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1 Introduction

The smallness of the cosmological constant is one of the great mysteries of particle physics.
In the late 1980’s, Coleman proposed a solution [1, 2] based on the effects of Euclidean
wormholes [3] (see also refs. [4, 5] for reviews). After summing the wormholes, the low
energy theory is described by an ensemble average of various coupling constants, including
the cosmological constant. However, Coleman’s original proposal has problems such as [6–8].
These problems seem to stem from the pathology of the 4d Euclidean gravity associated
with the conformal mode. To overcome this problem, a Lorentzian formulation of Coleman’s
mechanism was proposed and studied [9–13].

On the other hand, significant progress has recently been made toward resolving the
information paradox of the black hole [14, 15]. At least in two dimensions, the replica
wormhole [16, 17] plays an important role in reproducing the unitary page curve of the
black hole entropy (see refs. [18, 19] for reviews).

Given the importance of wormhole, it is interesting to revisit the Coleman’s mechanism
in two dimensions. Indeed, 2d Euclidean quantum gravity on closed manifolds coupled to a
matter field with central charge c ≤ 1 is well-defined. Its proper time Hamiltonian can be
regarded as a kind of field theory of noncritical strings. Thus, the validity of Coleman’s
proposal can be clearly discussed.1

1The analysis of wormholes in the worldsheet theory of critical strings has been done in [20]. See also
ref. [21] for recent study of the Liouville theory coupled to c = 1 matter using the matrix quantum mechanics.
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In this paper, we first show that the sum of topologies in 2d Euclidean gravity does not
lead to an automatic tuning of the cosmological constant by explicitly counting the number
of random surfaces.2 We argue that this is true for a wide range of modifications of the
2d Euclidean gravity based on the matrix model. Next, we consider 4d Lorentzian gravity
and introduce an effective Hamiltonian of the multiverse consisting of the creation and
annihilation operators of the mother and baby universes. The Hamiltonian is non-Hermitian
due to the difference between the creation of the mother universe from nothing and the
annihilation of the mother universe into nothing. In this model, the Coleman mechanism is
realized and the effective cosmological constant is tuned to almost zero.

The paper is organized as follows. In section 2, we first outline the path integral
formulation of 2d Euclidean gravity (non-critical strings). In particular, we introduce the
Hamiltonian formulation for 2d gravity coupled to (2, q) minimal matter.3 We then show
that the effect of the microscopic baby universes is too small compared to the macroscopic
topology changes to realize the Coleman mechanism. We then consider modifications of
2d gravity based on the matrix model, and discuss that the Coleman mechanism works in
Lorentzian gravity. In section 3, we consider Lorentzian gravity. The processes of creation
and annihilation of the mother and baby universes are investigated, and a non-Hermitian
effective Hamiltonian describing a Lorentzian multiverse is introduced. We show that
Coleman’s idea is satisfied in this model. We also discuss the potential implications for
phenomenology.

2 2d Euclidean quantum gravity with various topologies

In this section, we examine the possibility of obtaining ensemble averages for the coupling
constants from the sum of topologies in two-dimensional gravity. The Euclidean 2d gravity
coupled to a matter field with central charge c ≤ 1 is well-defined without suffering from
the problem of the conformal mode.4 It can be defined either by continuum theory [25–27]
or by dynamical triangulation [28–32]. In particular, all topologies can be summed using
the matrix model [33–35]. (See also refs. [36–39] for reviews.)

As is well known, 4d Euclidean gravity has difficulties due to instability of the conformal
mode. Also, whether a microscopic wormhole is more important than a macroscopic topology
change depends on the dimension of spacetime. Nevertheless, the 2d Euclidean wormhole is
a good clue to investigate the 4d Lorentzian multiverse, as we will see in the next section.

2.1 Formulations in continuum theory

In this subsection, we introduce two formalisms of 2d Euclidean gravity.

2.1.1 Hamiltonian formalism: non-critical string field theory

In refs. [40, 41], a Hamiltonian formalism was proposed for 2d Euclidean gravity, in which
the geodesic distance is considered as time (see ref. [42] for the Hamiltonian in dynamical

2The fluctuation of the cosmological constant in 2d gravity is also considered in [22].
3It includes the Jackiw-Teitelboim (JT) gravity as a limit q →∞ [23, 24].
4This is related to the fact that the number of degrees of freedom is negative in 2d gravity.
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V (P ;D)P

S(P ;D)

D

Figure 1. Illustration of V (P ;D) and S(P ;D). Here V (P ;D) is the set of points whose geodesic
distance from P is less than or equal to D. The boundary of V (P ;D) is denoted by S(P ;D). In
the figure, S(P ;D) consists of three loops.

triangulation). This theory can be regarded as a string field theory, since the Hamiltonian
describes the creation and annihilation of universes of spatial dimension 1. It can also be
viewed as a two-dimensional third quantization theory [43]. This formalism is convenient to
generalize to Lorentzian spacetime, which we will explore in section 3.

