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1 Introduction

The advent of gravitational wave observations at LIGO and VIRGO [1] have begun to test
general relativity in new energy regimes to unprecedented levels of precision. The future
space-based observatory LISA [2] and third-generation ground-based detectors such as the
Einstein Telescope and Cosmic Explorer [3] will further extend our observations both in
energy scales and precision.

An obvious question to ask in the context of these gravitational wave observations is:
What do we expect to see beyond general relativity (GR)? One possible avenue to attack this
question is to wonder how gravitational wave merger events would be altered if black holes
were “replaced” by a new type of horizonless exotic compact object (ECO) [4]. Would we
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be able to see effects of the lack of horizon? How compact can such objects be, before they
are indistinguishable from black holes? Such questions have been examined in gravitational
phenomenology from many different avenues, see e.g. [4–6].

Another, more systematic method of examining what is possible beyond GR is an
effective field theory (EFT) approach, which we follow here. It amounts to introducing
higher-derivative operators in the gravity sector of the Lagrangian that are suppressed
by powers of a new small length scale (or large energy scale). These can include four-
derivative gravitational terms such as in dynamical Chern-Simons (dCS) theory [7–9] or
Einstein-dilaton-Gauss-Bonnet (EdGB) [10–12] — for these, additional scalars are needed
to couple to the four-derivative terms if they are to be dynamically relevant. At higher
orders, we can also include six- and eight-derivative operators (without scalars); these
have been constructed and considered in e.g. [13, 14]. In such an EFT approach, the
relevant question becomes: how well are we able to (or will be able to) constrain the
new length scale associated to these irrelevant EFT operators using precision gravitational
wave observations? In this paper, we consider the most general possible four-, six-, and
eight-derivative corrections in four-dimensional gravity theory.

When higher-derivative corrections are present, the evolution of a binary black hole
system will be slightly altered compared to GR — both due to its corrected coupling to the
emitted gravitational wave radiation, and due to finite-size effects — such as alterations of
the multipole structure of the individual black holes. These multipoles are determined by
the metric of an individual, isolated Kerr black hole and how this metric is deformed in the
presence of higher-derivative corrections. The full perturbation of the Kerr solution due to
any four-, six-, or eight-derivative corrections was calculated in [15, 16].1 In this paper, we
provide a comprehensive and exhaustive analysis of the multipole structure of this higher-
derivative-deformed Kerr solution. Such a comprehensive analysis is new, although certain
partial results exist [14]. Our analysis also corrects the erroneous claim that dCS theory
introduces a non-zero S4 multipole for (deformed) Kerr [9].

Defining and calculating multipoles in a higher-derivative theory of gravity is subtle.
First of all, there are three ways multipoles can be defined for stationary vacuum solutions
of four-dimensional GR: the Geroch-Hansen formalism [18, 19]; Thorne’s ACMC formal-
ism [20]; and using the covariant phase-space formalism, as recently done in [21]. These
three definitions of multipoles are equivalent for stationary vacuum solutions to GR [21, 22];
however, it is a priori not clear these methods all generalize to higher-derivative gravity
solutions, nor that they would all give equivalent definitions of the multipole moments.
We discuss and check that all methods are well defined and give the same results for the
gravitational multipoles of the higher-derivative Kerr black hole. Additionally, we show
that perturbative field redefinitions do not affect these multipoles, so that this ambiguity
present in higher-derivative gravity theories does not affect the physical and observable
multipoles.

The higher-derivative corrections to Kerr are known as a complicated perturbative
expansion in the rotation parameter χ = a/M . In addition to calculating the multipoles as

1Thermodynamical aspects of the corrected solutions were also studied in [17].

– 2 –



J
H
E
P
1
2
(
2
0
2
2
)
1
2
0

a perturbative expansion in χ, for certain multipoles we are able to resum this expansion
into a closed-form functional expression of χ. These resummed functions give additional
insight into the full functional form of the metric in terms of χ.

The Kerr solution has a unique set of multipole moments, completely determined by
its mass and angular momentum. By contrast, in string theory, black holes can exhibit a
much richer multipole structure. The Kerr solution can then be obtained as a limit of such
string theory black holes [23, 24]. Curiously, one can then consider ratios of multipoles
in this limit; some of these ratios could be ill-defined for Kerr itself (as its odd-parity
multipoles M2n+1 and S2n vanish), but still have a well-defined Kerr limit of string theory
black hole multipole ratios. These multipole ratios have been argued to provide constraints
on corrections to GR coming from string theory [24, 25]. We examine these multipole ratios
within our framework of higher-derivative corrections and comment on the case where these
can be related to coming from string theory compactified on a torus, as well as the more
general case.

In the following section 1.1, we give a summary of our main results. Section 2 gives
a quick overview of the higher-derivative theories we are considering, including arguments
to show that these are really the most general ones possible (under certain assumptions
and up to eight derivatives), together with a review of the higher-derivative-deformed Kerr
black hole solution. Then, section 3 discusses carefully the three definitions of multipoles
and their equivalence in our higher-derivative theories. We put everything together in
section 4, where we calculate the perturbation to all multipoles for Kerr in the presence
of the various higher-derivative deformations; we also briefly discuss the multipole ratios
introduced in [24, 25]. Finally, we discuss the observability of the higher-derivative length
scale — through the multipole-related finite-size effects — in section 5. Appendix A con-
tains further details on the invariance of multipoles under higher-derivative metric field
redefinitions, and appendix B discusses aspects of the Wald formalism for surface charges.

1.1 Summary

This paper provides a comprehensive and complete overview of the multipole structure of
the Kerr black hole deformed by the most general possible four-, six- and eight-derivative
corrections to four-dimensional general relativity. We show that the three existing methods
of calculating multipoles in a gravity theory — the Geroch-Hansen formalism, Thorne’s
ACMC formalism, and the covariant phase-space formalism — are all non-trivially well-
defined and give equivalent results for higher-derivative-deformed Kerr; we additionally
show that higher-derivative field redefinitions do not affect the gravitational multipoles.

We give the explicit expressions for these multipoles — in section 4.1 (see especially
eq. (4.6)), section 4.2 (see especially eq. (4.17)), and section 4.3 (see especially eq. (4.24));
additional expressions are given in the Mathematica notebook attached to this paper. We
have calculated these multipoles as a perturbative expansion in the rotation parameter
χ = a/M to a high order and expect this expansion to be valid even for fairly large
χ ∼ 1. Where we were able, we have also resummed these expansions into closed-form
functions of χ — see (4.7)–(4.9) and (4.19). The six- and eight-derivative corrections to
the multipoles reveal a surprising relation between odd-parity corrections and even-parity

– 3 –



J
H
E
P
1
2
(
2
0
2
2
)
1
2
0

corrections — captured in the complex expressions (4.6) and (4.17). Further, curiously, the
numerical coefficients of these multipoles grow with n, indicating a breakdown of the EFT
at a certain maximal nmax. We have also investigated how the multipole ratios of [24, 25]
are altered by higher-derivative corrections, and how our results are consistent with the
conjecture given therein that string theory compactified on a torus predicts a unique value
for these multipole ratios.

Finally, we have discussed the observability of the higher-derivative corrections through
the finite-size effects of their modifications to the mass multipole M2. The best-case order
of magnitude constraint on the higher-derivative length scale `, which will be accessible
in the future with observations at third-generation ground-based detectors such as the
Einstein Telescope, is estimated to be:

` . 0.1− 1 km, (1.1)

which is roughly two orders of magnitudes better than existing constraints (based on current
gravitational wave detections) on this length scale. We discuss and derive this constraint in
section 5, where we also discuss that this constraint is also compatible with other constraints
which can be obtained by considering higher-derivative effects in tidal Love numbers or
ringdown quasinormal modes.

2 Higher-derivative gravity and rotating black holes

In this section, we first review the possible higher-derivative invariants in four dimensions
to eight-derivative order, and then review the deformation of the Kerr black hole due to
these higher-derivative corrections.

2.1 Higher-derivative extensions of general relativity

Effective field theory of gravity. Following an effective field theory approach, we
may assume that the Lagrangian for our theory of gravity can be expanded in powers of
derivatives. The two-derivative term corresponds to the Einstein-Hilbert Lagrangian, and,
if diffeomorphism invariance is preserved, the rest of terms must be monomials formed out
of contractions of the Riemann tensor Rµνρσ and its covariant derivatives. The action that
we will use in this paper takes the form [13, 15]

S = 1
16πG

∫
d4x
√
−g

{
R+ `4L(6) + `6L(8) + . . .

}
, (2.1)

where ` is a certain length scale, the six- and eight-derivative Lagrangians read

L(6) = λevR
ρσ

µν R δγ
ρσ R µν

δγ + λoddR
ρσ

µν R δγ
ρσ R̃ µν

δγ , (2.2)

L(8) = ε1C2 + ε2C̃2 + ε3CC̃ , (2.3)

where
C = RµνρσR

µνρσ , C̃ = RµνρσR̃
µνρσ , (2.4)
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and
R̃µνρσ = 1

2ε
µναβR ρσ

αβ (2.5)

is the dual of the Riemann tensor. Although the couplings in the EFT (2.1) are in principle
free, they can be constrained by demanding that the theory satisfies reasonable physical
conditions, such as causality [13, 26–29], which imposes some constraints on the signs of
the couplings (e.g. ε1,2 > 0 and ε23 ≤ ε1ε2).

In deriving this action, one makes use of various identities that reduce the number
of curvature invariants. In addition, redefinitions of the metric allow one to get rid of all
the densities that contain Ricci curvature. The ones that are at least quadratic in the
latter are indeed irrelevant because they do not modify Einstein’s vacuum solutions, and
the redefinition that removes them is vanishing or of higher order on-shell. On the other
hand, the redefinition that cancels the terms linear in the Ricci curvature is non-vanishing
on-shell. Taking this into account means that if we want to employ the simple action (2.1),
containing only the pure Riemann terms, we must note that the metric gµν in our action
is ambigious with respect to field redefinitions, namely:

gamb
µν = gµν + `4∆(4)

µν + `6∆(6)
µν + . . . (2.6)

with tensors ∆(n)
µν built out of the curvature and the metric gµν . We explore all the redefi-

nitions possible for the action (2.1) in appendix A. Many physical observables are invariant
under such redefinitions of the metric; for example, this is known to be the case for black
hole thermodynamic quantities [30] or for the quasinormal mode frequencies which deter-
mine the gravitational wave emission during the ringdown. However, it is not so clear
a priori how the definition of the multipolar structure behaves under field redefinitions.
We show in appendix A that the multipole moments are indeed invariant under such field
redefinition ambiguities, and thus the theory (2.1) captures the most general modification
of the black hole multipoles structure to eight-derivative corrections.

