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1 Introduction

The Brout-Englert-Higgs sector of the Standard Model (SM) [1, 2] has been introduced
to break the electroweak (EW) symmetry and give mass to the W and Z boson, and
all elementary fermions. It consists of an EW doublet scalar field that develops a non-
zero expectation value on the vacuum, leading to the longitudinal degrees of freedom
of the massive gauge bosons and a physical scalar field, the Higgs boson [2]. Since the
establishment of the SM as the standard theory for particle interactions, it has been
tantalising to replace this sector with a composite one, i.e. a strongly interacting sector
where the symmetry breaking is achieved dynamically [3]. The main inspiration for this
idea is Quantum Chromodynamics (QCD), another fundamental sector of the SM where
dynamical condensation of quarks breaks the chiral symmetry of the model. In QCD,
scalar particles emerge as resonances made of quarks (or gluons). A notable example are
pions, quark-antiquark bound states that remain lighter than other states as they are
pseudo-Nambu-Goldstone bosons of the chiral symmetry breaking.

In composite Higgs models (CHMs), the dynamical symmetry breaking pattern is
arranged in such a way that an EW doublet can be constructed out of four pNGBs [4],
hence explaining naturally a mass hierarchy between the Higgs boson and other states
appearing in the theory. This mechanism helps addressing the ‘Little Hierarchy’ problem,
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i.e. the absence of new physics at the EW scale [5], while the hierarchy with the GUT
or Planck scales is explained dynamically by the absence of fundamental scalars in the
theory. Besides the pNGB Higgs, recent models employ partial compositeness [6] to give
mass to the SM fermions, most notably to the top quark. In CHMs, and more generally in
all dynamical models, fermion masses arise from higher dimensional operators that couple
the SM fermion fields to operators from the strong sector. Hence, the emerging effective
Yukawa couplings are typically suppressed and much smaller than unity. This may work
for all SM fermions except for the top quark, whose mass is of the same order as the EW
scale. In partial compositeness, direct Yukawa-like couplings are replaced by linear mixing
of the SM top fields with spin-1/2 composite operators. If these operators have suitably
large anomalous dimensions, a large Yukawa coupling for the top can be explained. Note
that a conformal behaviour above the condensation scale is required in order to solve the
flavour puzzle in these models [7], like in walking Technicolor [8, 9].

This class of models received a lot of attention recently, raising as a valid alterna-
tive to supersymmetry, hence we will not attempt to summarise the main developments
as the are nicely contained in comprehensive reviews [10–13]. For the economy of this
paper, it suffices to recall that the minimal working symmetry breaking pattern (coset)
is SO(5)/SO(4) [14], which provides only an EW doublet in the pNGB sector while pre-
serving custodial symmetry [15, 16]. This was originally proposed as a model in extra
dimensions, following the philosophy of gauge-Higgs unification models [17, 18], connected
to 4-dimensional theories via holography [19]. Following instead the QCD template, the
minimal coset is SU(4)/Sp(4) [20], arising from fundamental fermions charged under a
pseudo-real representation of the confining strong gauge interaction. While this coset
contains an extra pNGB besides the Higgs doublet, its minimality can be sought in the field
content of the underlying gauge-fermion theory. The minimal model, therefore, consists of
a gauged SU(2)FC (where FC stands for fundamental (techni)colour [13]) with two Dirac
fermions in the fundamental representation [21, 22]. Such theories have the advantage
of being studied on the Lattice (see ref. [13] for a review). Partial compositeness for the
top can be obtained by extending the minimal fermion content of the model [23], with
the presence of two different irreducible representations allowing to sequester QCD gauge
interactions from the EW breaking coset [23, 24].

In this work we reconsider the partial compositeness sector in the low energy limit,
where the composite operators that couple to the top give origin to spin-1/2 baryon-like
resonances, which mix with the elementary SM top fields to give rise to massive states. We
focus on the minimal SU(4)/Sp(4) case, while highlighting universal properties that apply
in general to any fundamental CHM. In particular, we will examine the contribution of the
top partners to electroweak precision observables, motivated by the recent release of the W
mass measurement from the CDF collaboration at Fermilab’s Tevatron [25]. This provides
the most precise experimental determination of the W mass:

MW |CDF = 80, 433.5± 6.4stat ± 6.9syst = 80, 433.5± 9.4 MeV , (1.1)

which is in strong tension (of about 7 standard deviations) with the determination from
SM fits [26]. Even taking into account the impact of higher order QCD corrections [27] and
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the average with previous measurements, a tension remains. If confirmed, this discrepancy
could be a strong hint for the presence of new physics beyond the SM in the EW sector,
and reveal the origin of the EW symmetry breaking mechanism. Notably, it corresponds to
a positive value of the oblique T parameter [28–30]. The jury is not out to deliberate yet,
nevertheless we will investigate how fundamental CHMs may explain this tension and how
this impacts the properties of top partners. The latter are effectively vector-like quarks
(VLQs) that mix dominantly to the third generation, and their generic impact on the W
mass have been investigated [31, 32]. The main difference between generic VLQ models
and CHMs is twofold: on the one hand, CHMs contain non-linear couplings of the Higgs
versus linear Yukawa-like couplings in VLQ models; on the other hand, the two models
are usually studied in different equivalent bases (CHMs naturally have gauge-preserving
mixing and absent SM-like Yukawas, while in VLQ models only Higgs induced mixings are
included). In our work we consider in detail the effects of the misalignment of the CHM
vacuum, which induces divergences in the oblique parameters S and T as well as in the
longitudinal W scattering amplitudes. We also include the effect of derivative couplings,
which are only present in CHMs where the Higgs arises as a pNGB.

The article is organised as follows: in section 2 we summarise the general properties
of the effective Lagrangian to describe CHMs with top partial compositeness. We will
particularly stress universal properties, which are model-independent. In the following
section 3, we specialise to the minimal coset stemming from fundamental composite models
with an underlying gauge-fermion description, based on SU(4)/Sp(4). We discuss the
impact of top partial compositeness on precision observables in section 4, before offering
our conclusions in section 5. In the appendix, we give the detail calculation of S, T and U
parameters from vector-like fermions in generic models. In particular, the old ψ+ function
for VLQ models in the literature is generalized.

2 Effective models for (top) partial compositeness in CHMs

The low-energy physics of CHMs can be characterised in terms of the CCWZ construction,
allowing to describe the effective interactions of light resonances in an expansion in powers of
∂/Λ and mres/Λ, where Λ is the condensation scale of the underlying model. All resonances
with mres � Λ can be included [33], and here we will focus on the pNGBs (including the
Higgs boson) and top partners. Vector and axial-vector can also be included following the
hidden symmetry prescription [34].

To study the EW symmetry breaking, it is crucial to choose the appropriate vacuum
of the theory, which breaks the global symmetry G to a subgroup H. In this work we
chose a vacuum that contains the EW symmetry breaking parameter. The procedure goes
as follows:

1) We define a vacuum Σ0, transforming under an appropriate representation of G, which
preserves the EW gauge symmetry. In this way, the broken generators Xa ⊂ G/H and
the unbroken ones Sm ⊂ H can be assigned well-defined transformation properties
under the EW gauge symmetry. Within the broken generators, one can identify 4
that transform as a bi-doublet of the custodial symmetry [10], hence sharing the same
properties as the Higgs scalar field in the SM.
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2) The generator associated to the Higgs boson, X4, is used to define a G rotation which
misaligns the vacuum along the EW symmetry breaking direction [4, 20]:

Uα = exp
[
i
√

2αX4
]
, (2.1)

where f is the decay constant of the pNGBs. Here, α is an angle that encodes the
equivalent to the Higgs vacuum expectation value in the SM.

3) All composite objects used to construct the CCWZ effective Lagrangian are rotated
via Uα, hence they cannot be decomposed into object transforming under the EW
symmetry. The basic CCWZ couplings, however, do not depend on α, as the strong
sector in isolation is invariant under any G-rotation.

4) The SM couplings (like EW gauge and top effective Yukawas) are introduced via
spurions that explicitly break G. For instance, the EW gauge generators are a subset of
Sm. Due to the misalignment, the dependence on α only appears via spurion insertions.

The main benefit of this vacuum choice is that the dependence on α only appears via
spurions, hence all the symmetries of the strong sector are explicitly preserved in the
limit where the spurions vanish. This allows to clearly isolate the effects due to the EW
misalignment. In contrast, a popular vacuum choice is to work in terms of the EW preserving
one and then assigning a vacuum expectation value to the pNGB associated to the X4

direction [10]. In this other approach, one can also define a misalignment angle, which
however breaks explicitly some symmetries of the pNGBs, such as the shift symmetry
along the X4 direction, even without explicit spurion insertion. Nevertheless, as the two
choices are related via a field redefinition, the physics they encode is the same in terms of
physical observables.

