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1 Introduction

Locality is a cherished principle in physics. Relativistic causality — the fact that no
physical information carrying signal can propagate faster than the speed of light — is
implemented in the statement that spacelike separated fields commute. This ensures that
laboratories in spacelike separated spacetime regions function independently. A deep result
expressing this independence in the algebraic formulation of quantum field theory is the
split property. As a consequence of the split property, we can specify the state of quantum
fields independently on different parts of a Cauchy slice. This lore is being challenged [1–4]1

in the setting of quantum gravity, by the principle of the holography of information, which
claims that

In a theory of quantum gravity, a copy of all the information available on a
Cauchy slice is also available near the boundary of the Cauchy slice. This
redundancy in description is already visible in the low-energy theory.

This principle demands a dramatic revision of intuition built on locality. For example,
the principle of holography of information implies that given the state near the boundary
of the Cauchy slice, the rest of the state is determined: the split property fails and we

1For a beautiful set of lectures, incredibly helpful when learning this material, go to:
https://www.youtube.com/channel/UCJ-YA8uOwUlACfn49iD7TvA.
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are not guaranteed that laboratories in spacelike separated regions of spacetime function
independently! The principle of the holography of information is a source of a dramatic
new non-locality.2

The argument of [1–4]1 is compelling in its simplicity. The principle of the holography
of information has two basic ingredients. The first is the Reeh-Schlieder Theorem [14],
which is a Theorem about relativistic quantum field theory. We simply state the theorem
and refer the reader to [15] for a readable account with details. Denote the vacuum of the
quantum field theory as |Ω〉 and use H0 to denote the vacuum sector3 of the full Hilbert
space H. The vacuum sector consists of all states that can be created from the vacuum by
applying local field operators. Assuming4 that the algebra of local fields is generated by a
hermitian scalar field φ(xµ), we introduce a smeared field φf ≡

∫
d~xf(xµ)φ(xµ) and a set

of states (both n and the functions fi are varied to get the full set)

|Ψ{f1,··· ,fn}〉 = φf1φf2 · · ·φfn |Ω〉 (1.1)

Let Σ be a Cauchy hypersurface. Consider an arbitrarily small open set V ⊂ Σ and let
UV be a small neighbourhood of V in spacetime. The Reeh-Schleider theorem states that
even after restricting the functions fi to support in UV , the states |Ψ{f1,··· ,fn}〉 generate
H0. This remarkable result reflects the enormous amount of entanglement in the quantum
field theory vacuum. The second ingredient that goes into the principle of the holography
of information is that, as a consequence of the Gauss law, the energy of a state in gravity
can be measured from near the boundary. This implies that the projector onto the state
of lowest energy, PΩ = |Ω〉〈Ω|, is an element of the boundary algebra of operators. The
principle now follows [1–4]:1 first, note that any observable in H0 can be written as a linear
combination of operators of the form |a〉〈b| where |a〉 and |b〉 are allowed to be any states
in H0. Using the Reeh-Schleider theorem we know the complete set of these operators can
be written in the form

|a〉〈b| = φ
f

(a)
1
φ
f

(a)
2
· · ·φ

f
(a)
n(a)
|Ω〉〈Ω|φ

f
(b)
1
φ
f

(b)
2
· · ·φ

f
(b)
n(b)

(1.2)

Since the Gauss law implies that PΩ is an element of the boundary algebra of operators, and
since a product of operators in the boundary algebra is again an element of the boundary
algebra we conclude that the complete set of operators |a〉〈b| belong to the boundary
algebra. Consequently, any observable5 in H0 is an element of the boundary algebra of
operators and the principle is proved.

This unusual localization of quantum information in quantum gravity is the focus
of this paper. More concretely, the AdS/CFT correspondence gives a non-perturbative
definition of quantum gravity on negatively curved spacetimes in the form of a conformal

2For related studies we refer the interested reader to [5–13].
3The vacuum sector is not necessarily the full Hilbert space as there may be superselection sectors.

This happens, for example, when there are conserved charges that are not carried by any local operator.
In a non-trivial superselection sector an analogue of the Reeh-Schlieder theorem holds, so the existence of
non-trivial superselection sectors should not distract us.

4This assumption is to simplify the discussion and is easily relaxed [15].
5This would include operators that one naively thought were localized deep in the bulk of spacetime.
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field theory. Our goal in this article is to use the AdS/CFT correspondence to search for
signatures of the principle of the holography of information directly in the conformal field
theory. Concretely, we use the bilocal holography of the free O(N) model to study these
questions in higher spin gravity. The construction and key results of bilocal holography
are reviewed in section 2. The conformal field theory is described using a bilocal collective
field. A key formula from section 2 is the mapping (2.4) which locates the bulk operator,
corresponding to a given bilocal operator, in the bulk AdS4 spacetime. We also review
the important fact that there is some freedom in the reconstruction of the bulk fields in
the conformal field theory. Results establishing the convergence of the operator product
expansion in unitary conformal field theories, in Minkowski spacetime, are reviewed in
section 3. In section 4 we present our central result: the principle of the holography of
information, in bilocal holography, can be verified using the operator product expansion.
We speculate on how the principle is realized in AdS/CFT, in more general situations, in
section 5.

A potential point of confusion can be clarified immediately: the reader might wonder
if, in the setting of the AdS/CFT correspondence, the holography of information is trivially
true. After all, doesn’t the statement of the AdS/CFT correspondence, that the dynamics
of the bulk is coded into the dynamics of a conformal field theory living on the boundary,
imply the holography of information? This is a misunderstanding of the principle. The
principle of the holography of information is a statement about the quantum gravity theory
itself. The proof of the principle [1–4],1 as reviewed above, does not invoke AdS/CFT in any
way at all, and consequently it also holds (for example) for a theory of quantum gravity
in flat spacetime where a holographic dual is not even established. Our goal is to use
AdS/CFT to map the principle of the holography of information into a statement about
the conformal field theory. This statement should be proved using only conformal field
theory methods i.e. without appealing to AdS/CFT or to the holographic gravity dual. If
this succeeds, it provides non-trivial support for the principle.

Finally, the setting of our study is higher spin gravity which differs in some important
ways from usual Einsteinian gravity. The spectrum of higher spin gravity includes not
just a massless spin two graviton, but rather there are massless gauge fields for every even
integer spin. It is clear that higher spin gravity will not share all the features of Einsteinian
gravity and there may be important differences between the two. Nonetheless, we believe
that this is a reasonable arena in which to test the holography of information. Higher spin
gravity is a quantum theory — so the Reeh-Schlieder theorem applies, and it does enjoy
the gauge invariance that is responsible for the Gauss law. Thus the key ingredients needed
to prove the principle are present.

