (1.2)

where (s0, t0, u0) is a point inside the Mandelstam triangle defined by 0 ≤ s0, t0, u0 ≤ 4m2.
We will consider two choices. The first choice is the crossing symmetric point s0 = t0 =

1For an overview of recent results and discussion of some future directions, see [35].
2For an overview of the most recent progress and discussion of some further directions see also [37].
3The dilaton B in this paper should not be confused with the Nambu-Goldstone boson of spontaneously

broken conformal symmetry which is also called the dilaton. As explained in section 2.2 the better name
for the former dilaton would be the compensator particle. However in this paper we keep the commonly
used terminology.
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Figure 1. The complete system of scattering amplitudes of the Z2 odd particle A with mass m
and the massless dilaton B.

u0 = 4m2/3 which leads to the definition of the parameters λ0 and λ2, namely

λ0 ≡
1

32πTAA→AA(4m2/3, 4m2/3, 4m2/3),

λ2 ≡
1

32πm
4∂2
sTAA→AA(4m2/3, 4m2/3, 4m2/3).

(1.3)

The second choice is the “forward” point s0 = u0 = 2m2 and t = 0 which leads to the
definition of the parameters Λ0 and Λ2, namely

Λ0 ≡
1

32πTAA→AA(2m2, 0, 2m2), Λ2 ≡
1

32πm
4∂2
sTAA→AA(2m2, 0, 2m2). (1.4)

Crossing, unitarity and analyticity put strong bounds on the above parameters. For
instance we found that4

−6 .λ0 . +2.6613, 0 ≤ λ2 . +2, (1.5)
−3 .Λ0 . +3, 0 ≤ Λ2 . +0.7. (1.6)

The minimum of the a-anomaly as a function of the above parameters is given in figures 2
and 3. All consistent QFTs must live in the allowed region which we shaded in blue. We
mark the absolute minimum of the a-anomaly with a red dot in these figures. Our best
numerical estimate is

a/afree & 0.3 , (1.7)

with afree the a-anomaly of a free scalar field. We refer the reader to section 5 for a detailed
discussion of the numerical uncertainties of these results. We do not know if there is any 4d
QFT that saturates the lower bound (1.7). In fact, we do not know of any theory with an
a-anomaly smaller than afree. We conclude in section 6 with a discussion of open questions
and future work.

2 Review of classic results

In this paper we work in 4d Minkowski flat space with metric:

ηµν = ηµν = diagonal{−1,+1,+1,+1}. (2.1)
4These numerical bounds are a rough estimate based on our numerical results described in section 5.

The exception is the upper bound on λ0 which can be determined quite precisely [3]. For the recent more
detailed study of these observables see [33].
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Figure 2. Minimum of the a-anomaly of the UV CFT as a function of the parameters λ0 and
λ2 defined in (1.3). The red dot marks the absolute minimum. The red vertical lines indicate the
boundaries of the allowed regions for λ0 and λ2.
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Figure 3. Minimum of the a-anomaly of the UV CFT as a function of the parameters Λ0 and
Λ2 defined in (1.4). The red dot marks the absolute minimum. The red vertical lines indicate the
boundaries of the allowed regions for Λ0 and Λ2.

All the quantum field theories have a very special operator called the stress-tensor Tµν(x).
It is symmetric in its two Lorentz indices and obeys conservation law, namely

Tµν(x) = T νµ(x), ∂µT
µν(x) = 0. (2.2)

2.1 Stress tensor and trace anomaly in CFTs

Let us start the discussion by considering conformally invariant quantum field theory. The
conformal symmetry puts severe constraints on the form of correlation functions. In [39]
it was shown that the most general two- and three-point functions of the stress tensor in
CFTs have the following form

〈0|Tµν(x1)T ρσ(x2)|0〉= CT
x8

12
×Tµν;ρσ

0 , (2.3)

〈0|Tµν(x1)T ρσ(x2)Tαβ(x3)|0〉= 1
x4

12x
4
23x

4
31

(
ATµν;ρσ;αβ

1 +BTµν;ρσ;αβ
2 +CTµν;ρσ;αβ

3

)
. (2.4)

Here the objects T0, T1, T2 and T3 take care of the correct behaviour of the correlation
functions under conformal transformations. They are called tensor structures. The stan-
dard basis for these tensor structures is defined in appendix A. The coefficient CT ≥ 0 is
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usually referred to as the central charge. The coefficients A, B and C are called the OPE
coefficients since they appear in the OPE expansion of the stress-tensor with itself. All of
them are real quantities. Due to the conformal Ward identities5 the following relation holds

CT = π2

3
(
14A− 2B− 5C

)
. (2.5)

Summarizing, there are three independent parameters describing the 2- and the 3-point
function of the stress-tensor. One can choose these three parameters to be for example
{CT , A, B}. It is standard to also define the following quantities

a ≡ π4

64× 90
(
9A− 2B− 10C

)
, c ≡ π4

64× 30
(
14A− 2B− 5C

)
= π2

64× 10CT . (2.6)

Finally we recall that in CFTs the trace of the stress-tensor vanishes, namely

Tµµ(x) = 0. (2.7)

Let us now discuss CFTs on the curved background which is described by the metric
gµν(x). Conformal invariance on a curved background is achieved by requiring diff×Weyl
invariance. We recall that the Weyl transformation is defined as

gµν(x)→ e2σ(x)gµν(x), O(x)→ e−∆Oσ(x)O(x), (2.8)

where σ(x) is an arbitrary scalar function, O(x) is a local scalar operator and ∆O is the
scaling dimension of the operator O(x). Contrary to the flat space-time where (2.7) holds,
for CFTs on the curved background we instead have

〈0|Tµµ(x)|0〉g = −a× E4 + c×W 2, (2.9)

where E4 is the Euler density defined in (A.10) and W 2 is the square of Weyl tensor
defined in (A.11). The subscript g in the left-hand side of (2.9) indicates that the CFT
is on the curved background rather than on the flat one. The coefficients a and c are
exactly the ones introduced in (2.6). They are called the Weyl anomalies as well as trace
anomalies. The name Weyl anomaly is appropriate because exact Weyl invariance implies
〈0|Tµµ(x)|0〉g = 0.

2.2 Compensator field and the dilaton particle

Let us define a generic quantum field theory as the renormalization group flow from the UV
to the IR fixed points which are described by the UV and the IR conformal field theories.
Such a theory in curved background can be described by the action

A(g,Mi) ≡ AUV CFT(g) +Adeformation(g,Mi), (2.10)
5All the generators of the conformal transformation can be written as certain integral of the stress-

tensor, see for example [39]. By performing appropriate integrals over one stress-tensor in (2.4) and using
the properties of the generators we effectively obtain the two-point function (2.3).
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where the deformation of the UV CFT has the form

Adeformation(g,Mi) =
∑
i

∫
d4x
√
−g

(
λiM

4−∆i
i Oi(x)

)
. (2.11)

Here Oi(x) are relevant scalar UV CFT operators (operators obeying ∆i < 4), λi are di-
mensionless coefficients andMi are the mass scales which control when the deformation due
to a particular operator becomes important. The explicit dependence on gµν(x) indicates
that we work on a generic curved background. The QFT in flat space-time is recovered by
setting gµν(x) to the flat metric (2.1). The determinant of the metric is defined as follows

g ≡ det gµν(x). (2.12)

The action (2.11) is diff invariant by construction.
In curved background the stress-tensor is defined as

Tµν(x) = 2√
−g

δA(g,Mi)
δgµν(x) . (2.13)

Under the Weyl transformation (2.8), the trace of the stress-tensor can be defined as a
variation of the action with respect to the infinitesimal Weyl transformation parameter σ
in the following way,

Tµµ (x) ≡ 1√
−g

δWA(g,Mi)
δσ(x) . (2.14)

Performing the Weyl transformation (2.8) in (2.10) and focusing on flat space-time we
obtain the trace of the stress-tensor using the above definition, which reads

gµν = ηµν : Tµµ(x) =
∑
i

λi(4−∆i)M4−∆i
i Oi(x). (2.15)

This is the standard result in QFT, namely the trace is proportional to the deforming
operators.

The correlation functions of the stress-tensor both in the UV and IR are described
by (2.3) and (2.4) where the coefficients CT , A, B and C have an additional label UV and
IR respectively. Out of all the above coefficients the a trace anomaly is the most interesting.
In [40] it was conjectured that

aUV − aIR ≥ 0, (2.16)

where the equality can hold only if there is no flow and the theory remains conformal, in
other words if Adeformation = 0 in (2.10). The inequality (2.16) is known as the a-theorem.
It was shown to hold in perturbation theory in [41, 42]. It was proven non-perturbatively
in [38], for further discussion see also [43–45]. The proof of [38] gives also the prescription on
how to probe/compute the difference (aUV−aIR) in a given QFT. One of the main ingredi-
ents of this proof is the compensator field and the associated particle which we call the dila-
ton. In the rest of this section we will define the compensator field and the dilaton particle.

Let us work with the action (2.10) on a curved background. It is diff invariant but not
Weyl invariant. There are two sources which break the Weyl symmetry, namely the trace
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anomaly of the UV and IR CFTs given by (2.9) and the deformation part of the action
Adeformation in (2.10) which explicitly depends on the scale. The latter breaking can be
compensated for in a modified theory with the following action

A′(g,Mi,Ω) ≡ A(g,MiΩ(x)) +Adynamics(g,Ω), (2.17)

where Ω(x) is a real scalar field called the compensator field and the action A was defined
in (2.10). Both the metric gµν(x) and the compensator field Ω(x) are non-dynamical
fields. We can however promote them to dynamical probe fields by adding a kinetic term
Adynamics(g,Ω). We will discuss possible convenient choices for this term in the end of this
subsection. The compensator field Ω(x) can be represented in the following two ways

Ω(x) = e−τ(x) = 1− ϕ(x)√
2f
. (2.18)

We refer to the real scalar fields τ(x) and ϕ(x) also as the compensator or the dilaton
fields interchangeably. Here f is a new parameter with mass dimension one. The following
relation holds

τ(x) = ϕ(x)√
2f

+O

( 1
f2

)
. (2.19)

Let us now emphasize that the action (2.17) can be made invariant under the Weyl trans-
formation (2.8) given that the dilaton transforms in the following way

τ(x)→ τ(x) + σ(x) (2.20)

and that the term Adynamics is chosen appropriately. The particle created by the compen-
sator (or the dilaton) field ϕ(x) from the vacuum is called the dilaton particle. It will be
denoted by B throughout this paper.

The simplest choice for Adynamics(g,Ω), already used in [38], reads as

Adynamics(g,Ω) = 1
6 f

2
∫
d4x

√
−ĝ R(ĝ), (2.21)

where we have defined

ĝµν ≡ e−2τgµν . (2.22)

The action (2.21) is Weyl invariant at the classical level but not at the quantum level.
One can simply see this for instance by taking the f → ∞ limit and focusing on the flat
space. The action (2.21) then reduces to the standard kinetic term describing free massless
scalar. Free massless scalar gives a particular example of a CFT with trace anomalies a
and c reported in (A.15). The latter break Weyl invariance via (2.9). There are many
other possible choices of Adynamics(g,Ω). Let us stress, that these choices do not have to
be Weyl invariant even classically.

– 7 –
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Let us now focus on flat space-time gµν = ηµν . Using (2.11), (2.15), (2.18) and (2.21)
we can rewrite the modified action (2.17) in the following equivalent way6

A′(Mi, ϕ) ≡ A(Mi)−
1√
2f

∫
d4x Tµµ(x)ϕ(x)−

∫
d4x

(1
2∂µϕ(x)∂µϕ(x)

)
+O

( 1
f2

)
.

(2.23)
From (2.23) it becomes obvious that in the limit f →∞ the interaction between the dilaton
and the rest of the system disappears and the action (2.17) simply becomes the original
one plus the freely propagating dilaton field. The dilaton field ϕ(x) should be seen as a
probe for a given QFT which does not disturb it in the limit f →∞.

2.3 a-theorem

Let us now take the UV and IR limits of the action (2.17). They can be written as7

A′UV(g,Ω) ≡ AUV CFT(g) +Adynamics(g,Ω),
A′IR(g,Ω) ≡ AIR CFT(g) +Adilaton EFT(g,Ω) +Adynamics(g,Ω).

(2.24)

Here Adilaton EFT is the effective field theory (EFT) action describing the dilaton interaction
at low energy. In order to obtain it in some explicit QFT model one needs to integrate out
all the “massive” degrees of freedom throughout the RG flow which is almost impossible
in practice. Luckily there is a model independent way to compute Adilaton EFT which we
will now review.

Consider the action (2.17). It breaks Weyl invariance in a very special way. The Weyl
symmetry breaking is coming only from the UV and IR fixed points (2.24). Taking into
account (2.9) we get

δWA
′
UV(g,Ω) =

∫
d4x
√
−gσ(x)

(
− aUV × E4 + cUV ×W 2

)
+ δWAdynamics(g,Ω),

δWA
′
IR(g,Ω) =

∫
d4x
√
−gσ(x)

(
− aIR × E4 + cIR ×W 2

)
+ δWAdilaton EFT(g,Ω) + δWAdynamics(g,Ω).

(2.25)

Here δW stands for the infinitesimal Weyl variation.
Let us now assume that the Weyl anomaly in the UV matches the Weyl anomaly in

the IR, in other words
δWA

′
UV(g,Ω) = δWA

′
IR(g,Ω). (2.26)

6If in the UV CFT there exists more than one relevant operator which can be used to deform the theory
(i.e. for i > 1), the neglected terms starting from order O(f−2) in equation (2.23) can not be expressed in
terms of the trace of the stress-tensor in general. Indeed, the order O(f−2) contribution in A′(Mi) turns
out to be 1

4f2

∑
i

(4 − ∆i)(3 − ∆i)
∫
d4x ϕ2(x)

(
λiM

4−∆i
i Oi(x)

)
, which is not expressible in terms of the

trace of the stress tensor given in equation (2.15) for i > 1.
7Let us emphasize that we have made here a very non-trivial statement that the IR dilaton EFT action

completely decouples from the IR CFT even though dilaton self interaction is present. One can argue for
this at least in the limit of flat space-time: by construction (2.17), dilaton couples only to mass parameters,
IR CFT instead does not have dimensionful parameters.
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Notice that contrary to the ’t Hooft anomaly matching, there is no proof for the Weyl
anomaly matching (2.26) and it might not be true in general.8 For further discussion on
Weyl anomaly matching and its consequences see [48]. Plugging (2.25) in (2.26) we obtain
the following variational equation

δWAdilaton EFT(g,Ω) =
∫
d4x
√
−gσ(x)

(
−
(
aUV − aIR

)
×E4 +

(
cUV − cIR

)
×W 2

)
. (2.27)

The most general solution for this equation can be written in the following form

Adilaton EFT(g,Ω) = −(aUV − aIR)×Aa(g,Ω) + (cUV − cIR)×Ac(g,Ω) + Ainvariant(g,Ω),
(2.28)

where the two newly introduced terms Aa(g,Ω) and Ac(g,Ω) behave in the following way
under the infinitesimal Weyl transformation

δWAa(g,Ω) =
∫
d4x
√
−gσ(x)E4, δWAc(g,Ω) =

∫
d4x
√
−gσ(x)W 2. (2.29)

The term Ainvariant instead remains completely invariant. The solution to the above re-
quirement was found in [38, 49], it reads

Aa(g,Ω) =
∫
d4x
√
−g

(
τE4 + 4

(
Rµν − 1

2g
µνR

)
(∂µτ)(∂ντ)− 4(∂τ)2(∂2τ) + 2(∂τ)4

)
,

Ac(g,Ω) =
∫
d4x
√
−gτ(x)W 2. (2.30)

This solution is not easy to obtain but it is easy to check that it satisfies (2.29). It is also
important to stress that even though (2.26) might not hold for every QFT, the weaker
Wess-Zumino consistency condition exists, see [48], which implies that at the very least the
first line in (2.30) always holds true.

The most general Weyl invariant action can be parametrized as follows

Ainvariant(g,Ω) =
∫
d4x

√
−ĝ
(
M4λ+M2r0R̂ + r1R̂

2 + r2Ŵ
2 + r3Ê4 + . . .

)
. (2.31)

Here the Ricci scalar, Weyl tensor and the Euler density are built out of the metric (2.22).
The real dimensionless parameters λ, r0, r1, r2 and r3 depend on a particular QFT. The
EFT cut-off scale M can be chosen to be the lowest deformation energy scale of the UV
CFT. In spontaneously broken QFTs λ = 0, but in generic QFTs λ 6= 0. However, when
defining the action (2.17), if needed, one can fine tune the counterterms in such a way that
λ = 0.