Once our choice clarified, we can introduce the main building blocks for the effective
Lagrangian. The pNGBs πa are encoded in the pion matrix:

UΠ = Uα exp

 i√2
f

dim(G/H)∑
a=1

(πaXa)

 U−1
α , (2.2)

rotated via the misalignment Uα. It transforms non-linearly under the global symmetries
as follows:

UΠ → giUΠh(gi, πi)−1 , (2.3)

where h(gi, πi) is in the rotated unbroken group. Defining the CCWZ object i U−1
Π DµUΠ,

one can construct two symbols by projecting it along the broken and unbroken directions,
as follows:

dµ =
∑
a

2Xa
αtr

[
Xa
αU
−1
Π

(
i∂µ + g2W

i
µT

i
L + g1BµT

3
R

)
UΠ
]
, (2.4)

Eµ =
∑
m

2Smα tr
[
Smα U

−1
Π

(
i∂µ + g2W

i
µT

i
L + g1BµT

3
R

)
UΠ
]

(2.5)

where Xa
α = UαX

aU−1
α and Smα = UαS

mU−1
α are the broken and unbroken generators in

the rotated vacuum, while the gauge generators TL,R are aligned to the original basis.
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Equivalently, the net effect is that the gauge group is backward rotated as TL/R →
U−1
α TL/RUα. The CCWZ objects built from the one-form transform as:

Eµ → h(gi, πi) (Eµ + i∂µ)h−1(gi, πi) ,
dµ → h(gi, πi) dµ h−1(gi, πi) . (2.6)

We noted that, once expanding them for small misalignment angle α, the first two terms
are universal as they only depend on the SU(2)L × SU(2)R symmetry in G/H:

Eµ =
3∑
i

(
g2W

i
µT

i
L + g1BµT

i
Rδ

i3
)
− sin2 α

2

3∑
i

(
g2W

i
µ − g1Bµδ

i3
) (
T iL − T iR

)
+ · · · (2.7)

dµ = −
√

2
f
∂µ

hX4 +
dim(G/H)∑

a=5
ηaXa

+ sinα√
2

3∑
i=1

(
g2W

i
µ − g1Bµδ

i3
)
Xi + · · · (2.8)

Here, h is the pNGB Higgs while ηa represent all the remaining pNGBs. It can be checked
explicitly that the expressions above match the ones obtained in the SO(5)/SO(4) model [35].
This structure is universal for a generic CHM where the Higgs is a bi-doublet Xa, a = 1, · · · 4
under SU(2)L×SU(2)R, as a consequence of group algebra. In fact the property of custodial
symmetry defines the commutator relation in a non-minimal G/H CHM:[

T iL, T
j
L

]
= i εijkT kL ,

[
T iR, T

j
R

]
= i εijkT kR , (i = 1, 2, 3)[

X4, T iL/R

]
= ± i2X

i ,
[
X4, X i

]
= − i2

(
T iL − T iR

)
(2.9)

that will fix the generators for NGBs (missing in the unitary gauge) eaten by W,Z gauge
bosons in a specific model building. Note that eq. (2.9) forms a closed subgroup. The
expansion of iU−1

Π DµUΠ till the linear order can be computed as:

−
√

2
f
∂µ

hX4 +
dim(G/H)∑

a=5
ηaXa

+ U−1
α

( 3∑
i

g2W
i
µT

i
L + g1BµT

3
R

)
Uα , (2.10)

where the first term is in the broken direction and the second term can split into the Eµ
and dµ parts. Using the commutators in eq. (2.9), one can derive that:1

U−1
α T iLUα = T iL + sinα√

2
Xi − sin2 α

2
(
T iL − T iR

)
,

U−1
α T iRUα = T iR −

sinα√
2
Xi + sin2 α

2
(
T iL − T iR

)
. (2.11)

Applying eq. (2.11) to eq. (2.10), we immediately obtain the final form of eq. (2.7)–(2.8). A
direct prediction from this universal structure is its imprint on the Higgs gauge couplings that
can be alternatively inferred from the infrared construction of pion scattering amplitude [36].
However the higher order expansion of CCWZ object depends on the commutators involving
with the additional pNGB in a non-minimal coset G/H.

1We use the Baker-Campbell-Hausdorff formula: exp(A)B exp(−A) = B + [A,B] + [A, [A,B]]/2! + · · · .
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The top partners arise as baryons of the confining theory, hence they are represented
by spin-1/2 resonances transforming as representations of the unbroken group H. Typically,
they also carry additional SM charges to match those of the elementary top fields: here
we will consider additional QCD charges and hypercharge, motivated by the models in
refs. [23, 37]. As for the pNGBs, in our approach they can be expresses in terms of the EW
preserving vacuum, so that the components’ EW charges can be clearly identified. Then,
they are rotated by Uα to be aligned to the rotated vacuum. The SM spinors, instead, are
embedded in spurions transforming as incomplete representations of G and they can couple
to matching baryons.

To be concrete, let’s consider the SM top and bottom are embedded into a two-index
representation of G in a real — SU(N)/SO(N) — or pseudo-real — SU(2N)/Sp(2N) —
coset. The Lagrangian of elementary fields is Lelem = ψ̄SM (i∂µ + g2W

i
µσ

i/2 + g1Ŷ Bµ +
gsG

a
µλa)γµψSM , with ψSM ⊃ {(tL, bL)T , tR, bR}. The two relevant baryons consist in an

antisymmetric of H, ψA = Uαψ̂AU
T
α , and an invariant singlet, ψ1 = Uαψ̂1U

T
α , where the

hatted baryons are aligned to the EW preserving vacuum, i.e. to the EW symmetry. We recall
that, once misaligned, the components of the baryons do not have well-defined transformation
properties under the EW symmetry. The baryon Lagrangian can be written as:

Lcomposite = tr
[
ψ̄A i 6 D ψA

]
−MA tr

[
ψ̄AψA

]
+ tr

[
ψ̄1 i 6 D ψ1

]
−M1 tr

[
ψ̄1ψ1

]
+

+κ′ tr
[
ψ̄A 6 d ψA

]
+ κ

(
tr
[
ψ̄A 6 d ψ1

]
+ h.c.

)
. (2.12)

The first 4 terms are the kinetic terms, including the covariant derivatives, while the last
two contain the derivative couplings to the pNGB fields. For SU(N)/SO(N), only the κ′

term survives because 6 dψ1 is symmetric in SU(N)/SO(N), leading to κ tr
[
ψ̄A 6 dψ1

]
= 0.

The covariant derivative for the composite baryons, including the additional QCD coupling
and hypercharge X, reads

Dµ =
(
∂µ − iEµ − ig1XBµ − igsGaµλa

)
. (2.13)

Note again that, if we turned off the EW gauge couplings, the above Lagrangian would not
depend on the misalignment angle α. The α dependence also emerges from the couplings of
the top fields to the baryons: to construct them, one needs to dress the baryon fields ψ
with the pNGB matrix in order to obtain operators that transform linearly under G. Then,
G-invariant couplings can be built with the spurions containing the SM top fields. We will
discuss an explicit case in the next section.

3 The SU(4)/Sp(4) model

We will use the SU(4)/Sp(4) CHM with a gauge-fermion underlying description as a template
to illustrate the common features emerging from top partial compositeness. The underlying
dynamics for this minimal CHM is a strongly interacting gauge theory with fundamental
fermions charged under Sp(2N)FC×SU(3)c×SU(2)L×U(1)Y . The FC-charged Weyl fermions
include four QCD-colour singlets Q and two QCD-colour (anti)-triplets χ, leading to a
global symmetry G =SU(4)×SU(6)×U(1). This model was first studied in ref. [24], while
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considerations related to the conformal window sets a preference for N = 2 [38].2 Note also
that the same global symmetry could arise from a different dynamics based on SO(11)FC and
fermions in the spinorial and fundamental representations: the two underlying dynamics will
only be distinguished by the properties of the pseudo-scalar pNGB from the spontaneous
breaking of the U(1) global symmetry [37, 49, 50]. The model generates two condensates,
〈QQ〉 and 〈χχ〉, which break the global symmetry to H =Sp(4)×SO(6). In particular, the
χ-condensate generates QCD-coloured pNGBs including an octet and a sextet [51]. Here
we will focus on the EW-coset, driven by the Q-condensate.

Below the confinement scale ΛFC, the antisymmetric condensation of 〈QQ〉 delivers
one Higgs bi-doublet plus one singlet η as pNGBs, and a potentially light scalar σ in
the EW sector. At the low energy, the effective theory of mesons realised as pNGBs in
the coset SU(4)/Sp(4) is described by a nonlinear sigma model [20, 52]. The broken and
unbroken generators for this model are adjusted to suit eq. (2.9) and listed in appendix B. By
identifying the SU(2)L generators as T iL = Si, i = 1 · · · 3 and U(1)R as T 3

R = S6, the charge
operator is defined Q = S3 + S6 +X, where the additional hypercharge X = 2/3 is carried
by the fermions χ. It is assigned to the top partners via the presence of χ in the baryon
operators. The EW-preserving vacuum, which leaves invariant Sp(4)⊃SU(2)L×SU(2)R in
the unrotated basis, is:

Σ0 =
(
iσ2 0
0 −iσ2

)
, (3.1)

while the pion matrix reads:

Π̂ =
5∑

a=1
πaXa =



η

2
√

2 0 G+
2

G0−ih
2
√

2

0 η

2
√

2
ih+G0

2
√

2 −G−
2

G−
2

G0−ih
2
√

2 − η

2
√

2 0
ih+G0

2
√

2 −G+
2 0 − η

2
√

2


, (3.2)

where Gx are the Goldstones eaten by the W and Z bosons in the unitary gauge. The
misalignment after the EW symmetry breaking is generated by a SU(4) rotation matrix:

Uα = exp
[
i
√

2X4α
]

=


cos

(
α
2
)

0 0 sin
(
α
2
)

0 cos
(
α
2
)
− sin

(
α
2
)

0
0 sin

(
α
2
)

cos
(
α
2
)

0
− sin

(
α
2
)

0 0 cos
(
α
2
)

 (3.3)

such that Σ0 and Π̂ can be rotated according to the following rules:

Σα = UαΣ0U
T
α , Π = UαΠ̂U−1

α . (3.4)

With the building blocks above, we write down the nonlinear sigma field:

Σ = UΠΣαU
T
Π , with UΠ = exp

[
i
√

2Π
f

]
. (3.5)

2These Sp(4)FC model has been investigated on the Lattice [39–45] in order to study its spectrum.
Investigations based on Nambu-Jona-Lasinio model [46] and on holography [47, 48] have also been performed.
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Since UΠ transforms nonlinearly as gUΠh
−1(Π, g) and Σα → hΣαh

T , thus Σ→ gΣgT for
g ∈ SU(4) and h ∈ the misaligned Sp(4) group. The kinetic Lagrangian of pNGB is then
constructed as:

Lkin = f2

8 Tr
[
(DµΣ)†DµΣ

]
(3.6)

with Dµ = ∂µ − ig2W
i
µT

i
L − ig1BµT

3
R. The effective Higgs vacuum expectation value is

defined as v = f sinα via the expression for the W and Z masses.