2 Bilocal holography

The AdS/CFT correspondence [16–18] relates a conformal field theory (with loop expan-
sion parameter ~) to a theory of quantum gravity (with loop expansion parameter 1

N ).
Changing the loop expansion parameter requires a non-trivial rearrangement of the con-
formal field theory degrees of freedom. It can be achieved by collective field theory [19, 20]

– 3 –
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which expresses the theory in terms of invariant variables. The key insight is that the col-
lective field variables have no explicit N dependence, so that the 1

N expansion is manifestly
generated as the loop expansion of the collective field theory. Since collective field theory
provides a constructive approach to holography, it is the ideal framework for this study. In
what follows we work at the leading order in the large N expansion.

The conformal field theory we study, the free O(N) model, has the Lagrangian

L = 1
2∂µφ

a∂µφa (2.1)

and is defined in 2 + 1 dimensions. There is compelling evidence [21] that this theory
is AdS/CFT dual [22, 23] to higher spin gravity [24–26] in AdS4 spacetime. Holography
for vector models, using a collective field description, was first proposed in [27] and then
developed in a series of papers6 [28–34], to which the reader is referred for more details.
The discussion is most transparently carried out using a lightfront quantization, since it
is then possible to choose light cone gauge and to reduce to physical degrees of freedom.
Denote the conformal field theory coordinates with little letters as x+, x−, x and the coor-
dinates of the dual AdS4 spacetime with capital letters as X+, X−, X, Z, with Z the extra
holographic coordinate. For the O(N) model, at each time x+ we change from the original
field φa(x+, x−, x) to a new set of gauge invariant variables, given by the bilocal fields

σ(x+, x−1 , x1, x
−
2 , x2) = φa(x+, x−1 , x1)φa(x+, x−2 , x2) (2.2)

where the index a is summed. The bilocal packages the complete set of independent single
trace equal x+ gauge invariant fields. This collective field is a function of 5 coordinates.
In what follows, it is convenient to perform a Fourier transform in the x− coordinate,
which trades x−1 and x−2 for the conjugate momenta p+

1 and p+
2 . We also perform a Fourier

transform in the AdS spacetime, trading coordinate X− for coordinate P+. The change
of field variable from φa to σ is associated with a Jacobian which is highly non-linear
and leads to an infinite sequence of interaction vertices [36]. The single trace spectrum of
primary operators includes a scalar of dimension ∆ = 1 and higher spin currents Jµ1···µ2s

of every even integer spin 2s and dimension ∆ = 2s + 1. As usual, every single trace
primary corresponds to a field of the dual higher spin gravity: there is a massless gauge
field AM1···M2s of every even integer spin, as well as a scalar field. The bilocal develops
a large N expectation value, which we denote as σ0(x+, x−1 , x1, x

−
2 , x2). Expanding about

this background defines the fluctuation η(x+, x−1 , x1, x
−
2 , x2)

σ(x+, x−1 , x1, x
−
2 , x2) = σ0(x+, x−1 , x1, x

−
2 , x2) + η(x+, x−1 , x1, x

−
2 , x2) (2.3)

It is the fluctuation η(x+, x−1 , x1, x
−
2 , x2) that is identified with the fields of the higher spin

gravity. Note that we can write η(x+, x−1 , x1, x
−
2 , x2) =: φa(x+, x−1 , x1)φa(x+, x−2 , x2) :. We

will use this equation below.
The higher spin currents of the conformal field theory are traceless and conserved.

Consequently, not all components of the current are independent. In the end, there are
6Related but distinct ideas were recently put forward in [35].
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two independent components of the current at each spin. In the higher spin gravity, we
fix light cone gauge A+M2···M2s = 0 and solve the associated constraint. This leave a
gauge field with all polarizations transverse to the lightcone AXXZZX···. This gauge field
is totally symmetric and traceless, so that in the end we have two independent physical
components of the gauge field at each spin [37]. The basic claim of bilocal holography
is that the theory of the physical degrees of freedom of the higher spin gauge field is
given by the bilocal collective field theory description of the independent components of
the conformal field theory current. This is supported by the explicit form of the GKPW
dictionary, worked out in the lightcone gauge, in [38], and the fact that by performing
a suitable change of coordinates the generators of the conformal group [37] acting on
the independent components of the currents in the conformal field theory and on the
physical degrees of freedom in the gravity, are mapped into each other. To write this
representation in the higher spin theory it is useful to employ the four AdS spacetime
coordinates as well as an additional variable θ whose role is to organize the higher spin
fields. See equation (2.13) below. The change of coordinates that relates the conformal field
theory and gravity representations identifies x+ = X+, and relates the remaining conformal
field theory coordinates (p+

1 , x1, p
+
2 , x2) to the remaining AdS coordinates (P+, X, Z, θ) as

follows

x1 = X + Z tan
(
θ

2

)
x2 = X − Z cot

(
θ

2

)
p+

1 = P+ cos2
(
θ

2

)
p+

2 = P+ sin2
(
θ

2

)
(2.4)

This is easily inverted

X = p+
1 x1 + p+

2 x2

p+
1 + p+

2
Z =

√
p+

1 p
+
2 |x1 − x2|

p+
1 + p+

2

P+ = p+
1 + p+

2 θ = 2 tan−1


√√√√p+

2
p+

1

 (2.5)

In addition to mapping the generators correctly, one also finds that the conformal field
theory equations of motion for the independent components of the currents are mapped
into the higher spin equations of motion for the physical degrees of freedom of the higher
spin gauge field. In this way the equivalence between the bilocal collective field theory and
the AdS higher spin gravity is made manifest. The utility of this map is that it nicely
explains where localized excitations in the conformal field theory map into the bulk.

One natural application of the above result is to the problem of subregion duality. By
studying the subregion −L ≤ x ≤ L the paper [39] showed that it is possible to reconstruct
the bulk region given by X2 + Z2 ≤ L2. The curve X2 + Z2 = L2 is the geodesic in the
AdS4 spacetime that connects the endpoints X = ±L, Z = 0 on this constant X+ slice,
so it is the Ryu-Takayanagi surface [40] in lightcone quantization. In this way we recover
the expected entanglement wedge reconstruction result, giving confidence that the bilocal
collective map encodes the conformal field theory degrees of freedom into the AdS4 bulk
in the correct way.

– 5 –
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We are interested in the location of operators, after mapping to the dual gravity, in
the holographic Z direction. We know that both p+

1 > 0 and p+
2 > 0. Consequently in the

formula

Z =

√
p+

1 p
+
2

p+
1 + p+

2
|x1 − x2| (2.6)

the prefactor
√
p+

1 p
+
2

p+
1 +p+

2
is non-zero and always less than one. By restricting to bilocals with

|x1 − x2| ≤ ε we restrict to operators that live in a tiny band in the neighbourhood of the
boundary, certainly within Z < ε. An arbitrarily small ε implies that this band becomes
arbitrarily small. Conversely, the only way in which we can probe deep into the bulk,
corresponding to large values for Z, is by making the separation x1 − x2 large.