In flat space the solution (2.28) together with (2.30) and (2.31) simply leads to

Adilaton EFT(ϕ) = M4λ

4f4

∫
d4x

(
ϕ(x))4 + 6M2r0

f2

∫
d4x

(
− 1

2∂µϕ(x)∂µϕ(x)
)

+ 36r1

∫
d4x

( 1
2f2 + ϕ(x)√

2f3 + 3ϕ(x)2

4f4

)
(∂2ϕ(x))2

+ aUV − aIR

2f4 ×
∫
d4x

(
∂ϕ(x)

)4 + O
(
f−5∂4ϕ5 , f−4∂6ϕ4). (2.32)

8In fact the authors of [46], see also [47], found an apparent mismatch of the c-anomaly on the Higgs
branch of N = 2 super-conformal field theory where conformal symmetry is spontaneously broken.
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The term proportional to r0 gives an O(f−2) correction to the dilaton kinetic term coming
from Adynamics(g,Ω). In the limit f → ∞ it should be neglected. The interacting part of
the dilaton scattering process B(p1)B(p2)→ B(p3)B(p4) at low energy is described by the
effective action (2.32) and has the following form

lim
f→∞

f4TBB→BB(s, t, u) = 6M4λ+ (aUV − aIR)× (s2 + t2 + u2) +O(s3). (2.33)

where s = −(p1 +p2)2 , t = −(p1−p3)2 , u = −(p1−p4)2 with s+ t+u = 0. Note, that the
term proportional to r1 in (2.32) does not contribute to this scattering amplitude, since it
vanishes under the dilaton equation of motion. Using the standard approach one can write
the following dispersion relation in the f →∞ limit

aUV − aIR = f4

2
1

2πi

∮
0

ds

s3 TBB→BB(s, 0,−s)

= f4

π

∫ ∞
0

ds

s3 ImTBB→BB(s, 0,−s). (2.34)

Since ImTBB→BB(s, 0,−s) = s σ(s) ≥ 0 where σ(s) is the total cross section for the
scattering of BB → anything, (aUV − aIR) is non-negative. This proves the a-theorem.

Application in free scalar theory. As an application of the a-theorem consider the
UV CFT which is generated by the free massless field Φ(x), namely we have the action

AUV CFT = −
∫
d4x

(1
2∂µΦ(x)∂µΦ(x)

)
. (2.35)

It is straightforward to compute then the two- and tree-point correlation functions of the
stress-tensor with itself. One obtains (2.3) and (2.4) with

CUV
T = 1

3π4 , AUV = 1
27π6 , BUV = − 4

27π6 , CUV = − 1
27π6 . (2.36)

Let us now add the following deformation

Adeformation(m) = −1
2m

2Φ(x)2, (2.37)

where m becomes the mass of the field Φ. This triggers the flow to an empty IR fixed
point, thus in the deep IR we simply have

CIR
T = 0, AIR = 0, BIR = 0, CIR = 0. (2.38)

As a result according to (2.6) we get the following UV an IR a-anomaly

aUV = 1
5760π2 , cUV = 1

1920π2 , aIR = 0, cIR = 0. (2.39)

Using the modified action (2.23) we can also compute the dilaton scattering at low
energies. We get

lim
f→∞

f4TBB→BB(s, t, u) = 1
5760π2 × (s2 + t2 + u2) +O(s3). (2.40)

The details of the computation are given in appendix B. The result (2.40) is in a perfect
agreement with the a-theorem sum-rule (2.33) and (2.39).
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3 Non-perturbative S-matrix bootstrap setup

In this section we explain our framework in details. We define scattering and partial
amplitudes of particles A and B in section 3.1. We write down all the crossing equations
for the scattering amplitudes in section 3.2. We construct unitarity conditions on the partial
amplitudes in section 3.3 assuming that B is a generic massless particle. In section 3.4 we
discuss further restrictions on the scattering amplitudes and modifications of the unitarity
conditions in the case when B is the dilaton in the f →∞ limit.

3.1 Scattering and partial amplitudes

Let us consider a QFT which contains two different scalar particles A and B with the
masses

mA = m, mB = 0. (3.1)

Here and in the next two section we will not impose that B is the dilaton particle, it will
be enough to treat it as a generic massless scalar particle. The requirement that B is the
dilaton will be imposed only in section 3.4. The particles A and B are described by the
following asymptotic states

|A〉in≡ |mA, ~p〉in, |A〉out≡ |mA, ~p〉out, |B〉in≡ |mB, ~p〉in, |B〉out≡ |mB, ~p〉out. (3.2)

For simplicity we assume the presence of the Z2 symmetry. We require that the particle
of type A is odd and the particle of type B is even under this symmetry. In other words

Z2 : |A〉in → −|A〉in, |B〉in → +|B〉in. (3.3)

The same transformation properties hold for the out states.
In this work we will be interested in the following scattering amplitudes

AA→ AA, AA→ BB, AB → AB, BB → BB. (3.4)

The presence of the Z2 symmetry required above forbids all the two to two scattering
process with an odd number of particles of type A. We define the scattering amplitudes
describing the processes (3.4) as

SAA→AA(s, t, u)× (2π)4δ4(p1 + p2 − p3 − p4) ≡ out〈A3, A4|A1, A2〉in,
SAA→BB(s, t, u)× (2π)4δ4(p1 + p2 − p3 − p4) ≡ out〈B3, B4|A1, A2〉in,
SAB→AB(s, t, u)× (2π)4δ4(p1 + p2 − p3 − p4) ≡ out〈A3, B4|A1, B2〉in,
SBB→BB(s, t, u)× (2π)4δ4(p1 + p2 − p3 − p4) ≡ out〈B3, B4|B1, B2〉in.

(3.5)

Here we used the following short-hand notation for describing the two-particle in and out
asymptotic states

|A1, A2〉in ≡
1√
2

(
|mA, ~p1 〉in ⊗ |mA, ~p2 〉in + |mA, ~p2 〉in ⊗ |mA, ~p1 〉in

)
,

|A1, B2〉in ≡ |mA, ~p1 〉in ⊗ |mB, ~p2 〉in,

|B1, B2〉in ≡
1√
2

(
|mB, ~p1 〉in ⊗ |mB, ~p2 〉in + |mB, ~p2 〉in ⊗ |mB, ~p1 〉in

)
,

(3.6)
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where ⊗ denotes the ordered tensor product. Notice that the two-particle states which
consist of particles of type A or B only are totally symmetric. The factor

√
2 is introduced

to comply with the standard normalization conditions which will be provided below. The
Mandelstam variables are defined as

s ≡ −(p1 + p2)2, t ≡ −(p1 − p3)2, u ≡ −(p1 − p4)2. (3.7)

As usual these are not linearly independent due to the following relations

s+ t+ u = m2
1 +m2

2 +m2
3 +m2

4, (3.8)

where mi are the masses of particles participating in the two to two scattering. This
constraint is thus different for each process in (3.5). Let us write here this constraint
precisely for each process separately

AA→ AA : s+ t+ u = 4m2,

AA→ BB : s+ t+ u = 2m2,

AB → AB : s+ t+ u = 2m2,

BB → BB : s+ t+ u = 0.

(3.9)

It is useful to write the four-momentum pµ in the spherical coordinates. One has

pµ = {p0, ~p }, ~p = {p cosφ sin θ, p sinφ sin θ, p cos θ}, p ≡ |~p |. (3.10)

Let us discuss the normalization of states. The same normalizations holds for both in and
out states. As a result below we write explicitly only the normalization of in states. The
one-particle states are normalized in the following way

in〈mA, ~p1|mA, ~p2〉in = 2
√
m2 + p2

1 × (2π)3δ(3)(~p1 − ~p2),

in〈mA, ~p1|mB, ~p2〉in = 0,

in〈mB, ~p1|mB, ~p2〉in = 2p1 × (2π)3δ(3)(~p1 − ~p2).

(3.11)

The normalization of two-particle states (3.6) follows immediately and read

in〈A3,A4|A1,A2〉in = 4(2π)6
√
m2 +p2

1

√
m2 +p2

2

×
(
δ(3)(~p1−~p3)δ(3)(~p2−~p4)+δ(3)(~p1−~p4)δ(3)(~p2−~p3)

)
,

in〈B3,B4|A1,A2〉in = 0,

in〈A3,B4|A1,B2〉in = 4(2π)6p2

√
m2 +p2

1×δ
(3)(~p1−~p3)δ(3)(~p2−~p4), (3.12)

in〈B3,B4|B1,B2〉in = 4(2π)6p1p2×
(
δ(3)(~p1−~p3)δ(3)(~p2−~p4)+δ(3)(~p1−~p4)δ(3)(~p2−~p3)

)
.

We can finally define the interacting part of the scattering amplitudes. This is done by
subtracting the trivial normalization terms (which describe particles propagating without
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interacting), more precisely

iTAA→AA(s, t, u)× (2π)4δ4(p) ≡ out〈A3, A4|A1, A2〉in − in〈A3, A4|A1, A2〉in,
iTAA→BB(s, t, u)× (2π)4δ4(p) ≡ out〈B3, B4|A1, A2〉in − in〈B3, B4|A1, A2〉in,
iTAB→AB(s, t, u)× (2π)4δ4(p) ≡ out〈A3, B4|A1, B2〉in − in〈A3, B4|A1, B2〉in,
iTBB→BB(s, t, u)× (2π)4δ4(p) ≡ out〈B3, B4|B1, B2〉in − in〈B3, B4|B1, B2〉in,

(3.13)

where in order to make the formulas more compact we have introduced the following short-
hand notation

δ4(p) ≡ δ4(p1 + p2 − p3 − p4). (3.14)

Notice the presence of the imaginary unit in the left-hand side which is introduced in order
to match the standard conventions.

3.2 Crossing equations

The crossing equations for the process AA → AA and BB → BB are extremely simple.
They require that the associated amplitudes are fully symmetric under any permutations
of the Mandelstam variables, namely

TAA→AA(s, t, u) = TAA→AA(t, s, u) = TAA→AA(u, t, s), (3.15)
TBB→BB(s, t, u) = TBB→BB(t, s, u) = TBB→BB(u, t, s). (3.16)

Things are more complicated for the processes AA → BB and AB → AB. They are
related by crossing. Recall that the exchange of particles 14 and 23 lead to the s-t crossing
equations, instead the exchange of particles 13 and 24 lead to the s-u crossing equations.
In other words

TAB→AB(s, t, u) = TAA→BB(t, s, u) = TBB→AA(t, s, u), (3.17)
TAB→AB(s, t, u) = TAB→AB(u, t, s). (3.18)

From the relation (3.17) it follows immediately that

TBB→AA(s, t, u) = TAA→BB(s, t, u). (3.19)

3.3 Unitarity

The two-particle states (3.6) do not transform in the irreducible representation of the
Little group SO(3). We can however decompose them into irreducible representations, see
for example [19, 20].

To begin with let us evaluate the states (3.6) in the center of mass frame, namely when
the directions of particles are aligned and opposite to each other

~p1 = +~p, ~p2 = −~p. (3.20)

In spherical coordinates the momentum ~p reads as

+ ~p = (p, θ, φ), −~p = (p, π − θ, π + φ), θ ∈ [0, π], φ ∈ [0, 2π]. (3.21)
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Here p ≡ |~p |. We denote the states (3.6) in this particular frame by

|A1, A2〉com
in , |A1, B2〉com

in , |B1, B2〉com
in . (3.22)

These states depend on the masses mA, mB and the spherical coordinates p, θ and φ. The
same notation holds for the out states. According to equations (2.29) and (2.30) in [19] we
can write

|A1, A2〉com
in =

√
2
∑
`,λ

CAA` (p)e−iλφd(`)
λ0 (θ)|

√
s,~0; `, λ〉AAin ,

|A1, B2〉com
in =

∑
`,λ

CAB` (p) e−iλφd(`)
λ0 (θ)|

√
s,~0; `, λ〉ABin ,

|B1, B2〉com
in =

√
2
∑
`,λ

CBB` (p)e−iλφd(`)
λ0 (θ)|

√
s,~0; `, λ〉BBin ,

(3.23)

where d(`)
λ1λ2

(θ) is the small Wigner d matrices and |
√
s,~0; `, λ〉 are states in the irreducible

representation of the SO(3) Little group. Here we have also introduced the object C` which
is defined as

C`(p)2 ≡ 4π (2`+ 1)×
√
s

p
, (3.24)

where
√
s is the total energy of the two-particle state which is

AA :
√
s = 2

√
m2 + p2,

AB :
√
s =

√
m2 + p2 + p,

BB :
√
s = 2p.

(3.25)

The small Wigner d-matrices are defined for example in equation (2.9) of [19]. The states
in the right-hand side of (3.23) transform in the irreducible representation of the Lorentz
group. They have the Little group spin ` and helicity λ = −`, . . . ,+`. They also have
the zero total spatial momentum ~0. Their normalization is completely fixed by (3.23)
and (3.12).

By using the orthogonality of the small Wigner d-matrices we can invert the decom-
positions (3.23) and write

|
√
s,~0; `, λ〉AAin = ΠAA

` |A1, A2〉com
in ,

|
√
s,~0; `, λ〉ABin = ΠAB

` |A1, B2〉com
in ,

|
√
s,~0; `, λ〉BBin = ΠBB

` |B1, B2〉com
in ,

(3.26)

where Π` are the projectors to the definite Little group spin. Their explicit form reads

ΠAA
` ≡ 2`+ 1

4π
√

2CAA` (p)

∫ 2π

0
dφ eiλφ

∫ +1

−1
d cos θ d(`)

λ0 (θ),

ΠAB
` ≡ 2`+ 1

4πCAB` (p)

∫ 2π

0
dφ eiλφ

∫ +1

−1
d cos θ d(`)

λ0 (θ),

ΠBB
` ≡ 2`+ 1

4π
√

2CBB` (p)

∫ 2π

0
dφ eiλφ

∫ +1

−1
d cos θ d(`)

λ0 (θ).

(3.27)
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Let us define the partial amplitudes S`(s) as the following matrix elements

S`AA→AA(s)× δ`′`δλ′λ(2π)4δ(
√
s
′ −
√
s)δ3(~0) ≡ AA

out〈
√
s
′
,~0; `′, λ′|

√
s,~0; `, λ〉AAin ,

S`AA→BB(s)× δ`′`δλ′λ(2π)4δ(
√
s
′ −
√
s)δ3(~0) ≡ BB

out 〈
√
s
′
,~0; `′, λ′|

√
s,~0; `, λ〉AAin ,

S`AB→AB(s)× δ`′`δλ′λ(2π)4δ(
√
s
′ −
√
s)δ3(~0) ≡ AB

out 〈
√
s
′
,~0; `′, λ′|

√
s,~0; `, λ〉ABin ,

S`BB→BB(s)× δ`′`δλ′λ(2π)4δ(
√
s
′ −
√
s)δ3(~0) ≡ BB

out 〈
√
s
′
,~0; `′, λ′|

√
s,~0; `, λ〉BBin .