3.1 Top partners

Below the confinement scale, we also consider the spin- 1
2 resonances made of chimera

baryons with one χ and two Q fermions. Lattice results seem to indicate that such states
are rather heavy [45, 53], nevertheless we will assume here that there exist a mechanism
pushing their mass well below the cut-off of the effective theory.

In the model under consideration, the relevant top partners transform as (5,6)⊕ (1,6)
of the unbroken Sp(4)×SO(6), denoted as ψ̂5 ⊕ ψ̂1. The 6 of SO(6) simply implies the
presence of a triplet and an anti-triplet of QCD, making each baryon a massive vector-like
quark. In the EW sector, and around the unrotated vacuum, the baryons’ components read:

ψ̂5 =

 iσ2
2 T̃

1√
2Q(2,2)

− 1√
2Q

T
(2,2)

iσ2
2 T̃

 , ψ̂1 =

 iσ2
2 T1 0

0 − iσ2
2 T1

 (3.7)

with Q(2,2) =
(
T X

B TX

)
being a bi-doublet under the SU(2)L×SU(2)R symmetry. Similarly

to the pNGBs, the composite partners must be rotated to the misaligned representation
ψ5 = Uαψ̂5U

T
α and ψ1 = Uαψ̂1U

T
α . Their interactions to the pNGBs and to the EW gauge

bosons is determined by eq. (2.12), where the two masses MA ≡M5 and M1 are generated
by the strong dynamics alone and, in general, M5 6= M1. To couple the chimera baryons to
the top fields, they need to be matched to composite operators transforming as a complete
representation of G. The intuitive way to understand this is that baryons are made of
confining fermions, Q and χ, that transform under G; however, the same H representation
can be embedded in different operators. In our specific case, we have two possibilities:

a) The baryons come from the adjoint representation, corresponding to the operator
Q̄Qχ̄ = (15, 6̄) of SU(4)×SU(6). This can only contain ψ5.

b) The baryons emerge from the antisymmetric representation, corresponding to the
operator QQχ = (6,6) of SU(4)×SU(6). Both ψ5 and ψ1 match to this composite
operator.

To implement partial compositeness, the SM fields for top and bottom must be included
into spurions, i.e. incomplete representations of G. All possible spurions for the left-hand
(tL, bL) and right-hand tR fields are listed in appendix C. We recall that the SM spurions will
stay in the unrotated basis, in order to preserve the EW properties of the elementary fields.
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3.2 Partial compositeness

We can now construct the partial compositeness operators in the form of G-invariant
operators, following the rules illustrated in section 2. This constitutes a template model
we will use to discuss general properties of partial compositeness in CHMs. For the top
partners transforming as an antisymmetric representation of H, the SM spurions can be
chosen either in adjoint or the antisymmetric representation of G. The two possibilities lead
to inequivalent models, as follows.

(1) For the adjoint embedding of the SM (tL, bL) and tR fields, we find two possibilities for
the doublet and two for the singlet. In fact, the adjoint contains both an antisymmetric
and a symmetric of Sp(4). The spurions DL,A/S and DR,A/S , given in appendix C,
lead to the following 4 operators:

Lmix = yL1f tr
[
D†L,Aγ0UΠψ5Σ∗αU

†
Π

]
+ yR1f tr

[
D†R,Sγ0UΠψ5Σ∗αU

†
Π

]
+ yL2f tr

[
D†L,Sγ0UΠψ5Σ∗αU

†
Π

]
+ yR2f tr

[
D†R,Aγ0UΠψ5Σ∗αU

†
Π

]
+ h.c.

(3.8)

where ψ5Σ∗α transforms as hψ5Σ∗αh−1, that ensures the G invariance. Here the couplings
yL2 and yR2 break the η → −η parity and allow for mixing of the EW singlet T̃ with
the top, while preserving CP-invariance. These spurions also contribute to the Higgs
potential via operators in the form tr

[
Dc
L/RΣ†DL/RΣ

]
[54], leading to the following

condition to ensure the absence of a tadpole for η:

y∗L1yL2 − y∗L2yL1 = 0 . (3.9)

Expanding eq. (3.8) gives rise to the mixing mass matrices in the top sector for
Q = 2/3 fields (t, T, TX , T̃ , T1) and in the bottom sector for Q = −1/3 fields (b, B):

M2/3 =


0 yL1fc

2
α/2 yL1fs

2
α/2 −

yL2f√
2 sα 0

−yR1f
2 sα M5 0 0 0

yR1f
2 sα 0 M5 0 0

yR2fcα 0 0 M5 0
0 0 0 0 M1

 ,

M−1/3 =
(

0 yL1cα
0 M5

)
, (3.10)

an interesting pattern emerges for the top mass generation: if tL is in the antisymmetric
component, tR must be in the symmetric, and vice-versa.

(2) For the antisymmetric embedding of the SM (tL, bL) and tR fields, one finds one
spurion for the left-handed doublet and two for the right-handed singlet, given in
appendix C. Hence, the following five operators can be constructed:

Lmix = yL1f tr
[
A†Lγ0UΠψ5U

T
Π

]
+ yR1f tr

[
A†Rγ0UΠψ5U

T
Π

]
+yL2f tr

[
A†Lγ0UΠψ1U

T
Π

]
+ yR2f tr

[
A†Rγ0UΠψ1U

T
Π

]
+y′Rf tr

[
A

(2)†
R γ0UΠψ5U

T
Π

]
+ h.c. , (3.11)
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where the coupling y′R was not included in ref. [51]. From the Higgs potential,
generated by operators in the form tr

[
A†L/RΣAcL/RΣ

]
+ h.c. [54], the condition of

tadpole absence for η reads:

y′∗Ry
∗
R1 − y′RyR1 = 0 . (3.12)

The mass matrices, in the same basis as above, are derived to be:

M2/3 =



0 yL1fc
2
α/2 −yL1fs

2
α/2 0 yL2√

2 fsα

−yR1f√
2 sα M5 0 0 0

−yR1f√
2 sα 0 M5 0 0

y′Rf 0 0 M5 0
yR2fcα 0 0 0 M1


,

M−1/3 =
(

0 yL1
0 M5

)
. (3.13)

For y′R = 0 and M5 ∼ M1, the antisymmetric embedding will give rise to a similar
mass spectrum as that of the adjoint one.

In order to generate the top quark mass in the SU(4)/Sp(4) CHM, it is sufficient to consider
a subset of the couplings that guarantee mixing of (tL, bL) and tR with only one type of top
partners, i.e. the bi-doublet or a singlet top partner. This also applies to more general CHMs
with UV completion. For example, in the SU(6)/SO(6) CHM [55, 56], a mixing pattern
can be generated by a bi-triplet (3, 1)⊕ (1, 3) under the SU(2)L×SU(2)R symmetry. Since
the simplified mixing patterns are enough to enlighten us about the partial compositeness
phenomenology, we will not consider the most general mixture scenario in this paper. We
will therefore consider two subcases:

- Bi-doublet: we can obtain this pattern by turning on only yL1/R1 6= 0 for both adjoint
and antisymmetric cases, while setting all other couplings to zero.

- Singlet: this case is obtained by setting yL2/R2 6= 0 in both cases, with the exception
of the antisymmetric where y′R 6= 0 can be kept.

Assuming both pre-Yukawa couplings are of the same order, the mass matrices can be
diagonalised perturbatively given that the terms related to the EW symmetry breaking are
subdominant, i.e. yR1f

2 sinα�M5 and yL1 sin2 α
2 �

yR1
2 sinα; or yL2f√

2 sinα�M5. We can
first define the leading order (LO) rotation in the left- and right-handed sectors as:

Bi-doublet : sinφL = fyL1√
M2

5 + f2y2
L1

; Singlet : sinφR = fyR2√
M2

5 + f2y2
R2

(3.14)

Then the perturbation constraints are translated into the bound of mixing angles and mass
of top partners:

sin 2φL/R �
2mt

MT/T̃

, sin2 φL �
mt

mT

1
sin2 α

2
. (3.15)
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The mass patterns can be classified for the simplified scenarios. For the bi-doublet mixing
scenario, the masses in (T,B) or (X,TX) split at O(f2 sin2 α) and the spectrum is:

mt = f2 sinαyL1yR1

2
√
M2

5 + f2y2
L1

, mTX = M5 + f2 sin2 αy2
R1

8M5

mT =
√
M2

5 + f2y2
L1 + f2 sin2 α

(
M2

5
(
y2
R1 − 2y2

L1
)
− 2f2y4

L1
)

8
(
M2

5 + f2y2
L1
)3/2

mB =
√
M2

5 + f2y2
L1 −

f2 sin2 αy2
L1

2
√
M2

5 + f2y2
L1

, mX = M5 , mT1 = M1 (3.16)

The mass spectrum in the case of the singlet mixing is much simpler, and we are going to
label the one in the adjoint embedding as D1 and the other option in the antisymmetric
embedding as A1. For D1 scenario, the mass spectrum is:

mt = f2 sinαyL2yR2
√

2
√
f2y2

R2 +M2
5

, m
(0)
T̃

=
√
M2

5 + f2y2
R2 mQ = M5 , mT1 = M1 ; (3.17)

while for A1 scenario with y′R = 0, exchanging the role of T̃ and T1, we obtain:

mt = − f2 sinαyL2yR2
√

2
√
f2y2

R2 +M2
1

, m
(0)
T1

=
√
M2

1 + f2y2
R2 mQ = M5 , mT̃ = M5 . (3.18)

4 Electroweak precision test

The contribution to EW precision observables (EWPO), encoded into the Peskin-Takeuchi
parameters [57, 58], has been widely studied in the literature, see for instance refs. [59–63].
Here we present the first complete and accurate results up to order sin2 α and at one loop.
The effects can be divided into three categories:

A) Modification of the Higgs couplings and loops of other EW resonances (other pNGBs,
vector and axial-vector resonances).