It is interesting to ask where single trace primaries map to in the AdS4 bulk. The scalar
primary is given by φa(x+, x−, x)φa(x+, x−, x) i.e. it is obtained from the bilocal (2.2) by
setting x1 = x2 = x and x−1 = x−2 = x−. Consequently, it is located on the boundary
Z = 0. The conserved currents are given by

Js(x+, x−, x, α) = Jµ1µ2···µs(x+, x−, x)αµ1αµ2 · · ·αµs

=
s∑

k=0

(−1)k : (α · ∂)s−kφa(x+, x−, x) (α · ∂)kφa(x+, x−, x) :
k!(s− k)!Γ(k + 1

2)Γ(s− k + 1
2)

(2.7)

where αµ is a polarization vector employed as a convenient book keeping device. The equal
x+ bilocal field eliminates components of the current with + polarizations, so we will set
α+ = 0. In this case the derivatives above are all with respect to x− or x. To express these
currents in terms of the bilocal field we need to separate the points slightly so that we can
act with derivatives on either field separately

Js(xµ, α) =
s∑

k=0

(−1)k : (α · ∂1)s−k (α · ∂2)k :
k!(s− k)!Γ(k + 1

2)Γ(s− k + 1
2)
η(x+, x−1 , x1, x

−
2 , x2)

∣∣∣
x1=x2=x,x−1 =x−2 =x−

(2.8)

For the purpose of constructing the spinning current it is enough to separate the two
points x1 and x2 by an arbitrarily small amount ε, evaluate the relevant derivatives and
then send x2 → x1. Put differently, we can construct the current at x1 from the bilocal field
η(x+, x−1 , x1, x

−
2 , x2) with |x1−x2| < ε where ε can be arbitrarily small. Thus the complete

set of single trace primary operators, after mapping to the dual gravity, are supported in
an arbitrarily small neighbourhood of the boundary.

Finally, it was pointed out in [39] there is some freedom in the reconstruction of the
bulk fields. This freedom will be used in what follows. To see how this arises, notice that
from the map (2.4) and (2.5) it follows that a bilocal with coordinates x1 and x2 maps to
a semi-circle (

X − x1 + x2
2

)2
+ Z2 =

(
x1 − x2

2

)2
(2.9)

– 6 –
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in the bulk. Some simple trigonometry (see figure 1) implies that

tan θ = Z

X − x1+x2
2

=
2
√
p+

1 p
+
2

p+
1 + p+

2
(2.10)

so that θ appearing in figure 1 is the same coordinate θ appearing in the map [39]. Con-
sequently, varying p+

1 and p+
2 moves us along the semi-circle. To obtain a definite value of

θ and P+ for the bulk field, we need to evaluate the bilocal at

p+
1 = 1

2P
+ (1− cos θ) p+

2 = 1
2P

+ (1 + cos θ) (2.11)

We can then Fourier transform to obtain a field localized at a definite X−, if we wish to.
The bulk field reconstructed in this way is a linear combination of many different spinning
gauge fields

Φ(X+, X−, X, Z, θ) =
∞∑

s=−∞

(
AZZ···ZZ cos(2sθ) +AZZ···ZX sin(2sθ)

)
(2.12)

Components of the gauge field with additional x polarizations immediately follow from the
fact that the gauge field is completely symmetric and traceless. To obtain a specific gauge
field of a definite spin, localized at a specific bulk point, we need to do an integral over θ
as follows

AZZ···ZZ =
∫ π

0
dθ Φ(X+, X−, X, Z, θ) cos(2sθ)

AZZ···ZX =
∫ π

0
dθ Φ(X+, X−, X, Z, θ) sin(2sθ) (2.13)

Thus, a gauge field with a definite spin, a definite polarization and located at a definite
bulk point in AdS4 comes from a bilocal located at a definite x1, x2,

x−1 +x−2
2 but completely

smeared over the relative coordinate x−1 − x
−
2 . Further, for this construction we can use

any semi-circle that passes through the bulk point so that infinitely many different re-
constructions of the bulk field, each using a different bilocal field,7 are possible. This is
the fluidity in the bulk/boundary dictionary that appears in the quantum error correction
interpretation of AdS/CFT [52]. This fluidity is needed to resolve apparent inconsistencies
of bulk reconstruction.

Although we do not need it for what follows, note that bilocal holography has been
studied for the interacting IR fixed point of the O(N) model in [41, 42] and the bilocal
holography of the thermofield double has been constructed in [33, 43, 44].

3 Convergence of the Operator Product Expansion

In the next section we will be making use of the operator product expansion (OPE). To
prepare for this application, this section reviews results about the convergence of the OPE
in unitary conformal field theories, in Minkowski spacetime.

7The different bilocals have different values of x1 and x2. See figure 2.

– 7 –
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Figure 1. The bilocal describing a pair of excitations localized at (x1, p
+
1 ) and (x2, p

+
2 ) correspond

to a bulk excitation localized at (X,Z) as shown. The bilocal conformal field theory excitation (two
red circles) maps into a bulk excitation on the semicircle above. This figure lives on a constant
x+ = X+ slice. The angle θ is related to p+

1 and p+
2 according to (2.10).

x2 xb x1 xa

P

1

Figure 2. The bulk field located at bulk point P can be constructed using the bilocal
σ(x+, p+

1 , x1, p
+
2 , x2) or using the bilocal σ(x+, p+

1 , xa, p
+
2 , xb) due to fluidity in the reconstruction

of bulk fields from bilocals in the conformal field theory. There are an infinite number of different
possible reconstructions corresponding to the fact that an infinite number of semi-circles with dis-
tinct endpoints, all passing through P , can be drawn.

In conformal field theory the OPE, which expresses the product of two fields at dif-
ferent points as a sum of a (possibly infinite) number of local fields, is often a convergent
expansion. Our application uses the OPE of two identical scalar operators. Conformal
symmetry groups all local operators of the theory into conformal multiplets, consisting of a
primary operator together with its derivatives (descendants). The OPE is written in terms
of a sum over the primary operators O as follows

N∑
a=1

φa(xµ + yµ)φa(xµ − yµ) =
∑
O
fφφOPO(yµ, ∂x)O(x) (3.1)

If the primary operators O have a non-zero spin they will also have indices. The contrac-
tions of these indices is not written explicitly above. The coefficient function PO is a power
series in ∂y which encodes the contribution of the primary O and all of its descendants.
The form of this function is completely fixed by conformal invariance in terms of the op-
erator scaling dimensions. The number fφφO is called the OPE coefficient and it together
with the spectrum of scaling dimensions of the primary operators completely determines
the dynamical content of the conformal field theory.