(3.28)

Using (3.26) and (3.27) we obtain the explicit relations between the partial amplitudes and
the scattering amplitudes. The detailed steps in this derivation are explained in section
2.5 in [19]. They read

S`AA→AA(s) = 1
32π

(
1− 4m2/s

)1/2 ∫ +1

−1
d cos θP`(cos θ)SAA→AA(s, t, u),

S`AA→BB(s) = 1
32π

(
1− 4m2/s

)1/4 ∫ +1

−1
d cos θP`(cos θ)SAA→BB(s, t, u),

S`AB→AB(s) = 1
16π (1−m2/s)

∫ +1

−1
d cos θP`(cos θ)SAB→AB(s, t, u),

S`BB→BB(s) = 1
32π

∫ +1

−1
d cos θP`(cos θ)SBB→BB(s, t, u),

(3.29)

where P`(cos θ) are the Legendre polynomials. They are related to the small Wigner d ma-
trices as P`(cos θ) = d

(`)
00 (θ). To complete these equations it is important to specify the rela-

tion between the Mandelstam variables and the scattering angle for each process. One has

AA→ AA : t = 1
2(4m2 − s)(1− cos θ), u = 1

2(4m2 − s)(1 + cos θ),

AA→ BB : t = m2 − s

2 + 1
2

√
s(s− 4m2) cos θ, u = m2 − s

2 −
1
2

√
s(s− 4m2) cos θ,

AB → AB : t = (s−m2)2(cos θ − 1)
2s , u = 2m4 − (s−m2)2(cos θ + 1)

2s ,

BB → BB : t = −s2 (1− cos θ), u = −s2 (1 + cos θ). (3.30)

In (3.29) we found the relations between the partial amplitudes and the full scattering
amplitudes. We can further rewrite them by splitting the scattering amplitudes into their
trivial and their interacting parts given by (3.12) and (3.13). Performing the explicit inte-
gral over the trivial part we obtain the final expressions

S`AA→AA(s) = 1 + iT `AA→AA(s),
S`AA→BB(s) = 0 + iT `AA→BB(s),
S`AB→AB(s) = 1 + iT `AB→AB(s),
S`BB→BB(s) = 1 + iT `BB→BB(s),

(3.31)

– 15 –



J
H
E
P
1
2
(
2
0
2
2
)
1
3
6

where we have defined

T `AA→AA(s) ≡ 1
32π

(
1− 4m2/s

)1/2 ∫ +1

−1
d cos θP`(cos θ)TAA→AA(s, t, u),

T `AA→BB(s) ≡ 1
32π

(
1− 4m2/s

)1/4 ∫ +1

−1
d cos θP`(cos θ)TAA→BB(s, t, u),

T `AB→AB(s) ≡ 1
16π (1−m2/s)

∫ +1

−1
d cos θP`(cos θ)TAB→AB(s, t, u),

T `BB→BB(s) ≡ 1
32π

∫ +1

−1
d cos θP`(cos θ)TBB→BB(s, t, u),

(3.32)

We are now in position to address the unitarity constraints. Let us first consider the
Z2 odd two-particle in and out states projected to the definite spin, namely

|
√
s,~0; `, λ〉ABin , |

√
s,~0; `, λ〉ABout . (3.33)

We take all possible inner products of these states. Unitarity requires that such a matrix
is semipositive definite. Using the definition (3.28) we conclude that

∀` ≥ 0, ∀s ∈ [m2,∞) :
(

1 S∗`AB→AB(s)
S`AB→AB(s) 1

)
� 0. (3.34)

Let us consider now the Z2 even two-particles in and out states projected to the definite
spin, namely

|
√
s,~0; `, λ〉AAin , |

√
s,~0; `, λ〉BBin , |

√
s,~0; `, λ〉AAout , |

√
s,~0; `, λ〉BBout . (3.35)

Analogously we obtain the following unitarity constraint

∀` = 0, 2, 4, . . .
∀s ∈ [4m2,∞)

:


1 0 S∗`AA→AA(s) S∗`AA→BB(s)
0 1 S∗`BB→AA(s) S∗`BB→BB(s)

S`AA→AA(s) S`BB→AA(s) 1 0
S`AA→BB(s) S`BB→BB(s) 0 1

 � 0. (3.36)

For the energy range s ∈ [0, 4m2) the two particle state AA, do not exist, however the two
particle state BB do. Considering the states

|
√
s,~0; `, λ〉BBin , |

√
s,~0; `, λ〉BBout , (3.37)

we conclude that the following unitarity constraint also holds

∀` = 0, 2, 4, . . . , ∀s ∈ [0, 4m2) :
(

1 S∗`BB→BB(s)
S`BB→BB(s) 1

)
� 0. (3.38)

3.4 Dilaton scattering

So far the particle B was simply a generic massless scalar particle. We would like now to
identify it with the dilaton. First, let us define rescaled amplitudes that remain finite in
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the probe limit f →∞,

T̃AA→BB(s, t, u) = lim
f→∞

f2 TAA→BB(s, t, u) ,

T̃AB→AB(s, t, u) = lim
f→∞

f2 TAB→AB(s, t, u) ,

T̃BB→BB(s, t, u) = lim
f→∞

f4 TBB→BB(s, t, u) .

(3.39)

The main result of [38] which we use in this paper is the relation between the a-anomaly
in the UV with the dilaton field scattering. More precisely

lim
f→∞

f4TBB→BB(s, t, u) = aUV × (s2 + t2 + u2) +O(s3). (3.40)

The limit f → ∞ corresponds to the full decoupling of the dilaton from the system.
Nevertheless it still carries some non-trivial information about the system.

The goal of this section is to formulate the bootstrap setup in terms of amplitudes (3.39)
and take explicitly the limit f →∞.

Analyticity and soft behavior. We start by noticing that dilatons in the limit f →∞
cannot contribute to the scattering amplitudes as intermediate states. In practice this
means that in all the scattering amplitudes there are no branch cuts s ∈ [0,∞] due to
n-dilaton particle states, where n = 1, 2, 3, 4, . . .. In other words

s ∈ [4m2,∞] :
discsTAA→AA(s, t, u) 6= 0,
discsT̃AA→BB(s, t, u) 6= 0,
discsT̃BB→BB(s, t, u) 6= 0,

(3.41)

where the non-zero discontinuity is due to the n-particle states of type A, where n ≥ 2 is
only allowed to be even due to the Z2 symmetry. Analogously we conclude that

s ∈ [9m2,∞] : discsT̃AB→AB(s, t, u) 6= 0, (3.42)

where the discontinuity appears due to the n-particle states of type A, where n ≥ 3 is only
allowed to be odd due to the Z2 symmetry. It is important also to discuss the contribution
of the n = 1 particle state of type A to the scattering amplitudes describing the processes
AB → AB and AA→ BB. It appears as an s-channel pole in the amplitude, namely

T̃AB→AB(s, t, u) = − h2

s−m2 + . . . ,

T̃AA→BB(s, t, u) = 0 + . . . ,

(3.43)

where h is the real number which describes the interaction strength between the particle
A and the dilaton. The second amplitude in (3.43) does not have an s-channel pole due to
the Z2 symmetry. Imposing the crossing symmetry given by equations (3.17) and (3.18)
we conclude that

T̃AB→AB(s, t, u) = − h2

s−m2 −
h2

u−m2 + g(s, t, u)

T̃AA→BB(s, t, u) = − h2

t−m2 −
h2

u−m2 + g(t, s, u),
(3.44)
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where the function g describes the finite part of the amplitudes. No poles in the other
amplitudes are allowed either due to the Z2 symmetry or due to the limit f → ∞. In
appendix C we give a non-perturbative argument that the residue h has the following value

h2 = 2m4. (3.45)

In the next section we will obtain a stronger result which not only fixes the residue of the
poles but also the constant piece of the AB → AB and AA→ BB amplitudes in the soft
limit. The result reads

T̃AA→BB(s, t, u) = − 2m4

t−m2 −
2m4

u−m2 −m
2 + O(u−m2, t−m2). (3.46)

Unitarity constraints. The final step is to write the unitarity constraints (3.34), (3.36)
and (3.38) in the limit f → ∞. Let us start with the constraint (3.34). We use the
relations (3.39), compute the matrix eigenvalues and expand them in the inverse-powers of
f to the sub-leading order. Semipositive definiteness requires that all the eigenvalues are
non-negative. Explicitly we get

0 + f−2ImT̃ `AB→AB(s) +O(f−4) ≥ 0,
2− f−2ImT̃ `AB→AB(s) +O(f−4) ≥ 0.

(3.47)

In the limit f → ∞ the second condition is satisfied automatically since the second term
gives a negligible contribution. The leading term in the first condition vanishes however
and we are forced to study the sub-leading contribution. Clearly in the limit f → ∞ the
condition (3.34) simply reduces to

∀` ≥ 0, ∀s ∈ [9m2,∞) : ImT̃ `AB→AB(s) ≥ 0. (3.48)

Here we have also used (3.42). Analogous reasoning holds for the condition (3.38). However
due to the conditions (3.41) the imaginary part of T̃ `BB→BB(s) vanishes in the interval
s ∈ [0, 4m2]. As a consequence the condition (3.38) is trivially satisfied.

The best way to analyse the condition (3.36) is to cast it into a different form where
the limit f → ∞ is obvious. Most of the manipulations bellow were already presented in
appendix B in [9]. First, due to (3.31) we can write (3.36) as(

I I− iT†(s)
I + iT(s) I

)
� 0, (3.49)

where we have defined

I ≡
(

1 0
0 1

)
, T(s) ≡

(
T `AA→AA(s) T `BB→AA(s)
T `AA→BB(s) T `BB→BB(s)

)
. (3.50)

Second, we notice that the condition (3.49) is equivalent to

2ImT− T†(s)T(s) � 0. (3.51)
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Third, we rewrite this condition in another equivalent form(
I T†(s)

T(s) 2ImT

)
� 0. (3.52)

The matrix appearing in the left-hand side of (3.52) is 4x4. Let us write it explicitly
using (3.50) and (3.39). We get

1 0 T ∗`AA→AA(s) 1
f2 T̃ ∗`AA→BB(s)

0 1 1
f2 T̃ ∗`BB→AA(s) 1

f4 T̃ ∗`BB→BB(s)
T `AA→AA(s) 1

f2 T̃ `BB→AA(s) 2ImT `AA→AA(s) 2
f2 ImT̃ `BB→AA(s)

1
f2 T̃ `AA→BB(s) 1

f4 T̃ `BB→BB(s) 2
f2 ImT̃ `AA→BB(s) 2

f4 ImT̃ `BB→BB(s)

 � 0. (3.53)

We notice that multiplying the last row and subsequently the last column of the matrix in
the left-hand side of (3.53) by f2 does not change its semidefinite positive property.9

Taking the limit f →∞ we obtain the unitarity condition (3.36) in its final form

∀` = 0, 2, 4, . . .
∀s ∈ [4m2,∞)

:

 1 T ∗`AA→AA(s) T̃ ∗`AA→BB(s)
T `AA→AA(s) 2ImT `AA→AA(s) 2ImT̃ `BB→AA(s)
T̃ `AA→BB(s) 2ImT̃ `AA→BB(s) 2ImT̃ `BB→BB(s)

 � 0. (3.54)

Notice that in going from (3.53) to (3.54) after taking the limit f → ∞ we dropped
the second row and the second column which were simply (0, 1, 0, 0), did not affect the
semidefinite positiveness.

Summarizing, the unitarity conditions which must be satisfied for the system of a
particle and the dilaton are (3.48) and (3.54). We can use the Sylvester’s criterion in order
to rewrite the latter condition as a set of inequalities. As a result the conditions (3.48)
and (3.54) can be written as

ImT̃ `AB→AB(s) ≥ 0,

2ImT `AA→AA(s) ≥
∣∣∣T `AA→AA(s)

∣∣∣2 ≥ 0, 2ImT̃ `BB→BB(s) ≥
∣∣∣T̃ `AA→BB(s)

∣∣∣2 ≥ 0, (3.55)

ImT `AA→AA(s)× ImT̃ `BB→BB(s) ≥
(
ImT̃ `AA→BB(s)

)2

together with

2ImT̃ `BB→BB(s)×
(

2ImT `AA→AA(s)−
∣∣∣T `AA→AA(s)

∣∣∣2)
+ 2ImT̃ `AA→BB(s)×

(
T `AA→AA(s)T̃ ∗`AA→BB(s) + T ∗`AA→AA(s)T̃ `AA→BB(s)

)
≥ 2ImT `AA→AA(s)×

∣∣∣T̃ `AA→BB(s)
∣∣∣2 + 4

(
ImT̃ `AA→BB(s)

)2
. (3.56)

The last condition comes from the determinant of the matrix (3.48).
9This can be proven in several different ways. For instance one can multiply the condition (3.53) by

the diagonal matrix {1, 1, 1, f2} to the left and to the right. Alternatively one can use the Sylvester’s
criterion. Considering all the principal minors of the original matrix and the one with the last row and
column multiplied by f2 we see that their non-negativity conditions are equivalent as long as f2 > 0.
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Sum-rules for the a-anomaly. Let us start by recalling the formula (2.34). In the
notation of this section it reads

aUV = 1
π

∫ ∞
4m2

ds

s3 ImT̃BB→BB(s, 0,−s). (3.57)

Inverting the last equation in (3.32) and plugging it to the above sum-rule we obtain

aUV = 16
∑

`=0,2,4,...
(2`+ 1)

∫ ∞
4m2

ds

s3 ImT̃ `BB→BB(s). (3.58)

Using this formula and the conditions (3.55) we conclude that

aUV ≥ 8
∑

`=0,2,4,...
(2`+ 1)

∫ ∞
4m2

ds

s3

∣∣∣T̃ `AA→BB(s)
∣∣∣2 . (3.59)

Equivalently using (3.32), the completeness relation of Legendre polynomials and changing
integration variables from (s, cos θ) to (t, u) the above equation can be written as

aUV ≥ 1
32π2

∫
tu>m4
t,u<0

dtdu

(2m2 − t− u)4

∣∣∣T̃AA→BB(s, t, u)
∣∣∣2 . (3.60)

In appendix B, in particular see equation (B.14), we will show that in the case when
particle A is a free boson, the matter-dilaton scattering amplitude has the following simple
form

T̃ free
AA→BB(s, t, u) = −m2 − 2m4

t−m2 −
2m4

u−m2 . (3.61)

Plugging it into (3.60) we obtain aUV ≥ afree and conclude that the inequality (3.60) is
saturated in this case. Equivalently plugging (3.61) into (3.59) we obtain

a/afree = 0.83864 + 0.14908 + 0.01048 + 0.00140 + . . . = 0.99960 + . . . , (3.62)

where the numbers indicated correspond to ` = 0, 2, 4 and 6 and . . . represent all the
higher spin contributions to the a-anomaly of a free scalar field.

4 Matter-dilaton scattering at low energy

In [38] the authors derived the most general low energy effective action of the dilaton field
in a curved background. As reviewed in section 2.3 this action is given in (2.28). It is found
by solving the ’t Hooft anomaly matching conditions which can be written as a system of
differential equations (2.29). In flat space this action reduces to (2.32) and leads to the
explicit expression of the low energy BB → BB amplitude given by equation (2.33).

Here we perform a similar analysis for the AB → AB amplitude. We start in sec-
tion 4.1 by writing the most general low energy effective action in curved background
which describes this process. In section 4.2 we evaluate it in flat space and derive the
resulting scattering amplitude at low energy. The final result turns out to be universal
(independent of a particular model) and is given by equation (4.34).
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4.1 The most general effective action

The assumption of this paper is the presence of a single Z2 asymptotic particle A. Let us
denote by Φ(x) the effective field associated to this particle. We would like to find the most
general low energy effective action Aeff[Φ, ϕ], using which we can compute the S-matrix
for the scattering process AB → AB.10 We remind that the filed ϕ(x) creates the dilaton
particle B from the vacuum.

Following the discussion of section 2.2 we work with the diff and Weyl invariant ac-
tion (2.17). We would like to rewrite this action in terms of low energy degrees of freedom
Φ(x) and ϕ(x) using only diff and Weyl symmetry. The main ingredients for doing this are
the Weyl invariant metric ĝµν(x) and scalar Φ̂(x), defined in terms of background metric
gµν(x) and scalar field Φ(x) in the following way

ĝµν(x) = e−2τ(x) gµν(x), Φ̂(x) = e∆τ(x)Φ(x), (4.1)

where τ(x) is the dilaton field related to ϕ(x) according to (2.18) and ∆ is some effective
scaling dimension of the field Φ(x). Now we want to write the most generic form of the
effective action Ageff[Φ, ϕ] in the curved background, which should be general coordinate
invariant in the metric ĝµν(x) and should contain the scalar Φ̂(x). Finally we need to
substitute gµν = ηµν in Ageff[Φ, ϕ] to get the flat space effective action Aeff[Φ, ϕ] which
describes the scattering process AB → AB. For the construction of Ageff[Φ, ϕ] we adapt
a variation of the covariantization prescription originally developed in [50, 51] for the soft
gravitational background.

Let us start from the tangent space with locally flat metric ηab. The connection between
the curved and tangent space is provided by the objects eaµ(x) and Eµa (x) called the vierbein
and inverse vierbein respectively. They are defined via the relations

ĝµν(x) = eaµ(x)ebν(x)ηab, ηab = Eµa (x)Eνb (x)ĝµν , (4.2)

where ηab is the flat Minkowski metric. We start with the quadratic part of the tangent
space 1PI effective action for scalar field Φ(x),

Atangent = 1
2

∫
d4x Φ(x)K(∂a)Φ(x) , (4.3)

where we dropped all the terms with cubic and higher powers of Φ since they will not
contribute to the scattering process AB → AB after covariantization. The most general
form of the kinetic operator K can be written as11

K(∂a) ≡
∞∑
n=0

ca1a2...an
n ∂a1∂a2 . . . ∂an , (4.4)

10One can think of the effective action Aeff[Φ, ϕ] as the Legendre transform of the generating function
W [ζ, ϕ] where ζ(x) is the source that couples to a local operator O∆(x) that can create particle A from the
vacuum.