As an effective field theory, the action (2.1) can capture the corrections to GR coming
from any UV theory that preserves diffeomorphism invariance and that does not introduce
additional massless degrees of freedom. As a relevant example, let us take note of the case
of string theory. While the 10-dimensional effective actions of superstring theories do not
contain cubic-curvature terms,2 they do contain the following quartic term [31] —see also
the more recent refs. [32, 33] —

ζ(3)α′3

8 R4 = ζ(3)α′3

8

(
RµνρσR

ανρβ + 1
2RµσνρR

αβνρ
)
RµτεαR

εσ
βτ ∈ LST , (2.7)

up to field-redefinition-ambiguous terms involving the Ricci curvature. This is in fact the
leading higher-curvature term in the case of type IIB string theory. The effective action of
heterotic string theory contains quadratic curvature operators [34], which dominate over
R4, but they are coupled to scalar fields and therefore do not enter into the framework

2These can nonetheless arise in lower dimensions through e.g. flux compactifications or from the world-
volume actions of Dp-branes.
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of (2.1), which assumes that the only relevant degree of freedom is the metric. We study
an appropriate model of such a form further below.

In four dimensions we should be able to relate the density R4 to a combination of the
quartic densities in (2.1). It turns out that

R4
∣∣∣
D=4

= 1
32C

2 + 1
32 C̃

2 , (2.8)

again modulo Ricci curvature. Thus, assuming a toroidal compactification, the type IIB
string theory prediction for the leading correction to GR corresponds to

`6εST
1 = `6εST

2 = ζ(3)α′3

256 , εST
3 = 0 . (2.9)

The equations of motion of (2.1) can be expressed as having an effective energy-
momentum tensor in the right-hand-side of Einstein’s equations, as follows

Gµν = T eff
µν , (2.10)

with
T eff
µν = `4T (6)

µν + `6T (8)
µν , (2.11)

where
T (n)
µν = −P (n) ρσγ

(µ Rν)ρσγ + 1
2gµνL(n) − 2∇σ∇ρP (n)

(µ|σ|ν)ρ , (2.12)

and the tensor P (n)
µνρσ is defined as the partial derivative of the corresponding Lagrangian

with respect to the Riemann tensor, which yields

P (6)
µνρσ = 3λevR

αβ
µρ Rαβρσ + 3λodd

2
(
R αβ
µρ R̃αβρσ +R αβ

µρ R̃ρσαβ

)
, (2.13)

P (8)
µνρσ = 4ε1CRµνρσ + 2ε2C̃

(
R̃µνρσ + R̃ρσµν

)
+ ε3

[
2C̃Rµνρσ + C

(
R̃µνρσ + R̃ρσµν

)]
.

(2.14)

Note that, due to the last term in (2.12) the equations of motion are of fourth order.
However, this is not an issue since we deal with these theories in a perturbative fashion: we
start with a solution of Einstein’s equations Gµν = 0 and use this solution to evaluate T eff

µν .
Then we feed this back in (2.10) and now we have to solve again the Einstein’s equations
with a “matter source” which accounts for the O(`4) or O(`6) corrections to the metric.

Quadratic theories with scalars. In the EFT (2.1) we have neglected all quadratic
curvature terms because they do not modify the solutions of vacuum Einstein equations.
However, they do introduce modifications when coupled to scalar fields. We could consider
a general action of the form

S = 1
16πG

∫
d4x
√
−g
{
R− 1

2ΣAB(φ)∂µφA∂µφB + V (φ) + f1(φ)`2R2 + f2(φ)`2RµνRµν

+ f3(φ)`2X4 + f4(φ)`2∇2R+ f5(φ)`2RµνρσR̃µνρσ
}
,

(2.15)
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where we have a non-linear sigma model for an arbitrary number of scalar fields, with
a potential V (φ), and which couple to all of the 4-derivative densities through arbitrary
(differentiable) functions fi(φ). Here, X4 is the Gauss-Bonnet density, given by

X4 = RµνρσR
µνρσ − 4RµνRµν +R2 . (2.16)

However, if one is only interested in the leading-order corrections to the vacuum GR so-
lutions, a few simplifications apply: (i) the four-derivative terms with Ricci curvature are
again irrelevant or can be removed via field redefinitions, and (ii) the scalars acquire non-
vanishing values of order `2. By assuming that the scalar fields are massless, it can then be
seen [15] that the leading correction to vacuum GR metrics in any theory of the form (2.15)
is captured by the much simpler model

S = 1
16πG

∫
d4x
√
−g
{
R− 1

2(∂φ1)2 − 1
2(∂φ2)2 + α1`

2φ1X4

+ α2`
2 (φ2 cos ξ + φ1 sin ξ)RµνρσR̃µνρσ

}
,

(2.17)

that contains two scalars and depends only on three parameters, α1, α2 and ξ. This action
reduces to Einstein-dilaton-Gauss-Bonnet gravity [35] for α2 = 0, dynamical Chern-Simons
gravity [36] for α1 = 0, ξ = 0 and the effective action of heterotic string theory compactified
on a six-torus [37] for α1`

2 = α2`
2 = −α′/8 and ξ = 0. We also note that this theory breaks

parity if and only if α1α2 sin ξ 6= 0. For sin ξ = 0, φ2 becomes a pseudoscalar so the theory
preserves parity.

The effective energy momentum tensor entering in the right hand side of Einstein’s
equations (2.10) in this case reads

T eff
µν =− α1`

2gνλδ
λσαβ
µργδ R

γδ
αβ∇ρ∇σφ1 + 4α2`

2∇ρ∇σ
[
R̃ρ(µν)σ (φ2 cos ξ + φ1 sin ξ)

]
+ 1

2

[
∂µφ1∂νφ1 −

1
2gµν (∂φ1)2

]
+ 1

2

[
∂µφ2∂νφ2 −

1
2gµν (∂φ2)2

]
.

(2.18)

Note that the contribution of the Gauss-Bonnet density is of second order in derivatives,
while the Pontryagin density actually yields third-order equations, because ∇ρR̃ρµνσ =
0. Since they avoid fourth-order equations, these theories could even be studied non-
perturbatively in `,3 but we will nevertheless restrict to considering solutions perturbative
in `2. On the other hand, the equations of motion for the scalar field read

∇2φ1 = −α1`
2X4 − α2`

2 sin ξRµνρσR̃µνρσ ,
∇2φ2 = −α2`

2 cos ξX4 ,
(2.19)

and they typically imply that the scalars acquire a non-trivial profile when the curvature
is non-vanishing.

3This is at least the case for the EdGB theory, which allows for a well-posed initial value problem [38].
However, this is probably not the case for dCS theory [39].
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2.2 Rotating black hole solutions

An appropriate ansatz to parametrize deviations to the Kerr geometry is given by the
following metric [15]

ds2 =−
(

1− 2Mρ

Σ −H1

)
dt2 − (1 +H2) 4Maρ sin2 θ

Σ dtdφ+ (1 +H3)
(Σ

∆dρ2 + Σdθ2
)

+ (1 +H4)
(
ρ2 + a2 + 2Mρa2 sin2 θ

Σ

)
sin2 θdφ2 ,

(2.20)
where

Σ = ρ2 + a2 cos2 θ , ∆ = ρ2 − 2Mρ+ a2 . (2.21)

and H1,2,3,4 are functions of cos θ and ρ only. This ansatz fixes most of the gauge freedom
associated to infinitesimal coordinate transformations of (ρ, θ), and it has the advantage
that it forces the horizon to be located at the largest root of ∆ = 0. In order to preserve
asymptotic flatness and to ensure that M represents the mass and J = aM the angular
momentum of the black hole, these functions must satisfy the following boundary conditions

H1
∣∣∣
ρ→∞

= 0 , 2H2 +H3
∣∣∣
ρ→∞

= 0 , 2MH3 − ρ2∂H3
∂ρ

∣∣∣
ρ→∞

= 0 , H3 −H4
∣∣∣
ρ→∞

= 0 .
(2.22)

We note that H3 (and therefore H2 and H4) can tend to a non-zero constant value at
infinity. These conditions fix the solution up to residual gauge freedom of the ansatz (2.20).
Unfortunately, the full solution cannot be obtained analytically. A simple way to go around
this problem is to consider a series expansion in the dimensionless spin χ = a/M . In that
case, the relevant solution takes the form

Hi(ρ, θ) =
∞∑
n=0

χn
kmax(n)∑
k=0

n∑
p=0

H
(n,k,p)
i

cosp θ
ρk

, (2.23)

for constant coefficients H(n,k,p)
i , so that each χn term is a polynomial in cos θ and in 1/ρ.

In the case of the quadratic theory (2.17) one can also solve the equations for the scalar
fields (2.19) with a similar expansion,

φi(ρ, θ) =
∞∑
n=0

χn
k̃max(n)∑
k=0

n∑
p=0

φ
(n,k,p)
i

cosp θ
ρk

. (2.24)

This result then has to be used to evaluate the effective energy-momentum tensor in Ein-
stein’s equations (2.10). The solutions were computed in [15, 16], where Mathematica codes
were provided to obtain the solutions at any given order in the spin — see the ancillary
files of those references in arXiv.

In the context of this work it would actually be more interesting to express the solution
as an asymptotic expansion in 1/ρ instead of an expansion in χ. However, it turns out that
the 1/ρ series has a more complicated form. In fact, the coefficient of 1/ρk has contributions
from arbitrary orders in χn, and so these coefficients are not just polynomials in χ (nor in
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cos θ). Thus, we will make use of the χ-expansion in order to obtain the multipoles. In
certain cases, we will then be able to extract the exact functional dependence on χ from
this expansion.

3 Defining multipoles for higher-derivative Kerr

Three ways have been proposed to define gravitational multipoles for four-dimensional,
asymptotically flat, stationary, vacuum spacetimes. The first was that of Geroch [18] and
Hansen [19]. They use the timelike Killing vector ξ (which is the unique timelike vector
normalized at infinity to ξ2 = −1) to construct two scalar fields. The first is simply λ = ξ2.
For the second, we define the twist of ξ as:

ωµ = εµνρσξ
ν∇ρξσ. (3.1)

Using that ξ is a Killing vector, this one-form satisfies:

∂[µων] = −εµνρσξρRσλξλ, (3.2)

which vanishes for vacuum spacetimes with Rµν = 0. The vanishing of this curl means a
scalar ω must exist such that:

ωµ = ∂µω. (3.3)

ω provides the second scalar in the Geroch-Hansen formalism. One can then conformally
compactify the spacetime, and the expansion of the scalars λ and ω around the (com-
pactified) point at infinity gives the two families of gravitational multipoles — the mass
multipoles M` and the current multipoles S`.

While an elegant and manifestly coordinate-independent formalism, the Geroch-Hansen
formalism is not always practical to execute. By contrast, Thorne developed a formalism
to define and compute gravitational multipoles using ACMC (asymptotically Cartesian
and mass-centered) coordinates [20] — one simply needs to find a coordinate system in
which the metric satisfies the ACMC condition, and then the multipoles can be read off
from the 1/r asymptotic expansion of the metric components; we discuss this formalism in
more detail in section 3.1. The equivalence of the Geroch-Hansen and Thorne multipole
definitions, for vacuum spacetimes, was proved by Gürsel [22].

The third and most recent framework to define the multipole moments was given in [21].
There, a family of multipole symmetries were introduced, allowing for an application of the
covariant phase-space formalism [40–43] in order to calculate the corresponding asymptotic
Noether charges — these are precisely the gravitational multipoles of the spacetime. (We
discuss this in more detail in section 3.2.) It was also shown in [21] that for vacuum,
stationary spacetimes, this formalism gives equivalent results as the Geroch-Hansen or
Thorne methods.