Let us consider 2d spacetime, and take an arbitrary point P (see figure 1 for illustration).
Then, the set of points V (P ;D) is defined as

V (P ;D) = {Q ∈ (spacetime)|d(P,Q) ≤ D} (2.1)

where d(P,Q) is the geodesic distance between P and Q. Let S(P ;D) be the boundary of
V (P ;D).

Next, we introduce operators ψ†(`) and ψ(`), which create and annihilate loops (1d
spaces) of length `, respectively. They satisfy the relation,

[ψ(`), ψ†(`′)] = δ(`− `′) , (2.2)

and the vacuum (the absence of space) is defined as

ψ(`)|0〉 = 〈0|ψ†(`) = 0. (2.3)

For simplicity, we take the (2, q) minimal model as the matter field.5 In that case, there is
no need to introduce any extra degrees of freedom other than l.6 Then, the state with k
loops of length `1, · · · , `k can be written as

|`1, · · · , `k〉 = ψ†(`1) · · ·ψ†(`k)|0〉 , (2.4)

and the state of the boundary surface S(P ;D) is represented by their superposition:

|S(P ;D)〉 =
∞∑
k=0

∫ ∞
0

d`1 · · ·
∫ ∞

0
d`kck(`1, · · · , `k)|`1, · · · , `k〉 . (2.5)

5The (2, q) minimal model has c = −3q + 13 − 12
q
. For example, q = 1, 3,∞ gives c = −2, 0,−∞,

respectively.
6Non-critical string field theory for the minimal unitary series (p, p+ 1) (p = 2, 3, · · · ) is given in ref. [44].
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We can define Hamiltonian [40, 42], which describes the infinitesimal translation of the
proper time D.

d

dD
|S(P ;D)〉 = −HEuclid|S(P ;D)〉 , (2.6)

where HEuclid is given by

HEuclid =
∫ ∞

0
d`1d`2 ψ

†(`1)ψ†(`2)ψ(`1 + `2) +
∫ ∞

0
d`1d`2 ψ

†(`1 + `2)ψ(`1)ψ(`2)

+
∫ ∞

0
d` ρ(`)ψ(`) . (2.7)

The source function ρ(`) is7

ρ(`) =

λ δ(`) for (2, 1) topological gravity (c = −2) [45]
λ δ(`) + δ′′(`) for (2, 3) pure gravity (c = 0) [40]

. (2.8)

This function is related to the disk amplitude:

ρ̃(ζ) = ∂

∂ζ
(D̃(ζ))2, (2.9)

where D̃(ζ) is the Laplace transformation of the disk amplitude D(l).
The function ρ corresponding to the JT gravity [23, 24] can be obtained as follows. Its

action is given by

SJT =−S0
2π

[1
2

∫
M

√
gR+

∫
∂M

√
hK

]
−
[1

2

∫
M

√
gΦ(R+2)+

∫
∂M

√
hΦ(K−1)

]
, (2.10)

where S0 is a constant, K is the boundary extrinsic curvature, and Φ is the dilaton. We
consider the case whereM has the disk topology. From the variation of Φ, we obtain that
the metric is the Euclidean AdS2 (EAdS2). In the Poincare patch (ds2 = (dτ2 + dz2)/z2),
the solution of the dilaton is

Φ = 2πγ
z

, (2.11)

where γ is a constant. Then D̃ is given by [46, 47]

D̃JT (ζ) = eS0 γ

2π2 sinh
(
2π
√

2γζ
)
. (2.12)

This leads to

ρ̃JT (ζ) = ∂

∂ζ
D̃2
JT = e2S0 γ

5/2

4π3

√
2
ζ

sinh
(
4π
√

2γζ
)

= e2S0 γ
2

π2

∞∑
n=1

(2γ)n
(2n− 1)!ζ

n−1 , (2.13)

from which we obtain

ρJT (l) = e2S0 γ
2

π2

∞∑
n=1

(2γ)n
(2n− 1)!δ

(n−1)(`) . (2.14)

7To be precise, the source term is defined through the Laplace transformation.
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Here δ(n)(l) is the n-th derivative of the Dirac delta function. Thus the JT gravity is
obtained as the limit p = 2, q →∞ [46] (see also refs. [48–52]).

Using eq. (2.6), we can evaluate the length distribution of the circles that consist of
the boundary S(P ;D) [42, 53]. For example, in the case of c = 0 (q = 3), the expectation
value of the number of loops with length from L to L+ dL contained in S(P ;D) is given by

n(L;D)dL = 3
7
√
πD2

(
x−5/2 + 1

2x
−3/2 + 14

3 x
1/2
)
e−xdL , x := L

D2 . (2.15)

This implies that a large number of small baby universes will be created. Nevertheless, we
cannot conclude that the Coleman mechanism is realized, as we will discuss in section 2.2.

2.1.2 Path integral formalism

The Liouville action appears in the quantization of 2d gravity coupled to conformal mat-
ter [26, 27] (see also ref. [25]). In section 2.2, we use this to examine the possibility of a
Coleman mechanism in 2d Euclidean gravity.