– 8 –
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The convergence of the OPE is established by using it to relate an n+2 point correlation
function to an n+ 1 point correlation function as follows [45]

〈φa(x)φa(y)
n∏
i=1

ψi(zi)〉 =
∑
O
fφφOPO(x− y, ∂y)〈O(y)

n∏
i=1

ψi(zi)〉 (3.2)

There is some freedom in writing this formula as we might write the product φ(x)φ(y) as
a sum of operators located at different points. Natural choices include at x, at y or at the
midpoint (x + y)/2. The statement that the OPE converges is that statement that the
right hand side of the above formula is absolutely convergent at finite separation x − y,
rather than being just an asymptotic expansion in the limit x→ y. It is simplest to start
in Euclidean space where we can appeal to radial quantization. The convergence of the
OPE expansion is then related to the convergence of a scalar product of two Hilbert space
states. The argument [46] starts by quantizing the theory radially with point y as the
origin. In the case that

|x− y| < min
i
|zi − y| (3.3)

we can find a sphere separating the points x, y from the points zi where the remaining
operators are inserted. The l.h.s. of (3.2) is then the overlap 〈Ψ|Φ〉 of the two states

|Φ〉 = φa(x)φa(y)|0〉 〈Ψ| = 〈0|
n∏
i=1

ψi(zi) (3.4)

produced by acting on the radial quantization in and out vacua. Thus, the convergence of
the OPE expansion is related to the convergence of a scalar product of two Hilbert space
states in radial quantization. Convergence is then implied by a basic theorem about Hilbert
spaces: the scalar product of two states converges when one of the two states is expanded
into an orthonormal basis.

What is the rate of convergence of the OPE? By focusing on four point functions,
this rate was studied in [45]. The expansions are convergent in a finite region with an
exponential convergence rate for the two different schemes considered, corresponding to the
case that φ(x)φ(y) is expressed as a sum of operators inserted at y or at x+y

2 [45]. All results
described so far refer to the convergence of the OPE in the Euclidean theory. To obtain
convergence results for the Minkowskian theory, the Euclidean four point functions need to
be analytically continued to imaginary time. This question has been considered carefully
in the paper [47] which studied the convergence properties of operator product expansions
(OPE) for Lorentzian conformal field theory four-point functions of scalar operators implied
by analytic continuation of the Euclidean results we have just reviewed. The key results
for us are Theorem 4.1, Theorem 4.4 and Theorem 4.6 of [47] which give the criteria for the
convergence of the s-channel, t-channel and u-channel OPEs. In terms of the conformal
cross ratios

u = x2
12x

2
34

x2
13x

2
24

v = x2
14x

2
23

x2
13x

2
24

(3.5)
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where xµ = (t, ~x) and

x2
ij = −(ti − tj)2 + (~xi − ~xj) · (~xi − ~xj) (3.6)

we introduce two parameters z, z̄ as follows

u = zz̄ v = (1− z)(1− z̄) (3.7)

If neither z nor z̄ belong to (1,∞) then the s-channel OPE is convergent, if neither z nor
z̄ belong to (−∞, 0) then the t-channel OPE is convergent and finally if neither z nor z̄
belong to (0, 1) then the u-channel OPE is convergent.8 Finally, note that the Lorentzian
CFT four-point function converges in the sense tempered distributions, as discussed in [48].
These are the basic results that we use below.

We will be using the OPE for products of operators that all live on the same equal x+

slice. In this case

xµi = (x+, x−i , xi) x2
ij = (xi − xj)2 (3.8)

so that only the coordinate transverse to the lightcone appears in the conformal cross
ratios. The parameters z, z̄ are then defined by

(x1 − x2)2(x3 − x4)2

(x1 − x3)2(x2 − x4)2 = zz̄
(x1 − x4)2(x3 − x2)2

(x1 − x3)2(x2 − x4)2 = (1− z)(1− z̄) (3.9)

In terms of these parameters, the conditions for the convergence of the OPE are rather
intuitive, see figure 3. For the purpose of illustration, consider the s-channel OPE. The
s-channel OPE computes the operator products φ1×φ2 and φ3×φ4. For example, consider
the four point function

〈σ(x+, x−1 , x1, x
−
2 , x2)σ(x+, x−3 , x3, x

−
4 , x4)〉

= 〈φa(x+, x−1 , x1)φa(x+, x−2 , x2)φb(x+, x−3 , x3)φb(x+, x−4 , x4)〉 (3.10)

and choose (x1, x2, x3, x4) = (1, 2, 3, 4) which gives a value of

z = 1
4 = z̄ (3.11)

According to [47] the s-channel OPE expressing each bilocal as a sum of local operators
converges. This is also the case for the choice (x1, x2, x3, x4) = (5, 2, 3, 4) which corre-
sponds to

z = 3
4 = z̄ (3.12)

If on the other hand we choose (x1, x2, x3, x4) = (1, 3, 2, 4) we find a situation in which
the two bilocals “straddle” each other and we do not expect the s-channel OPE for each
bilocal to converge. In this case we find that

z = 4 = z̄ (3.13)
8For t-channel and u-channel convergence we also need to check additional conditions, stated as Nt =

0 = Nu in [47]. Since we only need s-channel convergence in what follows we do not discuss this further.
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Figure 3. The s-channel OPE converges for the configurations (A) and (B) above. It does not
converge for configuration (C).

so that according to [47] the s-channel OPE expressing each bilocal as a sum of local
operators does not converge. In this case however, we can still use the t-channel OPE which
computes φ1 × φ4 and φ2 × φ3. This corresponds to a rather non-trivial rearrangement
of the gauge invariant degrees of freedom as this OPE channel takes the product of fields
belonging to different gauge invariant bilocal fields. There is however nothing wrong with
proceeding in this way and in fact equality of these channels has been used for the conformal
bootstrap in [49].

Finally, note that the only difference between the OPE φa(x1)φa(x2) and the OPE
: φa(x1)φa(x2) : is that we do not include the contribution of the identity operator in
: φa(x1)φa(x2) :. The identity operator is a scalar primary that has no descendants. The
contribution of the identity corresponds to the contribution coming from contracting φa(x1)
with φa(x2), which is precisely what the normal ordering subtracts out.