11The form of the kinetic operator as Taylor series expansion in derivatives is always possible for a EFT
where massless particles are absent.
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where the coefficients cn are built out of all possible combinations of ηab with arbitrary
numerical coefficients and ca1...an

n is symmetric under the exchange of tangent space indices.
Now we would like to first covariantize the tangent space action (4.3). This requires to
make the following replacements: d4x→ d4x

√
−ĝ together with

K(∂a)→
∞∑
n=0

ca1a2...an
n Eµ1

a1E
µ2
a2 · · ·E

µn
anDµ1Dµ2 · · ·Dµn ≡ F. (4.5)

Above F is obtained only by minimally covariantizing the kinetic operator. In principle F
could contain non-minimal terms involving one or more Riemann tensors and derivatives on
them. Since those non-minimal terms contain two or more derivatives of the dilaton field,
they start contributing at higher orders in low dilaton momentum expansion of AB → AB

scattering amplitude. Since our interest is to constrain first two terms in low dilaton
momentum expansion of the scattering amplitude AB → AB, we are not including those
terms under our covariantization process. Now on top of the covariantization we also need
to make the action Weyl invariant which is achieved by replacing Φ(x) → Φ̂(x). Also in
Ageff[Φ, ϕ] we should include general coordinate invariant scalar term purely constructed out
of metric ĝµν(x) given in (2.31) as well as the classically Weyl invariant action (2.21) to make
the dilaton dynamical. As a result of all these, our curved space effective action becomes

Ageff[Φ, ϕ] = 1
2

∫
d4x

√
−ĝ Φ̂(x)F Φ̂(x) +Adynamics(g,Ω) +Ainvariant(g,Ω) + · · · (4.6)

We denote by . . . all the possible non-minimal terms appearing in the covariantization pro-
cedure as described earlier. From here on to reduce complexity we ignore Ainvariant(g,Ω)
part of the above action as it always contribute terms at higher power in f−1 compare to
similar terms coming from Adynamics(g,Ω) and won’t affect our result later on.

Now to read off the flat space effective action from Aeff[Φ, ϕ] from (4.6) we need to set
gµν(x) = ηµν which in turn requires the following substitutions in (4.6)

ĝµν(x) = e−2τ(x) ηµν =
(

1− ϕ√
2f

)2
ηµν ,

eaµ(x) = e−τ(x)δaµ =
(

1− ϕ√
2f

)
δaµ,

Eµa (x) = eτ(x)δµa =
(

1− ϕ√
2f

)−1
δµa . (4.7)

With these substitutions the flat space effective action becomes

Aeff[Φ, ϕ] = 1
2

∫
d4x

(
1− ϕ(x)√

2f

)4−∆
Φ(x)

∞∑
n=0

ca1a2...an
n

(
1− ϕ(x)√

2f

)−n
δµ1
a1 δ

µ2
a2 · · · δ

µn
an

× Dµ1Dµ2 · · ·Dµn

(
1− ϕ(x)√

2f

)−∆
Φ(x)

+
∫
d4x

(
−1

2∂µϕ(x)∂µϕ(x) + 1
f
O(∂4ϕ3)

)
+ · · · (4.8)
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Now we expand the effective action Aeff in power of f to the second order around f =∞.
The result can be written in the following form

Aeff = A0
eff + A1

eff + A2
eff + . . . . (4.9)

where the superscript n in Aneff indicates the order in f−n expansion of Aeff around f →∞.
The first term in (4.9) reads as

A0
eff = 1

2

∫
d4x

∞∑
n=0

ca1a2...an
n

(
Φ(x)∂a1∂a2 · · · ∂anΦ(x)

)
− 1

2

∫
d4x∂µϕ(x)∂µϕ(x). (4.10)

In the second term A1
eff we grouped all the contributions proportional to a single dilaton

field ϕ up to one derivative acting on it and also schematically kept the order of three
dilaton field interaction term. The result reads

A1
eff = 1

2
√

2f

∫
d4x

( ∞∑
n=0

ca1a2...an
n

{
n− (4− 2∆)

}
ϕ(x)Φ(x)∂a1∂a2 · · · ∂anΦ(x)

+
∞∑
n=2

ca1...an
n

n∑
i,j=1
i<j

{
δνai∂ajϕ(x) + δνaj∂aiϕ(x)− ηaiaj∂νϕ(x)

}

× Φ(x)∂a1 · · · ∂ai−1∂ai+1 · · · ∂aj−1∂aj+1 · · · ∂an∂νΦ(x)

+
∞∑
n=1

ca1...an
n

n∑
i=1

∆∂aiϕ(x) Φ(x)∂a1 · · · ∂ai−1∂ai+1 · · · ∂anΦ(x)

+O(Φ2∂2ϕ, ∂4ϕ3)
)
.

(4.11)

In the above expression the first term is linear in ϕ(x). It is obtained by replacing all

the covariant derivatives in (4.8) by ordinary derivatives and commuting
(
1 − ϕ(x)√

2f

)−∆

through the derivatives (in other words neglecting terms containing derivatives operating
on ϕ(x)). Expansion of the resulting expression at linear order in ϕ(x) generates the
first term. In the second and third terms in (4.11) one derivative operates on ϕ(x). In
presence of two covariant derivatives on Φ(x) in the first term in (4.8), we need to substitute
DµiDµjΦ(x) = ∂µi∂µjΦ(x) − Γνµiµj∂νΦ(x). Then writing down the Christoffel connection
up to linear order in ϕ(x) for any pair of such covariant derivatives and setting ϕ = 0 in all
other places we get the second term above. On the other hand when any one of the ordinary
derivative from the set of covariant derivatives operates on

(
1− ϕ(x)√

2f

)−∆
in the first term

in (4.8), we get the third term above at the linear order in ϕ(x) from the expansion of the
resulting expression. First non-vanishing contribution to three dilaton interaction appears
at four derivative order as schematically written as O(∂4ϕ3) in the above expression.

In the third term of (4.9), we grouped all the contributions involving ϕ(x)2 and no
derivative on it, and the result reads

A2
eff = 1

2

∫
d4x

(
ϕ(x)√

2f

)2
Φ(x)

∞∑
n=0

(
(4− 2∆)(3− 2∆)

2 − (4− 2∆) n+ n(n+ 1)
2

)

× ca1a2···an
n ∂a1∂a2 · · · ∂anΦ(x) + 1

f2O(Φ2ϕ∂ϕ). (4.12)
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To get the above contribution we first replace all the covariant derivatives in (4.8) by

ordinary derivatives and commute
(
1− ϕ(x)√

2f

)−∆
through the derivatives neglecting terms

containing derivatives operating on ϕ(x). Then we expand the resulting contribution and
collect terms at quadratic order in ϕ(x). We do not need to compute Aneff for n ≥ 3 as
these terms of the effective action do not contribute to AB → AB scattering amplitude.
Another important point is that once the expansion is done in power of f about f → ∞
in (4.9), in the expressions of Aneff both tangent space indices a1, a2, · · · and curved space
indices µ1, µ2, · · · can be treated as just flat space Lorentz indices.

Momentum space. It is cleaner to present further discussion in momentum space. We
would like to rewrite A0

eff, A1
eff and A2

eff as integrals in momenta variables. Let us start by
Fourier transforming the object in (4.4) in momentum variable q

K(∂a) −→ K(q) ≡
∞∑
n=0

(i)n ca1a2...an
n qa1qa2 . . . qan . (4.13)

In appendix D we have derived some other important identities under Fourier transforma-
tions which we use below.

Using the definition of (4.13) the momenta space expression of (4.10) becomes

A0
eff = 1

2

∫
d4q1
(2π)4

d4q2
(2π)4 (2π)4δ(4)(q1 + q2) Φ(q1)K(q2)Φ(q2)

−1
2

∫
d4k1
(2π)4

d4k2
(2π)4 (2π)4δ(4)(k1 + k2)ϕ(k1)k2

2ϕ(k2). (4.14)

The kinetic operator K(q) should vanish on-shell as follows from the equation of motion.
Using the definition (4.13) and equalities from appendix D in momentum space the expres-
sion (4.11) can be written as

A1
eff = 1

2
√

2f

∫
d4q1
(2π)4

d4q2
(2π)4

d4k

(2π)4 (2π)4δ(4)(q1 + q2 + k) Φ(q1)Φ(q2) ϕ(k)

×
({
− (4− 2∆)K(q2) + qµ2

∂K(q2)
∂qµ2

}
+ 1

2
{
δνµkρ + δνρkµ − ηµρkν

}
×q2ν

∂2K(q2)
∂q2µ∂q2ρ

+ ∆ kµ
∂K(q2)
∂qµ2

+ O(k2)
)
. (4.15)

In the above expression we are not explicitly writing down the three dilaton interaction
part, as this term involves four power of dilaton momenta and will not be important for
the computation of AB → AB scattering amplitude up to the order we are interested in.
Using the definition (4.13) and the properties (D.3) and (D.7) the expression (4.12) can be
written in momentum space as

A2
eff = 1

4f2

∫
d4q1
(2π)4

d4q2
(2π)4

d4k1
(2π)4

d4k2
(2π)4 (2π)4δ(4)(q1 + q2 + k1 + k2)Φ(q1)Φ(q2)ϕ(k1)ϕ(k2)

×
(

(2−∆)(3− 2∆)K(q2) + (−3 + 2∆)qµ2
∂K(q2)
∂qµ2

+ 1
2q

µ
2 q

ν
2
∂2K(q2)
∂qµ2 ∂q

ν
2

+O(k1, k2)
)
. (4.16)
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4.2 Low energy amplitude

Having obtained the low energy effective action components given by (4.14)–(4.16) we can
finally compute the scattering amplitude AB → AB. We start by deriving the Feynman
rules. The Feynman propagators are defined as

(2π)4δ(4)(q1 + q2)×D−1
F (q1) ≡ −i δ

2Aeff[Φ, ϕ]
δΦ(q1)δΦ(q2)

∣∣∣∣∣
Φ,ϕ=0

, DF (q1) ≡
q1

(4.17)

(2π)4δ(4)(k1 + k2)×∆−1
F (k1) ≡ −i δ

2Aeff[Φ, ϕ]
δϕ(k1)δϕ(k2)

∣∣∣∣∣
Φ,ϕ=0

, ∆F (k1) ≡
k1

(4.18)

The cubic effective vertex ΦΦϕ is defined as

(2π)4δ(4)(q1 + q2 + k)× Γ(3)(q1, q2; k) ≡ i δ3Aeff[Φ, ϕ]
δΦ(q1)δΦ(q2)δϕ(k)

∣∣∣∣∣
Φ,ϕ=0

≡ Γ(3)

q2q1

k

(4.19)
The quartic ΦΦϕϕ vertex is defined as

(2π)4δ(4)(q1 + q2 + k1 + k2)× Γ(4)(q1, q2; k1, k2)

≡ i δ4Aeff[Φ, ϕ]
δΦ(q1)δΦ(q2)δϕ(k1)δϕ(k2)

∣∣∣∣∣
Φ,ϕ=0

≡ Γ(4)

q1 q2

k2k1

(4.20)

The cubic ϕϕϕ vertex is defined as

(2π)4δ(4)(k1 + k2 + k3)× V (3)(k1, k2, k3) (4.21)

≡ i δ3Aeff[Φ, ϕ]
δϕ(k1)δϕ(k2)δϕ(k3)

∣∣∣∣∣
Φ,ϕ=0

≡ V (3)

k2k1

k3

Applying these definitions to (4.14)–(4.16) we conclude that the Feynman propagators
read as

DF (q) = i
(
K(q)

)−1 ≡ {q2 +m2 − iε}−1Ξ(q), ∆F (k) = −i(k2 − iε)−1. (4.22)

where we have introduced for later convenience a new object Ξ(q) which is the numerator
of the scalar field propagator. The cubic vertex ΦΦϕ reads

Γ(3)(q1, q2; k) = i

2
√

2f

(
− (4− 2∆)K(q2) + qµ2

∂K(q2)
∂qµ2

+ 1
2
{
δνµkρ + δνρkµ − ηµρkν

}
× q2ν

∂2K(q2)
∂q2µ∂q2ρ

+ ∆ kµ
∂K(q2)
∂qµ2

+ O(k2)
)

+ (q1 ↔ q2),
(4.23)
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Γ(3) Γ(3)

p1 p1 + p2 p3

p2 p4

Γ(3) Γ(3)

p1 p1 − p4 p3

p4 p2

Γ(4)

p1 p3

p4p2

Γ(3)

V (3)

p1 p3

p2 − p4

p4p2

Figure 4. The set of diagrams contributing to the TAB→AB amplitudes. Here the solid lines
represent scalar particles A and dashed lines represent dilatons B.

where q1 +q2 +k = 0. In the above expression of Γ(3) the terms linear in k actually vanishes
when we explicitly write the terms under q1 ↔ q2 exchange and substitute q2 = −q1 − k.
The quartic vertex ΦΦϕϕ reads as

Γ(4)(q1, q2; k1, k2) = i

2f2

(
(2−∆)(3− 2∆)K(q2) (4.24)

− (3− 2∆)qµ2
∂K(q2)
∂qµ2

+ 1
2q

µ
2 q

ν
2
∂2K(q2)
∂qµ2 ∂q

ν
2

+O(k1, k2)
)

+ (q1 ↔ q2),

where q1 + q2 + k1 + k2 = 0. Three dilaton field interaction vertex ϕϕϕ reads as

V (3)(k1, k2, k3) = i

f
O(k4

i ). (4.25)

We can now compute the AB → AB amplitude using the Feynman diagrams depicted
in figure 4. The total amplitude describing the scattering process AB → AB becomes

TAB→AB = T1 + T2 + T3 + T4, (4.26)

where we have

iT1 = Γ(3)(p1,−p1 − p2; +p2)DF (p1 + p2)Γ(3)(p1 + p2,−p3;−p4),

iT2 = Γ(3)(p1,−p1 + p4;−p4)DF (p1 − p4)Γ(3)(p1 − p4,−p3; +p2),

iT3 = Γ(4)(p1,−p3; p2,−p4),

iT4 = Γ(3)(p1,−p3; p2 − p4)∆F (p2 − p4)V (3)(−p2 + p4, p2,−p4).

(4.27)

Plugging the explicit expressions of the Feynman propagators and the effective vertices,
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expanding around pµ2 = 0 and pµ4 = 0 one obtains the following

f2T1 = m4(p1 · p2)−1 − 2m2(∆− 1)− 2im4Ξ′(m2) +O
(
(p1 · p2), (p3 · p4)

)
,

f2T2 = −m4(p1 · p4)−1 − 2m2(∆− 1)− 2im4Ξ′(m2) +O
(
(p1 · p2), (p3 · p4)

)
,

f2T3 = (4∆− 5)m2 + 4im4Ξ′(m2) +O
(
(p1 · p2), (p3 · p4)

)
,

f2T4 = 0 +O
(
(p1 · p2), (p3 · p4)

)
,

(4.28)

where Ξ′(m2) ≡ ∂Ξ(q)
∂q2

∣∣∣
q2=−m2

.
In deriving these we have used several straightforward relations which follow from the

fact that K is a scalar quantity and thus can depend only on q2. As a consequence the
same is true for Ξ defined in (4.22). These relations read as

K(q) = K(−q), Ξ(q) = Ξ(−q), ∂K(q)
∂qµ

= 2qµ
∂K(q)
∂q2 ,

∂Ξ(q)
∂qµ

= 2qµ
∂Ξ(q)
∂q2 , (4.29)

together with

∂K(q)
∂qµ

Ξ(q) +K(q)∂Ξ(q)
∂qµ

= 2iqµ,

∂2K(q)
∂qµ∂qν

Ξ(q) + ∂K(q)
∂qν

∂Ξ(q)
∂qµ

+ ∂K(q)
∂qµ

∂Ξ(q)
∂qν

+K(q) ∂
2Ξ(q)

∂qµ∂qν
= 2iηµν .

(4.30)

At the end of the evaluation of the Feynman diagrams we use the following on-shell condi-
tions,

K(q)
∣∣∣
q2=−m2

= 0 , Ξ(q)
∣∣∣
q2=−m2

= −i , ∂K(q)
∂qµ

∣∣∣
q2=−m2

= −2qµ, (4.31)

∂2K(q)
∂qµ∂qν

∣∣∣
q2=−m2

= −2ηµν + 8iqµqν Ξ′(m2). (4.32)

Plugging (4.28) into (4.26) we obtain

f2TAB→AB = m4

(p1 · p2) −
m4

(p1 · p4) −m
2 +O

(
(p1 · p2), (p3 · p4)

)
. (4.33)

Using the definition of the Mandelsatm variables (3.7) and the definition of the tilded
amplitudes (3.39) we obtain the final result

T̃AB→AB(s, t, u) = −2m4

s−m2 + −2m4

u−m2 −m
2 + O(u−m2, s−m2). (4.34)

The above result is independent of ∆, which is not surprising since ∆ appears in the
definition of Φ̂(x) which is nothing but a field redefinition of Φ(x). Here we want to
emphasize that up to the subleading order in the expansion parameters s−m2 and u−m2,
our amplitude T̃AB→AB(s, t, u) is theory independent. We perturbatively verify the pole
parts of the above result for a particular model in appendix E. In addition, in appendix F
we argue for this universal soft behavior by analysing the worldline action of a massive
particle in a dilaton background.
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At the next order in O(u − m2, s − m2) the contribution to (4.34) will depend on
Ξ′(m2),Ξ′′(m2) and the non-minimal interaction strength of the scalar field with the dilaton
e.g. flat space interaction follows from R̂µν∂µΦ̂∂νΦ̂.12 Our derivation is also motivated from
the literatures [53–55], where tree level single and double soft dilaton theorems have been
studied.