We start from the partition function,

Z =
∫ Dg

vol(Diff)e
−µ0

2π

∫
d2x
√
gZM [g] . (2.16)

Here ZM [g] is the partition function of a conformal field with central charge c defined on the
background metric gµν(x), vol(Diff) stands for the volume of the space of diffeomorphisms,
and µ0 is the (bare) cosmological constant. The path measure Dg is induced from the
diffeomorphism invariant norm:

||δg||2 =
∫
d2x
√
ggµνgλρδgµλδgνρ . (2.17)

In the conformal gauge, the metric is parametrized as

gµν(x) = ĝµν(τ, x) eφ(x) , (2.18)

where φ and τ are the conformal mode and moduli, respectively. After this decomposition,
the partition function becomes∫
dτD1φ∆FP [ĝeφ]ZM [ĝeφ]e−

µ0
2π

∫ √
ĝeφd2x =

∫
dτD1φ∆FP [ĝ]ZM [ĝ]e

c−26
48π SL[ĝ;φ]−µ0

2π

∫ √
ĝeφd2x ,

(2.19)

where ∆FP [ĝeφ] is the Faddeev-Popov determinant, SL(ĝ;φ) is the (unrenormalized) Liou-
ville action,

SL(ĝ;φ) =
∫
d2x
√
g

(1
2g

µν∂µφ∂νφ+Rφ

)
. (2.20)

D1φ is the measure induced from the norm

||δφ||21 =
∫
d2x

√
ĝ eφ(δφ)2 , (2.21)
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which is derived from eq. (2.17). In the last equality of eq. (2.19), we have used

∆FP [ĝeφ] = ∆FP [ĝ]e−
26

48πSL[ĝ;φ], ZM [ĝeφ] = ZM [eφ]e
c

48πSL[ĝ;φ] . (2.22)

Since D1φ is inconvenient because of eφ in the norm (2.21), we rewrite it in terms of
the measure D0φ that is induced from the standard norm,

||δφ||20 =
∫
d2x

√
ĝ (δφ)2 . (2.23)

Then the parition function becomes [26, 27]

Z =
∫
dτ D0φ∆FP [ĝ]ZM [ĝ]e−S[φ;ĝ] , (2.24)

where S[φ; ĝ] is the (renormalized) Liouville action,

S[φ; ĝ] = 1
2π

∫
d2x

(
∂φ∂̄φ+ 1

4Q
√
ĝR̂φ+ µ1

√
ĝeαφ

)
. (2.25)

Here we have

Q =
√

25− c
3 , α =

√
25− c−

√
1− c√

12
. (2.26)

Note that eq. (2.24) is reduced to the semi-classical Liouville theory in the limit c→ −∞.
There is another branch of α which does not have a sensible semi-classical limit (and usually
is discarded), which we denote by α̃:

α̃ =
√

25− c+
√

1− c√
12

. (2.27)

2.2 The absence of the Coleman mechanism

In this section, we show that the Coleman mechanism does not work for 2d Euclidean
gravity coupled to conformal matter with c ≤ 1. To do so, we compare the number of
random surfaces with different topologies.

The partition function of a 2d manifold with a given topology and area A is given by

Z(A) =
∫ Dgµν

vol (Diff)ZM [gµν ]δ
(∫

d2x
√

det gµν −A
)
, (2.28)

which can also be viewed as the number of random surfaces of area A. As reviewed in
section 2.1.2, in the conformal gauge we have

Z(A) =
∫
dτ

∫
D0φZM [ĝ]e−S[ĝ;φ]δ

(∫ √
ĝ eαφd2x−A

)
. (2.29)

Here we are interested in the string susceptibility Γ defined by [54, 55]

Z(A) ∼ AΓ−3 , (2.30)

which is a generalization of the central limit theorem for random walks, see appendix A.
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Figure 2. For fixed large area A, the number of random tori is much larger than the number of
random spheres with a thin tube.

Γ is obtained by a scaling argument as follows [26, 27] (see ref. [25] for genus zero case).
By shifting φ as

φ→ φ+ logA
α

, (2.31)

the measure D0φ is invariant while the action (2.25) is shifted as

S[ĝ;φ]→ S[ĝ;φ] +Qχ
logA
2α . (2.32)

Here χ is the Euler number of the 2d manifold. The change of the delta function is

δ

(∫ √
ĝ eαφd2x−A

)
→ 1

A
δ

(∫ √
ĝ eαφd2x− 1

)
. (2.33)

Putting altogether, we obtain

Z(A) = Z|A=1A
−χQ2α −1 = Z|A=1A

−bχ2−1 , b = 25− c+
√

(1− c)(25− c)
12 . (2.34)

Note that, in the region c ≤ 1 where quantum gravity is well defined, b is bounded from
below:

b ≥ 2, for c ≤ 1 . (2.35)

For c > 1, Z(A) becomes complex which signals an instability of the spacetime against the
formation of pinches [56, 57].