4 OPE and holography of information

The principle of the holography of information predicts that even in the low energy effective
limit of the gravity theory, where one does not have complete access to the full boundary
algebra of observables, one can detect bulk excitations by performing measurements in a
small time band near the boundary. By invoking AdS/CFT, which supplies a non perturba-
tive microscopic description of the gravitational theory, we can make a stronger statement
as in this case we can access the complete boundary algebra of observables. After invoking
AdS/CFT the holography of information predicts that any collection of bulk operators can

– 11 –



J
H
E
P
1
2
(
2
0
2
2
)
0
9
5

be expressed as an element of the boundary algebra.9 In section 2 we have argued that
all of the single trace primary operators are supported in an arbitrarily small neighbour-
hood of the boundary. By separating x1 and x2 to be arbitrarily distant, the bilocal field
η(x+, x−1 , x1, x

−
2 , x2) corresponds to a bulk operator located arbitrarily deep in the bulk,

i.e. it is located at an arbitrarily large Z value in the AdS4 bulk. Thus, the holography
of information is verified if we could replace the bilocal field by a sum of single trace pri-
maries. This is exactly what the OPE does, so we see that in the conformal field theory,
the principle of the holography of information has reduced to the statement of the OPE.
This proves that measuring an appropriate linear combination of operators that belong to
the boundary algebra is equivalent to measuring the bulk operator.

This argument glosses over an important point: the radius of convergence of the OPE
inside a correlator is not predetermined but depends on the next-closest operator insertion.
Thus, we might spoil the convergence of the OPE for any given bilocal, by including another
bilocal that straddles it, exactly as in figure 3 (C). To really turn the above observation
into a careful argument, one would need to show that this bilocal overlapping problem can
always be avoided, i.e. that it never prevents us from writing any product of bulk operators
as a convergent sum of gauge invariant operators belonging to the boundary algebra. For
the case of a single bulk field, corresponding to a single bilocal, this is indeed the case.
When more than one bulk field acts, more care is needed. We start by considering the
action of two bulk fields and then three bulk fields before considering the general case.

4.1 Two bulk fields acting

In the case of two bulk fields acting there is, apparently, already the possibility that con-
vergence of the OPE is spoiled. For a product of bilocals

〈η(x+, x−1 , x1, x
−
2 , x2)η(x+, x−3 , x3, x

−
4 , x4)〉 (4.1)

we want to use the OPE in the s-channel since both products : φ1 × φ2 : and : φ3 × φ4 :
are separately gauge invariant. This is not the case for either the t or u-channels, so that
working in either of these channels we should not expect the result of the OPE to be
expressed in terms of single trace primaries and their descendants.

However, a potential problem becomes apparent: there are three possible configura-
tions as shown in figure 4. The s-channel OPE converges only for (A) and (B). If configu-
ration (C) arises, we are not able to rewrite each bilocal as a sum of single trace primaries.
Fortunately, as we now explain, it is always possible to avoid configuration (C).

The key physical input from bilocal holography that we exploit is the fluidity of the
bulk/boundary dictionary. Recall that to reconstruct a field at a bulk point, we can use
any bilocal associated to a semi-circle that passes through the point. So the question
of whether it is possible or not to avoid configuration (C) boils down to the question of
whether or not it is possible to choose semi-circles, each passing through a distinct bulk
point, without intersecting each other. To simplify the question, assume that the semi-
circles share the same centre i.e. it is only the radius of each semi-circle that changes. The

9We thank the anonymous referee for pointing this out.
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Figure 4. The OPE converges for configurations (A) and (B) and does not converge for configu-
ration (C). In (C) the semicircles depicting the bulk locus of each bilocal intersect.

only parameter that we vary when choosing the two semi-circles is their common centre.
Since they share a common centre, as long as the radii of the semi-circles are distinct,
they do not overlap. Obviously it is always possible to choose a point on the boundary
that is not equidistant from the two bulk points so that, thanks to the fluidity in the bulk
reconstruction, we can always arrange to be in configuration (B). Thus, the product of any
two bulk operators (acting at distinct events) can always be expressed as an appropriate
linear combination of single trace primary operators and their descendants. An observer
measuring only observables belonging to the boundary algebra can indeed learn the result
that would be obtained by measuring the product of any two bulk operators.

In the appendix A.1 we explicitly test the convergence of the OPE in the free O(N)
model conformal field theory, for the three configurations shown in figure 4.

4.2 Three bulk fields acting

The case of three bulk fields acting is indicative of the generic bulk configuration. In
this case it is no longer possible, for every configuration that can arise, to replace each
bilocal with a sum over single trace primaries and their descendants. In general, rewriting
the bulk operators in terms of boundary operators necessarily involves scrambling up the
information contained in different bilocals. This does not affect the conclusion that it
is possible to write any product of three bulk operators (acting at distinct events) as a
convergent sum over operators in the boundary algebra.

See figure 5 for configurations that are possible when three operators act. For con-
figurations (A) and (B) the OPE channel which computes φ1 × φ2, φ3 × φ4 and φ5 × φ6
converges, so that for these two configrations each bulk operator is individually replaced
by a sum over operators localized in the neighbourhood of the boundary. This channel
does not converge for the remaining four configurations.
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Figure 5. Configurations that arise when three bulk operators act.

Now, consider configuration (C). An OPE channel that converges computes φ1 × φ3,
φ2 × φ4 and φ5 × φ6. It is not obviously possible to express the results of these OPEs
in terms of local single trace operators, since both φ1 × φ3 and φ2 × φ4 are not gauge
invariant. An extra step is needed, which computes the OPE between the result produced
from the φ1 × φ3 OPE and the result produced from the φ2 × φ4 OPE. We denote this
using the schematic but transparent notation (φ1 × φ3) × (φ2 × φ4). The result of this
final OPE is now gauge invariant and consequently can be expressed in terms of single
trace local operators.10 Thus, this configuration of bulk operators acting can again be
expressed as a sum of local single trace primaries and their products, and thus is an
element of the boundary algebra. To achieve this however, we have had to scramble up the
information contained in the bilocals η(x+, x−1 , x1, x

−
2 , x2) and η(x+, x−3 , x3, x

−
4 , x4). The

same sequence of OPE computations can be applied to configurations (D) and (E). Finally,
for configuration (F) the information mixing between the different bilocals, i.e. between
the different bulk fields, is maximal. Indeed, in this case we would need to compute
((φ1 × φ3)× (φ2 × φ5))× (φ4 × φ6). The arguments of the following section show that we
can always choose to avoid this configuration, if we so wish. Indeed, it is always possible
to arrange that we have configuration (D).