5 Numerical bounds

In order to put numerical bounds on the a-anomaly we use the numerical approach of [3, 9].
For the concise summary of this approach see section 1 and 4.1 of [19]. In what follows we
first explain very briefly our numerical setup and then present our numerical bounds. All
the technical details of the numerical setup can be found in appendix G.

5.1 Numerical setup

We start by introducing two types of the rho-variables which automatically take care of
the branch cuts discussed in (3.41) and (3.42). They read

r1(z; z0) ≡
√

4m2 − z0 −
√

4m2 − z√
4m2 − z0 +

√
4m2 − z

,

r2(z; z0) ≡
√

9m2 − z0 −
√

9m2 − z√
9m2 − z0 +

√
9m2 − z

.

(5.1)

Here z0 is a free parameter and can be set to any convenient value for both variables r1
and r2 independently. Using these variables we can write the following ansatze

TAA→AA(s, t, u) =
∞∑
a=0

∞∑
b=0

∞∑
c=0

αabc
(
r1(s; 4m2/3)

)a (
r1(t; 4m2/3)

)b (
r1(u; 4m2/3)

)c
,

T̃AB→AB(s, t, u) = − 2m4

s−m2 −
2m4

u−m2

+m2
∞∑
a=0

∞∑
b=0

∞∑
c=0

βabc
(
r2(s; 2m2/3)

)a (
r1(t; 2m2/3)

)b (
r2(u; 2m2/3)

)c
,

T̃BB→BB(s, t, u) = m4
∞∑
a=0

∞∑
b=0

∞∑
c=0

γabc (r1(s; 0))a (r1(t; 0))b (r1(u; 0))c . (5.2)

Here α, β and γ are the unknown real coefficients. Due to the crossing symmetry discussed
in section 3.2 the coefficients α and γ are fully symmetric in their indices. Instead the
coefficients β obey the following condition

βabc = βcba. (5.3)

The ansatz for the amplitude T̃AA→BB(s, t, u) is obtained from (5.2) by exchanging s↔ t

according to the crossing equation (3.17). In order to simplify the ansatze and take into
account that the variable u is not independent we further demand that our coefficients obey

(abc) 6= 0 : αabc = βabc = γabc = 0. (5.4)
12The theory dependence of sub-subleading soft graviton theorem along the same line of derivation has

been worked out in [52].
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We will be working in the units of the physical mass m. Effectively this allows us to set

m = 1 (5.5)

in all the equations below.
Using the ansatze (5.2) one can define the following optimization problem: numerically

find the set of coefficients α, β and γ which maximizes some linear combination of these
coefficients such that the unitarity conditions (3.48) and (3.54) are satisfied for all physical
values of s and spins `. Below we will explain how the coefficients α, β and γ are related
to the a-anomaly and to the physical observables.

In order to make the above optimization problem feasible in practice we first truncate
the ansatz (5.2) to a finite sum with the parameter Nmax according to

a+ b+ c ≤ Nmax. (5.6)

We impose unitarity conditions for a finite number of spins ` up to some fixed value Lmax,
namely

` = 0, 1, 2, . . . , Lmax. (5.7)

Finally, we pick a finite grid of s values where the unitarity conditions are imposed. The
number of points in this grid is denoted by Ngrid. After performing these “truncations” we
use SDPB software [56, 57] to solve the optimization problem numerically.

Soft conditions. At low energy the AA→ BB and BB → BB amplitudes have a very
particular (soft) behavior according to (3.46) and (3.40) respectively. As a result we have
additional constraints on the coefficients of the ansatze. Plugging here the definition of
(t, u) variables in terms of (s, cos θ) according to (3.30) and expanding around small values
of s keeping cos θ fixed we get expressions which should match (3.46) and (3.40). Requiring
this matching one obtains the following constraints

β000 = −1− (98− 40
√

6)β001 + . . . , γ000 = 0, γ001 = 1
4 (512a− 2γ002 + γ011) , (5.8)

where a is the a-anomaly. Plugging the solutions (5.8) into the anstatze (5.2) we effectively
eliminate three coefficients β000, γ000, γ001 and introduce one additional coefficient a (the
a-anomaly).

Physical observables. As explained in the introduction we will use either the pair of
observables (λ0, λ2) or (Λ0,Λ2) in order to describe the scattering amplitude AA→ AA.13

Applying either the definition (1.3) or (1.4) to the ansatz (5.2) for the amplitude AA→ AA

13In the definitions (1.3) and (1.4) one could take the derivative in s is two different ways. First, one
could plug the value of u = 4m2 − s − t and then treating s and t as independent variables evaluate the
derivative in s at the s0 and t0 point. Second, one could replace both t and u variables in terms of s and
cos θ, where θ is the scattering angle and only then take the derivative in s at the s0 and x0 point. In this
paper we will use the second option. At the crossing symmetric point λformer

2 = 4/3 λlatter2 . At the forward
point Λformer

2 = Λlatter
2 .
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we obtain a linear relation between (λ0, λ2) or (Λ0,Λ2) and the coefficients ~α. We solve
these relations for

α000 and α001 (5.9)

in terms of either (λ0, λ2) or (Λ0,Λ2) and the rest of ~α. We substitute this solution in the
ansatz. This effectively removes two coefficients α000 and α001 in the ansatz and instead
introduce the depends either on (λ0, λ2) or on (Λ0,Λ2).

Extension of the ansatz. The ansatz (5.2) is very powerful. Nevertheless since in
practice we work at finite value of Nmax the bounds depend on Nmax. And in order to get
accurate bounds one needs to perform an extrapolation Nmax →∞. The convergence with
Nmax depends on a particular optimization problem.

It is convenient to enlarge the ansatz for the AA→ AA by adding the following term

TAA→AA(s, t, u) ⊃ α′000 ×
( 1
r1(s; 4/3)− 1 + 1

r1(t; 4/3)− 1 + 1
r1(u; 4/3)− 1

)
, (5.10)

which contains a new parameter α′000. When maximizing λ0 this term gives a major
contribution and improves the convergence with Nmax drastically [3]. We also enlarge the
ansatz for BB → BB amplitude by adding the following term

T̃BB→BB(s, t, u) ⊃ c T̃ free
BB→BB(s, t, u), (5.11)

where c is a free parameter and T̃ free
BB→BB is the dilaton scattering amplitude in the free

scalar theory. It is hard to compute T̃ free
BB→BB exactly. Luckily we do not need its explicit

expression, in practice we will only need its imaginary part and the imaginary part of the
associated partial amplitude, since only the latter enter in the unitarity constraint (3.54).
These will be computed in equations (B.17), (G.31) and (G.32).

5.2 Results

We start in section 5.2.1 by addressing the simplest possible question: what is the lowest
value of the a-anomaly in the UV CFT which leads to a single Z2 odd asymptotic state
given some relevant deformation. We will reconstruct the spin=0 partial amplitudes of our
setup which lead to the absolute minimum of the a-anomaly. In section 5.2.2 we discuss
several consistency checks of our numerical code. In section 5.2.3 we construct a lower
bound on the a-anomaly as a function of λ0, λ2, Λ0 and Λ2. We reconstruct the spin=0
partial amplitudes of our setup corresponding to the maximally allowed value of λ0.

5.2.1 Absolute minimum of the a-anomaly

Let us start by addressing the following question: what is the lowest value of the a-anomaly
in the UV CFT which leads to a single Z2 odd asymptotic state given some relevant
deformation. For running the numerics we have found the optimal size of the grid to be
Ngrid = 300. We have checked that Ngrid = 350 and Ngrid = 400 lead to the same solution.
For Ngrid = 200 the results differ significantly from the ones found with larger grids.

– 30 –



J
H
E
P
1
2
(
2
0
2
2
)
1
3
6

Let us fix the size of the ansatz to be Nmax = 20. The minimum of the a-anomaly for
various values of Lmax is found to be

{Lmax, a/afree} = {(16, 0.4015), (18, 0.4074), (20, 0.4100), (22, 0.4115), (24, 0.4125), (5.12)
(26, 0.4133), (28, 0.4140), (30, 0.4146), (32, 0.4150), (34, 0.4154)}.

We see the lower bound on the a-anomaly is stable under the change of Lmax and gets
stronger when Lmax increases. In all the future numerical studies we make the following
conservative choice for

Lmax = Nmax + 10. (5.13)

Let us now investigate the dependence of the numerical solution on Nmax. We obtain the
following values for the minimum of the a-anomaly for various values of Nmax

{Nmax, a/afree} = {(16, 0.4401), (18, 0.4223), (20, 0.4146), (5.14)
(22, 0.4058), (24, 0.4001), (26, 0.3897)}.

Using Nmax = 16, 18, 20, 22, 24 and 26 we can extrapolate our data to Nmax = ∞ with
the following linear function

a/afree = 0.316 + 1.969/Nmax. (5.15)

The dependence of the minimum of the a-anomaly on Nmax and its extrapolation is given
in figure 5. We conclude that the absolute minimum of the a-anomaly in our setup is

a/afree & 0.316± 0.015. (5.16)

Here we have also included the estimated extrapolation error.
At the absolute minimum of the a-anomaly we can actually reconstruct numerically

scattering and partial amplitudes of all the process of our setup. In figures 6–8 we present
the spin zero partial amplitudes of the AA → AA and AA → BB processes. In the left
figure 7 we have plotted the real part of the spin zero phase shift of the AA→ AA process.
We recall that the spin ` phase shift δ` of the AA→ AA process is defined via

S`AA→AA(s) = e2iδ`AA→AA(s). (5.17)

From the right figure 7 we see that the amplitude is fully “elastic” up to very high energies.
In figure 9 we plot the integrand of the sum-rule (3.57) for various values of Nmax.

Numerical integration of these functions gives the values a/afree = 0.4146, 0.4058, 0.4001
and 0.3897 which are in a perfect agreement with (5.14). In figure 10 we plot the integrand
of the sum-rule (3.58) for spin 0, 2 and 4. Numerical integration of these functions gives
the following value of the a-anomaly a/afree = 0.2396+0.1605+0.0105+ . . . = 0.4106+ . . .,
where the three entries correspond to spin 0, 2 and 4 respectively and the dots indicate the
contribution due to higher spins..
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0.01 0.02 0.03 0.04 0.05 0.06
1/Nmax

0.1

0.2

0.3

0.4

a/afree

Figure 5. Minimum possible value of the a-anomaly without any further assumptions as a function
of 1/Nmax with Lmax = Nmax + 10. The numerical results are depicted by blue points. Linear
extrapolation to Nmax →∞ depicted by the red line gives 0.316±0.015 for the minimum of a/afree.

5.2.2 Consistency checks

Before presenting more bounds let us perform several consistency checks.
First, we can set all the coefficients α and β in the ansatz (5.2) to zero after imposing

the first condition in (5.8). This situation corresponds to particle A being a free massive
scalar, with the AA→ BB scattering amplitude given by (3.61). As explained below (3.61)
this inevitably leads to a/afree = 1. We successfully reproduce this theoretical outcome
numerically. It is important to notice that the ansatz (5.2) requires very large numbers
Nmax in order to reproduce the free theory accurately. In practice it is very non-economical
to work with such a big value of Nmax. This was the motivation behind the introduction of
the additional term (5.11) in the BB → BB ansatz which improves the convergence with
Nmax drastically in this particular situation.

Second, let us set all the α coefficients to zero and leave β coefficients to be completely
free. One might expect the same outcome as before, however solving the optimization
problem we obtain

a/afree ≈ 0.9071. (5.18)

This result was obtained with Nmax = Lmax = 20. For comparison we get 0.9107 for
Nmax = Lmax = 10. This result is very stable under the change of Nmax and Lmax. The
solution of the optimization problem gives the coefficients of the ansatz such that only

β00n 6= 0. (5.19)

Under closer inspection of the unitarity conditions one observes that setting α to zero
forces the imaginary part of the T̃ `AA→BB(s) partial amplitude to be zero due to the last
line in (3.55). However, the real part can still be non-zero. The solution (5.19) exactly
reproduces such a situation. We, thus, conclude that the unitarity conditions we use do not
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Figure 6. Real and imaginary parts of the spin 0 interacting part of the AA → AA partial
amplitude leading to the absolute minimum of the a-anomaly. It is constructed at Nmax = 20 and
Lmax = 30.
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Figure 7. An alternative representation of the amplitude given in figure 6. Left plot represents
the real part of the spin 0 phase shift of the AA→ AA scattering defined in (5.17). The apparent
jump around s = 8 is due to the periodicity δ ' δ + π. Right plot represents the absolute value of
the spin 0 partial amplitude of the AA→ AA scattering. On the real axis instead of the s variable
we use the φ variable defined in (G.25). The amplitude is fully “elastic” up to very high energies.
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Figure 8. Real and imaginary parts of the spin 0 interacting part of the AA → BB partial
amplitude leading to the absolute minimum of the a-anomaly. It is constructed at Nmax = 20 and
Lmax = 30.
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4.0 4.2 4.4 4.6 4.8 5.0
s
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1.5

afree
-1

πs3
Im[


BB→BB

forward
]

Nmax=20

Nmax=22

Nmax=24

Nmax=26

Figure 9. Integrand appearing in the sum-rule (3.57) for the absolute minimum of the a-anomaly.
Different colors indicate different values of Nmax. Numerical integration of these function leads to
a/afree = 0.4146, 0.4058, 0.4001 and 0.3896 in a perfect agreement with (5.14).
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ℓ
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Figure 10. Integrand appearing in the sum-rule (3.58) for the absolute minimum of the a-anomaly
for spin 0, 2 and 4. Numerical integration of this function leads to a/afree = 0.2396 + 0.1605 +
0.0105 + . . . = 0.4106 + . . ., where the three entries correspond to spin 0, 2 and 4 respectively and
the dots indicate the contribution due to higher spins. Plots are constructed at Nmax = 20 and
Lmax = 30. Summing up these three contribution gives the Nmax = 20 curve of figure 9.
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fully constraint the behavior of the matter-dilaton scattering given the form of the matter
scattering.

It is possible to guess analytically the AA→ BB scattering amplitude which gives the
solution (5.18), (5.19). Let us assume no discontinuity in the s-channel of the amplitude
AA→ BB (as follows from absence of AA→ AA scattering), we can then write the general
ansatz

T̃AA→BB = −m2− 2m4

t−m2 −
2m4

u−m2 −
∫ ∞

9m2
dwq(w)

(
m2

t− w
+ m2

u− w
− 2m2

m2 − w

)
, (5.20)

where q(w) ≥ 0 by unitarity. For the special case when q(w) = Qm2δ(w− 9m2) we obtain

T̃AA→BB = −m2 − 2m4

t−m2 −
2m4

u−m2 −Qm
2
(

m2

t− 9m2 + m2

u− 9m2 + 1
4

)
. (5.21)

Plugging it into (3.60) we obtain aUV/afree ≥ 0.905527 for Q = 2.07869. The ampli-
tude (5.21) matches precisely the one obtained numerically.

Finally, analogously to (3.57) one can write the following dispersion relation

Λ2 = m4

8π2

∫ ∞
4m2

ds

s3 ImTAA→AA(s, 0, 4m2 − s). (5.22)

Setting Λ2 to zero will force the imaginary part of the AA→ AA process to be zero since
the integrand is non-zero due to the first inequality in the second line in (3.55). Due to the
same inequality we see that the imaginary part in turn forces the whole amplitude to be
zero. In practice we indeed observe that by setting Λ2 to zero the numerical solution leads
to all the coefficients α being zero. In other words our numerics leads to (5.18) if Λ2 = 0.

5.2.3 Lower bound on the a-anomaly as a function of λ0, λ2, Λ0 and Λ2

Let us now construct a lower bound on the a-anomaly as a function of the coupling constants
λ0, λ2, Λ0 and Λ2. They were precisely defined in (1.3) and (1.4).

We begin by noticing that these couplings are bounded themselves. We can use our
setup of section 5.1 to obtain upper and lower bounds which read as

−6.0253 ≤ λ0 ≤ +2.6613, 0 ≤ λ2 ≤ +2.2568,
−2.8145 ≤ Λ0 ≤ +2.8086, 0 ≤ Λ2 ≤ +0.6550.