This can be used to discuss the magnitude of quantum fluctuations of spacetime due
to baby universes in 2d Euclidean gravity. As an example, consider a situation in which
spacetime is a macroscopic 2d sphere, and a tiny tubular wormhole is attached to it (see
the left figure of figure 2). This represents the process of a tiny circular baby universe
branching off from the circular mother universe and being absorbed back into the mother
universe. Overall, the spacetime is a 2d torus. On the other hand, if the spacetime is a
macroscopic 2d torus, it represents the process of a circular mother universe splitting into
two macroscopic mother universes, which then merge back into a single mother universe
(see the right figure of figure 2). If the former is significantly non-zero compared to the
latter, the former can be regarded as a quantum correction due to microscopic fluctuations

– 7 –
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(baby universes) to the 2d spherical spacetime. Then after integrating out the contributions
of small wormholes, we obtain an effective field theory in which the cosmological constant
appears as a dynamical parameter [1, 2]. Unfortunately, as we will see below, this is not
the case in the simple 2d Euclidean gravity.

From eq. (2.34) with χ = 0, we obtain

(
# of random surfaces with area A and topology T 2

)
∼ A−1 . (2.36)

This equation includes both the contribution of a macroscopic sphere with a microscopic
wormhole and the contribution of a macroscopic torus. The former is estimated as follows.

(# of random spheres with a microscopic wormhole) ∼ A−b−1 ·A2 = A−b+1 . (2.37)

Here A−b−1 is the number of random spheres, and A2 is the number of ways to attach the
endpoints of the microscopic wormhole. From eq. (2.35), we see that A−b+1 � A−1 for
large A and that the effect of the microscopic wormhole is negligibly small compared to the
macroscopic topology change. In other words, there is no special mechanism to enhance
the effect of small wormholes. This is due to the fact that the gravitational coupling is
dimensionless in two dimensions (∼ 1/

√
c), and consequently, there is no intrinsic difference

between small and large wormholes.8

2.3 Modification of the model

The Coleman mechanism may be achieved by modifying the model. To do so, we start with
the large-N limit of a matrix model.

S = N

(1
2trφ2 − λ

3 trφ3
)
, (2.38)

where φ is an N ×N Hermite matrix. This describes the 2d pure gravity (c = 0) in the
scaling limit, see ref. [38] for a review and the references therein.

One of the possible modifications is to consider the action as defined as a polynomial
of the local actions [13]. Here we consider the simplest modification, namely adding a term
corresponding to

(∫
d2x
√
g
)2:

S = N

(1
2trφ2 − λ0

3 trφ3
)
− 1

2C
(1

3trφ3
)2

. (2.39)

In fact, in terms of Feynman diagrams, the last term represents the insertion of a pair of
φ3 vertices, which is just a discretization of

(∫
d2x
√
g
)2. Then the partition function is

8This is also pointed out in e.g. [58].
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formally evaluated as

Z =
∫
dφ exp

(
−N

(1
2trφ2 − λ0

3 trφ3
)

+ 1
2C

(1
3trφ3

)2
)

=
∫
dλ

∫
dφ exp

(
−N

(1
2trφ2 − λ+ λ0

3 trφ3
)
− N2

2C λ
2
)

=
∫
dλZφ3(λ+ λ0) exp

(
−N

2

2C λ
2
)

=
∫
dλZφ3(λ) exp

(
−N

2

2C (λ− λ0)2
)
, (2.40)

where

Zφ3(λ) = exp (Zsingle(λ)) :=
∫
dφ exp

(
−N

(1
2trφ2 − λ

3 trφ3
))

. (2.41)

This fulfills Coleman’s idea of considering ensembles of various coupling constants simulta-
neously:

Z =
∫
dλ exp

(
−N

2

2C (λ− λ0)2
)

exp (Zsingle(λ)) =:
∫
dλw(λ) exp (Zsingle(λ)) . (2.42)

Then λ is fixed to the peak of the integrand.
Unfortunately, however, the formal partition function (2.40) is divergent. This can be

seen in both views: the sum over the area and the integration over the cosmological constant.
We start with the former view. In terms of Feynman diagrams, A is the number of

vertices. A single insertion of C(Tr(φ3))2 can be viewed as the insertion of two separate
vertices, giving rise to a factor,

kN2C ×A2 , (2.43)

where k is a positive O(1) constant. By adding multiple insertions, we obtain the factor

exp
(
kN2C ×A2

)
. (2.44)

This indicates that the sum over A does not converge because the partition function (the num-
ber of planar Feynman diagrams) when C = 0 is bounded by an exponential function of A.

In the latter view, the partition function of a single universe Zsingle(λ) is not well
defined when λ is above a critical value. In the matrix model, Zsingle is given by a power
series of λ with positive coefficients,

Zsingle(λ) = N2
(
a0 + a1λ+ a2λ

2 + · · ·
)

= N2
∞∑
A=0

aAλ
A . (2.45)

It has a convergence radius λc, and the critical behavior near λc is given by9

∼ const.N2
(
λc − λ
λc

)b
. (2.46)

9log λ and (λc − λ)/λc are regarded as the bare and renormalized cosmological constant, respectively.
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Figure 3. The topology change of the universe. The process in which one universe splits into two
and then merges into one again is shown.