B) Top and top partner loops via the mixing.

C) Top partner loops via their modified gauge couplings (misalignment effect).

While the first two are already know [61], and top loops via mixing have been computed
before in the EW basis [60]. The effect of the misalignment has never been systematically
discussed in the literature. As we will see, it can be dominant as it contains a logarithmic
divergent term and, depending on the model, misalignment effects appear either in S or in
both S and T . This is an important new result of our work.

Firstly, the reduced Higgs couplings give rise to a well-known logarithmic contribution:

∆Th = − 3
8π cos2 θW

((
1− κ2

V

)
log Λ

mh
+ log mh

mh,ref

)
,

∆Sh = 1
6π

((
1− κ2

V

)
log Λ

mh
+ log mh

mh,ref

)
, (4.1)
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with Λ = 4πf being the cut-off scale of the effective CHM. Here we will assume that the
impact of spin-1 resonance is in the decoupling limit with g/g̃ � 1 and r ∼ 1 [64], and we
can use κV = cosα in the analysis and we neglect other resonance loops. In particular,
additional pNGBs do not contribute in the minimal sector, but may give sizeable effects in
larger cosets [55]. In this work we consider the above equations as the template contribution
of the EW sector of CHMs.

Secondly, we focus on the contribution from composite top partners that are necessary
for top partial compositeness. This includes the mixing contribution stemming from the
rotation from the gauge basis to the mass eigenstates: these terms are usually computed in
the literature. The other important part is generated by the misalignment effect starting at
O(sin2 α), as encoded in the CCWZ objects dµ and Eµ, which modifies the couplings of the
W and Z bosons to the top partners (C.f. the Lagrangian in eq. (B.2)–(B.3)). In fact, the
diagonalisation of the mass matrices in eqs. (3.10) and (3.13) at the zeroth order for small α
(LO) rotates the left-handed components of the doublets (T,B) and (tL, bL) and the right-
handed components of the singlets T̃ or T1 and tR. As a consequence, gauge interactions
are left invariant in absence of misalignment. Therefore, the contributions of the mixing
and of the misalignment in the gauge couplings arise at the same order for small α, and
they are competitive. In particular, since the rotation matrix is unitary, the contribution
to the EWPO from this source is finite, while the contribution from misalignment is
logarithmically divergent like the contribution of the reduced Higgs couplings. At the
leading order O(sin2 α), the effects from the rotation and misalignments are independent
in simplified scenarios, although their interference is generated at the higher order and
negligible for a small sinα.

The splitting of EWPO sources is associated with the vertex product in the vacuum
polarization amplitude (see appendix A). For a two-point V V ′ amplitude, we can decompose
the product of gauge couplings as gVL/Rg

V ′

L/R = g
V (0)
L/R g

V ′(0)
L/R + ∆mix(sin2 α) + ∆mis(sin2 α) in

the mass basis. In the partial compositeness paradigm, the zeroth order term g
V (0)
L/R g

V ′(0)
L/R

reproduces the SM contribution plus some rotation effect due to the mass splitting of top
partners in one SU(2)L representation. The two remaining terms at O(sin2 α) only create
beyond SM corrections to EWPO. For ∆mix, its sinα dependence comes from the rotation
matrices ΩL/R or Ωd

L/R in appendix B, while for ∆mis, the origin of sinα is purely from the
gauge misalignment encoded in the Lagrangian eq. (B.2)–(B.3). Following section 3, we
will consider simplified scenarios where only one singlet or one bi-doublet contributes to
top partial compositeness. For the SU(4)/Sp(4) model, the κ′ term is zero. Thus in each
scenario, there are five free parameters: (mT ,∆M,κ, sinα, sinφL/R), with the definition
∆M = M5 −M1. In this parameter space, two sources of contributions can be calculated
as illustrated above.

4.1 Singlet mixing scenario

Firstly, we consider the singlet scenario, where either T̃ or T1 mixes with the SM top in
the D1 (adjoint) or A1 (antisymmetric) cases, respectively. As the bi-doublet does not mix,
custodial symmetry ensures that their masses remain degenerate. From the rotation matrix
in appendix B, we can see that the left-handed mixing is generated at O(sinα) for the
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singlet case, and this yields the following contribution in the D1 embedding:

∆TD,mix = Nc

16π sin2 θW cos2 θW

cos2 φR
sin2 φR

m2
t

m2
T̃

[ [
θ+(yT̃ , yb)− θ+(yT̃ , yt)

]
− θ+(yt, yb)

]
, (4.2)

∆SD,mix = Nc

2π
cos2 φR
sin2 φR

m2
t

m2
T̃

[
ψ+(yT̃ , yb)− χ+(yT̃ , yt)− ψ+(yt, yb)

]
, (4.3)

∆UD,mix = −Nc

2π
cos2 φR
sin2 φR

m2
t

m2
T̃

[
χ+(yT̃ , yb)− χ+(yT̃ , yt)− χ+(yt, yb)

]
, (4.4)

with
ψ+(yα, yi) = 1

3 (Qα −Qi)−
1
3(Qα +Qi) log

(
yα
yi

)
, (4.5)

where yi ≡ m2
i /m

2
Z . In appendix A we provide a general result for ψ+(yα, yi) from top

partners in an irreducible representation of SU(2)L×U(1)Y , along with the usual θ± and χ±
functions. In case of a singlet, eq. (4.5) matches to the result in [65]. For the A1 embedding,
one simply needs to replace T̃ with T1. Note that the effective mixing angle of top partner
actually is sin θL,eff = cosφR

sinφR ·
mt
mT̃

, with the top quark mass mt ∝ sinα.
The modified gauge couplings are captured in eq. (2.12), with the κ, κ′ terms depending

on the symmetry breaking pattern. In the SU(4)/Sp(4) CHM, the misalignment in the
fermion sector is generated among the components in 4-plet Q(2,2) and the singlet T1.
However, the LO mixing rotates in the top fields and will affect the final contribution to
the oblique parameters. For the D1 embedding, this misalignment is independent to the
mixing sector (t, T̃ ) involved in the partial compositeness and can be evaluated exactly.
Using eq. (A.14) in the appendix, the corresponding ∆SD,mis is derived to be:

∆SD,mis = Nc sin2 α

2π

[[
2− κ2

] (1
3 −

1
3 log y2

Q

)
+ κ2

[(1
3 + 1

3 log y2
T1

)
+2ψ− (yT1 , yQ)− 2χ− (yT1 , yQ)− 2χ+ (yT1 , yQ)

]

+4
3
[
1− κ2

](
log Λ2

m2
Z

− 7
6

)]
, (4.6)

where a logarithmic divergent term emerges due to the unitarity violation. Notice that a
benchmark point exists where the divergence is cancelled between the tr[ψ̄5dµγ

µψ1] and
tr[ψ̄5Eµγ

µψ5] terms, if the coefficient of tr[ψ̄5dµγ
µψ1] satisfies κ = 1.

For the A1 embedding, the situation is slightly different because of the mixing in (t, T1).
Neglecting the interference at O(sin3 α), this leads to the following ∆SA,mis:

∆SA,mis = Nc

4π

[ [
16 sin2 α

2 − 2κ2 sin2 α)
](1

3 −
1
3 log y2

Q

)

+ κ2 sin2 α

[(
cos2 φR + 1

)(1
3 + 1

3 log y2
T1

)
+ sin2 φR

(1
3 + 1

3 log y2
t

)
− 4 cosφR [χ− (yT1 , yQ)− ψ− (yT1 , yQ)]− 2

(
cos2 φR + 1

)
χ+ (yT1 , yQ)

− 2 sin2 φRχ+ (yt, yQ)
]

+ 8
3

[
4 sin2 α

2 − κ
2 sin2 α

](
log Λ2

m2
Z

− 7
6

)]
. (4.7)
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Note that we recover eq. (4.6) at O(sin2 α) in the limit of sinφR = 0. Thus only minor
differences are expected between the cases D1 and A1 in the large sinφR region. We would
like to remark that, since the misalignment respects the custodial symmetry in both singlet
mixing pattens, the corresponding ∆Tmis and ∆Umis vanish.