(5.23)

These are obtained by setting a = 5afree in the setup and using Nmax = 20 and Lmax = 30.
Increasing the value of a does not change the result. Around a/afree ∼ 1 we get a non-trivial
dependence of the bounds on a which will be better represented in the later plots. The
dependence of these bounds on Lmax is negligible. The dependence on Nmax is non-trivial
and should be taken into account. The correct bounds are obtained using the extrapolation
to Nmax →∞. The exception is the upper bound on λ0, it is independent of Nmax due to
the presence of the singularity term (5.10) which drastically improves the convergence of
this particular bound. We do not perform Nmax → ∞ extrapolations in this section and
instead we will always work at Nmax = 20 and Lmax = 30.
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Figure 11. Lower bound on the a-anomaly as a function of λ0 in the left plot and as a function of
the λ2 in the right plot. The allowed region is depicted in blue. Red dot represents the point with
the lowest value of the a-anomaly. The red vertical lines indicate the boundaries of the allowed
regions for λ0 and λ2 given in (5.23). The plots are built with Nmax = 20 and Lmax = 30.
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Figure 12. Lower bound on the a-anomaly as a function of Λ0 in the left plot and as a function of
the Λ2 in the right plot. The allowed region is depicted in blue. Red dot represents the point with
the lowest value of the a-anomaly. The red vertical lines indicate the boundaries of the allowed
regions for Λ0 and Λ2 given in (5.23). The plots are built with Nmax = 20 and Lmax = 30.

We can now pick value of λ0, λ2, Λ0 and Λ2 from the allowed ranges (5.23) and
minimize the a-anomaly. The result is presented in figures 11 and 12. The allowed area
is shaded in blue. The red dot represents the solution with the absolute minimum of the
a-anomaly found in section 5.2.1. The right plots in figures 11 and 12 have a sharp peak
around λ2 = 0 and Λ2 = 0. This point corresponds to a freely propagating particle A and
gives the value of the a-anomaly quoted in (5.18). See the explanation below (5.18) why
this value is not exactly one.

Another interesting point in these plots is the one with λ0 ≈ 2.66 and a/afree = 1.2.
As was done in section 5.2.1 we can plot spin zero partial amplitudes in our setup for this
solution. They are given in figures 13–16.
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Figure 13. Real and imaginary parts of the spin 0 interacting part of the AA → AA partial
amplitude for λ0 = 2.66 which leads to a/afree = 1.2002. It is constructed for Nmax = 20 and
Lmax = 30.
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Figure 14. Left plot represents the real part of the spin 0 phase shift of the AA→ AA scattering
defined in (5.17). No resonances are present. Right plot represents the absolute value of the spin
0 partial amplitude of the AA → AA scattering. On the real axis instead of s variable we use φ
variable defined in (G.25). The amplitude is fully “elastic” up to very high energies.
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Figure 15. Real and imaginary parts of the spin 0 interacting part of the AA → BB partial
amplitude for λ0 = 2.66 which leads to a/afree = 1.2002. It is constructed for Nmax = 20 and
Lmax = 30.

– 37 –



J
H
E
P
1
2
(
2
0
2
2
)
1
3
6

4 6 8 10 12 14
s

0.05

0.10

0.15

afree
-1

πs3
Im[


BB→BB
forward

]

4 6 8 10 12 14
s0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

16 (2 ℓ+1) afree
-1

s3
Im[


BB→BB
ℓ

]

ℓ=0

ℓ=2

ℓ=4

Figure 16. Left plot: integrand appearing in the sum-rule (3.57) for the absolute minimum of the
a-anomaly. Numerical integration of this function leads to a/afree = 1.2002. Right plot: integrand
appearing in the sum-rule (3.58) for the absolute minimum of the a-anomaly. Numerical integration
of this function leads to a/afree = 0.71146+0.45094+0.03238+ . . . = 1.19477+ . . ., where the three
entries correspond to spin 0, 2 and 4 respectively and the dots indicate higher spin contributions.
The plots are constructed at Nmax = 20 and Lmax = 30.

6 Discussion

We proposed a framework to study gapped QFTs defined as relevant deformations of an
UV CFT. For simplicity we assumed the existence of a Z2 symmetry and a single stable
Z2-odd particle at low energies denoted by A. By studying the unitarity constraints on
the system of scattering amplitudes between the particle A and the dilaton particle B,
as depicted in figure 1, we related the physical scattering data for the particle A to the
a-anomaly of the UV CFT. This allowed us to derive lower bounds on the a-anomaly as a
function of several parameters defined in (1.3) and (1.4) in terms of the amplitude TAA→AA
(see figures 2 and 3).

In practice, we used the primal numerical S-matrix bootstrap method for multiple
amplitudes.14 This method requires extrapolation in the number of parameters of the
ansatz (Nmax → ∞) and the number of unitarity constraints (Lmax → ∞). As usual in
S-matrix bootstrap problems with a mass gap, the extrapolation Lmax → ∞ is easy. On
the other hand, the extrapolation Nmax → ∞ is more subtle and deserves further study.
In this context, it would be extremely useful to have a dual S-matrix bootstrap method
to approach the minimal a-anomaly from below. It should be possible to generalize the
methods of [25, 27, 58] to our setup.

Our main result is the derivation of a universal lower bound on the a-anomaly. We
estimated the bound to be a/afree > 0.3. Combining this result with the conformal collider
bound 31

18 ≥
a
c ≥

1
3 from [59], we obtain a lower bound c > 0.17 afree.

It would be interesting to generalize our analysis by dropping some of the simplifying
assumptions about the presence of the Z2 symmetry and the low energy spectrum of parti-
cles. For example, we can start by allowing more stable particles either even or odd under
Z2. More stable particles lead to extra poles in the ansatz (5.2) and change the branch
point in r2 associated with the beginning of the continuum in the Z2 even sector (in practice

14For an example of the primal numerical setup with multiple amplitudes in 2d see [9].
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9m2 → (m+m′)2 where m′ is the mass of the lightest Z2 even particle). Dropping the as-
sumption of Z2 symmetry leads to similar effects: now particle A gives rise to a pole in every
channel of every amplitude and all cuts start at 4m2. More ambitiously, we could include
in our setup also the processes TAA→AB and TAB→BB. This would give rise to a stronger
set of unitarity constraints. Any of these more general scenarios must give rise to a weaker
lower bound than a/afree > 0.3.15 This is intriguing because we do not know of any 4d QFT
with a < afree. On the one hand, one may interpret our results as pointing to the existence
of an unknown QFT with a < afree. On the other hand, it is also possible that our setup is
just not constraining enough to approach the true minimal value of a in the space of QFTs.

Another interesting generalization would be to study QFTs with a continuous global
symmetry. In practice, this is achieved by promoting particle A to an irreducible represen-
tation of the global symmetry group. For example, we could study pions as a triplet of O(3).
Building on [7], we could impose the known value of the a-anomaly in QCD and study sev-
eral observables like scattering lengths, chiral zeros and resonances. Alternatively, we could
inject some experimental data about π − π scattering and then minimize the a-anomaly.

It would also be interesting to apply our approach to QFTs with fermionic asymptotic
states. For example, we can ask the question: what is the lowest aUV that can give rise
to massive fermions in the IR?16 In practice, this would require a combination of the
techniques of [19] with the present paper.

Our setup can easily accommodate a massless physical particle described by some
Effective Field Theory (EFT) at low energies. This would have several interesting ap-
plications. The simplest one is for particle A to be a Goldstone boson of spontaneous
symmetry breaking. For example, particle A could describe massless pions like in [18].
More challenging, would be to take particle A to be a photon. This would allows to ask the
question: what is the minimum a-anomaly of the UV CFT that can give rise to a photon in
the IR? Our method creates a non-perturbative bridge between low-energy EFT and their
UV completions (within the realm of QFT). Unfortunately, such applications will be very
challenging numerically for the current methods. The main challenge is the extrapolation
Lmax →∞ in gapless theories (see for instance [24]).

In this paper, the dilaton particle B was an external probe. However, one can also study
physical dilatons, which are the Goldstone bosons from spontaneous conformal symmetry
breaking. In this case, the dilaton decay constant f would be finite and generically of
order m. For this reason, dilatons can now appear as internal massless particles in the
amplitudes. Such non-perturbative setup would be more challenging numerically.

So far, we restricted ourselves to 4 spacetime dimensions. However, our setup can be
easily adapted to 6d. The main difference with 4d is the low energy behavior of the dilaton
scattering amplitude which reads in 6d as [60]

T̃BB→BB(s, t, u) = b

8 × (s2 + t2 + u2) + 9
8(aUV − aIR)× stu+O(s4). (6.1)

15It may be possible to derive a stronger lower bound for QFTs with more than one stable particle by
considering 2→ 2 scattering amplitudes with other external particles besides the dilaton B and the lightest
particle A. This is similar to the discussion below about promoting particle A to a vector multiplet of O(3).

16We thank H. Osborn for suggesting this question.
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Here b is some parameter of the theory. It is an outstanding open question to prove the
a-theorem in 6d. The paper [61] made an interesting proposal: consider the RG flow on
a fixed Anti-de Sitter background and formulate the a-theorem as a conformal bootstrap
problem for its boundary correlation functions. Unfortunately, this approach has not yet
succeeded. In flat space, there seems to be no positive sum rule for (aUV − aIR) in 6d [60].
Nevertheless, we can try to run our numerical approach and minimize aUV in QFTs with
a mass gap. We leave this exploration for the future.
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A Correlation functions of the stress tensor

In this appendix we summarize results for the two- and three-point correlation functions
of the stress-tensor in four spacetime dimension derived in a seminal paper [39] by Osborn
and Petkou. Let us start by defining the short-hand notation

xµij ≡ x
µ
i − x

ν
j . (A.1)

All the tensor structures for the stress-tensor correlators are built out of these elementary
tensors

Iµν(x) ≡ δµν − 2 x
µxν

x2 ,

Iµν,ρσ(x) ≡ 1
2I

µρ(x)Iνσ(x) + 1
2I

µσ(x)Iνρ(x)− 1
4η

µνηρσ,

Xµ
3,12 ≡

xµ13
x2

13
− xµ23
x2

23
.

(A.2)

According to [39] we have

〈Tµν(x1)T ρσ(x2)〉 = CT
1
x8

12
Tµν;ρσ

0 , (A.3)

〈Tµν(x1)T ρσ(x2)Tαβ(x3)〉 = 1
x4

12x
4
23x

4
31

[
A Tµν;ρσ;αβ

1 + B Tµν;ρσ;αβ
2 + C Tµν;ρσ;αβ

3

]
. (A.4)

Here CT is the central charge and A, B and C are the stress-tensor OPE coefficients with
itself. These obey the following relation

CT = π2

3
(
14A− 2B− 5C

)
. (A.5)
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The four tensor structures written above are defined as

Tµν;ρσ
0 ≡ Iµν,ρσ(x12),

Tµν;ρσ;αβ
1 ≡ Iµν,µ′ν′(x13)Iρσ,ρ′σ′(x23)t1µ′ν′,ρ′σ′ αβ(X3,12),

Tµν;ρσ;αβ
2 ≡ Iµν,µ′ν′(x13)Iρσ,ρ′σ′(x23)t2µ′ν′,ρ′σ′ αβ(X3,12),

Tµν;ρσ;αβ
3 ≡ Iµν,µ′ν′(x13)Iρσ,ρ′σ′(x23)t3µ′ν′,ρ′σ′ αβ(X3,12),

(A.6)

where

t1µν,ρσ,αβ(X) ≡ h5
µν,ρσ,αβ(X)− 2h4

µν,ρσ,αβ(X)− 2h4
ρσ,µν,αβ(X) + 24h2

µν,ρσ(X)h1
αβ(X)

−16h1
ρσ(X)h2

µν,αβ(X)− 16h1
µν(X)h2

ρσ,αβ(X) + 64h1
µν(X)h1

ρσ(X)h1
αβ(X),

t2µν,ρσ,αβ(X) ≡ h4
αβ,µν,ρσ(X)− h4

µν,ρσ,αβ(X)− h4
ρσ,µν,αβ(X) + 6h2

µν,ρσ(X)h1
αβ(X)

−2h1
ρσ(X)h2

µν,αβ(X)− 2h1
µν(X)h2

ρσ,αβ(X) + 32h1
µν(X)h1

ρσ(X)h1
αβ(X),

t3µν,ρσ,αβ(X) ≡ h3
µν,ρσ(X)h1

αβ(X) + h1
µν(X)h3

ρσ,αβ(X) + h1
ρσ(X)h3

µν,αβ(X)
−6h2

µν,ρσ(X)h1
αβ(X) + 4h1

ρσ(X)h2
µν,αβ(X) + 4h1

µν(X)h2
ρσ,αβ(X)

−16h1
µν(X)h1

ρσ(X)h1
αβ(X). (A.7)

and

h1
µν(X) ≡ XµXν

X2 − 1
4ηµν ,

h2
µν,ρσ(X) ≡ 1

X2

[
XµXρηνσ +XµXσηνρ +XνXρηµσ +XνXσηµρ −XµXνηρσ

−XρXσηµν
]

+ 1
4ηµνηρσ,

h3
µν,ρσ(X) ≡ ηµρηνσ + ηµσηνρ −

1
2ηµνηρσ,

h4
µν,ρσ,αβ(X) ≡ 1

X2

[
h3
µν,ραXσXβ + h3

µν,σαXρXβ + h3
µν,ρβXσXα + h3

µν,σβXρXα

]
−1

2ηρσh
2
µν,αβ(X)− 1

2ηαβh
2
µν,ρσ(X)− 1

2ηρσηαβh
1
µν(X),

h5
µν,ρσ,αβ(X) ≡ ηµρηναησβ + ηνρηµαησβ + ηµσηναηρβ + ηνσηµαηρβ + ηµρηνβησα

+ηνρηµβησα + ηµσηνβηρα + ηνσηµβηρα −
1
2ηµνηρσηαβ

−ηµνh3
ρσ,αβ(X)− ηρσh3

µν,αβ(X)− ηαβh3
µν,ρσ(X). (A.8)

In curved spacetime one-point function of the trace of the stress-tensor is non-zero. It
has the following form

〈Tµµ 〉g = −a× E4 +× c W 2, (A.9)

where E4 is the Eular density and W 2 is the square of the Weyl tensor. They have the
following expressions in 4d,

E4 = RαβγδRαβγδ − 4RαβRαβ +R2, (A.10)

W 2 = RαβγδRαβγδ − 2RαβRαβ + 1
3R

2. (A.11)
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The coefficients a and c are called the Weyl anomalies. They are related to the OPE
coefficients A, B and C as

a = π4

64× 90
(
9A− 2B− 10C

)
, c = π4

64× 30
(
14A− 2B− 5C

)
. (A.12)

As an example let us consider a theory of a free massless (conformally coupled) scalar Φ(x)
which is described by the free CFT. According to [62] it has the following stress-tensor

Tµν = ∂µΦ∂νΦ− 1
12
[
2∂µ∂νΦ2 + ηµν∂

2Φ2
]
. (A.13)

Such a CFT has the following parameters

A = 1
27π6 , B = − 4

27π6 , C = − 1
27π6 , CT = 1

3π4 , (A.14)

a = 1
5760π2 , c = 1

1920π2 . (A.15)

B Example of the free scalar theory

In this appendix we consider the theory of a free massive scalar field Φ(x) which has the
following action

Afree(m) =
∫
d4x

[
− 1

2∂µΦ∂µΦ− 1
2m

2Φ2
]
. (B.1)

It can be interpreted as a free massless CFT in the UV deformed by the mass term. As
reviewed in sections 2.2 and 2.3 one can define the following modified action

A′free(m) =
∫
d4x

[
− 1

2∂µΦ∂µΦ− 1
2m

2Φ2 − 1
2∂µϕ∂

µϕ+ m2
√

2f
ϕΦ2 − m2

4f2ϕ
2Φ2

]
. (B.2)

In what follows using this action we will compute the BB → BB scattering amplitude,
where B is the dilaton particle created by the dilaton field ϕ(x) from the vacuum. We will
show that in this particular model this amplitude at low energy is given by equation (2.40).
The particle created by the field Φ(x) from the vacuum is referred to as the particle A. We
will do the computation in two different ways.

All the Feynman rules needed for the computation of scattering amplitudes in the
model (B.2) read as

= −i
p2 +m2 − iε

(B.3)

= −i
p2 − iε

(B.4)

= i
√

2m2

f
(B.5)

= − im
2

f2 (B.6)

Here solid lines represent the field Φ(x) and dashed lines represent the dilaton field ϕ(x).
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`

k1 + k2 − `

k2

k1

k′2

k′1

k1 + k2 − `

`− k′1
`

k2

k1

k′2

k′1 k1

k2 k′2

k′1

Figure 17. We consider the momenta of incoming dilatons be k1 and k2 and the momenta of
outgoing dilatons be k′

1 and k′
2. In the total amplitude contribution we also need to add the

contributions of two topologically in-equivalent diagrams for the above individuals which we can
easily read off using crossing symmetry.