The complete partition function is obtained by substituting Zsingle(λ) into eq. (2.42), but it
is divergent because the integration over λ includes the region λ > λc.

On the other hand, even though the formal partition function (2.40) is divergent, the
large N limit of the matrix model itself (2.38) is known to be well-defined. Indeed, the
interactions of the form (tr(φn))2 are called as the touching interactions [59–63] because
they glue two isolated surfaces at a point.10 In particular, in the large N , it was shown
that the interaction (tr(φ2))2 changes scaling of Z(A) from eq. (2.34) to11

Z(A) = Z|A=1A
−b̃χ2−1, b̃ = 25− c−

√
(1− c)(25− c)
12 = − b

1− b , (2.47)

when the strength of the touching interaction is tuned to be a special value. The value of b̃
corresponds to the unusual branch (2.27), and b̃ < 2 for 0 ≤ c < 1. Then, the counting of
the random surface in figure 2 is replaced by

A−b̃+1 � A−1, (2.48)

which indicates that the contribution from the microscopic wormhole is significant. It is
an open question, in spite of this fact, why the interpretation in terms of the ensemble
average (2.40) does not work. We leave the investigation of this interesting question to
future publications. Instead of that, in this paper, we explore Lorentzian gravity as an
alternative possibility to realize the Coleman mechanism.

Therefore, we consider a Lorenz model such as

ZL :=
∫
dλ exp

(
iN2 (λ− λ0)2

2C

)
exp (Zsingle(λ)) (2.49)

instead of the Euclidean model. The remainder of this paper will explore this possibility.
Before concluding this section, a general point should be made about Lorentzian gravity.

From Geroch’s theorem [64], a singularity exists when a topology change occurs. This
creates an ambiguity about time in the separated universes. For example, consider the
process of one universe splitting into two and merging back into one. In this case, the
relationship between the time of each separated universe is not a priori clear (tA may or
may not be equal to tB in figure 3). This is in contrast to the case of Euclidean gravity,
where a common proper time (tA = tB) should be chosen.

10The models with different n are expected to be in the same universality class.
11The model (2.39) is for c = 0, but the analysis can be extended to 0 ≤ c < 1.
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3 Coleman mechanism in Lorentzian multiverse

In this section, we propose a non-Hermitian Hamiltonian describing a Lorentzian multiverse
and show that the Coleman mechanism actually works in such a model. We also discuss
various phenomenological implications.

3.1 Lorentzian model

We start with the Hamiltonian of the universe in the mini-superspace approximation of
4-dimensional Lorentzian gravity.

Hmini = − p2
a

2M2
Pla

+ a3

6 λ(a) , pa = M2
Plaȧ , (3.1)

where λ(a) is the energy density of the universe.12 It is convenient to choose the volume
l = a3/3 as a dynamical variable instead of a. Eq. (3.1) is then rewritten as

Hmini = −l p2
l

2M2
Pl

+ l

2λ(l) , pl = M2
Pl l̇

l
. (3.2)

In the following, we set MPl = 1. To describe the multiverse including baby universes, we
consider the following second quantized Hamiltonian.

Ĥ = 1
2

∫ ∞
0

dlψ̂†(l)
(
~2 d

dl
l
d

dl
+ lλ(l) + c l(â+ â†)

)
ψ̂(l) +

∫ ∞
0

dllρ∗(l)ψ†(l) , (3.3)

where we impose the commutation relations

[ψ(l), ψ†(l′)] = δ(l − l′) , [â, â†] = 1 . (3.4)

Here â and â† are the annihilation and creation operators of the baby universe, and ψ̂(l)
and ψ̂†(l) are the annihilation and creation operators of the mother universe of length l.
Also ψ̂†(l)(â+ â†)ψ̂(l) represents the emission and absorption of the baby universe from
the mother universe. We note that q̂ = â+ â† is a conserved quantity because it commutes
with the Hamiltonian.

We have not introduced terms such as the first and second terms on the right hand side
of eq. (2.7) representing the splitting and merging of the mother universes. This is because
in Lorentzian gravity, topology changes of the universe occur through tunneling, but the
Euclidean action representing the tunneling barrier between the 3-dimensional macroscopic
universes is macroscopically large, so the tunneling probability is strongly suppressed.

The last term in Ĥ describes the process by which a small mother universe arises from
nothing by the tunneling effect [65] (see figure 4). It is important to note that there is a term
that creates the mother universe, but not a term that annihilates the mother universe. This
is because if the matter field of the universe is highly excited, the overlap with the ground
state is so small that the probability of the universe becoming nothing after a big crunch
is expected to be almost zero.13 For this reason, it is natural to consider the non-hermitian
effective Hamiltonian of the multiverse. This is important in the discussion that follows.

12One can see that Hmini = 0 corresponds to the Freedman equation.
13Such a contracting universe may bounce back and repeat the cycle due to some quantum gravity effects.
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Figure 4. Creation of a small mother universe from nothing.