It was shown in [44] that the Geroch-Hansen formalism can be extended to arbitrary
non-vacuum spacetimes, including higher-derivative-deformed spacetimes. Moreover, if
such a spacetime admits a coordinate system which satisfies the ACMC condition, then
the Gürsel proof can be generalized to show that the Geroch-Hansen and Thorne ACMC
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formalisms still give equivalent multipoles. Since we are able to find an ACMC expansion
for the higher-derivative-deformed Kerr solution (see section 3.1), we can conclude that
the Geroch-Hansen and ACMC formalisms are well-defined and equivalent for our higher-
derivative black holes.

However, the method of [21], and in particular its equivalence with Geroch-Hansen
(or Thorne’s ACMC) method, has not been considered beyond vacuum solutions in two-
derivative gravity. In section 3.2, we consider the generalization of the covariant phase-
space formalism for multipoles in the presence of higher-derivative corrections, and show
that it remains equivalent to the other two formalisms.

A final subtlety in the definition of gravitational multipoles is that of field redefini-
tions, i.e. gµν → gµν + Xµν , where Xµν is a tensor constructed from curvature tensors as
in (2.6). At first sight, such redefinitions can be concerning — especially in Thorne’s ACMC
formalism, where multipoles are read off from a 1/r expansion in appropriate (ACMC) co-
ordinates, and one may worry whether these field redefinitions could shift the value of the
multipoles. Fortunately, we show in appendix A that any such field redefinitions will not
change the gravitational multipoles for our higher-derivative Kerr spacetime.

3.1 ACMC decomposition

For asymptotically flat, vacuum, four-dimensional spacetimes, a formalism for defining and
calculating the gravitational multipoles of a spacetime was introduced by Thorne [20].

Thorne introduces the concept of an ACMC coordinate system, which allows one to
read off all the mass and spin multipole moments from the expansion of the metric com-
ponents at infinity. In practice, we will start from an AC system [24],4 which is not
mass-centered and hence its mass dipole moment, M̃1, might not vanish. Going to ACMC
coordinates is then straightforward by shifting the origin of spacetime.

The AC coordinate system is defined by the following asymptotic expansion of the
metric [24]:

gtt = −1 + 2M
r

+
∞∑
`≥1

2
r`+1

M̃`P` +
∑
`′<`

c
(tt)
``′ P`′

 ,
gtφ = −2r sin2 θ

 ∞∑
`≥1

1
r`+1

 S̃`
`
P ′` +

∑
`′<`

c
(tφ)
``′ P

′
`′

 ,
grr = 1 +

∞∑
`≥0

1
r`+1

∑
`′≤`

c
(rr)
``′ P`′ , gθθ = r2

1 +
∞∑
`≥0

1
r`+1

∑
`′≤`

c
(θθ)
``′ P`′

 ,
gφφ = r2 sin2 θ

1 +
∞∑
`≥0

1
r`+1

∑
`′≤`

c
(φφ)
``′ P`′

 , grθ = (−r sin θ)

 ∞∑
`≥0

1
r`+1

∑
`′≤`

c
(rθ)
``′ P

′
`′

 ,
(3.4)

4We will only work with axisymmetric spacetimes, thus presenting the ACMC formalism restricted to
this case. The generalisation to non-axisymmetric spacetime can be found, for example, in the appendix
to [24].
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where Pl represents a Legendre Polynomial. The argument of the Pl (and of their deriva-
tives) in the expression above is always cos θ. The terms with coefficients c(ij)

``′ correspond
to non-physical “harmonics”, and depend on the particular AC(MC) system used. Even
though these coefficients, c(ij)

``′ , themselves are unphysical, the non-trivial condition for the
expansion above to be AC is that all c(ij)

``′ have `′ ≤ `.
As already noted, the AC coordinate system above can be made into an ACMC one

via a simple shift of the origin such that M̃1 = 0 (this does not interfere with the condition
`′ ≤ ` on the c(ij)

``′ coefficients). The gravitational multipoles can then be identified in the
ACMC coordinate system as M` = M̃` and S` = S̃`. In fact, there are simple formulae
relating the true multipolesM` and S` in terms of the coefficients M̃` and S̃` in an arbitrary
AC coordinate system, namely [24]:

M` =
∑̀
k=0

(
`

k

)
M̃k

(
− M̃1

M̃0

)`−k
, S` =

∑̀
k=0

(
`

k

)
S̃k

(
− M̃1

M̃0

)`−k
. (3.5)

Strictly speaking, the discussion above concerns an ACMC-∞ system. Were the ex-
pansions presented in (3.4) only valid up to some finite order N , then we would have an
ACMC-N (or AC-N) coordinate system from which only the first N + 1 multipoles can be
read off [20, 24].

Application to higher-derivative Kerr. The metric (2.20) is not in ACMC form so
we have to perform a change of coordinates to write it in that form. In the absence
of higher-derivative corrections, (2.20) corresponds to the Kerr metric in Boyer-Lindquist
coordinates. A coordinate transformation to an ACMC-∞ coordinate system (ρS , θS) is
given by:

ρS sin θS =
√
ρ2 + a2 sin θ , ρS cos θS = ρ cos θ , (3.6)

where the ACMC coordinates (ρS , θS) can be thought of as asymptotically spherical co-
ordinates (as opposed to Boyer-Lindquist coordinates (r, θ), which are (asymptotically)
spheroidal).

It will be useful to introduce the notation x = cos θ, xS = cos θS . The relations (3.6)
can be solved explicitly to obtain the change of coordinates

ρ ≡ ρ(0)(ρS , xS) =

√
ρ2
S − a2 +

√
ρ4
S + a4 + 2a2ρ2

S

(
2x2

S − 1
)

√
2

,

x ≡ x(0)(ρS , xS) = ρ(0)(ρS , xS)
2a2ρSxS

(
−ρ2

S + a2 +
√
ρ4
S + a4 + 2a2ρ2

S

(
2x2

S − 1
))

.

(3.7)

However, this does not put the metric into the ACMC form when higher-derivative cor-
rections are involved. Thus, we need to search for a more general transformation. Let us
denote by µ the parameter that controls the leading corrections, so that µ = `4 or µ = `6

depending on the case. At linear order in µ we then must consider a change of coordinates
of the form

ρ = ρ(0)(ρS , xS) + µρ(1)(ρS , xS) + . . . ,

x = x(0)(ρS , xS) + µx(1)(ρS , xS) + . . .
(3.8)
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where ρ(0) and x(0) are given above in (3.7), and we have to find appropriate ρ(1) and
x(1). Since we do not have a fully analytic form of the metric, we cannot obtain a closed
expression for this change of coordinates. Nevertheless, we can work order by order in the
ρ−1
S expansion to compute the multipoles order by order. Indeed, we find that it suffices

to consider a change of coordinates of the form

ρ(1)(ρS , xS) = b0,0 ρS +
∞∑
k=0

k+1∑
p=0

bk,p
xpS
ρkS

,

x(1)(ρS , xS) = (1− x2
S)
∞∑
k=1

k−1∑
p=0

ck,p
xpS
ρkS

(3.9)

for certain coefficients bk,p and ck,p. We highlight the b0,0 term as this one is somewhat
special; its presence is necessary as the coordinate ρ in (2.20) does not have the usual
asymptotic behavior. To see this, we note that the Hi functions behave asymptotically as

H1 = −h3M

ρ
+O

( 1
ρ2

)
, H2 = −h3

2 +O
(1
ρ

)
, (3.10)

H3 = h3

(
1− M

ρ

)
+O

( 1
ρ2

)
, H4 = h3 +O

(1
ρ

)
. (3.11)

for a certain constant h3. Therefore, the metric reads

ds2(ρ→∞) =−
(

1− 2M(1− h3/2)
ρ

)
dt2 − (1− h3/2)4Ma sin2 θ

ρ
dtdφ

+ (1 + h3)
(
dρ2 + ρ2dθ2 + ρ2 sin2 θdφ2

)
,

(3.12)

so that the metric is not even ACMC-0. The metric can be made ACMC-0 if we redefine the
radial coordinate by ρ = (1 − h3/2)ρS + O(ρ0

S), so that we identify µ b0,0 = −h3/2. This
allows us to read off the mass and angular momentum from the asymptotic expansion,
M0 = M , S1 = aM . The rest of the coefficients in (3.9) are determined similarly at
increasing orders in 1/ρ by demanding that the asymptotic expansion of the metric contains
no terms of the form xmS /ρ

n
S , with m ≥ n. This is equivalent to the statement that all c(ij)

``′

in (3.4) have `′ ≤ `. Once that is done, we can read off the rest of the multipoles, up to
the order to which the aforementioned condition holds.

3.2 Equivalence of the covariant phase space approach

Thorne’s ACMC formalism of the previous section provides an easy way to obtain mul-
tipole moments in a certain (ACMC) asymptotic expansion of the metric. On the other
hand, the elegant formalism of [21] defines the physical multipole moments through sur-
face integrals at infinity associated to the vector fields that generate the so-called multipole
symmetries.5 For stationary solutions in Einstein gravity, the authors of [21] showed that
their definition of mass and current multipole moments fully agrees with Thorne’s ACMC

5For our purposes here we do not need to show the explicit expressions of these vector fields. These can
be found in section 2 of [21], where it is explained that one can make use of (3.13) in order to compute the
associated Noether charges.
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definitions. However, it is not clear that the surface charge multipole moments of [21] will
continue agreeing with Thorne’s ACMC multipoles beyond vacuum GR solutions. Indeed,
it is for example well-known that the (e.g. ADM) definitions of energy, mass and angular
momentum are modified in theories with higher-derivative corrections [45–47].

In higher-derivative theories, there can a priori be two classes of corrections to the
black hole multipoles. The first are the corrections due to the perturbation of the metric
itself — these are clearly captured by the asymptotic expansion in the ACMC formalism
(as we calculate below in section 4). On the other hand, there could also be corrections to
the definitions themselves of the multipole moments — in other words, the functional form
of surface charge multipole moments of [21] may change as well. Such corrections would not
be captured in the ACMC formalism, leading to possible mismatches between the surface
charge and ACMC multipole moment definitions. The purpose of this section is to show
that these corrections to the functional form of the surface charge non-trivially vanish for
asymptotically flat black holes in our higher-derivative theories, so that the Thorne ACMC
and surface charge multipole definitions remain equivalent for these theories.