4.3 Generic bulk observables

Consider the situation in which we have a total of K bulk operators acting at K distinct
points in the bulk AdS4 spacetime. We have already seen the each bilocal is associated to a

10We are using the fact that the single trace local operators are a generating set for the complete set of
gauge invariant operators. We are implicitly assuming that we consider operators whose dimension is held
fixed as N →∞ to avoid the appearance of new gauge invariant operators constructed using εa1···aN .
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C

P1

P2

P3

P4

4

Figure 6. It is always possible to choose a centre (C) for K non-intersecting semicircles such that
a bulk point Pi lies on the ith semicircle. At each semi-circle endpoint there is an operator, which
is contracted with the operator at the other endpoint.

semicircle in the bulk and that any bulk operator located at an event lying on the semicircle
can be constructed from the bilocal. We will now argue that it is always possible to choose
p semi-circles with the same centre, each passing through a distinct bulk point and each
with a distinct radius. For an illustration of a configuration of this type see figure 6 for an
illustration, with K = 4. Our configuration of K bulk operators has operators localized
at points (Xi, Zi, X

−
i ) i = 1, . . . ,K. Denote the coordinate of the common centre of the

semi-circles as (Xc, 0). The condition for points i and j to be equidistant from the centre is

(Xi −Xc)2 + Z2
i = (Xj −Xc)2 + Z2

j (4.2)

which has a unique solution

Xc =
X2
i −X2

j + Z2
i − Z2

j

2(Xi −Xj)
(4.3)

There are thus at most K(K − 1)/2 values for Xc at which two radii coincide. Choosing
any other value for Xc gives a suitable set of semi-circles, which completes the argument.

Moving from left to right the fields are labelled as φ1, φ2, · · · , φ2K−1, φ2K . The struc-
ture of the sequence of OPE’s we compute are dictated by the interplay between gauge
invariance and convergence of the OPE, since we need the OPE to converge, and it is only
gauge invariant products that are a sum of local single trace operators and their products.
We use the product of a pair of boundary observables to describe this collection of bulk
operators

Oboundary = Oboundary,1Oboundary,2 (4.4)

The first boundary observable is obtained by taking a suitable sequence of OPEs so that
we can replace φ1, φ2, · · · , φ2K−3, φ2K−2 by a local operator

Oboundary,1 = (· · · (((φ1 × φ2)× (φ3 × φ4))× (φ5 × φ6)) · · · ) (4.5)

The second boundary observable computes the OPE φ2K−1 × φ2K

Oboundary,2 = (φ2K−1 × φ2K) (4.6)

– 15 –



J
H
E
P
1
2
(
2
0
2
2
)
0
9
5

We have combined φ1, φ2, · · · , φ2K−2 into a gauge invariant local operator, through the use
of multiple OPEs, and we have combined φ2K−1, φ2K into a local gauge invariant operator.
These are separately both elements of the boundary algebra.

To get some insight into the meaning of Oboundary note that if we excite the bulk state
from which Oboundary was derived, with bilocals that have both points inside all semicircles
as shown in the first configuration in figure 7 then we have

〈
∏
i

η(x+,x−i ,xi,x
−
2K−i,x2K−i)η(x+,x−a ,xa,x

−
b ,xb)η(x+,x−c ,xc,x

−
d ,xd)η(x+,x−e ,xe,x

−
f ,xf )〉

= 〈Oboundary,1η(x+,x−2K−1,x2K−1,x
−
2K ,x2K)

×η(x+,x−a ,xa,x
−
b ,xb)η(x+,x−c ,xc,x

−
d ,xd)η(x+,x−e ,xe,x

−
f ,xf )〉

= 〈Oboundary,1Õboundary,2〉 (4.7)

with Õboundary,2 a new local operator, arising from a sequence of OPEs between the fields in
the bilocal η(x+, x−2K−1, x2K−1, x

−
2K , x2K) and the fields in the excitations. This gives some

insight into the relation between the product of bulk operators and Oboundary: the relation
between Oboundary and the collection of bulk operators can not be treated as an operator
equation. As a general conclusion, new excitations are added to a given bulk state a new
representation for Oboundary must be worked out. This new representation scrambles up
the information residing in the excitations and the information in the bulk operators which
produced the bulk state. Nevertheless, the conclusion that the collection of bulk operators
including the additional excitations, can be represented by an operator belonging to the
boundary algebra holds.

4.4 Comments

The principle of the Holography of Information points out a property enjoyed by a theory
of quantum gravity. By AdS/CFT this must correspond to a property of the CFT. Our
goal has been to determine what this property is. Section 4.3 concludes our case for the key
claim that we are making: the equivalent of the principle of the Holography of Information
is the OPE in the CFT side. It is instructive at this point, to return to the principle as set
forth in [1–4]1 and to compare it in detail to our analysis.

The principle of the Holography of information claims that all the information about a
bulk Cauchy slice is also available at the boundary of the Cauchy slice in a quantum theory
of gravity [1–4].1 The paper [2] focuses on the case of an asymptotically AdS spacetime,
most salient for our setting. In an operational demonstration of the principle, the paper
shows how information about unitary excitations in the bulk can be detected by performing
measurements of the Hamiltonian and matter operators in a small time band near the
boundary of AdS. An argument [1] in the same spirit, for the asymptotically flat case,
shows that all the information about the Cauchy slice is available at a small cut near
the past of future null infinity. Our discussion has employed the lightcone frame, as well
as a mixed position space (for the X+, X, Z coorinates) / momentum space (for X−)
description. It is useful to begin by spelling out what the time band of [2] corresponds to
in our discussion.
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Figure 7. The three smaller semicircles above (with endpoints labelled a, b, c, d, e, f) represent
small excitations of the bulk state. The bulk state is produced by the bilocals corresponding to the
large semicircles. For the first two configurations we can excite the operator Oboundary itself i.e.
the equality of the product of bulk operators and Oboundary can be used as an operator equation.
For the last configuration shown we need to obtain a new representation before we can replace the
product of bulk operators by operators living in the boundary algebra.

The principle of the holography of information refers to the information available in a
small neighborhood of the boundary. In practice we have taken Z < ε as a working defini-
tion of this neighborhood. However, as explained in [2, 3], defining this region precisely is
subtle in a theory with a fluctuating metric. One needs a gauge-invariant definition of this
neighborhood and one may worry about how its boundaries fluctuate with large perturba-
tions in the interior of the slice. To side step these issues, we can think of operators pushed
all the way to the asymptotic boundary at Z = 0 and at this boundary we take operators
from the algebra of a small time11 band [0, T ]. The information contained in the algebra
of bulk operators in the region Z < ε is equivalent to the information contained in the
algebra of operators at Z = 0, in the small time band. However, the description employing
the time band is a precise way of stating what the neighborhood of the boundary is in the
quantum gravity theory.

Let us now turn to the question of what the time band at the boundary corresponds
to in our discussion. The region Z < ε corresponds to the condition |x1 − x2| < ε when
written in terms of CFT coordinates. Since the CFT is a local quantum field theory, we
can again trade this small spatial band for a small temporal band. The time band of [2] has
constant T boundaries, while the time band we consider here has constant X+ boundaries.
See figure 8 for an illustration.