A general initial state is given by

|i〉 =
∫ ∞
−∞

dqf(q)|q〉 ⊗ |i, q〉M , (3.5)

where |q〉 and |i, q〉M are the states of the baby universe and the mother multiverse,
respectively. Then, the time evolution is given by

e−iĤt/~|i〉 =
∫ ∞
−∞

dqf(q)|q〉 ⊗ e−iĤqt/~|i, q〉M , (3.6)

where

Ĥq = 1
2

∫ ∞
0

dlψ̂†(l)
(
~2 d

dl
l
d

dl
+ lλeff(l)

)
ψ̂(l) +

∫ ∞
0

dllρ∗(l)ψ†(l) , (3.7)

λeff(l) = λ(l) + c q . (3.8)

It is clear that c q plays the role of the cosmological constant. In the following, we denote
the constant piece of λeff(l) as λ. Then the integral of q in eq. (3.6) can be regarded as an
ensemble average over the cosmological constants. Note that the generalization to other
coupling constants is straightforward. In fact, if we want to realize an ensemble average over
the coupling constant gi corresponding to a local operator Oi(x), we can simply introduce
another baby universe via

(âi + â†i )
∫
ddxOi(x) , (3.9)

where q̂i = âi + â†i plays the role of gi. This has already been discussed in the original
work [1, 66].

From eq. (3.6), we see that the quantum state of the mother multiverse with cosmological
constant λ is given by14

〈λ|e−iĤt/~|i〉 = f(λ)e−iĤλt/~|i, λ〉M =: f(λ)|Ψλ(t)〉 . (3.10)

In general, for non-unitary systems, there is no clear definition of probability a priori.
However, it is natural to assume that the probability of observing that the cosmological
constant is λ is proportional to the norm of eq. (3.10), i.e.

P (t, λ) ∝ |f(λ)|2〈Ψλ(t)|Ψλ(t)〉 . (3.11)
14For simplicity, we do not write subscript M , but |Ψλ(t)〉 is the state of the mother multiverse.
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If the time evolution is unitary, this reduces to |f(λ)|2. Then, the cosmological constant is
simply determined by the initial wavefunction f(λ). On the other hand, in the non-unitary
model we are considering, the behavior of eq. (3.11) is non-trivial.

The Heisenberg equation of ψ̂(l) is

i~
∂ψ̂

∂t
= [ψ̂, Ĥq] = 1

2

(
~2 d

dl
l
d

dl
+ lλeff(l)

)
ψ̂ + lρ∗(l) , (3.12)

which looks like a Schrödinger equation with a source term ρ∗(l). The inhomogeneous terms
in this equation imply that universes of various sizes are generated per unit time. On the
other hand, the homogeneous terms mean that the generated universe expands toward
infinity.15 Therefore, it is expected that the system reaches a stationary coherent state
|Ψst〉 after a sufficiently long time, so that ψst(l) := 〈Ψst|ψ̂(l)|Ψst〉 satisfies(

~2 d

dl
l
d

dl
+ lλeff(l)

)
ψst(l) + lρ∗(l) = 0 . (3.13)

In fact, we can show that the following |Ψst〉 satisfies Ĥλ|Ψst〉 = 0 if eq. (3.13) is satisfied:

|Ψst〉 = N 1/2 exp
(∫ ∞

0
dlψ̂†(l)ψst(l)

)
|0〉 , (3.14)

where N is the normalization constant. Note that this stationary multiverse state corre-
sponds to the multiverse partition function in the path-integral formulation [1, 9, 10, 13, 66].
In the present formulation, such a state emerges naturally from the non-hermitian many-body
Hamiltonian.

The probability distribution of the cosmological constant is now given by

Pst(λ) = |f(λ)|2〈Ψst|Ψst〉 = |f(λ)|2N exp
(1

2

∫ ∞
0

dl|ψst(l)|2
)
. (3.15)

As argued above, the stationary state is expected as a result of the balance between
inhomogeneous and homogenous terms. Here we have implicitly assumed that generated
universe expands toward infinity. This is equivalent to the assumption that we consider an
ensemble average of coupling constants where λeff(l) ≥ 0 is satisfied.16 In the following, we
consider a source term of the form

lρ∗(l) = νεδ(l − ε) , (3.16)

which means that a mother universe of initial size ε is generated at a rate of ν per unit
time. Moreover, we simply put νε→ ν.

We now summarize the WKB solution for ψst(l). By expanding ψst(l) as

ψst(l) = exp
(
i

~
S0 + iS1 + · · ·

)
, (3.17)

15One can interpret −λeff(l) as the potential energy for the size of the universe.
16This may be viewed as an anthropic principle in a weak sense. We require that the universe can be

large, though we do not require the formation of the galaxy [67].
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we have

O(~0) :
(
dS0
dl

)2
= λeff(l) , (3.18)

O(~1) : −2l dS0
dl

dS1
dl

+ i

(
dS0
dl

+ l
d2S0
dl2

)
= 0 . (3.19)

These are solved as

S0(l) = ±
∫ l

dl′
√
λeff(l′) , S1(l) = i

2

(
log

√
λeff(l) + log l

)
. (3.20)