Let us first consider the cubic and quartic theories. For these, the surface integrals
that one has to compute in order to extract the multipole moments are [21]:

Qξ[δg] = lim
r→∞

(
1

8πG

∫
S2
∞

kξ[δg; η]
)
, (3.13)

where kξ[δg; η] can be taken to be the Iyer-Wald 2-form associated to the vector ξ and to the
metric perturbation δgµν over the background metric, which is taken to be the Minkowski
metric, ηµν . The corrections to the definition of the multipoles are encoded in the Iyer-Wald
2-form, which is a theory-dependent quantity. For L

(
Rµνρσ, g

αβ
)
theories, there exists a

well-known expression for the Iyer-Wald 2-form (see e.g. [48] and also appendix B), which
is the following

kξ[δg; g] = εµν
[
− δPµνρσ∇ρξσ − 2ξρδ (∇σPµνρσ)

+δgαβ
(
−1

2P
µνρσ∇ρξσgαβ + 2ξν∇λPµαβλ − ξρ∇σPµνρσgαβ

)
−∇λδgαβ

(
ξαPµνλβ + 2ξνPµαβλ

) ]
,

(3.14)

where
εµν ≡

1
2!εµνρσdx

ρ ∧ dxσ , (3.15)

and the tensor Pµνρσ is defined as

Pµνρσ = ∂L
∂Rµνρσ

, (3.16)

which is assumed to satisfy

Pµνρσ = −Pνµρσ , Pµνρσ = Pρσµν , Pµ[νρσ] = 0 . (3.17)
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For the cubic and quartic theories, one gets6

Pµνρσ = gµ[ρgσ]ν + `n−2
(
P (n)
µνρσ − P

(n)
µ[νρσ]

)
. (3.18)

From eqs. (2.13) and (2.14), we see that P (6)
µνρσ and P (8)

µνρσ are quadratic and cubic in the
Riemann tensor, respectively. Their variations δP are then linear and quadratic in the
background curvature. This implies that all the corrections to the Iyer-Wald 2-form (and
therefore to the definition of the multipole moments) vanish when the background metric
is flat,

kξ[δg; η] = kGR
ξ [δg; η] . (3.19)

The argument for the quadratic theories is basically the same, but it is convenient to treat
them separately as they contain additional scalar degrees of freedom. In the latter case,
the surface integrals that one has to compute are

Qξ
[
δg, δφA

]
= lim

r→∞

(
1

8πG

∫
S2
∞

kξ
[
δg, δφA; η, φA∞

])
, (3.20)

where φA∞ correspond the asymptotic values of the scalars (A = 1, 2). Since the quadratic
theories are invariant (up to total derivatives) under constant shifts of the scalars, we can
choose φA∞ = 0 without loss of generality. The expression of the Iyer-Wald 2-form for this
class of theories is derived in appendix B to be:

kξ
[
δg, δφA; g, φA

]
= εµν

[
− δPµνρσ∇ρξσ − 2ξρδ (∇σPµνρσ)

+δgαβ
(
−1

2P
µνρσ∇ρξσgαβ + 2ξν∇λPµαβλ − ξρ∇σPµνρσgαβ

)
−∇λδgαβ

(
ξαPµνλβ + 2ξνPµαβλ

)
+ ξνδAB∂

µφBδφA
]
,

(3.21)
where

Pµνρσ = gµ[ρgσ]ν + `2
(
P (4)
µνρσ − P

(4)
µ[νρσ]

)
, (3.22)

and
P (4)
µνρσ = −2α1φ1

˜̃Rµνρσ + α2 (φ2 cos ξ + φ1 sin ξ)
(
R̃µνρσ + R̃ρσµν

)
, (3.23)

where ˜̃Rµνρσ the double-dual of the Riemann tensor. As we can see, the expressions for
the Iyer-Wald 2-form, eqs. (3.14) and (3.21), are almost identical except for the last term
in (3.21), which in any case vanishes for constant background scalars. One can further check
that the remaining corrections to the Iyer-Wald 2-form also vanish since they contain either
one Riemann tensor of the background metric or the background scalars, both of which
vanish.

6Note that we subtract the antisymmetric part P (n)
µ[νρσ], since the tensors P (6)

µνρσ and P (8)
µνρσ as defined in

eqs. (2.13), (2.14) do not satisfy Pµ[νρσ] = 0. However, one can check that the term P
(n)
µ[νρσ] does not change

the stress-energy tensor (2.12), so we could have defined these tensors directly in this way.
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We can conclude that the multipole moments of asymptotically flat black holes in
the theories (2.1) and (2.17) can be identified exactly as in GR.7 In particular, the multi-
pole symmetry formalism of [21] and Thorne’s ACMC formalism [20] will give equivalent
definitions of the gravitational multipoles for higher-derivative-deformed Kerr.

4 Black hole multipoles

In this section, we give the multipoles of the higher-derivative Kerr solution (2.20), which
are calculated using the ACMC methods described above in section 3.1. We will discuss
how the multipoles change from their two-derivative Kerr values separately for six-, eight-
and four-derivative gravitational corrections. Note that additional explicit expressions
of the multipoles (and expansions to higher orders in χ) are available in the Mathematica
notebook attached to this paper. Finally, we will also discuss how ratios of these multipoles
behave, and the relation to the conjecture on these ratios in [24, 25].

It is useful to define the dimensionless couplings

λ̂ev = `4

M4λev , λ̂odd = `4

M4λodd , ε̂i = `6

M6 εi , α̂i = `2

M2αi . (4.1)

and parametrize the multipoles as deviations from Kerr

M` = M
(0)
` + δM`, S` = S

(0)
` + δS`, (4.2)

where M (0)
` and S(0)

` represent the Kerr multipoles, given by:

M2n = M(−a2)n, M2n+1 = 0, S2n = 0, S2n+1 = M a(−a2)n. (4.3)

4.1 Six-derivative corrections

Upon computation of the multipoles Mn, Sn for a few values of n, we observe the following
properties. On the one hand, the parity-preserving corrections λ̂ev only affect the even
mass multipoles M2n and the odd current multipoles S2n+1. On the other, the parity-
breaking corrections λ̂odd modify the multipoles M2n+1 and S2n, which are vanishing for
Kerr. These odd-parity corrections and multipoles break the equatorial symmetry of Kerr.
Furthermore, while for Kerr the multipole moments take the simple functional dependence
∼Man, we find that the corrections are in general complicated functions of the spin; they
behave as ∼ χn only for small χ, whereas for χ ∼ 1 they tend to a constant value and the
series expansion contains half-integer powers as well. By analyzing the first 30 values of
n, we observe an intriguing connection between the corrections associated to λ̂ev and λ̂odd.
We have

δS2n = λ̂odd

λ̂ev
δM2n,

δS2n+1 = − λ̂ev

λ̂odd
δM2n+1 , (4.4)

7An alternative way to arrive to the same conclusion is by noticing that the linearized theories around
Minkowski (which according to [21] is all we need to compute the multipoles) are the same as in GR. This
will no longer be the case if we consider spacetimes with different asymptotics, for which multipole moments
can also be defined, see e.g. [49, 50].
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and we recall that δS2n+1 and δM2n are proportional to λ̂ev while δS2n and δM2n+1 are
proportional to λ̂odd. These relations seem indeed to hold for arbitrary n and a, and they
allow us to express the mass and current multipole moments in a more compact form by
introducing the complex multipoles

Zn = Mn + iSn . (4.5)

For Kerr, Zn takes the simple form Z
(0)
n = M(ia)n, and due to (4.4), we also find a very

appealing formula for the six-derivative theories

Zn = Z(0)
n

[
1 +

(
λ̂ev + iλ̂odd

)
fn(χ)

]
. (4.6)

Thus, the full dependence on the higher-order parameters is encoded only through the
complex coupling constant λ̂ev + iλ̂odd. The functions fn(χ) are dimensionless and they
capture the relative deviation with respect to the Kerr multipoles. From the method
explained in the previous section, we can obtain the series expansion of these functions
around χ = 0. However, it turns out that, at least for low values of n, these expansions take
a sufficiently simple structure that allows us with the help of Mathematica8 to recognize
the pattern and to find the corresponding generating function. Thus, we are able to obtain
the exact result, which for the n = 2, 3 and 4 multipoles reads

f2(χ) = − 4
7χ6

(
8− 4χ6 + 15χ4 − 20χ2 − 8(1− χ2)5/2) , (4.7)

f3(χ) = 4
7χ8

[
4
√

1− χ2 (8χ6 − 10χ4 + χ2 + 16)− 16 + 4χ8 − 13χ6 + 10χ4 − 8χ2

+ 15χ arcsin(χ)
]

(4.8)

f4(χ) = 8
49χ8

[√
1− χ2 (56χ6 − 108χ4 + 48χ2 − 311) + 28χ8 − 103χ6 + 136χ4

+ 24χ2 + 416− 840 (1 + 2χ2)
χ

arcsin(χ)
]
, (4.9)

and, by construction, f0(χ) = f1(χ) = 0.
Note that, despite the powers of χ appearing in the denominators, these functions take

a finite value in the limit χ→ 0. In fact, we have

f2(χ) = 6
7 −

5
28χ

2 − 3
56χ

4 +O
(
χ6) , (4.10)

f3(χ) = 69
98 −

19
84χ

2 − 13
176χ

4 +O
(
χ6) , (4.11)

f4(χ) = 242
147 −

1241
3234χ

2 − 842
7007χ

4 +O
(
χ6) . (4.12)

We plot the fn in figure 1 and we see that they are decreasing functions of the spin χ,
so the relative correction with respect to Kerr is larger for smaller spin. That is not the
case for the absolute correction, Z(0)

n fn(χ), see figure 2. Nevertheless, the dependence on
the spin is quite mild.

8One can use FindSequenceFunction with enough terms (usually 20+) in the χ expansion of fn(χ) to
get a general expression for the coefficient of the expansion. That can be summed to obtain the given
expressions.
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Figure 1. The function fn(χ) determining the six-derivative corrections to the multipoles in (4.6).
Odd and even multipoles are given by dashed and solid lines, respectively.
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Figure 2. Absolute correction, |Z(0)
n fn(χ)|, to the Kerr multipoles for six-derivative theories. Only

the first 8 non-trivial terms are shown for clarity.
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Figure 3. Linear fits to fn(0) as a function of n. Done separately for even and odd n.

For n = 2, 3, 4 the lines in figure 1 are plotted using the exact expressions. They are
virtually indistinguishable from the same curves drawn with a series expansion to order
χ20. We have calculated all the given multipoles to order χ30, hence one can argue that
the first few curves can be trusted almost all the way to extremality.

Regarding the dependence with n, we are not able to find a simple exact formula for
the general term fn - not even for fn(0) - but from figure 1 we expect a linear growth with
n, which is exhibited more explicitly in figure 3. As we can see, the fn(0) have a slightly
different behavior for odd and even n, but both series are almost perfectly linear with n.
Interestingly, this implies that, no matter how small the coupling constants λev,odd are, the
black hole multipole moments will receive O(1) corrections when n is large. According to
the fits in figure 3 this will happen for

nmax ∼
2∣∣∣λ̂ev,odd

∣∣∣ = 2M4

`4 |λev,odd|
, (4.13)

and for n > nmax the effective field theory breaks down.