4.2 Bi-doublet mixing scenario

Now we turn to the mixing contribution in the bi-doublet scenario, in such case the custodial
symmetry is conserved for the basis rotation till O(sin2 α). The direct calculation to this
order gives:

∆Tmix = Nc

16π sin2 θW cos2 θW

[cos2 φL
sin2 φL

m2
t

m2
T

θ+ (yt, yB) + 1
sin2 2φL

4m2
t

m2
T

θ+ (yX , yt)

− cos2 φL
sin2 φL

m2
t

m2
T

θ+ (yt, yT )− 1
sin2 2φL

4m2
t

m2
T

θ+ (yTX , yt)
]
' O

(
ε4
)
, (4.8)

∆Smix = Nc

2π

[cos2 φL
sin2 φL

m2
t

m2
T

ψ̄+ (yt, yT ) + 1
sin2 2φL

4m2
t

m2
T

ψ̄+ (yTX , yt) + 2ψ̄+ (yT , yB)

+ 2ψ̄+ (yX , yTX )− cos2 φL
sin2 φL

m2
t

m2
T

χ+ (yt, yT )− 1
sin2 2φL

4m2
t

m2
T

χ+ (yTX , yt)
]
, (4.9)

with

ψ̄+(yi, yj) = 2
3
(
Y i
L − Y

j
L

)
− 2

3Y
vq log

(
yi
yj

)
, (4.10)

where Y vq is the hyper-charge of vector-like quark and the NLO right-handed rotation is
multiplied by mt

mT
. In analogy to the case of one irreducible representation, eq. (4.9) is

transformed from the general formula eq. (A.14), by defining a new function ψ̄+(yi, yj) for
the bi-doublet scenario as a result of the divergence cancellation. Also we need the mass
difference inside the bi-doublet till O(sin2 α) for an accurate evaluation of ∆S:

mT −mB = cos2 φL
2 sin2 φL

m2
t

m
(0)
T

+ sin2 α sin2 φL
4 m

(0)
T , mTX −mX = 2 cosφL

sin2 2φL
m2
t

m
(0)
T

.

(4.11)
Differently from the singlet case, in the bi-doublet case the misalignment contributes

to both T and S. In fact, by substituting the LO left-handed rotation of (t, T ) and (b, B)
into eqs. (B.2)–(B.3), the custodial symmetry is violated at O(sin2 α). The corresponding
∆T and ∆S are derived to be:

∆Tmis = Nc sin2 φL
16π sin2 θW cos2 θW

[
κ2 sin2 α

2 [θ+ (yT1 , yb)− θ+ (yT1 , yt)]− 2 sin2 α

2 θ+ (yt, yb)

+
(

2 sin2 α

2 −
κ2

2 sin2 α

)[
(yt − yb)

(
log Λ2

m2
Z

− 1
2

)
− 2 (yt log yt − yb log yb)

]]
,

(4.12)
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∆Smis = Nc

4π

[
sin2 φL

[(
4
3 sin2 α

2 −
κ2

2 sin2 α

)(1
3 −

1
3 log y2

t

)
− 4

9 sin2 α

2

]

+
(
cos2 φL + 1

)(4
3 sin2 α

2 −
κ2

2 sin2 α

)(1
3 −

1
3 log y2

T

)
+
(40

3 sin2 α

2 − κ
2 sin2 α

)(1
3 −

1
3 log y2

TX

)
+ 2κ2 sin2 α

(1
3 + 1

3 log y2
T1

)
− κ2 sin2 α

[
sin2 φLχ+ (yt, yT1) +

(
cos2 φL + 1

)
χ+ (yT , yT1) + 2χ+ (yTX , yT1)

+ 2 cosφL [χ− (yT , yT1)− ψ− (yT , yT1)] + 2 [χ− (yTX , yT1)− ψ− (yTX , yT1)]
]

+ 8
3

[
4 sin2 α

2 − κ
2 sin2 α

](
log Λ2

m2
Z

− 7
6

)]
, (4.13)

∆Umis = Nc sin2 φL
2π

[1
3

(
2 sin2 α

2 −
κ2

2 sin2 α

)
log yt

yb
+ 2 sin2 α

2χ+ (yt, yb)

+ κ2 sin2 α

2 [χ+ (yT1 , yt)− χ+(yT1 , yb)]
]
. (4.14)

Note that the first term in eq. (4.12) can be expanded as θ+(yT1 , yb) − θ−(yT1 , yt) '
(yt − yb)

(
2 log yT1

yb
− 3

)
in the large yT1 limit and similar to the one in eq. (4.2) originating

from the singlet rotation. Furthermore other terms in eq. (A.7) that are proportional to
gVL g

V
R will not show up in the misalignment contribution because the LO rotation involves

only left-handed fields. Concerning the S parameter, eq. (4.13) behaves in a similar way
like eq. (4.6), with the major difference caused by the mixing and mass splitting. We find
that the logarithmic divergences in ∆Tmis and ∆Smis simultaneously vanish at O(sin2 α)
for κ = 1

cos α2
, while ∆Umis has no divergence.

4.3 Analysis results

With the analytic formulae for S, T, U we can use the precision global fits to explore the
allowed parameter space for the SU(4)/Sp(4) CHM. As U is always subdominant to S and
T in our model, we can use the U = 0 fitting contours. The Particle Data Group (2022) [69]
gives the following EW global fit without the CDF result:

S = −0.01± 0.07 , T = 0.04± 0.06 (4.15)

with the correlation coefficient of 0.92. The new CDF measurement of the W mass has
been recently included in the fits: for instace in ref. [29] it was obtained

S = 0.06± 0.08 , T = 0.15± 0.06 (4.16)

with a strong correlation to be 0.95. We see that the central value for T is significantly
shifted towards positive value, while S received a much less significant shift.

We will start with an order estimation to see whether a CHM is compatible with EW
global fit. Differently from the VLQ model, in a CHM we will not work in the limit of
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Figure 1. The regions satisfied the precision measurements at 99% C.L. for the singlet scenario
with ∆M = 0.1TeV. The red band is in light of CDF measurement of W mass and the cyan
region is from the PDG global fit. In the upper panel, the green band with sin 2φR < 6mt

mT̃
indicates

our perturbation analysis breaks down, and the yellow band is inferred from a lower bound of
mT1 > 1.0TeV [66–68].

small sinφL/R as M5 ∼ gL/Rf . And due to the complexity of gauge misalignment effect,
normally, it is not easy to perform simplification for S and T . While the singlet scenario is
an exception, applying the large M expansion to eq. (4.2)–(4.3) gives:

∆TD,mix '
3

8π sin2 θW cos2 θW

cos2 φR
sin2 φR

y2
t

yT̃

(
log yT̃

yt
− 1

)
(4.17)

∆SD,mix '
1

6π
cos2 φR
sin2 φR

yt
yT̃

(
2 log yT̃

yt
− 5

)
(4.18)
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Figure 2. The regions satisfied the precision measurements at 99% C.L. for the bi-doublet scenario
with ∆M = 0.1TeV. The green and yellow bands are the same as figure 1, and the off-perturbation
condition is sin 2φL < 6mt

mT
.

The misalignment effect in the D1 scenario can also be remarkably simplified if MQ = MT1

and in that degenerate limit, we have:

∆SD,mis '
2 sin2 α

3π
(
1− κ2

)(
3 log Λ2

m2
Q

− 2
)

(4.19)

Note that eq. (4.17)–(4.19) achieve high level precision with respect to original expressions.
For mQ/T̃ ∼ 2.0TeV, the estimation gives ∆TD,mix ∼ 0.07 × cos2 φR

sin2 φR
and ∆SD,mis ∼ 0.03 ×

(1− κ2), with other contributions one order smaller. For the bi-doublet scenario, we first
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simplify ∆Tmis by keeping the dominant terms:

∆Tmis '
3yt sin2 φL sin2 α

2
8π sin2 θW cos2 θW

[(
1− κ2

)
log

(
Λ2

m2
Z

)
+ 2κ2 log

(
yT1

yt

)]
(4.20)

This approximation is in lower precision and positive for κ < 1. Analogously for mT1 ∼
2.0TeV, we find ∆Tmis ∼ (7− κ2)× 10−2 sin2 φL, and sinφL is required to be large enough
to compete with the negative one from ∆Th. Regarding ∆S from top partners, the
misalignment part is one order larger than the mixing one if the divergence term is not
suppressed. Then for sinφL � 1 and MT/TX = MT1 , ∆Smis in the bi-doublet scenario just
reduces to eq. (4.19). But for mT ∼ 2.0TeV and sinφL ∼ 0.8 (index of mass splitting),
the precise value from eq. (4.13) is enhanced by around 25% in magnitude compared with
using mT in eq. (4.19). Hence the rough evaluation indicates that within 3σ C.L. both the
singlet and bi-doublet scenarios can accommodate the positive shifts in CDF measurement.
In the following, we will deliver a two-parameter χ2 analysis, by inputting the accurate
S, T expressions.

In figure 1, we display the constraint of precision measurement on the parameter space
for the D1 singlet scenario, with the 99% C.L. region permitted by PDG (2022) shown by
the cyan band, and the region including CDF by the red one. Since all the contours are
insensitive to the mass difference of M5−M1, we set ∆M = 100GeV in the plots. Provided
that the singlet top partner T̃ is not too heavy, the positive contribution in eq. (4.2) can
overcome the small negative one from the reduced Higgs coupling. However, ∆Tmix in
eq. (4.2) is inversely proportional to sin2 φR in both D1 or A1 embeddings, thus for a small
sinφR the overall positive correction is too big to fit into the electroweak precision data.
This characteristic behaviour is manifested in figure 1(a) and 1(b). Also the logarithmic
divergence in ∆SD(A),mis will turn into dominantly negative as the value of κ increases, this
will translate into an upper bound for the κ coefficient as shown in figure 1(a)- 1(d). We
can find out the κ is mainly constrained to be O(1) with the CDF global fit preferring
a larger κ in the same set of other inputs. Notice that the shape of the allowed region
changes dramatically between figure 1(c) and figure 1(d), which shows that enhancing the
LO mixing sinφR can alleviate the lower bound of mT . It should be noted that top partner
masses in the multi-TeV scale, as preferred by Lattice data, can well fit within the EW
precision limits.