Direct computation. The BB → BB dilaton scattering at the order O(f−4) is de-
scribed by the Feynman diagram depicted in figure 17. We compute these diagrams one by
one using the standard Feynman parametrization. We will then expand these expression
at the leading order in energy and the perform the Feynman integrals.

The amplitude described by the first diagram in figure 17 together with the ones
obtained from it by using crossing symmetry has the following form

iAI(s, t) (B.7)

= m4

2f4

∫
d4`

(2π)4
1

`2 +m2− iε
1

(k1 +k2−`)2 +m2− iε
+(cross-sym)

=− im4

32π2f4

∫ 1

0
dx

[
ln
(
m2−sx(1−x)

Λ2

)
+ln

(
m2− tx(1−x)

Λ2

)
+ln

(
m2−ux(1−x)

Λ2

)]
.

Here Λ is the Pauli-Villars regularisation parameter representing the UV cut-off. Contri-
bution from the second diagram in figure 17 together the ones obtained from it by corssing
symmetry has the form

iAII(s, t) (B.8)

=−2m6

f4

∫
d4`

(2π)4
1

`2 +m2− iε
1

(`−k′1)2 +m2− iε
1

(k1 +k2−`)2 +m2− iε
+(cross-sym)

=− im6

4π2f4

∫ 1

0
dx dy dz δ(x+y+z−1)

[
1

m2−sxy
+ 1
m2− txy

+ 1
m2−uxy

]
.

Contribution from the third diagram in figure 17 together the ones obtained from it by
corssing symmetry has the form

iAIII(s,t) (B.9)

=+ im8

4π2f4

∫ 1

0
dxdydzdw δ(x+y+z+w−1)

[
1[

m2−{sy(z+w)+tyz+uz(1−z−w)}
]2

+ 1[
m2−{ty(z+w)+uyz+sz(1−z−w)}

]2 + 1[
m2−{uy(z+w)+syz+tz(1−z−w)}

]2
]
.
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Above the Mandelstam variables are defined as s = −(k1 + k2)2 , t = −(k1 − k′1)2, u =
−(k1−k′2)2 with s+ t+u = 0. Summing all the above contributions we get the four dilaton
scattering amplitude

TBB→BB(s, t, u) = AI(s, t) +AII(s, t) +AIII(s, t) +O(f−5) (B.10)

Let us for simplicity work in the forward limit and focus on low energies when s � m2.
Up to the order O(s2) we obtain

TBB→BB(s,0,−s) = 3m4

16π2f4 ln
(Λ
m

)
+ s2

32π2f4

∫ 1

0
dx x2(1−x)2 − s2

4π2f4

∫ 1

0
dx

∫ 1−x

0
dy 2x2y2

+ 3s2

4π2f4

∫ 1

0
dy

∫ 1−y

0
dz

∫ 1−y−z

0
dw

[
(yz+yw−z+z2+zw)2

+(−yz+z−z2−wz)2+(yw)2
]
+O(s3)

= 3m4

16π2f4 ln
(Λ
m

)
+ s2

960π2f4−
s2

360π2f4 + s2

480π2f4 +O(s3)

= f3m416π2f4ln
(Λ
m

)
+ s2

2880π2f4 +O(s3). (B.11)

The amplitude away from the forward limit at the order O(s2) can be obtained from (B.11)
by using crossing symmetry, then it reads

TBB→BB(s, t, u) = 3m4

16π2f4 ln
(Λ
m

)
+ 1

5760π2f4 × (s2 + t2 + u2) +O(s3). (B.12)

It is obvious that (B.12) reduces to (B.11) in the forward limit. The equation (B.12) is
precisely (2.40) quoted in the main text once we set Λ = m to make the cosmological
constant equals to zero.

Indirect computation. The imaginary part of the BB → BB scattering amplitude at
one loop is related to the tree level scattering amplitude BB → AA via the optical theorem
which can be written as

ImTBB→BB(s, 0,−s) (B.13)

= 1
2

[
1
2

∫
d3~p1

(2π)32E~p1

d3~p2
(2π)32E~p2

]
(2π)4δ(4)(k1 + k2 − p1 − p2)×

∣∣∣TBB→AA(s, t, u)
∣∣∣2.

The terms within the square bracket is the two identical particle phase space integral. To
derive the above relation we considered only two massive particle exchange in the unitarity
cut, which is the leading order contribution in large f . Above we can use crossing symmetry
to write TBB→AA(s, t, u) = TAA→BB(s, t, u). The tree level Feynman diagrams describing
the AA → BB scattering process are depicted in figure 18. This leads to the following
explicit expression for the amplitude

iTAA→BB(s, t, u) = − im
2

f2

[
1 + 2m2

t−m2 + 2m2

u−m2

]
, (B.14)
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p1

p2
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k1

p1

p2

k2
k1

Figure 18. Tree level Feynman diagrams describing the AA→ BB scattering amplitude.

where s = −(p1 + p2)2 , t = −(p1− k1)2 , u = −(p1− k2)2 with s+ t+ u = 2m2. We recall
that in the center of mass frame the t and u variables can be expressed in terms of total
energy squared s and the scattering angle θ according to the second entry in (3.30). We
write this relation here again for convenience

t = m2 − s

2 + 1
2

√
s(s− 4m2) cos θ,

u = m2 − s

2 −
1
2

√
s(s− 4m2) cos θ.

Plugging (B.14) into (B.13) we obtain

ImTBB→BB(s, 0,−s) (B.15)

= 1
64π

√
s− 4m2
√
s

m4

f4

∫ 1

−1
d(cos θ)

[
1 + 2m2

t−m2 + 2m2

u−m2

]2

= 1
64π

√
s− 4m2
√
s

m4

f4

∫ 1

−1
dx

[
1− 8sm2

s2 − s(s− 4m2)x2

]2

= 1
64π

√
s− 4m2
√
s

m4

f4

[
2 + 16m2

s
− 16m2(s− 2m2)

s
√
s(s− 4m2)

ln
(
s+

√
s(s− 4m2)

s−
√
s(s− 4m2)

)]
.

At low energy the BB → BB amplitude will have the form (2.33). We remind that for
the QFT under consideration aIR = 0. The aUV is given by the sum rule (2.34) which
is completely determined by the imaginary part (B.15). Plugging (B.15) into (2.34) we
conclude that

aUV = m4

64π2

∫ ∞
4m2

ds

s3

√
s− 4m2
√
s

[
2 + 16m2

s
− 16m2(s− 2m2)

s
√
s(s− 4m2)

ln
(
s+

√
s(s− 4m2)

s−
√
s(s− 4m2)

)]

= m4

64π2

[ 1
30m4 + 4

105m4 −
19

315m4

]
= 1

(64× 90)π2 = 1
5760π2 . (B.16)

This together with (2.33) is in a perfect agreement with (B.12).
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One can obtain the imaginary part of the BB → BB amplitude away from the forward
limit away using (B.10). It reads

Im[T̃BB→BB(s, t)] = 1
32π

√
1− 4

s
− 1

4πs ln

1 +
√

1− 4
s

1−
√

1− 4
s



− 1
4π

1
su

1√
1 + 4t

su

ln


1
s −

u
st + u

2t

[
1 +

√
1− 4

s

√
1 + 4t

us

]
1
s −

u
st + u

2t

[
1−

√
1− 4

s

√
1 + 4t

us

]


− 1
4π

1
st

1√
1 + 4u

st

ln


1
s −

t
su + t

2u

[
1 +

√
1− 4

s

√
1 + 4u

ts

]
1
s −

t
su + t

2u

[
1−

√
1− 4

s

√
1 + 4u

ts

]
 .

(B.17)

We can check that this expression in the forward limit t = 0 reproduces (B.15).

Partial amplitudes and unitarity. Using the definitions (3.32) and the explicit ex-
pressions (B.14) and (B.17) in free theory we obtain the following spin 0 and 2 partial
amplitudes

T̃ 0
AA→BB(s) = − 1

32π
(
1−4/s

)1/4
[
2− 8

s
√

1−4/s
ln
(

1+
√

1−4/s
1−

√
1−4/s

)]
, (B.18)

T̃ 2
AA→BB(s) = − 1

4π
(
1−4/s

)1/4
[

3
s−4−

1+2/s

s
(
1−4/s

)3/2 ln
(

1+
√

1−4/s
1−

√
1−4/s

)]
. (B.19)

Im
[
T̃ 0
BB→BB(s)

]
= 1

2(16π)2

√
1−4/s − 1

64π2s
ln
(

1+
√

1−4/s
1−

√
1−4/s

)

+ 1
32π2s2

1√
1−4/s

[
ln
(

1+
√

1−4/s
1−

√
1−4/s

)]2

, (B.20)

Im
[
T̃ 2
BB→BB(s)

]
= 9

32π2
1

s2
(
1−4/s

)3/2 −
3

16π2
s+2

s3
(
1−4/s

)2 ln
(

1+
√

1−4/s
1−

√
1−4/s

)

+ 1
32π2

(s+2)2

s4
(
1−4/s

)5/2

[
ln
(

1+
√

1−4/s
1−

√
1−4/s

)]2

. (B.21)

For the free scalar theory the unitarity condition (3.54) simplifies to the following
expression

∀` = 0, 2, 4, . . .
∀s ∈ [4m2,∞)

:
(

1 T̃ ∗`AA→BB(s)
T̃ `AA→BB(s) 2ImT̃ `BB→BB(s)

)
� 0. (B.22)

One explicitly check that the expressions obtained for spin 0 and 2 partial amplitude
saturate this matrix inequality as expected.
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C Derivation of poles

Let us consider the scattering amplitude AB → AB defined in section 3.1. Unitarity allows
to determine part of this amplitude non-perturbatively. This is explained for example in
section 2.5.1 in [20]. One can argue that the amplitude AB → AB has a pole in the
s-channel due to the presence of one-particle states A, namely

TAB→AB(s, t, u) = − |g|2

s−m2 + . . . , (C.1)

where the residue g is given as the limit

g ≡ lim
s→m2

g(s). (C.2)

The function g(s) is defined as the following matrix element

g(s)× (2π4)δ4(p− p1 − p2) = 〈p0, ~p |T |mA, ~p1;mB, ~p2〉, (C.3)

where T is the interacting part of the scattering operator and the total energy squared s

reads as
s ≡ −p2 = −(p1 + p2)2. (C.4)

The . . . in (C.1) denote al the finite contributions at s = m2. The physical range of energies
in (C.4) is s ∈ [m2,∞). The masses of particles A and B are given by (3.1), we remind
here for the readers convenience that mA = m and mB = 0. Due to the presence of the Z2
symmetry, the bra-state in the right-hand side of (C.3) is Z2 odd.

From the explicit expression of the modified action (2.23) one can conclude that the
interacting part of the scattering operator has the form

T = − i√
2f

∫
d4x Θ(x)ϕ(x) +O

(
f−2

)
, (C.5)

where Θ(x) is the trace of the stress-tensor. Plugging this expression into (C.3) we obtain

g(s)× (2π4)δ4(p− p1 − p2) = − i√
2f

∫
d4x eip2·x〈p0, ~p |Θ(x)|mA, ~p1〉+O(f−2). (C.6)

Here we have used the contraction between the dilaton field ϕ(x) and the dilaton state
|mB, ~p2 〉. The translation symmetry allows us to write

Θ(x) = e−iP ·xΘ(0)e+iP ·x. (C.7)

Here Pµ are the generators of translation. Using (C.7) and taking into account the fact
that the states in (C.6) are eigenstates of Pµ, writing the integral over x as a δ-function
we get the final expression for the function g(s) which reads

g(s) = − i√
2f
〈p0, ~p |Θ(0)|mA, ~p1〉+O(f−2). (C.8)
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We remind that the total energy squared s was defined in (C.4), as a result we have

p0 = |~p2|+
√
m2
A + ~p 2

1 , ~p = ~p1 + ~p2. (C.9)

Let us now take the limit (C.2). This limit is achieved by setting ~p2 → 0. Hence we get,

g = − i√
2f
〈m, ~p1 |Θ(0)|m, ~p1〉+O(f−2) (C.10)

As derived in [20, 21], in particular see appendix G of [21], the following normalization
condition holds

lim
~p2→~p1

〈m, ~p1|Θ(0)|m, ~p2〉 = −2m2. (C.11)

Plugging it into (C.10) we conclude that

|g|2 = 2m4

f2 . (C.12)

In turn, plugging this into (C.1), using crossing symmetry (3.18) and the definitions (3.39)
we finally obtain

T̃AB→AB(s, t, u) = − 2m4

s−m2 −
2m4

u−m2 + . . . (C.13)

D Useful identities

In this appendix we derive a set of identities used in section 4.1.
Let us start with the following Fourier transform

∞∑
n=0

cµ1µ2...µn
n n∂µ1∂µ2 · · · ∂µnΦ(x) −→ H1(q) ≡

∞∑
n=0

(i)ncµ1...µn
n n qµ1qµ2 · · · qµnΦ(q). (D.1)

Recall that in section 4.1 we introduced the object K(q), it was defined in (4.13). Let us
reproduce this definition here for the readers convenience

K(q) ≡
∞∑
n=0

(i)n ca1a2...an
n qa1qa2 . . . qan . (D.2)

Using the obvious fact that the object K(q) is homogeneous in qµ we conclude that

H1(q) = qµ
∂K(q)
∂qµ

Φ(q). (D.3)
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Let us denote arbitrary tensors of rank 1 and 3 by E and F respectively. In section 4.1
we had another three Fourier transforms which are
∞∑
n=0

cµ1µ2...µn
n

n(n+ 1)
2 ∂µ1∂µ2 · · · ∂µnΦ(x) (D.4)

−→ H2(q) ≡
∞∑
n=0

(i)ncµ1...µn
n

n(n+ 1)
2 qµ1qµ2 · · · qµnΦ(q),

∞∑
n=1

cµ1···µn
n

n∑
i=1
Eµi ∂µ1 · · · ∂µi−1∂µi+1 · · · ∂µnΦ(x) (D.5)

−→ H3(q) ≡
∞∑
n=1

(i)n−1cµ1···µn
n

n∑
i=1
Eµi qµ1 · · · qµi−1qµi+1 · · · qµnΦ(q),

∞∑
n=2

cµ1...µn
n

n∑
i,j=1
i<j

Fνµiµj∂µ1 · · · ∂µi−1∂µi+1 · · · ∂µj−1∂µj+1 · · · ∂µn∂νΦ(x) (D.6)

−→ H4(q) ≡ 1
2

∞∑
n=2

(i)n−1cµ1...µn
n

n∑
i,j=1
i 6=j

Fνµiµjqµ1 · · · qµi−1qµi+1 · · · qµj−1qµj+1 · · · qµnqνΦ(q).

Analogously to (D.3) we can write

H2(q) = 1
2q

µqν
∂2K(q)
∂qµ∂qν

Φ(q) + qµ
∂K(q)
∂qµ

Φ(q), (D.7)

H3(q) = −i Eµ
∂K(q)
∂qµ

Φ(q), (D.8)

H4(q) = − i2F
ν
µρqν

∂2K(q)
∂qµ∂qρ

Φ(q). (D.9)

E Matter-dilaton scattering: perturbative example

In this appendix we consider the Φ3 perturbative model defined by the following action

A(λ0) =
∫
d4x

[
− 1

2∂µΦ∂µΦ− 1
2m

2
0Φ2 − λ0

3! Φ3
0

]
, (E.1)

where m0 is the bare mass parameter and λ0 is the bare cubic coupling constant of mass
dimension one. In order to simplify the computations of this section we will restrict our
attention to the case when

m0 = 0. (E.2)

The model (E.1) can then be interpreted as the λ0Φ3 deformation of the free massless CFT
in the UV. According to the discussion of sections 2.2 and 2.3 one can define the following
modified action

A′(λ0) =
∫
d4x

[
− 1

2∂µΦ0∂
µΦ0 −

1
2∂µϕ∂

µϕ− λ0
3! Φ3

0 + λ0

3!
√

2f
Φ3

0ϕ

]
+O(f−2). (E.3)
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`

p− `

p

p

Figure 19. One loop contribution to the scalar propagator of the particle A.

Here as usual the field Φ(x) creates the particle A and the dilaton field ϕ(x) creates the
dilaton particle B from the vacuum. Throughout this paper we assumed that the particle
A is Z2-odd. Thus, the associated field must be Z2-odd. In this appendix we relax this
requirement which makes our statements here even more general.