4.2 Eight-derivative corrections

As in the six-derivative case, the even-parity corrections ε̂1 and ε̂2 modify the multipoles
M2n and S2n+1, while the parity-breaking term ε̂3 gives rise to non-zero M2n+1 and S2n.
The corrections are again non-polynomial functions of the spin which have non-trivial
relations between them.
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Using the complex function Zn = Mn + iSn, we can express the most general possible
corrections as:

Zn = Z(0)
n [1 + ε̂1 pn(χ) + ε̂2 qn(χ) + i ε̂3 hn(χ)] , (4.14)

for real functions pn, qn and hn. However, we find that:

pn − qn = 2hn , (4.15)

which seems to hold for arbitrary n and angular momentum, and non-trivially is also true
both for odd and even n. The other independent linear combination of pn and qn can be
chosen to be:

pn + qn =: 2gn . (4.16)

Using gn and hn we can then rewrite Zn as:

Zn = Z(0)
n [1 + (ε̂1 + ε̂2) gn(χ) + (ε̂1 − ε̂2 + i ε̂3)hn(χ)] . (4.17)

Note that the function gn gives the corrections to the multipoles for the stringy prediction
ε1 = ε2, ε3 = 0, and hence our interest in choosing it. We again have constructed a series
expansion in χ of these functions. In the case of hn(χ) we are able to identify a pattern
and sum the full series, finding exact results for the first few values of n, namely:

h2(χ) = − 8
25χ10

(
64− 80χ10 + 660χ8 − 1545χ6 + 1500χ4 − 600χ2 (4.18)

− 8(1− χ2)5/2(8 + 35χ4 − 55χ2)
)
,

h3(χ) = 8
25χ10

(
192 + 80χ10 − 620χ8 + 1165χ6 − 620χ4

− 200χ2 + 8(1− χ2)5/2(35χ4 − 35χ2 − 24)
)
,

h4(χ) = 8
175χ12

[√
1− χ2 (3920χ10 − 13720χ8 + 16738χ6 − 9101χ4 + 3968χ2 − 1280)

+ 2(560χ12 − 4580χ10 + 10555χ8 − 10480χ6 + 5200χ4 − 2304χ2 + 640)

+ 525χ3 arcsin(χ)
]
,

h5(χ) = 8
105χ12

[√
1− χ2 (2352χ10 − 7112χ8 + 5506χ6 + 1473χ4 − 7081χ2 − 3328)

+
(
3328 + 672χ12 − 5224χ10 + 9890χ8 − 5104χ6 − 2752χ4 + 12032χ2)

− 315(5χ2 + 21)χ arcsin(χ)
]
. (4.19)

These expressions are completely regular in the limit χ→ 0, and in fact we have

h2(χ) = 1
400

(
1144− 780χ2 − 165χ4 +O

(
χ6)),

h3(χ) = 1
400

(
728− 860χ2 − 185χ4 +O

(
χ6)),

h4(χ) = 2834
525 −

1522
385 χ

2 − 6047
7280χ

4 +O
(
χ6) ,
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Figure 4. The relative corrections to the multipole moments hn, defined in (4.17). Observe that
the functions hn follow a different pattern for odd and even n.

h5(χ) = 1448
385 −

64109
15015χ

2 − 19951
21840χ

4 +O
(
χ6) . (4.20)

We also observe that these series expansions converge very fast to the exact answer (4.19);
four or five terms suffice to obtain quite a precise result even for χ = 1. We show the
first eight of these functions in figure 4, where we observe that the hn for odd and even
n follow different patterns, although with similar behaviour, as they all decrease with χ.
Moreover, the plot suggests that the curves all meet at two separate points for odd and
even n respectively. That is not the case. We have checked it numerically up to order
χ40, where for the multipoles on the plot and a few higher ones that is sufficient to ensure
higher order corrections cannot alter the curves enough to make them all meet at the same
point.

Regarding the functions gn(χ), we have not succeeded in finding a resummation of the
power series, although we suspect this may be possible. We present here the first five terms
in the series expansion, which we have computed to order9 χ40:

g2(χ) = 7
10 + 39χ2

44 + 179χ4

208 + 49χ6

64 + 818629χ8

1244672 +O(χ10) , (4.21)

g3(χ) = 189
110 + 109χ2

52 + 349χ4

176 + 269283χ6

155584 + 2038351χ8

1391104 +O(χ10) ,

9More precisely, we computed the multipole moments to order χ40, which means that the coefficients
gn(χ) are computed at order χ40−n.

– 20 –



J
H
E
P
1
2
(
2
0
2
2
)
1
2
0

n=2

n=3

n=4n=5

n=6

n=7

n=8
n=9

0.0 0.2 0.4 0.6 0.8 1.0

1

5

10

50

100

Figure 5. The relative corrections to the multipole moments gn associated to the stringy corrections
ε1 = ε2, ε3 = 0, defined in (4.17). Note that we use a log scale in the vertical axis. We observe that
in this case there seems to be no distinction between odd and even n; the different curves seem to
follow a single pattern with n.

g4(χ) = 3466
1155 + 39386χ2

11011 + 99089χ4

29744 + 6991χ6

2431 + 22064059χ8

9137024 +O(χ10) ,

g5(χ) = 1220
273 + 2244001χ2

429429 + 7288477χ4

1516944 + 51637767χ6

12563408 + 446380219χ8

130202592 +O(χ10) .

(4.22)

Not only are we not able to determine the sums explicitly, but we find also that the
convergence of these series is much slower than in the case of hn(χ). Thus, we need many
terms (around twenty of them for the first few n) in order to get an accurate answer when
we approach χ = 1. We show the first eight gn functions in figure 5. Two interesting
conclusions can be drawn from this graph. First, these corrections grow fast with the spin.
For example, the correction to the quadrupole, g2, is around ten times larger for χ ∼ 1
than for χ ∼ 0; similar relations hold for the other gn. Second, unlike the case of hn, or
the cubic corrections, we do not observe two different patterns for odd and even n (see
also figure 6). All the curves fit a single pattern. This seems to be a special feature of
the stringy interaction (2.8) and it would be interesting to understand the origin of this
property.

The qualitative difference between the behaviour of hn and gn can also be inferred when
considering their dependence on n. As in the previous section, we will only investigate the
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Figure 6. Fits to hn(0) and gn(0) as a function of n. Note that, for gn(0) the solid line is a linear
fit (a = 0) that omits the first 12 points.

case of vanishing spin - hn(0) and gn(0). The fits are presented in figure 6. As for fn(0) in
figure 3, hn(0) exhibits a linear growth with n that differs slightly for odd and even n. On
the other hand, the growth of gn(0) does not depend on its parity. Moreover, looking at the
small n behaviour, one is led to perform a quadratic fit (dashed in figure 6). Nevertheless,
the coefficient of the x2 term is much smaller than that of the linear contribution and
we believe that for large enough values of n, the growth might indeed be linear. As an
example, we have also fitted a straight line (solid in figure 6) to the data, while omitting
the first 12 points. These fits can be used to estimate the range of validity of the EFT
approach for computing the multipoles, namely (using the quadratic for ε̂3 case):

nmax ∼
1
|ε̂1,2|

= M6

`6 |ε1,2|
or nmax ∼

6
|ε̂3|

= 6M6

`6 |ε3|
, (4.23)

so that for n > nmax the EFT results cannot be trusted anymore.

4.3 Quadratic gravity

In the case of the quadratic theories (2.17), the metric receives parity-preserving correc-
tions proportional to α2

1 and α2
2 and parity-breaking corrections proportional to α1α2 sin ξ.

Therefore, we can arrange the corrections to the complex multipoles as

Zn = Z(0)
n

[
1 + α̂2

1 an(χ) + α̂2
2 bn(χ) + i α̂1 α̂2 sin ξ cn(χ)

]
, (4.24)

for real functions an(χ), bn(χ) and cn(χ).
Unlike the case of the pure gravity EFT (2.1), here we find no relation among these

functions; all of them have different forms. In addition, we have not been able in any case
to guess the exact expressions for these functions, as the coefficients of the series expansions
do not seem to follow a simple pattern. These features are unsurprising: one needs to solve
the scalar equations first before being able to solve the corrections to Einstein’s equations
— and no analytic solution exists even for the scalar fields. We find the following series
expansions for the first few multipole moments

a2(χ)=4463
2625−

33863χ2

68600 −
41760667χ4

244490400 −
9183297413χ6

109880971200 +O(χ8), (4.25)

– 22 –



J
H
E
P
1
2
(
2
0
2
2
)
1
2
0

a3(χ)=26252
18375−

991019χ2

1852200 −
43981151χ4

256132800 −
15661148969χ6

204064660800 +O(χ8),

a4(χ)=3000959
900375 −

1493088547χ2

1568813400 −
62802717559χ4

208316007900 −
109391232859χ6

812432430810 +O(χ8),

a5(χ)=314522687
106964550−

372788157631χ2

367102335600 −
4623080093039χ4

14998752568800 −
286675603692757χ6

2209816211803200 +O(χ8),

b2(χ)=− 201
112 + 1819χ2

3528 + 3289259χ4

16299360 + 6651677χ6

61471872 +O(χ8), (4.26)

b3(χ)=− 8819
5880 + 3840911χ2

5927040 + 600173719χ4

2151515520 + 361612454657χ6

2285524200960 +O(χ8),

b4(χ)=− 158908
46305 + 2859524347χ2

2510101440 + 603664559χ4

1271350080 + 661684820477χ6

2499792094800 +O(χ8),

b5(χ)=− 146517509
48898080 + 38715214763χ2

29368186848 + 4925005246529χ4

8570715753600 + 17386036304479727χ6

53035589083276800 +O(χ8),

c2(χ)=6077
1750−

1274269χ2

1234800 −
76837807χ4

195592320 −
6572817103χ6

31394563200 +O(χ8), (4.27)

c3(χ)=20141
7000 −

9142549χ2

7408800 −
5326478623χ4

10757577600 −
780129826921χ6

2856905251200 +O(χ8),

c4(χ)=216458369
32413500 −

13654799083χ2

6275253600 − 8498104705421χ4

9999168379200 −
5719453119143χ6

12379922755200 +O(χ8),

c5(χ)=2486282089
427858200 −

450727554401χ2

183551167800 −
29620800562939χ4

29997505137600 −
59106789643541χ6

108235896088320 +O(χ8).

These series seem to converge reasonably fast even for χ = 1. For instance, for χ = 0.9,
six or seven terms seem to suffice to get an accuracy of around 1%, and a few more terms
achieve that result for χ = 1. We show these quantities as a function of the spin in figure 7.
In the case of an and bn we used an expansion to order χ30, while for the parity-breaking
corrections cn we have an expansion to order10 χ16. In all cases, the relative corrections are
larger for small spin, but one has to bear in mind that the multipole moments of slowly-
rotating black holes are quite small. The absolute corrections, on the other hand, have a
maximum value close to extremality χ ∼ 0.9− 1.

We observe that the dilaton-Gauss-Bonnet corrections (coefficients an) are always pos-
itive, while those associated to dynamical Chern-Simons gravity (coefficients bn) are neg-
ative. Note that our results correct the statements in [9], where dCS was incorrectly said
to alter (only) S4 and higher-order multipoles; from our results, it is clear that dCS theory
alters all even-parity multipoles — thus starting with M2 — and additionally dCS does
not break equatorial symmetry so that still S2n = M2n+1 = 0.