For comparison, the constraints from the EW global fit is also imposed on the bi-doublet
scenario, as shown in figure 2. We find that the pattern of the plots is mainly determined
by the T parameter, while the S parameter simply drags κ toward smaller values due to
the logarithmic term. More in detail, we see that the first term in ∆Tmis in eq. (4.12) is
always positive for a TeV scale top partner and plays the same role as the singlet mixing
contribution. Instead, the term of the second line in eq. (4.12) (including the logarithmic
and finite terms) will transit from positive to negative at the point of κ = 1

cos α2
. Thus,

∆Tmis in eq. (4.12), stemming from the misalignment, is positive for relatively small κ and
large mT1 . In contrast to the singlet case in eq. (4.2), the coefficient of the positive term
is proportional to sin2 φL. Therefore, in order to compete with the negative contribution
from the Higgs couplings in eq. (4.1), a minimum value of sinφL is determined either by
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the T parameter lower bound or by the perturbation constraint in eq. (3.15). For large
sinφL, However, due to a reduction in mT1 = mT

√
1− sin2 φL −∆M , the first positive

term in eq. (4.12) can become smaller than the negative logarithmic term for κ > 1
cos α2

.
This will lead to the exclusion of some upper region in figure 2(a). The same pattern is
exhibited in figure 2(b), where the allowed region shrinks due to a larger sinα. Figure 2(c)
shows the allowed region in the (mT , κ) space, where for sinφL = 0.3, the T parameter is
only positive for a large mT , while in figure 2(d) with sinφL = 0.8, the allowed κ value is
significantly lowered.

5 Discussion and conclusions

Composite Higgs models with top partial compositeness offer a valid alternative to the Higgs
sector of the SM, as they solve the hierarchy problem in the Higgs mass by replacing an
elementary scalar field by a composite state of fermions. In the recent years, this possibility
has risen to the level of one of the main models for new physics to be searched for at collider
experiments. Besides direct searches for resonances in the electroweak and top sectors, this
class of models predicts distinctive modifications to electroweak precision observables.

In this work, after reviewing some universal property in CHM, we revisited the con-
tribution of top partners to electroweak precision via the oblique S and T parameters.
We identified a new contribution stemming from misalignment effects that modify the
gauge couplings of the top partners to the W and Z bosons. Contrary to the usual mixing
effects, these contributions can be logarithmically divergent and hence numerically large.
For concreteness, we computed them explicitly in the minimal model with an underlying
gauge-fermion description, based on the coset SU(4)/Sp(4). Nevertheless, we only consider
simplified mixing patterns involving either a singlet or a custodial bi-doublet, henceforth
the results can be generalised to other cosets in this limit. The singlet case can naturally
accommodate a positive shift on T . For the bi-doublet case, where a negative T from
reduced Higgs coupling is not compensated by the basis rotation, but the misalignment
effects can shift the T parameter towards positive value, as suggested by the recent CDF
measurement of the W mass. In this case, an order unity derivative coupling of the pNGBs
to the top partners is required.

In general, we see that the misalignment contribution is crucial for a correct estimation
of the impact of top partial compositeness on electroweak precision. In particular, the
effect of the derivative couplings can dominate and push the T parameters towards positive
values. Furthermore, masses for the top partners in the multi-TeV are compatible with the
new CDF measurement, which requires a sizeable positive shift in T . This scenario will be
tested in future colliders via precision measurements at the e+ e− run and direct searches
for top partners at the 100TeV hadronic run.
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A Oblique parameters: S, T and U

In this section, we will show how to derive the vacuum polarization amplitude with VLQ
running in the loop that are used in the oblique parameters. Let us denote the up and
down-type quarks as ψu, ψd and fermions of exotic charges Q = 5

3 as Xu or Q = −4
3 as Xd.

The Lagrangian of ψu,d coupling to a gauge boson W±,3µ , Bµ in the mass basis reads:

L1 = g2√
2

[
W+
µ ψ̄

u
αγ

µ (VL,αiPL + VR,αiPR)ψdi
]

+ h.c.

+g2
2 W3µ

[
ψ̄uαγ

µ (UL,αβPL + UR,αβPR)ψuβ − ψ̄di γ
µ (DL,ijPL +DR,ijPR)ψdj

]
+g1Bµ

[
ψ̄uαγ

µ
(
Y u
L,αβPL + Y u

R,αβPR
)
ψuβ + ψ̄di γ

µ
(
Y d
L,ijPL + Y d

R,ijPR
)
ψdj

]
(A.1)

with PL/R = 1
2(1∓ γ5). Since the VLQ with exotic charges will not mix with SM fermions,

their gauge interactions are:

L2 = g2√
2
W+
µ

[
X̄uγ

µ
(
ṼL,αPL + ṼR,αPR

)
ψuα + ψ̄di γ

µ
(
V̂L,iPL + V̂R,iPR

)
Xd

]
+g2

2 W3µ
[
X̄uγ

µUXXu − X̄dγ
µDXXd

]
+g1

2 Bµ
[
X̄uγ

µ(2Q− UX)Xu − X̄dγ
µ(2Q+DX)Xd

]
+ h.c. (A.2)

One can derive the transverse part of vacuum polarization amplitude to be:

AV V
(
p2 = 0

)
= Ncm

2
Z

128π2

[(
|gVL |2+|gVR |2

)(
A0
(
m2

1

)
+A0

(
m2

2

)
+
(
m2

1+m2
2

)
B0
(
0,m2

1,m
2
2

))
− 8Re

(
gVL g

V †
R

)
m1m2B0

(
0,m2

1,m
2
2

)]
, (A.3)

with the masses of two fermions to be m1,2 and the superscript V standing for a spe-
cific gauge boson. Note that gVL/R equals one coupling in (VL/R, UL/R,−DL/R, 2Y

u,d
L/R) or

(ṼL/R, V̂L/R, UX ,−DX , 2YXu,d). The A0(m2) and B0(p2,m2
1,m

2
2) are rescaled Veltman scalar

loop functions [70, 71]. For p2 = 0, the dimensional regularization gives:

A0
(
m2
)

= m2
(

∆ + 1− log m
2

µ2

)
, B0

(
0,m2

1,m
2
2

)
= A0

(
m2

1
)
−A0

(
m2

2
)

m2
1 −m2

2
(A.4)

with ∆ = 2
4−d + log 4π+γE . The pole at d = 4 represents the logarithmic divergence. Using

the momentum cut-off regularization, one can calculate:

B0
(
0,m2,m2

)
= (2πµ)4−d

iπ2

∫
d4k

(k2 −m2)2 = log Λ2

m2 − 1 (A.5)

directly matching eq. (A.4) with eq. (A.5) we get:

∆ + log µ2 + 1 = log Λ2 . (A.6)
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By substituting eq. (A.4), (A.6) into eq. (A.3), we can simplify the expression to be:

AV V
(
p2 = 0

)
= Ncm

2
Z

128π2

[(
|gVL |2 + |gVR |2

)
θ+ (y1, y2) + 2Re

(
gVL g

V †
R

)
θ− (y1, y2)

+
(
|gVL |2 + |gVR |2

) [
(y1 + y2)

(
log Λ2

m2
Z

− 1
2

)
− 2 (y1 log y1 + y2 log y2)

]

+4Re
(
gVL g

V †
R

)√
y1y2

[
log (y1y2)− 2

(
log Λ2

m2
Z

− 1
)]]

(A.7)

with yi = m2
i /m

2
Z being dimensionless and θ± defined to be [65]:

θ+(y1, y2) = y1 + y2 −
2y1y2 log

(
y1
y2

)
y1 − y2

(A.8)

θ−(y1, y2) = 2√y1y2

(y1 + y2) log
(
y1
y2

)
y1 − y2

− 2

 (A.9)

Because the term proportional to |gVL |2+|gVR |2 gets additional contribution from A0 functions
compared with the one proportional to Re(gVL g

V †
R ), two divergence structures are different.