Using the action (E.3) one could compute the BB → BB scattering amplitude at low
energies and show that it is given by (B.12) exactly as in the case of the free massive field
theory discussed in appendix B. This is because the two models in appendices B and E have
the same UV fixed point. We will not do this computation here. Instead we will focus on
the AB → AB scattering process. We will show that the residues of the s- and u- channel
poles matches with the result in (C.13). This confirms the general result of appendix C.

In order to proceed with the computation let us defined the renormalized field Φ(x)
defined as Φ(x) = Z−1/2Φ0(x) with the renormalized mass m. Here Z is the field strength
redefinition constant. In terms of the renormalized field the action (E.3) takes the form

A′(λ) = −1
2

∫
d4x

[
∂µΦ∂µΦ +m2Φ2 + ∂µϕ∂

µϕ
]
−
∫
d4x

[
λ

3!Φ
3 − λ

3!
√

2f
Φ3ϕ

]
−1

2

∫
d4x

[
δZ ∂µΦ∂µΦ + δm Φ2

]
−
∫
d4x

[
δλ
3! Φ3 − δλ

3!
√

2f
Φ3ϕ

]
, (E.4)

where we have defined the counter terms as

δZ = Z − 1, δm = −m2, δλ = λ0Z
3/2 − λ. (E.5)

Up to one loop order and linear in counter terms the scalar propagator for the particle
A has the following form

DF (p) = −i
p2 +m2 − iε

+ −i
p2 +m2 − iε

[
iΣ2(p)− iδm − iδZ p2

] −i
p2 +m2 − iε

, (E.6)

where
iΣ2(p) = λ2

2

∫
d4`

(2π)4
1

`2 +m2 − iε
1

(p− `)2 +m2 − iε
. (E.7)

and the corresponding Feynman diagram contributing to it is drawn in figure 19. We can
in principle evaluate the above loop integral using dimensional regularization, but we do
not need to evaluate it here. Now if we impose the condition that the remormalized scalar
propagator has a pole at p2 = −m2 with the residue (−i), we get

δm = −m2 = Σ2(p)
∣∣∣
p2=−m2

, δZ = ∂Σ2(p)
∂p2

∣∣∣
p2=−m2

. (E.8)
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`1

p1 + p2 − `1

p1

p2
p1 + p2

`2

p1 + p2 − `2

p4

p3

`1

p1

p2

p1 + p2

`2

p4

p3

`1

p1

p2

p1 + p2

`2p4

p3

`1

p1

p2

p1 + p2

`2p4

p3

Figure 20. Loop diagrams with s-channel pole for the scattering process AB → AB. The solid
lines represent scalar particles (A) and dashed line represent dilatons (B). Using crossing symmetry
p2 ↔ −p4 we can get the Feynman diagrams with u-channel pole.

So the non-vanishing contribution to the mass square for the scalar particle A appears at
order λ2. Similarly we can find out the counter term δλ at order λ3 analyzing three point
scalar correlation function up to one loop order. The amplitude for the scattering process
A(p1) +B(p2)→ A(p3) +B(p4) from the Feynman diagrams in figure 20 reads,

TAB→AB(s, t, u) = − g(s)2

s−m2 −
g(u)2

u−m2 + . . . (E.9)

where s = −(p1 + p2)2 , u = −(p1 − p4)2 and “. . .” represents the contributions coming
from the Feynman diagrams which do not contain any propagator with momenta (p1 + p2)
or (p1 − p4). At order O(λ4) the contribution of g(s)2 takes the following form, from the
loop diagrams in figure 20

g(s)2 =
[ 1√

2f
Σ2(p1 + p2) + 1√

2f
Σ2(p1)

]
×
[ 1√

2f
Σ2(p1 + p2) + 1√

2f
Σ2(p3)

]
(E.10)

Now to read off the residue of the pole at s = m2, we need to evaluate the above expression
at s = m2 with all the external particles being on-shell. This reduces to substituting
p2 = p4 = 0 and evaluating g(s)2 at p2

1 = p2
3 = −m2. We get,

g(s)2
∣∣∣∣∣ p2=p4=0
p2

1=p2
3=−m2

= 2
f2

[
Σ2(p1)

∣∣∣
p2

1=−m2

]2

= 2m4

f2 (E.11)

This verifies the general result in (C.13). Though the above verification has been done at
one-loop order, the proof can be generalized to all orders in perturbation theory.
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F Worldline action in dilaton background

In this appendix, we consider the effective worldline action for a massive particle moving
in a background geometry with metric gµν = e−2τ(x)ηµν . Writing e−τ(x) = 1− 1√

2fϕ(x), we
shall show that the worldline action is universal up to two derivatives and quadratic order
in the dilaton field ϕ(x).

The most general coordinate invariant worldline action is

S = −m
∫
dt [1 + c1ẍ

µẍνgµν + c2R+ c3ẋ
µẋνRµν + . . . ] (F.1)

where m is the mass of the particle and ci are non-universal Wilson coefficients. The
4-vector ẋµ is equal to dxµ

dt with t the proper time defined by

dt2 = −gµνdxµdxν . (F.2)

R (Rµν) stands for the Ricci scalar (tensor) of the background metric evaluated on the
worldline, and the dots represent higher derivative terms. Notice that the extrinsic curva-
ture of a worldline is simply given in terms of ẋµ and ẍµ.

For the conformally flat metric gµν = e−2τηµν , the Riemann curvature tensor is

Rαβγδ = e−2τ (ηαγTβδ + ηβδTαγ − ηαδTβγ − ηβγTαδ) , (F.3)

with
Tαβ = ∂α∂βτ + ∂ατ∂βτ −

1
2(∂τ)2ηαβ . (F.4)

Therefore, up to quadratic order in the dilaton field, both R and Rµν are of order
O(∂2ϕ, (∂ϕ)2). Clearly, higher derivative terms will contain more derivatives (and more
powers of ϕ in some cases). Notice that ẍµ = 0 is the leading order equation of motion, thus
we can neglect the second term in (F.1). We conclude that non-universal terms contribute
to the scattering amplitude T̃AB→AB at order at least p2 where p is dilaton 4-momentum.
This confirms the universality of the result (4.34).

G Details of the numerical setup

In this appendix we provide further technical details of the numerical setup described in
section 5.1. These details will be useful to someone who wants to reproduce our numerical
results.

Recall that the full ansatze describing the scattering amplitudes AA → AA, AB →
AB, AA → BB and BB → BB is given by (5.2) together with (5.10) and (5.11). The
unknown coefficients entering the anstatze are

−−−−−−−→coefficients = {α′000, ~α, c,
~β,~γ}, (G.1)

where we have defined

~α ≡ {α000, α001, . . .}, ~β ≡ {β000, β001, . . .}, ~γ ≡ {γ000, γ001, . . .}. (G.2)
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These coefficients should be determined numerically by solving some optimization problem.
In order to make any concrete computations we need to make the vector of coefficients (G.1)
to be finite. This is done by keepping only a finite number of terms in the ansatze (5.2).
This truncation is governed by the parameter Nmax defined as

a+ b+ c ≤ Nmax. (G.3)

Soft behavior. At low energy the AA → BB and BB → BB amplitudes have a very
particular (soft) behavior according to (3.46) and (3.40) respectively. As a result we have
additional constraints on the coefficients of the ansatze. Plugging here the definition of
(t, u) variables in terms of (s, cos θ) according to (3.30) and expanding around small values
of s keeping cos θ fixed we get expressions which match (3.46) and (3.40). Doing this one
obtains the following constraints

β000 = −1− (98− 40
√

6)β001 + . . . , γ000 = 0, γ001 = 1
4 (512a− 2γ002 + γ011) , (G.4)

where a is the a-anomaly. Plugging the solutions (G.4) into the anstatze (5.2) we effectively
eliminate 3 coefficients β000, γ000, γ001 and introduce one additional coefficient a (the a-
anomaly). As a result the list of unknown variables (G.1) gets modified. Let us denote the
final list of variables by −−−−−−−→coefficients′. (G.5)

Partial amplitudes. In order to impose unitarity we need to compute partial amplitudes
defined in (3.32). For that let us define the following integrals

int11bc; `AA→AA ≡
∫ +1

−1
d cos θP`(cos θ) (r1(t; 4/3))b (r1(u; 4/3))c , (G.6)

int12bc; `AB→AB ≡
∫ +1

−1
d cos θP`(cos θ) (r1(t; 2/3))b (r2(u; 2/3))c , (G.7)

int22bc; `AA→BB ≡
∫ +1

−1
d cos θP`(cos θ) (r2(t; 2/3))b (r2(u; 2/3))c , (G.8)

int11bc; `BB→BB ≡
∫ +1

−1
d cos θP`(cos θ) (r1(t; 0))b (r1(u; 0))c (G.9)

together with

poleT`AA→BB ≡
∫ +1

−1
d cos θP`(cos θ) 1

t− 1 ,

poleU`AA→BB ≡
∫ +1

−1
d cos θP`(cos θ) 1

u− 1 .
(G.10)

poleS`AB→AB ≡
∫ +1

−1
d cos θP`(cos θ) 1

s− 1 ,

poleU`AB→AB ≡
∫ +1

−1
d cos θP`(cos θ) 1

u− 1 .
(G.11)

Recall that the definitions of the (t, u) variables in terms of (s, cos θ) depend on the process,
see (3.30). We compute the integrals (G.6)–(G.9) numerically in Mathematica for

Ngrid (G.12)

– 53 –



J
H
E
P
1
2
(
2
0
2
2
)
1
3
6

different values of s ≥ 4m2 for a finite number of spins

` ∈ [0, Lmax]. (G.13)

We will explain how the grid of s values is chosen in the very end of this appendix. We
demand 30 significant digits of precision in the numerical evaluation of integrals. The
poles appearing in the AB → AB process do not enter in our unitarity conditions and thus
there is no need to compute the associated contributions into partial amplitudes (G.11).
The integrals (G.10) are computed analytically. Their explicit expressions will be given in
appendix G.1.

We also have to define partial amplitudes associated to the additional terms (5.10)
and (5.11). They are given by

singT `AA→AA(s) ≡ 1
32π (1− 4/s)1/2

×
∫ +1

−1
d cos θP`(cos θ)

( 1
r1(s; 4/3)− 1 + 1

r1(t; 4/3)− 1 + 1
r1(u; 4/3)− 1

)
, (G.14)

and

T̃ free `
BB→BB(s) ≡ 1

32π ×
∫ +1

−1
d cos θP`(cos θ)T̃ free

BB→BB(s, t, u). (G.15)

Their explicit expressions will also be computed analytically in appendix G.1.
Using the definitions (G.6)–(G.10), (G.14) and (G.15) we convert our ansatze for the

scattering amplitudes (5.2) into partial amplitudes as

T `AA→AA(s) = α′000 singT `AA→AA(s)

+ 1
32π (1− 4/s)1/2 ×

∞∑
a=0

∞∑
b=0

∞∑
c=0

αabc (r1(s; 4/3))a int11bc; `AA→AA, (G.16)

T̃ `AB→AB(s) = 1
16π (1− 1/s)×

(
− 2poleS`AB→AB − 2poleU`AB→AB

+
∞∑
a=0

∞∑
b=0

∞∑
c=0

βabc (r2(s; 2/3))a int12bc; `AB→AB

)
, (G.17)

T̃ `AA→BB(s) = 1
32π (1− 4/s)1/4 ×

(
− 2poleT`AA→BB − 2poleU`AA→BB

+
∞∑
a=0

∞∑
b=0

∞∑
c=0

βabc (r1(s; 2/3))a int22bc; `AA→BB

)
, (G.18)

T̃ `BB→BB(s) = c T̃ free `
BB→BB(s) + 1

32π ×
∞∑
a=0

∞∑
b=0

∞∑
c=0

γabc (r1(s; 0))a int11bc; `BB→BB. (G.19)

Finally, we need to plug the solutions (G.4) into the expressions of partial ampli-
tudes (G.16)–(G.19). For each value s the partial amplitudes (G.16)–(G.19) are simply
numerical linear combinations of unknown coefficients (G.5) which can be used to impose
unitarity.
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Unitarity. Let us now address the unitarity constraints (3.48) and (3.54). Plug-
ging (G.17) into (3.48) we get the unitarity constraint in the form

0 +−−−−−−−→coefficients′ · −→M `
1x1(s) ≥ 0. (G.20)

Plugging (G.16) together with (G.18) and (G.19) into (3.54) we obtain

M0, 3x3(s) +−−−−−−−→coefficients′ · −→M `
3x3(s) � 0, (G.21)

where we have defined

M0, 3x3(s) ≡

 1 0 e(s)
0 0 0

e(s) 0 0

 (G.22)

together with

e(s) ≡ 1
32π (1− 4/s)1/4 ×

(
− 2poleT`AA→BB − 2poleU`AA→BB

)
. (G.23)

Following the logic described in this appendix so far it is straightforward to obtain the
explicit expressions −→M `

1x1(s) and
−→
M `

3x3(s) in Mathematica. These are purely numerical 1x1
and 3x3 matrices for any particular value of s and spin `. In other words we can obtain
Ngrid numerical matrices −→M `

1x1 and −→M `
3x3 for a given value of spin `.17 In practice we will

then work with a finite number of spins `, namely

` = 0, 1, . . . , Lmax, (G.24)

where Lmax is another truncation parameter analogous to Nmax. We export the numerical
matrices −→M `

1x1 and −→M `
3x3 to SDPB software [56, 57] which allows to determine numerically

the coefficients (G.5) such that the unitarity constraints (G.20) and (G.21) are satisfied
for the selected grid of s values and spins (G.24) given one extra condition. This extra
condition can be the minimization of the a-anomaly, which is simply one of the parameters
in the list of coefficients (G.5).

Grid of s values. Let us explain how we chose a grid of s values. We first make the
following change of variables

r1(s; 4/3) = eiφ ⇔ s = 4
3 ×

5 + cosφ
1 + cosφ (G.25)

which compactifies the ray s ≥ 4 into a finite interval φ ∈ [0, π]. We then distribute Ngrid
points in φ in this interval using the Chebyshev grid. These values of φ are then used to
obtain the s values via (G.25).

17To be precise we notice that the matrices −→M `
1x1(s) do not exist for each value of s from the grid since

they are defined only at s ≥ 9.
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G.1 Analytic integrals

Let us provide here analytic expressions for some integrals used in appendix G above. Let
us introduce the Legendre function of the second kind

Q`(x) ≡ −1
2

∫ +1

−1
dx′

P`(x′)
x′ − x

(G.26)

=
√
πΓ(`+ 1)

2`+1(x− 1)`+1Γ(3/2 + `)2F1

(
`+ 1, `+ 1, 2(`+ 1), 2

1− x

)
. (G.27)

Mathematica has this function built in, it is called LegendreQ[`, 0, 3, x]. Numerically Math-
ematica has troubles evaluating it when s is close to 4. One can efficiently evaluate the
Lengendre Q function however in Mathematica using the form (G.27). From the defini-
tion (G.26) one can see that Q`(x) has a branch cut in the complex plane x on the real
axis in the interval [−1,+1]. We define the discontinuity of Q`(x) as

discQ`(x) ≡ 1
2i lim

ε→0

(
Q`(x+ iε)−Q`(x− iε)

)
. (G.28)

Plugging here the definition (G.26) we conclude that

discQ`(x) = −π2

∫ +1

−1
dx′ P`(x′) lim

ε→0

1
π

ε

(x′ − x)2 + ε2

= −π2

∫ +1

−1
dx′ P`(x′)δ(x′ − x)

= −π2P`(x).

(G.29)

Here in the second line we have used one of the definitions of the Dirac δ-functions, see for
example section “primary definition” in [63].

Plugging (G.29) into (G.10) and using the definition (G.26) it is straightforward to
show that

poleT`AA→BB = poleU`AA→BB = − 4√
s(s− 4)

Q`

(√
s

s− 4

)
. (G.30)

Here ` is assumed to be even. We remind that t is related to cos θ according to the second
relation in (3.30) and x ≡ cos θ. Using this expression we can compute partial amplitudes
of the process AA → BB in the free theory. Applying (3.32) to (3.61) and using (G.30)
we obtain

T free `
AA→BB(s) ≡ 1

32π (1− 4/s)1/4
(
−2δ`,0 + 16√

s(s− 4)
Q`

(√
s

s− 4

))
. (G.31)

Using unitarity we get the imaginary part of the BB → BB process which reads in terms
of the above equation as

ImT free `
BB→BB(s) = 1

2
(
T free `
AA→BB(s)

)2
. (G.32)

Finally, we quote the final result for the projection of the singularity (G.14) which reads as

singT `AA→AA(s) =

−
√

s−4
s (
√
s− 2)` (

√
s+ 2)−`−1

2
√

6π(2`+ 1)
+

(
−9
√
s− 4− 2i

√
6
)
δ0,`

96π
√
s

 .
(G.33)
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