4.4 Multipole ratios

All of the odd-parity multipoles S2n and M2n+1 vanish identically for the Kerr solution.
Nevertheless, it was argued in [24, 25] that certain ratios of multipoles could be calculated

10This is the order of the absolute correction, this is, of χnan, etc.
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Figure 7. From top to bottom: relative (left) and absolute (right) corrections to the multipole
moments associated to the dilaton-Gauss-Bonnet theory (coefficients an), dynamical Chern-Simons
theory (coefficients bn) and the parity-breaking interaction term (coefficients cn) . The coefficients
an, bn and cn are defined in (4.24) and represent the relative corrections to the complex multipoles
Zn, while the absolute correction is proportional to these coefficients times χn.

for Kerr by embedding it into a larger family of string theory black holes. We briefly review
this formalism introduced in [24, 25] here and discuss how the ratios behave in the presence
of higher-derivative corrections.11

In [24, 25], the Kerr black hole is embedded in the most general family of non-extremal,
rotating black holes in four-dimensional STU supergravity [23]. This black hole has ten

11We will not discuss the more subtle “subtracted” ratios introduced in [24], which also involve vanishing
ratios involving (only) the even parity multipoles in the numerator.
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parameters — four electric and four magnetic charges in addition to the mass and angular
momentum. A generic black hole of this kind has all its multipoles non-vanishing. These
multipoles themselves can be seen as functions of four variables M,J,D, a — resp. the
mass M , angular momentum J , the so-called dipole parameter D, and rotation parameter
a; note that in general M , D, and J depend in a complicated way on the eight electro-
magnetic charges so that in particular J 6= Ma. We can now construct ratios of multipoles
M(M,J,D, a) and take the Kerr limit (D → 0 and J →Ma); if this limit is well-defined,
this limit defines a new multipole ratio for Kerr, even if the multipoles involved in the ratio
vanish on the Kerr solution.

As an example, consider:

M = M`+1M`+2
M`M`+3

. (4.28)

On the Kerr solution, for every ` the numerator and denominator vanish, so this ratio is
ill-defined. However, the above procedure gives a well-defined limit, and one finds [24]:

M(Kerr) = lim
D→0,J→Ma

M(M,J,D, a) = 1− 4
3 + (−1)`(2`+ 1) . (4.29)

Another example is:
M2S`
M`+1S1

= 1, (4.30)

which is trivially true for Kerr when ` is odd, but requires the above limiting procedure
for even `. Further examples of multipole ratios for Kerr can be found in [24, 25].

Multipole ratios with higher-derivative corrections from string theory. In [24,
25], it was conjectured that these Kerr multipole ratios such as (4.29) were a string theory
prediction; small deviations from Kerr are constrained by the demand that these ratios re-
main (well-defined and) the same value. More precisely, these ratios should be a prediction
of string theory compactified on a torus to four dimensions.

In such a toroidal compactification, we discussed above that the string-theory higher-
derivative corrections are given by (2.9). In particular, there are no odd-parity corrections,
so that the odd-parity multipoles S2n and M2n+1 remain zero. This gives a perhaps rather
unsatisfying “confirmation” of the conjecture in [24, 25] — the perturbations to the Kerr so-
lution due to string theory higher-derivative corrections leave the multipole ratios invariant
since the odd-parity multipoles remain vanishing.12

Multipole ratios with general higher-derivative corrections. It is relatively easy
to see that the multipole ratios of [24, 25] will not remain unaltered when generic higher-
derivative corrections are turned on — in particular, when odd-parity higher-derivative
corrections are present. For example, when the odd-parity six-derivative parameter λodd 6=

12Of course, a much more powerful check would be to calculate the (string-theoretic) higher-derivative
corrections to the most general STU black hole (i.e. with all multipoles non-vanishing) and then re-calculate
the multipole ratios using these corrected black holes. Calculating the higher-derivative corrections to this
general black hole would be an interesting challenge.
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0, the ratio (4.30) becomes, for ` = 2n:(
M2S2n
M2n+1S1

)
λodd 6=0

= f2n(χ)
f2n+1(χ) . (4.31)

From (4.7)–(4.9) or (4.10)–(4.12), it is clear that this ratio is no longer equal to 1 as
in (4.30). Note that the ratio (4.31) is independent of λodd even though its calculation
requires λodd 6= 0.

Similarly, for (4.29) with ` = 2n, we now find:(
M2n+1M2n+2
M2nM2n+3

)
λodd 6=0

= f2n+1(χ)
f2n+3(χ) , (4.32)

which again does not match with the Kerr value (4.29). A similar analysis could be made
for other multipole ratios, as well as for the eight-derivative odd-parity corrections when
ε3 6= 0 or the four-derivative odd-parity corrections when α1α2 sin ξ 6= 0.

5 Observability

As mentioned in the Introduction in section 1, the observation of gravitational waves coming
from binary black hole merger events provides an exciting new opportunity to measure and
constrain gravity effects beyond general relativity. This includes constraining the scale
of possible higher-derivative corrections to new levels of precision, mostly through the
perturbations that these corrections imply to the structure of the merging black holes —
which is encoded in the multipole moments we have calculated in section 4.

Of course, the constraints we are able to put on the higher-derivative length scale `
will still be (many) orders of magnitude away from the Planck scale, `Pl ∼ 10−35 m, which
is a priori the natural scale at which to expect such higher-derivative corrections. However,
it is also clear that extensions of general relativity at scales much larger than the Planck
scale are not ruled out by current experiments and observations; it is important to under-
stand the extent to which current and future gravitational wave experiments will further
constrain the available phase space of effective field theories beyond GR [14], by adopting
a theory-agnostic viewpoint and without a priori limiting ourselves with a theoretical bias
of naturalness [51].

A binary black hole merger consists of three phases. First, there is the relatively long
inspiral phase, where the black holes are in orbit around each other. This phase transitions
into the violent and short merger phase, where the black hole horizons coalesce into a single
object. Finally, the new object relaxes to a (quasi-)stationary state in the ringdown phase.

We will focus on the inspiral phase — when the black holes are still sufficiently far
away from each other that typically a post-Newtonian expansion is possible to describe
the orbit evolution. Of course, the strong gravity merger phase will most likely be even
more sensitive to higher-derivative corrections, but this is unfortunately hard to calculate.
Higher-derivative corrections to the ringdown phase — the relaxation to stationarity of the
final black hole — were studied in [14, 16, 52–55]. We will assume the higher-derivative
scale ` is small compared to the black hole scale(s) — so ` ≤ M for any black hole mass
M involved.
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Leading higher-derivative corrections to inspiral dynamics. The presence of higher-
derivative terms corrects the gravitational dynamics in two ways:

(A) finite-size effects — i.e. each inspiralling black hole (individually) has corrections to
its multipole structure;

(B) the coupling of the inspiralling system to the gravitational field is changed, correcting
the resulting gravitational wave radiation.

The corrections in the coupling to radiation of (B) can be estimated from the energy
dissipation:

dE

dt
= −1

5〈
...
Q ij

...
Q ij〉, (5.1)

with the effective quadrupole coupling with non-zero eight-derivative terms given by [13]:

Qij = Q
(0)
ij

(
1 + crad

ε1`
6

r6

(
M

r

)2
)
, (5.2)

where M = M1 + M2 is the total mass of the binary system, Q(0)
ij is the (two-derivative)

regular mass quadrupole of the binary system, and crad is a numerical factor. (Note that
ε2,3 do not contribute to the shift of Qij , although they do shift the current quadrupole
of the system [13].) In the inspiral, we can expand the system’s evolution in powers
of the dimensionless angular velocity of the orbit v (with v = (2πMν)1/3 where ν is
the frequency of the orbit). Then r ∼ M/v2, so that the corrections to this effective
quadrupole Qij scale as δQij ∼ Q

(0)
ij (ε1`6/M6)v16 and so δ(dE/dt) ∼ O(v26). Presumably

(although not discussed in [13]), the analogous six-derivative corrections would then scale
as δ(dE/dt) ∼ O(v22).

By contrast, for the finite-size effects of (A), the leading order effect is due to the change
of the mass quadrupoleM2, which enters at O(v14) [56, 57] in dE/dt for the inspiral. (Note
that a non-zero S2 enters at O(v15) in dE/dt [58].) So, we expect the finite-size effects of
(A) to be dominant over the corrections to the radiation coupling of (B). We have derived
the modifications to the mass quadrupole due to the various possible higher-derivative
terms in section 4. These can be used to estimate the observability of the higher-derivative
length scale `, which will be carried out further down.

Finally, note that our analysis above is for eight- and six-derivative corrections. The
situation is different for four-derivative terms: for example, note that from (4.24), the
changes to the black hole multipoles are quadratic in the effective coupling αi`2/M2, which
means they behave more like a six-derivative correction to the multipole structure. Certain
observable aspects of particular four-derivative additions were discussed in the context
of dynamical Chern-Simons theory in e.g. [9, 59], and of Einstein-dilaton-Gauss-Bonnet
in [60]. Both dCS and EdGB were analyzed in [61]. We will only consider the eight- and
six-derivative corrections in the rest of this section, except when comparing to the existing
bounds on the four-derivative length scale at the end.
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Constraining the higher-derivative scale `. The possible deviations from the Kerr
mass quadrupoleM2, for each of the two black holes in a binary system, are often parametri-
zed as:

M2,(i) = −κ(i)M
3
(i)χ

2
(i), κ(i) = 1 + δκ(i), (5.3)

where δκ(i) = 0 is the GR prediction. One typically forms the symmetric and antisymmetric
combinations δκ(s) = (1/2)(δκ(1)+δκ(2)) and δκ(a) = (1/2)(δκ(1)−δκ(2)), as these are better
suited for measurements.

We can calculate the expectation for δκ(s) from our higher-derivative corrections.
From (4.6), (4.17), and (4.24) above, we have:

δκ(s) =
([
α̃2

1 a2(0)+α̃2
2 b2(0)

]
+λ̃ev f2(0)+[(ε̃1+ε̃2)g2(0)+(ε̃1−ε̃2)h2(0)]

)
+O

(
χ2

(1),χ
2
(2)

)
,

(5.4)
where f2(χ) is given in (4.7), g2(χ), h2(χ) in (4.21) and (4.18), and a2(χ), b2(χ) in (4.25)
and (4.26); note that a2(0), b2(0), f2(0), g2(0), h2(0) are all O(1) numbers. Finally, the
tilded quantities should be understood in (5.4) as an appropriate mean over inverse powers
of the masses, so e.g.:

λ̃ev = 1
2

( 1
M4

1
+ 1
M4

2

)
`4λev, (5.5)

which can be compared to the definitions of the effective couplings for a single black hole
given in (4.1).