Thus, the general WKB solution for l > ε is given by

ψWKB
st (l) = A√

l λeff(l)1/4
e
i
~

∫ l
dl′
√
λeff(l′) + B√

l λeff(l)1/4
e−

i
~

∫ l
dl′
√
λeff(l′) , (3.21)

where A and B are constants proportional to ν and are independent of l. In the following,
we put ~ = 1. By substituting this into eq. (3.15), we obtain

Pst(λ, {gi}) = N|f(λ, {gi})|2 exp
[

1
2

∫ lIR

0

d log l
λeff(l)1/2

∣∣∣∣A+Be−2i
∫ l
dl′
√
λeff(l′)

∣∣∣∣2
]
, (3.22)

where an IR cutoff lIR as a maximum size of the universe is introduced, and we have added
the other coupling constants, {gi}, to the argument of Pst to emphasize that λeff may have
a dependence on gi.

Since the integrand of this exponent is clearly nonnegative, the dominant contribution
to the integral will come from the neighborhood of the minimum of λeff , unless the factor
with absolute value happens to be small. In the remainder of this section, we will use
eq. (3.22) to compute the probability distributions of the cosmological constant and the
other coupling constants under these assumptions. Here we consider the following two cases:

• Spatially flat universe with a cosmological constant λ (section 3.2).

• Universe with the positive spatial curvature, a cosmological constant λ, and a radiation
or matter component of energy density (section 3.3).

In the former, the cosmological constant is taken into account. In the latter, not only that,
but also the coupling constants that affect the energy density are considered. By explicitly
computing eq. (3.22), we show that in both cases the probability distribution of λ has a
sharp peak near zero. This implies that the cosmological constant is fine-tuned to zero.
Furthermore, in the latter case, the probability of gi is found to be maximum at the point
where the energy density of radiation or matter in the late universe is maximum. We call
this the maximum entropy principle [9–13], or the maximum matter principle.
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3.2 Fine-tuning of the cosmological constant

We consider the spatially flat universe with the cosmological constant λ. The effective
vacuum energy is just a constant:

λeff = λ (3.23)

As discussed below eq. (3.15), we assume λ is non-negative.
The probability distribution eq. (3.22) becomes

Pst(λ) = N|f(λ)|2 exp
[

1
2

∫ lIR

0

d log l
λ1/2

∣∣∣∣A+Be−2i
∫ l
dl′
√
λ

∣∣∣∣2
]
.

∼ |f(λ)|2 exp
( log lIR
λ1/2

)
, (3.24)

which has a sharp peak at λ = 0. Note that the constants A and B are not important as
these are independent of l. Here, we again impose the IR cutoff lIR as a maximum size of
the universe and assumed that the initial wavefunction f(λ) does not have strong parameter
dependences compared to the singular exponential factor. Therefore, the cosmological
constant is fixed to be zero.

3.3 Maximum entropy principle and maximum matter principle

Next, let us consider that the universe has a three-dimensional spherical topology in space
and that the energy density consists of the cosmological constant and the matter or radiation
component. The energy density of the universe is

λeff(l) =


λ+ S

l4/3
− 1
Gl2/3

(radiation)

λ+ M

l
− 1
Gl2/3

(matter)
, (3.25)

where the first and second lines correspond to the radiation-dominated universe and matter-
dominated universe, respectively. For both cases, the first term is the cosmological constant
and the last term is the contribution from the spatial curvature of the universe where
8πG = M−2

Pl = 1. As for the second term, S/l4/3 and M/l are the radiation and matter
energy densities with S and M being the total entropy of the radiation and total energy of
the matter, respectively.17

As discussed below eq. (3.15), we assume λmin ≥ 0. As we will see explicitly, the
dominant contribution to the integral in the probability distribution (3.22) comes from the
region around the minimum of λeff . To this end, we expand λeff(l) around its minimum at
l = lmin as

λeff(l) = λmin + λ
(2)
min(l − lmin)2 +O((l − lmin)3) , (3.26)

17Strictly speaking, this definition of “entropy” is different from the usual definition of radiation entropy
Srad ∼ ρ

3/4
rada

3 ∝ T 3a3. In our case, we have S ∼ ρrada
4 ∝ S4/3

rad .
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where

λmin =


λ− 1

4SG2

λ− 4
27G3M2

, λ
(2)
min =


1

72G5S4 (radiation)

256
59049G9M8 (matter)

, (3.27)

and

lmin =

(2GS)3/2 (radiation)
(3GM/2)3 (matter)

. (3.28)

Then, we divide the integral in eq. (3.22) into two parts. The region around l = lmin and
the other contribution. The former is evaluated by substituting eq. (3.26) into the integral:

Pst(λ, {gi}) ∼ |f(λ, {gi})|2 exp

∫ 2lmin

lmin/2

dl

lmin

1√
λmin + λ

(2)
min (lmin − l)2

+ (other)


∼ |f(λ, {gi})|2 exp

 1

lmin

√
λ

(2)
min

log
(
l2minλ

(2)
min

λmin

)
+ (other)

 .