Another point that should be discussed is the passage to momentum space. In the
AdS4 description we have traded X− for P+, while in the CFT description x−1 and x−2

11Following our convention of denoting the coordinates of the gravity theory with capital letters, we use
T for time.
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X1

T

X+

X�
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Figure 8. The time band appearing in [2] corresponds to the horizontal strip shown. The time
band we employ has constant X+ boundaries.

have been traded for p+
1 and p+

2 . By going to momentum space the operator is completely
delocalized in the dual space coordinates. Is this delocalized operator located within the
small time band, or does it leak out? Equivalently, does the delocalized operator leak away
from the boundary and start to explore values of Z outside of the region Z < ε? To work
out the proper distance from the boundary, along the Z direction to any bulk operator, we
would use the metric

ds2 = dX+dX− + dZ2 + dX2

Z2 (4.8)

It is the X− coordinate that is completely delocalized by the passge to momentum space.
We work on a fixed X+ slice so that dX+ = 0 and, on the slice, we have

ds2 = dZ2 + dX2

Z2 (4.9)

Thus, by delocalizing the X− coordinate we do not change our proper distance from the
boundary. If the localized operators all lie in the neighborhood of the boundary, the
delocalized operators will too. To gain further insight into the same issue, recall the
formula for the coordinate Z of the emergent holographic dimension

Z =

√
p+

1 p
+
2

p+
1 + p+

2
|x1 − x2| (4.10)

Since p+
1 and p+

2 are both positive, we always have

0 ≤

√
p+

1 p
+
2

p+
1 + p+

2
< 1 (4.11)

Consequently, as long as |x1−x2| < ε we have Z < ε, both in position (x−) and momentum
(p+) space. So from the CFT side we again confirm that the delocalization induced by
moving to momentum space does not move us outside of the band.
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5 Discussion and conclusions

We have been able to demonstrate the principle of the holography of information in the
setting of bilocal holography. The detailed form of the map (2.5) and the redundancy it
implies in reconstructing bulk operators has played an important role in the argument, so
it is worth discussing the logic that leads to (2.5). First collective field theory is used to set
up the field theory of invariant variables. The claim is that the collective field theory of the
invariant variables is the dual gravitational theory.12 In the case of bilocal holography this
assertion is supported [28] by showing that the AdS isometry generators and the conformal
field theory generators are obtained from each other through the change of variables (2.4)
and (2.5). The same change of variables relates the equations of motion of the conformal
field theory and the higher spin gravity. The fact that this is even possible is not at all
obvious given that there are 10 generators in the so(2,3) algebra, and the action of these on
an infinite number of conformal field theory currents is to match the action on an infinite
number of higher spin gauge fields. With this map in hand the principle of the holography
of information is implied by a familiar but remarkable statement in conformal field theory:
the operator product expansion. This convincingly confirms the principle of the holography
of information and is simultaneously another positive indication that bilocal holography is
indeed constructing the quantum gravity dual to the original conformal field theory.

Our discussion has been in the context of the bilocal description of the O(N) vector
model, which is dual to higher spin gravity. However, we suspect that these are general
lessons about how the principle of the holography of information arises from the conformal
field theory, in AdS/CFT. In the case of the vector model, the invariant variables are given
by the gauge invariant contraction of a pair of vector fields and thus the invariant fields
are bilocal. For theories with matrix valued fields, there are many more ways in which a
gauge invariant variable can be constructed. By taking products of matrix fields, located
at different points in spacetime and dressed with the necessary Wilson lines to produce a
gauge invariant operator, we are naturally lead to bilocal, trilocal and in general multi-local
operators. The scale-radius duality of AdS/CFT [53] suggests that multi-local operators
with well separated locations explore deep into the holographic direction, while the local
limit in which all the points in the multi-local operator approach each other, map into a
bulk operator located at the boundary. In this case too, the OPE can be used to take the
product of separated operators and express them in terms of local operators, so that once
again we start to see how all of the information on a given Cauchy slice might be coded
into the boundary of that slice.
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A OPE observations

In this appendix we work out the operator product expansion for a gauge invariant product
of two scalar fields. Exactly as in [50] this amounts to an application of Taylor expansions.
We use the formulas below to explicitly illustrate the convergence criteria derived in [47].
The primary operators that appear in this operator product are the conserved higher spin
currents of spin 2s, given by (see for example [51])

J2s(y, x) = yµ1 · · · yµ2sJµ1···µ2s(x)

= π
N∑
a=1

2s∑
k=0

(−1)k
:
(
yµ ∂

∂xµ

)2s−k
φa(x)

(
yν ∂

∂xν

)k
φa(x) :

k!(2s− k)!Γ(k + 1
2)Γ(2s− k + 1

2)
(A.1)

and the spin zero primary J0 = φa(x)φa(x). Consider the unequal time bilocal

η(xµ1 , x
µ
2 ) =: φa(t1, ~x1)φa(t2, ~x2) : (A.2)

Introducing the coordinates

xµ = 1
2(xµ1 + xµ2 ) yµ = 1

2(xµ1 − x
µ
2 ) (A.3)

so that

∂

∂xµ1
= 1

2

(
∂

∂xµ
+ ∂

∂yµ

)
∂

∂xµ2
= 1

2

(
∂

∂xµ
− ∂

∂yµ

)
(A.4)

we can expand η(xµ1 , x
µ
2 ) to all orders in yµ as follows

η(xµ1 , x
µ
2 ) =

N∑
a=1

: φa(xµ + yµ)φa(xµ − yµ) :

=
N∑
a=1

∞∑
r,t=0

1
r!t! :

(
yµ

∂

∂xµ

)r
φa(x)

(
−yν ∂

∂xν

)t
φa(x) : (A.5)

The fact that we deal with a real field and that we perform the OPE around the midpoint
between the two fields implies that odd powers of derivatives sum to zero leaving only even
powers. The operator product expansion of φa with itself includes the currents J2s and J0
as well as their descendants so that

N∑
a=1

: φa(xµ + yµ)φa(xµ − yµ) : =
∞∑
s=0

∞∑
d=0

csd

(
yµ

∂

∂xµ

)2d
J2s(y, x) (A.6)
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The number csd tells us about the contribution of the level 2d descendant of the primary
current with spin 2s. To solve for the csd we can study the polynomial equation

∞∑
r,s=0

1
r!