The asymmetric combination δκ(a) can be compared to (5.4) as:

δκ(a) = 2δM
M1

δκ(s) +O
(
χ2

(1), χ
2
(2), (δM)2

)
, (5.6)

where δM = M2−M1. For (approximately) equal mass binaries and low spins, then, δκ(a)

will be at most the same order as δκ(s) for our higher-derivative corrections.
In practice, one often constrains the symmetric combination δκ(s), assuming the anti-

symmetric one vanishes, δκ(a) = 0 [62, 63]. It is also possible to leave both combinations as
free parameters; in this case, the constraints on δκ(a) are much weaker than on δκ(s) [64].
We will focus on δκ(s) as a good estimate of the measurability of the higher-derivative
corrections to the quadrupole M2. From (5.4) we can conclude that, at least for relatively
low spin, the (order of magnitude) constraint on δκ(s) translates into a spin-independent
constrain on ` once the binary black hole masses M(i) are known. However, we do note
that the often-used assumption that δκ(a) = 0 is clearly not optimal when considering
higher-derivative corrections. In fact, it would improve the measurability and constrain-
ability of the higher-derivative corrections to repeat the analysis constraining the multipole
deviations, by considering both non-zero δκ(s) and δκ(a), but where moreover the values of
both these corrections are linked through an equation such as (5.6).

The best bound on δκ(s) with current observations is roughly −16.0 . δκ(s).6.66 [63],13

which gives:

− 18.67
[1

2

( 1
M4

1
+ 1
M4

2

)]−1
. λev `

4 . 7.77
[1

2

( 1
M4

1
+ 1
M4

2

)]−1
, (5.7)

13The constraint on negative values of δκ(s) is worse than the bound on positive values; this is due to
how the parameters correlate with the effective binary spin parameter [63].

– 28 –



J
H
E
P
1
2
(
2
0
2
2
)
1
2
0

where we took only λev 6= 0 in (5.4) for simplicity. This constraint is for binary black hole
masses of M = 1− 10M�.14 Assuming also the dimensionless coupling in the Lagrangian
λev is a positive O(1) number, we get (in a best case rough estimate):

` . 1.67
[
λev
2

( 1
M4

1
+ 1
M4

2

)]−1/4
∼ 1− 10 km. (5.8)

Note that λev < 0 would lead to a less stringent constraint through the negative con-
straint in (5.7). Considering other non-zero higher-derivative corrections gives comparable
constraints on ` from (5.4).

At the Einstein Telescope, a future third-generation ground-based detector [64], the
bound is estimated to improve roughly two orders of magnitude for similar-sized black hole
mergers, δκ(s) . 10−2. Again considering only λev 6= 0 (and λev > 0), this would translate
to a bound on ` of:

` . 0.32
[
λev
2

( 1
M4

1
+ 1
M4

2

)]−1/4
∼ 0.1− 1 km. (5.9)

This is the best constraint possible in the near future.

Comparison with other constraints. Here, we briefly list a few other current or future
observational aspects of gravitational waves which can be used to constrain `.

First of all, note that [61] provides the best constraints to date for the length scale
of the four-derivative Einstein-dilaton-Gauss-Bonnet and dynamical Chern-Simons theo-
ries: ` . 1.7 km for EdGB, and ` . 8.5 km for dCS (see also [65]). Note that these are
already comparable to our six- or eight-derivative constraints (5.9) for the third-generation
detectors, even though the four-derivative scale constraints in [61] come from current de-
tections. It is reasonable to assume that third-generation detectors will be able to constrain
four-derivative theories much better than (5.9).

Perhaps most interesting to contrast with the equal- and relatively low-mass binary
black hole mergers discussed above, are the extreme-mass ratio inspirals of small solar-mass
objects into supermassive black holes (of masses ∼ 105 − 107M�), that will be detected
at the future space-based detector LISA. These will be able to constrain deviations from
the Kerr prediction for the dimensionless mass quadrupole M2/M

3 of the supermassive
partner extremely well [66, 67]: up to ∆(M2/M

3) ∼ 10−4.15 However, since M here is the
mass of a supermassive black hole, M ∼ 105M� or higher, this translates to a rather poor
constraint on ` itself:

` . 0.1(λevχ2)−1/4M ∼ 104 km, (5.10)

where we assume the best case of a highly-spinning supermassive black hole, so that χ ∼ 1.
The dimensionless current quadrupole can similarly be constrained by EMRIs at LISA to
∆(S2/M

3) ∼ 10−2 [58]; this would lead to slightly worse constraints on `.
Black holes in a binary system are tidally deformed by each others’ gravitational field

— this deformation is characterized by tidal Love numbers, which for the Kerr black hole (in
14Note that the solar mass is approximately M� ≈ 1.5 km.
15Note that this is roughly of the same order of magnitude as the ET bound δκ(s) ∼ 10−2 if χ ∼ 10−1.
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two-derivative Einstein gravity) identically vanish [68]. In the presence of eight-derivative
corrections, it was calculated in [14] that the quadrupolar tidal Love numbers become
kE,B2 ∼ O(10)ε̃1,2. In [69], current detectors are estimated to constrain kE2 . 100; LISA
could do better at kE2 . 10,16 and (optimistically) ET could constrain an extra two orders
of magnitude compared to aLIGO/aVIRGO, down to kE2 . 1. In this latter case, we would
have the constraint:

` . ε
−1/6
i M ∼ 1 km, (5.11)

which is comparable to (5.9).
Constraining the higher-derivative length scales through the measurement of the per-

turbed quasinormal modes in the ringdown phase was considered in [14] for eight-derivative
corrections. They estimate that roughly ` . 10 km is the best that aLIGO/aVIRGO mea-
surements will be able to do for such ringdown measurements. The more detailed analysis
of [16] suggests a constraint of e.g. |λ̂ev| ≤ 0.1 at ET from quasinormal mode observations;
this is again comparable to (5.9).

In our analysis, we have assumed that the higher-derivative scale is small, and in any
case smaller than the corresponding black hole scale(s), so ` . M(i); note that the weak
bounds such as (5.8) are (at best) at the boundary of this regime. For ` & M(i), one
instead expects the finite-size effects to become subleading to the corrections to the grav-
itational wave radiation [51]. Eight-derivative corrections in this regime were considered
in [51], where the conclusion was that roughly the range 100 km . ` . 200 km is strongly
disfavored.

Finally, we wish to mention the analysis of [71, 72]. They parametrize deviations to the
radiated multipole moments of the binary system; for example, Qij = µ2Q

(0)
ij , where µ2 = 1

in GR. They analyze the constraints on e.g. δµ2 = µ2 − 1. Relating δµ2 to the higher-
derivative corrections requires knowledge of the corrected black hole multipoles as well as
correction effects to the gravitational wave propagating from the source to the detector
onto the curved spacetime. Systematically characterising the contributions to δµ2 coming
from higher-derivative terms in the action might offer interesting additional constraints on
the length scales of theories beyond GR.
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A Field redefinitions

When introducing higher-derivative corrections, the metric is ambiguous under field re-
definitions gµν → gµν + Xµν , where Xµν is an object created from (at least two) metric
derivatives such as in (2.6). Such redefinitions shift the metric and the (higher-derivative)
Lagrangian. In appendix A.1, we will show that any vacuum solution of (2.1) and (2.17) ad-
mitting an ACMC expansion (3.4) has multipoles that are independent of field redefinitions.
For reference, we also discuss the list of all possible field redefinitions in appendix A.2.

A.1 Proof of invariance of multipoles

We can give a general proof to show that field redefinitions do not affect the gravitational
multipoles of a stationary solution to the higher-derivative theory.

A field redefinition of this metric must be of the form gµν → gµν +Xµν for some Xµν

that involves at least two derivatives acting on metric tensors, such as in (2.6). It is clear
that (every term in) Xµν must either:

a. Contain more than one Riemann tensor (with or without derivatives acting on these
Riemann tensors); or:

b. be proportional to either the Ricci tensor or Ricci scalar.

Examples of (a) include everything listed below in (A.10) and (A.13); (b) is essentially the
special cases Rµν and gµνR.

We start with a metric brought to the ACMC-form (3.4). Let us rewrite this as:

g00 = −1 +
∞∑
`=0

S`
r`+1 , g0i =

∞∑
`=1

S`
r`+1 , gij = δij +

∞∑
`=0

S`
r`+1 , (A.1)

where S` is short for “any angular dependence up to and including the order ` spher-
ical harmonics”. For example, in g00, this includes the leading-order contribution from
the multipoles M`, but also the (gauge-dependent) subleading terms proportional to the
coefficients c(tt)

``′ .
Two properties of such angular dependences are important:17

(i) Derivatives do not increase (maximal) angular dependence,18 i.e.

∂i∂j · · · ∂k
( S`
r`+1

)
=
∑
`′

S`′
r`′+1 , (A.2)

where the particulars of the sum over `′ depend on the index structure in ij · · · k.

(ii) Multiplying two “leading” terms gives “subleading” terms, i.e.:( ∞∑
`=1

S`
r`+1

)( ∞∑
`′=1

S`′
r`′+1

)
=
∞∑
`′′=1

S`′′−1
r`′′+1 . (A.3)

17These are easiest to understand and derive using STF tensors; see e.g. [20, 44]. Similar arguments were
used in deriving the multipole structure of almost-BPS microstate geometries in [73].

18Derivatives may decrease the maximal angular dependence depending on their index structure.
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It is quite easy to see that these properties imply that the inverse metric is also given
by (A.1) where all the indices are simply written raised.

To show that the multipoles are not affected by a field redefinition, we need to show
that:

Xµν =
∞∑
`=1

S`−1
r`+1 , (A.4)

where we note the subscript ` − 1 on the angular dependence S ensures that the `-th
multipole (either M` or S`) is unaffected by the shift Xµν . Since a Riemann tensor involves
two derivatives of the metric, it is not hard to see (using property (i)) that every component
satisfies:

Rµνρσ =
∞∑
`=1

S`
r`+1 . (A.5)

Then, using property (ii), we immediately have that the product of two Riemann tensors,
no matter what indices are involved, will always be subleading:

RµνρσRαβγδ =
∞∑
`=1

S`−1
r`+1 , (A.6)

so that it is clear all possible field redefinitions under (a) will not affect the gravitational
multipoles.

For the Ricci tensor and Ricci scalar shifts under (b), a bit of calculation shows that:

R00 =
∞∑
`=1

S`−1
r`+1 , R0i =

∞∑
`=1

S`−1
r`+1 , (A.7)

but that:

Rij = 1
2∂i∂jg00 + 1

2 (∂i∂kgjk + ∂j∂kgik − ∂i∂jgkk) +
∞∑
`=1

S`−1
r`+1 , (A.8)

where the sum over the repeated index k is implied. This also means that:

R = ∂i∂kgik +
∞∑
`=1

S`−1
r`+1 . (A.9)

So the Ricci tensor and scalar are not necessarily subleading — for general spacetimes,
these field redefinitions under (b) could in principle shift the multipole structure, making
it ill-defined under field redefinitions. However, for vacuum solutions, the leading order,
two-derivative solution has Rµν = R = 0 and hence, with the help of (i), these field
redefinitions trivially also do not affect the gravitational multipoles.

Therefore, for any solutions to the Lagrangian (2.1), and for vacuum solutions to (2.17)
(i.e. where φ1,2 ∼ O(`)), we can conclude that there are no possible field redefinitions that
can alter the multipole structure. This, of course, includes the (higher-derivative corrected)
Kerr solution we consider in this paper.
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A.2 Possible field redefinitions

The previous section provided a general proof to show that the multipole moments are
invariant under field redefinitions. Here, we will list and discuss the possible field redefini-
tions in more detail. As we mentioned in the main text, the effective action contains all of
the independent terms that contain pure Riemann (or equivalently Weyl) curvature, but
not Ricci curvature (2.1). The rest of the terms have been implicitly removed by using
field redefinitions. However, non-linear field redefinitions can still be introduced by terms
linear in the Ricci curvature.