∼


exp

[
G
√
S log

( 1
λmin

)
+ (other)

]
(radiation)

exp
[
G3/2M log

( 1
λmin

)
+ (other)

]
(matter)

, (3.29)

where A and B are omitted as in eq. (3.24). We observe that, when λmin = 0, the integral
around l = lmin is divergent.18 On the other hand, the other contributions to the integral
are finite once the IR cutoff lIR is introduced. Therefore, the probability is peaked at λ = λc,
where λmin = 0 is realized:

λc =


1

4SG2 (radiation)

4
27G3M2 (matter)

. (3.30)

Furthermore, the coupling constants other than λ are tuned in such a way that eq. (3.29)
is maximized. Therefore, the energy of the radiation S and the matter M are maximized
for the universe with radiations and matters, respectively. We call them maximum entropy
principle [9–13] and maximum matter principle. As a result, the fine-tuned cosmological
constant, λc, becomes almost zero.19

18Note that the above divergence is interpreted as the life-time of the universe in the path-integral
formulation [9–13].

19For the universe with radiations, by assuming that S/l4/3 equals to the energy density of the cosmic
microwave background, the fine-tuned cosmological constant, λc, is much smaller than the observed value.
The explanation of the small but finite cosmological constant is beyond the scope of this paper.
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Let us discuss the two phenomenological implications of the maximum entropy principle.
One is the flatness of inflaton potential. Assuming the instant reheating, we observe

S = ρinfa
4
end = ρinfe

4Na4
ini , (3.31)

where ρinf is the vacuum energy of the inflation, N is the total e-folding number, and aend
(aini) is the radius of the universe at the end (onset) of inflation. For a given value of ρinf , S
is an increasing function of N , which means that a flatter inflaton potential is preferred.20

It is noteworthy that the Higgs potential can actually have a saddle point around the Planck
scale [68–70], by tuning the top-quark mass. This could be viewed as one of the signatures
of the maximum entropy principle.

The other implication is the strength of a strong first-order phase transition. When
the universe undergoes a first-order phase transition, the radiation entropy increases due
to the release of latent energy. Suppose that a first-order phase transition happens at the
time t = t∗ (and temperature T = T∗) and that all the latent energy ∆V is converted to
radiation energy. Then, the entropy production is

δS = ∆V a4(t∗) = ∆V
ρrad(T∗)

ρrad(T∗)a4(t∗) = αSini , (3.32)

where ρrad(T∗) is the radiation energy density right before T = T∗, α = ∆V/ρrad(T∗) is
the strength parameter of first-order phase transition, and Sini is the entropy before the
phase transition. One can see that δS linearly depends on α, which means that a strong
first-order phase transition is preferable by the maximum entropy principle.

The maximum matter principle may also have a lot of implications for particle physics
and cosmology such as various dark matter scenarios, baryogenesis, primordial black holes,
and so forth.

4 Conclusion

In this paper, we have studied the validity of Coleman’s mechanism for fine-tuning problems
in two-dimensional and four-dimensional quantum gravity theories. In two-dimensional
Euclidean gravity, we have shown that the mechanism does not work because the effect of
baby universes is too small. Matrix models can give alternative approaches to realize the
mechanism, but their naive non-local modification also does not work since the partition
function is divergent.

As a concrete example for the realization of Coleman’s mechanism, we have proposed a
Lorentzian non-hermitian model of the quantum universe. Such a non-Hermitian property
was motivated by the physical intuition that the annihilation of an universe to nothing should
be highly suppressed because of the matter fields. We have shown that the static distribution
of coupling constants eq. (3.22) has a very strong and non-trivial peak depending on the
matter contents of the universe. In the case of the spatially flat universe with a cosmological

20Of course, we need to explain why the model with finite N is realized in our universe. This may require
a new idea.
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constant λ, the wave function has a peak at the point where λ vanishes, and this resembles
the original Coleman’s baby universe theory. In a more realistic universe, we have shown
that the distribution has a strong peak at which the entropy or matter energy becomes
maximum, and we call it the maximum entropy principle or the maximum matter principle.

There are still many open questions that should be addressed: in this paper, we have
omitted the kinetic Hamiltonian of baby universe i.e. ~ωâ†â for simplicity, but its existence
can change the whole dynamics significantly. Moreover, the assumption of non-Hermiticity
of the model was also not fully justified and we need more logical reasoning to explain that.
We would like to study these issues in future investigations.
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A Random walk

Consider a random walk on a lattice space of dimension D. The number of paths consisting
of L steps is given by

N(L) ∼ (2D)L . (A.1)

The number of closed paths consisting of L steps is obtained by multiplying the probability
of returning to the original point. From the central limit theorem, the probability density
of observing the particle at position x is

P (x) = 1
(2πσ)D/2

e−
x2
2σ (A.2)

and the variation σ is

σ = κL, (A.3)

where κ = 1/D for the D-dimensional lattice space. Now the number of the closed paths is

Nclosed(L) ∼ (2D)LP (0) = (2D)L(2πκ)−D/2L−D/2. (A.4)

The power dependence L−D/2 is universal and independent of the detailed definition of a
random walk.
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