Then we can calculate the derivative of AV V ′ to be:

∂AV V ′

∂p2 |p2=0 = Nc

96π2

[(
gVL g

V ′†
L + gVRg

V ′†
R

) [(m2
1 −m2

2
)2

4
∂2B0

(
p2,m2

1,m
2
2
)

∂2p2 |p2=0

+ m2
1 +m2

2
2

∂B0
(
p2,m2

1,m
2
2
)

∂p2 |p2=0 −B0
(
0,m2

1,m
2
2

)]

− 3
(
gVL g

V ′†
R + gVRg

V ′†
L

)
m1m2

∂B0
(
p2,m2

1,m
2
2
)

∂p2 |p2=0

]
(A.10)

using the dimensional regularization, the two-point loop function B0 takes the form:

B0(p2,m2
1,m

2
2) = ∆−

∫ 1

0
dx log

[
m2

1x+m2
2(1− x)− p2x(1− x)

µ2 − iε
]

(A.11)

The derivatives of B0 are all finite and can be evaluated analytically to be:

∂B0
(
p2,m2

1,m
2
2
)

∂p2 |p2=0 =
m4

1 −m4
2 − 2m2

1m
2
2 log m2

1
m2

2

2
(
m2

1 −m2
2
)3 (A.12)

∂2B0
(
p2,m2

1,m
2
2
)

∂2p2 |p2=0 =
(
m2

1 +m2
2
)2 + 8m2

1m
2
2

3
(
m2

1 −m2
2
)4

−
2m2

1m
2
2
(
m2

1 +m2
2
)

log
(
m2

1
m2

2

)
(
m2

1 −m2
2
)5 (A.13)
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In fact this approach avoids the integration complexity confronted in the average slope
method adopted by [65]. Now inserting eq. (A.4), (A.12)–(A.13), we obtain

∂AV V ′

∂p2 |p2=0 = − Nc

64π2

[(
gVL g

V ′†
L + gVRg

V ′†
R

)(
χ+ (y1, y2)− 1

3 log (y1y2) + 2
3

(
log Λ2

m2
Z

− 7
6

))

+
(
gVL g

V ′†
R + gVRg

V ′†
L

)
(χ−(y1, y2)− ψ−(y1, y2))

]
. (A.14)

Note that our result only differs from [65] in the third term of the first line. One will
get a wrong constant term GV +GA

24π2 from eq. (14) in [65], by taking the limit of yi
ε |ε→0 for

conversion into derivative. The definitions of χ± and ψ− are:

χ+(y1, y2) =
(
3y1y2(y1 + y2)− y3

1 − y3
2
)

log
(
y1
y2

)
3(y1 − y2)3 + 5

(
y2

1 + y2
2
)
− 22y1y2

9(y1 − y2)2 (A.15)

χ−(y1, y2) = −√y1y2

y1 + y2
6y1y2

− y1 + y2
(y1 − y2)2 +

2y1y2 log
(
y1
y2

)
(y1 − y2)3

 (A.16)

ψ−(y1, y2) = − y1 + y2
6√y1y2

(A.17)

With the formulas of eq. (A.7), (A.14), the oblique parameters S, T, U can be calculated
straightforward in a generic model and the divergence will only show up when the unitarity
is violated, e.g. by the misalignment in CHM discussed in the main text. As an application,
we consider a simplified case without divergence, where VLQ is embedded in an irreducible
representation of SU(2)L × U(1)Y and interplays with SM fermions via a Higgs VEV
insertion. From eq. (A.14), the S parameter is computed by summing over all fermion
contribution:

S = −16π
∑
{ψ,X}

∂A3Y /∂p
2|p2=0

= Nc

2π

[∑
ij

Re
(
DL,ijD

∗
R,ij

)
ψ− (yi, yj) +

∑
αβ

Re
(
UL,αβU

∗
R,αβ

)
ψ− (yα, yβ)

−
∑
α<β

[(
|UL,αβ |2 + |UR,αβ |2

)
χ+ (yα, yβ) + 2Re

(
UL,αβU

∗
R,αβ

)
χ− (yα, yβ)

]
−
∑
i<j

[(
|DL,ij |2 + |DR,ij |2

)
χ+ (yi, yj) + 2Re

(
DL,ijD

∗
R,ij

)
χ− (yi, yj)

]

− 1
3

[∑
α

Qα (UL,αα + UR,αα)
(
log

(
y2
α

)
− 1

)
−
∑
i

Qi (DL,ii +DR,ii)
(
log

(
y2
i

)
− 1

)]

+ 1
6

∑
αβ

(
|UL,αβ |2 + |UR,αβ |2

)
log (yαyβ) +

∑
ij

(
|DL,ij |2 + |DR,ij |2

)
log (yiyj)


− 1

3
[
UX (2QXu − UX)

(
log

(
y2
Xu

)
− 1

)
−DX (2QXd +DX)

(
log(y2

Xd
)− 1

)]]
(A.18)
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Using the condition that terms proportional to (ya log ya+yb log yb) along with the divergence
(ya + yb)

(
log Λ2

m2
Z
− 1

2

)
in the expression of T parameter will vanish, we can derive that:

∑
i

(
|VL,αi|2 + |VR,αi|2

)
+
(
Ṽ 2
L,α + Ṽ 2

R,α

)
=
∑
β

(
|UL,αβ |2 + |UR,αβ |2

)
(A.19)

∑
α

(
|VL,αi|2 + |VR,αi|2

)
+
(
V̂ 2
L,i + V̂ 2

R,i

)
=
∑
j

(
|DL,ij |2 + |DR,ij |2

)
(A.20)

∑
α

(
Ṽ 2
L,α + Ṽ 2

R,α

)
= 2U2

X ,
∑
i

(
V̂ 2
L,i + V̂ 2

R,i

)
= 2D2

X (A.21)

Similarly in the T parameter, Requiring that terms proportional to √yayb log(yayb) to be
cancelled will lead to:∑

i

Re
(
VL,αiV

∗
R,αi

)√
yi +Re

(
ṼL,αṼ

∗
R,α

)√
yXu =

∑
β

Re
(
UL,αβU

∗
R,αβ

)√
yβ (A.22)

∑
α

Re
(
VL,αiV

∗
R,αi

)√
yα +Re

(
V̂L,iV̂

∗
R,i

)√
yXd =

∑
j

Re
(
DL,ijD

∗
R,ij

)√
yj (A.23)

∑
α

Re
(
ṼL,αṼ

∗
R,α

)√
yα = U2

X
√
yXu ,

∑
i

Re
(
V̂L,iV̂

∗
R,i

)√
yi = D2

X
√
yXd (A.24)

that are general results for VLQ in an irreducible representation, and we have explicitly
verified that these sum rules are observed in the non-standard doublet (Y = 7

6 ,−
5
6) and

triplet scenarios (Y = 2
3 ,−

1
3). This class of models also satisfy the following relations:

UL/R = VL/RV
†
L/R − Ṽ

†
L/RṼL/R , DL/R = V †L/RVL/R − V̂L/RV̂

†
L/R

UX = ṼL/RṼ
†
L/R , DX = V̂ †L/RV̂L/R (A.25)

Then applying eq. (A.25) and eq. (A.19)–(A.21), we can rearrange most of the terms other
than χ± and ψ− in eq. (A.18) into a new function ψ+ that is defined as:

ψ+(ya, yb) = 1
3 (Qa −Qb)−

1
3 (Qa +Qb) log

(
ya
yb

)
(A.26)

Note that ψ+ is antisymmetric for exchanging (ya, yb) and in fact Qa−Qb = ±1 always holds
due to the W±µ current. The structure inside the logarithm is expected since the divergence
in S parameter vanishes due to unitarity conservation. Also using eq. (A.22)–(A.24), we
can conduct a transformation for the expression:

∑
ij

Re
(
DL,ijD

∗
R,ij

)
ψ− (yi, yj) +

∑
αβ

Re
(
UL,αβU

∗
R,αβ

)
ψ− (yα, yβ)− 1

3
(
U2
X +D2

X

)
= 2

∑
αi

Re
(
VL,αiV

∗
R,αi

)
ψ− (yα, yi) + 2

∑
α

Re
(
ṼL,αṼ

∗
R,α

)
ψ− (yXu , yα)

+ 2
∑
i

Re
(
V̂L,iV̂

∗
R,i

)
ψ− (yi, yXd) (A.27)
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Thus the general formula for S parameter originating from mixing with VLQ in an irreducible
representation is:

S = Nc

2π
[∑
αi

[(
|VL,αi|2 + |VR,αi|2

)
ψ+(yα, yi) + 2Re(VL,αiV ∗R,αi)ψ−(yα, yi)

]
+
∑
α

[(
|ṼL,α|2 + |ṼR,α|2

)
ψ+(yXu , yα) + 2Re(ṼL,αṼ ∗R,α)ψ−(yXu , yα)

]
+
∑
i

[(
|V̂L,i|2 + |V̂R,i|2

)
ψ+(yi, yXd) + 2Re(V̂L,iV̂ ∗R,i)ψ−(yi, yXd)

]
−
∑
α<β

[(
|UL,αβ |2 + |UR,αβ |2

)
χ+(yα, yβ) + 2Re(UL,αβU∗R,αβ)χ−(yα, yβ)

]
−
∑
i<j

[(
|DL,ij |2 + |DR,ij |2

)
χ+(yi, yj) + 2Re(DL,ijD

∗
R,ij)χ−(yi, yj)

] ]
(A.28)

where (α, β) specify the up-type quarks and (i, j) are for the down-type quarks. This
generalizes the result in ref. [65].

B Model detail

We first report the gauge-fermion couplings that are relevant to the S, T, U calculation.
Note that the couplings below are not rotated into the mass basis. For the fiveplet ψ5, the
gauge interaction is constructed from the CCWZ object, but we can separate out the part
without misalignment to be:

Tr
[
ψ̄5γ

µ
(
Vµψ5 + ψ5V

T
µ

)
+ g1B

0
µX̂ψ̄5γ

µψ5
]

= g2
2
[
Wµ

1

(
T̄ γµB + X̄γµTX

)
− iWµ

2

(
T̄ γµB + X̄γµTX

)
+ h.c.