In the six-derivative Lagrangian there are only two independent terms which are linear
in Ricci curvature, and these can be chosen as

R C , R C̃ . (A.10)

A linear combination of these terms in the Lagrangian,

Leff ⊃ β1R C + β2R C̃ , (A.11)

can be cancelled by the following (perturbative) field redefinition,

gµν → gµν
[
1 + `4

(
β1C + β2C̃

)]
. (A.12)

Note that these terms involve the product of two Riemann tensors, and clearly do not
affect the multipole moments due to the arguments given above. Hence, (A.12) preserves
the multipole structure.

Using the results in [74], we can find the list of corresponding eight-derivative invari-
ants. For the even-parity invariants we have

RR ρσ
µν R δγ

ρσ R µν
δγ , ∇αRRµνρσ∇αRµνρσ , R∇αRµνρσ∇αRµνρσ ,

Rαβ∇αRµνρσ∇βRµνρσ , ∇αRµνRρσµβ∇
βRρσνα , ∇α∇β∇µRνσ∇µRνασβ ,

∇µ∇ν∇ρ∇σRRµνρσ .

(A.13)

Integrating by parts, using Bianchi and Ricci identities and ignoring terms with more than
one Ricci curvature, one can show that a linear combination of these terms gives rise to
the following terms in the effective Lagrangian,

Leff ⊃ `6Gµν
[
Kµν − gµν

(
L+ 1

2K
)]

, (A.14)

where
Kµν = γ1∇(µ|Rαβγδ∇|ν)R

αβγδ + γ2Rαρσβ∇α∇βR(µ|
ρσ
|ν) , (A.15)

and

L = γ3RµνρσR
ρσ
αβR

αβµν + γ4∇αRµνρσ∇αRµνρσ + γ5R
µνρσ∇2Rµνρσ . (A.16)

These terms are cancelled by the following field redefinition

gµν → gµν + `6
[
gµν

(
L+ 1

2K
)
−Kµν

]
. (A.17)
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These terms all involve the produce of at least two Riemann tensors, and so again do not
affect the multipole moments. To give an explicit example, consider Kµν , evaluated on the
Kerr solution in Boyer-Lindquist coordinates and expanded in 1/r:

Ktt = 18γ2M
3

r9

[
1− 2M

r
− 19M2χ2x2 − 2M2χ2

r2 + . . .

]
,

Ktφ = − 36γ2M
4(1− x2)χ
r9

[
1− M

r
+ M2χ2 − 18M2χ2x2

r2 + . . .

]
,

(A.18)

These terms clearly do not contribute to any leading order, multipole coefficient — they
will only contribute to the c``′ coefficients in (3.4).

Finally, for parity-odd terms, we can obtain a basis by replacing one of the Riemann
tensors in (A.13) by its dual. The rest of the analysis is analogous, and these terms also
do not give any contribution to the multipoles.

B Surface charges

In this appendix we compute the Iyer-Wald 2-form kξ for a general class of higher-derivative
theories which include as particular cases those considered in this work.

B.1 Some generalities

Let us consider a class of theories characterized by the following d-form Lagrangian

L = εL(Rµνρσ, gαβ , ∂µΦ,Φ) , (B.1)

where Φ = {φA}A=1,...,N is a set of (pseudo)scalar fields and

ε = 1
d!εµ1...µd dx

µ1 ∧ · · · ∧ dxµd =
√
−g ddx , (B.2)

is the volume form. In what follows, we will make use of the following notation

εµ1...µn = 1
(d− n)!εµ1...µnν1...νd−n dx

ν1 ∧ · · · ∧ dxνd−n . (B.3)

Under general variations of the fields, we have that

δL = ε
(
Eµνδgµν + EAδφA

)
+ dΘ(ϕ, δϕ) , (B.4)

where ϕ = {gµν ,Φ} denotes schematically all the dynamical fields of the theory (metric
and scalars), Θ is the boundary term that arises upon integration by parts and

√
−g Eµν ≡

δS

δgµν
,

√
−g EA ≡

δS

δφA
. (B.5)

Hence, the field equations are Eµν = 0, EA = 0.19 For the class of theories under consider-
ation, we find

δL = ε
{
δgµν

(
∂L
∂gµν

− 1
2gµν L − P

ρσλ
µRρσλν − 2∇α∇βPβµνα

)
+δφA

(
−∇µPµA + ∂L

∂φA

)
+∇µθµ

}
,

(B.6)

19We assume Eµν is symmetric by construction.
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where
θµ = PµAδφ

A − 2PµνρσδΓσνρ − 2∇σPµνρσδgνρ , (B.7)

and
Pµνρσ ≡ ∂L

∂Rµνρσ
, PµA ≡

∂L
∂(∂µφA) . (B.8)

Eq. (B.6) can be further massaged using an identity that relates Pµνρσ, PµA and ∂L
∂gµν and

which can be derived using the fact that the Lie derivative of the Lagrangian L can be
written in two different ways [75]. First, as

£ξL = ξα∂αL = ξα
(
Pµνρσ∇αRµνρσ + PµA∇α∂µφ

A + ∂L
∂φA

∂αφ
A
)
. (B.9)

And second, using the chain rule:

£ξL = Pµνρσ£ξRµνρσ + ∂L
∂gµν

£ξg
µν + PµA£ξ∂µφ

A + ∂L
∂φA

£ξφ
A . (B.10)

Expanding the Lie derivatives, we get

Pµνρσ£ξRµνρσ =Pµνρσξα∇αRµνρσ + 4P ρσλµRρσλν∇µξν ,
∂L
∂gµν

£ξg
µν = − 2 ∂L

∂gµν
∇(µξν) ,

PµA£ξ∂µφ
A =PµAξ

α∇α∂µφA + PAµ∂νφ
A∇µξν ,

∂L
∂φA

£ξφ
A = ∂L

∂φA
ξα∂αφ

A .

(B.11)

Plugging (B.11) into (B.10) and using (B.9), we arrive at the following identity

∇(µξν)
(

4P ρσλµRρσλν − 2 ∂L
∂gµν

+ PAµ∂νφ
A
)

+∇[µξν]
(
4P ρσλµRρσλν + PAµ∂νφ

A
)

= 0 ,
(B.12)

from which we deduce that

∂L
∂gµν

= 2P ρσλ(µ|Rρσλ|ν) + 1
2PA (µ∂ν)φ

A , (B.13)

PA [µ∂ν]φ
A = −4P ρσλ[µ|Rρσλ|ν] . (B.14)

In absence of scalars, the left-hand side of (B.14) vanishes and we have that the tensor
P ρσλµRρσλν is totally symmetric under the exchange of the free indices. This will also be
the case for the theories we are interested in, since PAµ∂νφA = −∂µφA∂νφBδAB. Hence,
we shall assume this property in what follows. Let us then use (B.13) in (B.6) to finally
write the variation of L as

δL = ε
{
δgµν

(
−1

2gµν L+ P ρσλµRρσλν − 2∇α∇βPβ(µν)α + 1
2PAµ∂νφ

A
)

+δφA
(
−∇µPµA + ∂L

∂φA

)
+∇µθµ

}
.

(B.15)
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Comparing with (B.4), we can read off Eµν and EA,

Eµν = −1
2gµν L+ P ρσλµRρσλν − 2∇α∇βPβ(µν)α + 1

2PAµ∂νφ
A , (B.16)

EA = −∇µPµA + ∂L
∂φA

, (B.17)

as well as the boundary term Θ, which is given by

Θ = εµθ
µ = εµ

(
PµAδφ

A − 2PµνρσδΓσνρ − 2∇σPµνρσδgνρ
)
. (B.18)

B.2 Noether charge

Let us consider the variation of L under diffeomorphisms generated by a vector field ξµ.
The variations of the fields are given by

δξgµν =£ξgµν = 2∇(µξν) ,

δξΦ =£ξΦ = ξµ∂µΦ .
(B.19)

Therefore,

δξL = £ξL = d (ιξL)

= ε
(
−2 Eµν∇µξν + EAξν∂νφA

)
+ dΘ(ϕ, δϕ)

= ε
[
−2∇µ ( Eµνξν) + 2∇µEµνξν + EAξν∂νφA

]
+ dΘ(ϕ, δϕ)

= d [Θ(ϕ, δϕ)− ξµCµ] ,

(B.20)

where in the last line we have made use of the Noether identity

2∇µEµν = −EA∂νφA , (B.21)

and we have defined
Cµ = 2ενEνµ . (B.22)

Following [40, 76], we can associate a Noether current (d−1)-form to the vector ξ as follows

jξ ≡ Θ(ϕ, δϕ)− ιξL . (B.23)

From (B.20), it follows that
jξ = dQξ + ξµCµ , (B.24)

which holds off-shell and for arbitrary vector fields. Qξ is the Noether charge (d − 2)-
form, which gives the Noether charge once it is integrated over a (closed) codimension-2
hypersurface. The expression of Qξ for the theories of interest can be readily found using
previous results in the literature [48, 77], since it turns out that the combination

jξ − ξµCµ = εµ
[
4Pµνσρ∇ρ∇(νξσ) − 4∇σPµνρσ∇(νξρ) − 2P ρσλµRρσλνξν

+4∇α∇βP β(µν)αξν
]
,

(B.25)
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is exactly the same as in L
(
Rµνρσ, g

αβ
)
theories. Then, the expression for the Noether

charge (d− 2)-form is

Qξ = εµν (−Pµνρσ∇ρξσ + 2∇ρPµνρσξσ) , (B.26)

where we have assumed (without loss of generality) that

Pµ[νρσ] = 0 . (B.27)

B.3 Surface charge

Finally, we can define the Iyer-Wald (d− 2)-form kξ as

kξ ≡ δQξ − ιξΘ (ϕ, δϕ) . (B.28)

Using previous definitions, one can check that on-shell and whenever δϕ satisfies the lin-
earized equations of motion, we have that

ω(ϕ, δϕ,£ξϕ) = dkξ , (B.29)

where ω(ϕ, δ1ϕ, δ2ϕ) is the pre-symplectic current (d− 1)-form, defined as follows

ω(ϕ, δ1ϕ, δ2ϕ) ≡ δ1Θ (ϕ, δ2ϕ)− δ2Θ (ϕ, δ1ϕ) . (B.30)

The expression of kξ for the theories under consideration is

kξ = εµν
[
−δPµνρσ∇ρξσ − Pµνρσ∇ρδgσλξλ + 2δ (∇ρPµνρσ) ξσ

1
2 (−Pµνρσ∇ρξσ + 2∇ρPµνρσξσ) gαβδgαβ

−ξν
(
PµAδφ

A + 2Pµαβρ∇ρδgαβ − 2∇σPµαβσδgαβ
)]

.

(B.31)
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