+Wµ
3

(
T̄ γµT − B̄γµB + X̄γµX − T̄XγµTX

)
+ 1

6B
µ
0 tan(θw)

(
T̄ γµT + B̄γµB + 7X̄γµX + 7T̄XγµTX

) ]
(B.1)

with Vµ = g2W
i
µT

i
L + g1BµT

3
R. The pure misaligned term encoded in the δEµ = Eµ − Vµ

part can be expanded to be:

Tr
[
ψ̄5γ

µ
(
δEµψ5 + ψ5δE

T
µ

)]
⊃

−
g2 sin2 (α

2
)

2
[
Wµ

1

(
B̄ + X̄

)
γµ (T + TX) + iWµ

2

(
B̄ − X̄

)
γµ (T + TX)

+ 2Wµ
3

(
T̄ γµT − T̄XγµTX

)
− 2Bµ

0 tan(θw)
(
T̄ γµT − T̄XγµTX

) ]
+ h.c. (B.2)

The dµ term without the pNGB derivative coupling is:

Tr[ψ̄5dµγ
µψ1] + h.c. ⊃ g2 sin(α)

2
√

2

[
Wµ

1

(
B̄ + X̄

)
+ iWµ

2

(
B̄ − X̄

)
+Wµ

3

(
T̄ − T̄X

)
−Bµ

0 tan(θw)
(
T̄ − T̄X

) ]
γµT1 + h.c. (B.3)

Let us consider the SM (tL, bL) and tR are embedded in the adjoint spurion, the top
partners in ψ5 and elementary fermions can be arranged into up and down sectors:

U ≡
(
t, T, TX , T̃

)T
D ≡ (b, B)T (B.4)
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To diagonalize the up and down masses, i.e. Ω†LM2/3ΩR = Mdiag
2/3 and Ωd†

LM−1/3Ωd
R = Mdiag

−1/3,
the rotation for one bi-doublet scenario in eq. (3.10) at O(ε2) (ε ≡ sinα) is:

ΩL =



M5√
M2

5 +f2y2
L1

fyL1√
M2

5 +f2y2
L1

0 0

− fyL1√
M2

5 +f2y2
L1

M5√
M2

5 +f2y2
L1

0 0

0 0 1 0
0 0 0 1

 (B.5)

+ ε2



M5f
2y2

L1(f2(y2
L1+y2

R1)+M2
5 )

4(M2
5 +f2y2

L1)5/2 −M
2
5 fyL1(f2(y2

L1+y2
R1)+M2

5 )
4(M2

5 +f2y2
L1)5/2

fy2
R1

4M5yL1
0

M2
5 fyL1(f2(y2

L1+y2
R1)+M2

5 )
4(M2

5 +f2y2
L1)5/2

M5f
2y2

L1(f2(y2
L1+y2

R1)+M2
5 )

4(M2
5 +f2y2

L1)5/2
1
4

(
y2

R1
y2

L1
− f2y2

R1
M2

5
− 1
)

0

− (M2
5 +f2y2

R1)

4M2
5

√
M2

5
f2y2

L1
+1

(y2
L1−y

2
R1)

4y2
L1

√
f2y2

L1
M2

5
+1

0 0

0 0 0 0



ΩR =


1−

ε2

(
M4

5

(M2
5 +f2y2

L1)2 +1

)
f2y2

R1

8M2
5

− εM5fyR1
2(M2

5 +f2y2
L1)

εfyR1
2M5

0
εM5fyR1

2(M2
5 +f2y2

L1) 1− ε2M2
5 f

2y2
R1

8(M2
5 +f2y2

L1)2
ε2

4

(
y2

R1
y2

L1
− 1
)

0

− εfyR1
2M5

ε2

4

(
1− M2

5 y
2
R1

y2
L1(M2

5 +f2y2
L1)

)
1− ε2f2y2

R1
8M2

5
0

0 0 0 1


(B.6)

ΩdL =

 M5√
M2

5 +f2y2
L1

fyL1√
M2

5 +f2y2
L1

− fyL1√
M2

5 +f2y2
L1

M5√
M2

5 +f2y2
L1

+ ε2

 M5f
2y2

L1
2(M2

5 +f2y2
L1)3/2 −

M2
5 fyL1

2(M2
5 +f2y2

L1)3/2

M2
5 fyL1

2(M2
5 +f2y2

L1)3/2
M5f

2y2
L1

2(M2
5 +f2y2

L1)3/2

 (B.7)

and Ωd
R = 12×2. The rotation for one singlet scenario in eq. (3.10) is:

ΩL =


1− ε2M2

5 f
2y2

L2
4(M2

5 +f2y2
R2)2 0 0 − εM5fyL2√

2(M2
5 +f2y2

R2)
0 1 0 0
0 0 1 0

εM5fyL2√
2(M2

5 +f2y2
R2) 0 0 1− ε2M2

5 f
2y2

L2
4(M2

5 +f2y2
R2)2

 (B.8)

ΩR =



M5√
M2

5 +f2y2
R2

0 0 fyR2√
M2

5 +f2y2
R2

0 1 0 0
0 0 1 0

− fyR2√
M2

5 +f2y2
R2

0 0 M5√
M2

5 +f2y2
R2



+ ε2


M3

5 f
2y2

R2(f2(y2
L2+y2

R2)+M2
5 )

2(M2
5 +f2y2

R2)7/2 0 0 −M
4
5 fyR2(f2(y2

L2+y2
R2)+M2

5 )
2(M2

5 +f2y2
R2)7/2

0 0 0 0
0 0 0 0

M4
5 fyR2(f2(y2

L2+y2
R2)+M2

5 )
2(M2

5 +f2y2
R2)7/2 0 0 M3

5 f
2y2

R2(f2(y2
L2+y2
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5 )

2(M2
5 +f2y2
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 (B.9)

Note that the rotation conserves the unitarity: Ω†LΩL = Ωd†
L Ωd

L = ΩRΩ†R = 1 +O(ε3).
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We listed the generators for the SU(4)/Sp(4) model below, in particular X1,···4 forms a
bi-doublet in SU(2)L × SU(2)R.

Si = 1
2

(
σi 0
0 0

)
, Si+3 = 1

2

(
0 0
0 −σTi

)
, i = {1, 2, 3} (B.10)

S7 = i

2
√

2

(
0 σ3
−σ3 0

)
, S8 = 1

2
√

2

(
0 12
12 0

)
, (B.11)

S9 = i

2
√

2

(
0 σ1
−σ1 0

)
, S10 = i

2
√

2

(
0 σ2
−σ2 0

)
. (B.12)

X1 = − 1
2
√

2

(
0 σ3
σ3 0

)
, X2 = i

2
√

2

(
0 12
−12 0

)
, X3 = 1

2
√

2

(
0 σ1
σ1 0

)
, (B.13)

X4 = 1
2
√

2

(
0 σ2
σ2 0

)
, X5 = 1

2
√

2

(
12 0
0 −12

)
. (B.14)

For the SU(4)/Sp(4) model, the CCWZ objects can be exactly evaluated. In the original
basis, we find the following identity:

UΠ̂ = exp
(
i

√
2Π̂
f

)
= cos

√
h2 + η2

2f + i
2
√

2f√
h2 + η2 sin

√
h2 + η2

2f
Π̂
f

(B.15)

The misalignment is generated by the rotation UΠ = UαUΠ̂U
−1
α . Then projecting i U−1

Π DµUΠ
into the unbroken and broken directions, we obtain:

Eµ =
3∑
i

(
g2W

i
µS

i + g1BµS
6
)

+
3∑
i

(
g2W

i
µ − g1Bµδ

i3
)


cosα

(
h2 cos

√
h2+η2

f + η2
)

h2 + η2 −
h sinα sin

√
h2+η2

f√
h2 + η2 − 1

 (Si − Si+3)

+ η√
2

sinα sin
√
h2+η2

f√
h2 + η2 +

2h cosα sin2
√
h2+η2

2f
(h2 + η2)

Si+6


+
√

2
(

cos
√
h2 + η2

f
− 1

)
h∂µη − η∂µh
h2 + η2 S10 (B.16)

dµ =
3∑
i

(
g2W

i
µ − g1Bµδ

i3
)sinα cos

√
h2 + η2

f
+
h cos(α) sin

√
h2+η2

f√
h2 + η2
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+
√
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(
− h

2f
∂µ(h2 + η2)
h2 + η2 + η (h∂µη − η∂µh)

(h2 + η2)3/2 sin
√
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f
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X5 (B.17)
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C Top and bottom spurions

The SM top and bottom quarks are put in the incomplete G = SU(4) representations. For
the antisymmetric and symmetric embedding, the spurions of (tL, bL) and tR are:

AL =


0 0 tL√

2 0
0 0 bL√

2 0
− tL√

2 −
bL√

2 0 0
0 0 0 0

 SL =


0 0 tL√

2 0
0 0 bL√

2 0
tL√

2
bL√

2 0 0
0 0 0 0

 (C.1)

AR = i

2

(
σ2 0
0 −σ2

)
tR A

(2)
R = i

2

(
σ2 0
0 σ2

)
tR SR = 1√

2

(
0 0
0 σ1

)
tR (C.2)

In SU(4), the adjoint representation is a 15-plet, decomposing into 10S⊕5A in theH = Sp(4)
subgroup. And the corresponding spurions for top and bottoms are:

DL,A = ALΣB =


0 0 0 − tL√

2

0 0 0 − bL√
2

bL√
2 −

tL√
2 0 0

0 0 0 0

 DL,S = SLΣB =


0 0 0 − tL√

2

0 0 0 − bL√
2

− bL√
2

tL√
2 0 0

0 0 0 0

 (C.3)

DR,S = SRΣB = 1√
2

(
0 0
0 σ3

)
tR DR,A = A

(2)
R ΣB = −1

2

(
12 0
0 −12

)
tR (C.4)
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