1
s!p

r
1p
s
2

∣∣∣∣∣∣
even

=
∞∑
s=0

∞∑
d=0

csd(p1 + p2)2dπ
2s∑
k=0

(−1)kp2s−k
1 pk2

k!(2s− k)!Γ(k + 1
2)Γ(2s− k + 1

2)

∣∣∣∣∣
even

Here pq1pk2 stands for : (yµ∂xµ)qφa (yν∂xν )kφa : so that from both sides we must keep only
terms that are symmetric under swapping 1↔ 2. With the help of mathematica we easily
find that

c0d = 1
22d(d!)2 and csd = (2s)!(4s− 1)!!

d!22d+4s−1(d+ 2s)! s > 0 (A.7)

Up to this point we have not made any use of conformal symmetry — we have just per-
formed a Taylor expansion. Using conformal symmetry every local operator of the theory
can be classified as either a primary operator, or as a derivative of a primary operator, that
is, a descendant. A primary operator and all of its descendants belong to the same irre-
ducible representation so it is natural to rewrite the OPE as a sum over just the primaries,
which we will denote by O

N∑
a=1

φa(xµ + yµ)φa(xµ − yµ) =
∑
O
fφφOPO(yµ, ∂x)O (A.8)

If the primary operators O have a non-zero spin they will also have indices. The contrac-
tions of these indices is not written explicitly. The coefficient function PO is a power series
in ∂y which encodes the contribution of the primary O and all of its descendants. The
form of this function is completely fixed by conformal invariance in terms of the operator
scaling dimensions. The number fφφO is called the OPE coefficient and it together with
the spectrum of scaling dimensions of the primary operators completely determines the
dynamical content of the conformal field theory. For the O(N) model where we know the
complete set of primaries we can write (3.1) slightly more explicitly as

N∑
a=1

φa(xµ + yµ)φa(xµ − yµ) =
∞∑
s=0

fφφJ2sPJ2s(yµ, ∂x)J2s(y, x) (A.9)

In the checks that are performed in the next section, (A.6) is perfectly sufficient, and
we will not need the more elegant result (A.9).

Finally, we will also find it useful to make use of the OPE

N∑
a=1

: φa(xµ)φa(xµ + yµ) : =
∞∑
s=0

∞∑
d=0

c̃sd

(
yµ

∂

∂xµ

)d
J2s(y, x) (A.10)

The fact that now both even and odd descendants appear simply reflects the fact that
this OPE is less symmetrical than the OPE studied in (A.6). Again, with the help of
mathematica we find

c̃0d = (2d− 1)!!
2d(d!)2 and c̃sd = (2s)!(4s− 1)!!(2d+ 4s− 1)!!

2d+4s−1(d+ 4s)!d! s > 0 (A.11)
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A.1 Instructive examples of OPE convergence

As an explicit check of OPE convergence, we calculate the s-channel OPE for the case
(x1, x2, x3, x4) = (1, 2, 3, 4). This configuration was discussed in section 3, where we con-
cluded that according to [47] the s-channel OPE should converge. Our conventions are
spelled out in the two point function

〈φa(x+, x−1 , x1)φa(x+, x−2 , x2)〉 = 1
|x1 − x2|

(A.12)

The exact value of the four-point function we study is

〈φa(x+, x−1 , x1)φa(x+, x−2 x2)φb(x+, x−3 , x3)φb(x+, x−4 , x4)

= 1
|x1 − x3|

1
|x2 − x4|

+ 1
|x1 − x4|

1
|x2 − x3|

= 7
12 . (A.13)

To check convergence of the OPE, we now use formula (A.6) for each bilocal. This corre-
sponds to the s-channel OPE. Defining

x = 1
2(x1 + x2), y = 1

2(x1 − x2) (A.14)

z = 1
2(x3 + x4), w = 1

2(x3 − x4), (A.15)

we have

〈φa(x+, x−1 , x1)φa(x+, x−2 x2)φb(x+, x−3 , x3)φb(x+, x−4 , x4)〉 =
∞∑

s,s′=0

∞∑
d,d′=0

csdcs′d′ (y∂x)2d (w∂z)2d′ 〈J2s(y, x)J2s′(w, z)〉. (A.16)

Each term in the sum on the r.h.s. has a definite conformal dimension given by 2s+ 2s′ +
2d+ 2d′ + 1. We truncate the sum with a cut on the dimension of the operators summed,
implemented as 2s+ 2s′+ 2d+ 2d′ ≤ Λ. We then compare the truncated sum to the exact
result given by 7/12. The results, up to Λ = 10 are shown in figure 9. The numerical
results are convincing evidence indicating that the OPE convergences.

The configuration (x1, x2, x3, x4) = (1, 3, 2, 4) was also discussed in section 3. Accord-
ing to [47] the s-channel OPE should not converge. For this configuration, the exact value
of the four point function is 4/3. Again truncating the series obtained from the OPE, with
cut off values Λ = 0, 1, 2, · · · , 7 we obtain

{2, 6, 22, 86, 342, 1366, 5462, 21846} (A.17)

for the value of the sum. The sum is clearly diverging.
Finally, the last configuration we study is (x1, x2, x3, x4) = (6,−1, 3, 4). This configura-

tion was also discussed in section 3. It corresponds to a configuration of type (B) in figure 3
and according to [47] the s-channel OPE converges. Implementing a simple application of
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〈ϕ1 ϕ2 ϕ3 ϕ4〉

Figure 9. We compare the exact four-point function 〈φ1φ2φ3φ4〉 value with the corresponding
series expansions obtained from the OPE. The exact value of the four point function is represented
by a horizontal line at 7/12. The series expansion is truncated with cut off Λ. The horizontal axis
shows the value of Λ. Convergence is extremely rapid.

Figure 10. The initial configuration, shown on the left, is of type (B) in figure 3. Perform an
inversion about a point located between x2 and x3. This leaves point x2 as the left most point, but
reverses the order of x1, x3, x4 so that we land up in a configuration of type (A) in figure 3. The
final configuration is shown on the right.

the midpoint OPE rule (A.6), we numerically find that the OPE does not converge. This
is also the case if we use the OPE (A.10). To find the convergent OPE expansion it is
useful to transform to a different conformal frame. As we have already seen, the four point
function (and the conformal cross ratios) depend only on the coordinate transverse to the
light cone. To move to the new conformal frame, we start with a translation (if needed)
to position the origin between points x2 and x3 as shown in figure 10. We then apply the
conformal inversion operation which takes

I : xµ → x′µ = xµ

x · x
(A.18)

We have the equality

〈φa(x+, x−1 , x1)φa(x+, x−2 x2)φb(x+, x−3 , x3)φb(x+, x−4 , x4)〉
= 〈I · Iφa(x+, x−1 , x1)I · Iφa(x+, x−2 x2)I · Iφb(x+, x−3 , x3)I · Iφb(x+, x−4 , x4)I · I〉

which is true since inversion squares to the identity I · I = 1. Since the free scalar field has
∆ = 1

2 we know that

Iφa(xµi )I = (x′i · x′i)∆φ′a(x′µi ) =
√
x′i · x′iφ

′a(x′µi ) i = 1, 2 (A.19)
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Assuming that the conformal field theory vacuum is invariant under I we now easily find

〈φa(x+, x−1 , x1)φa(x+, x−2 x2)φb(x+, x−3 , x3)φb(x+, x−4 , x4)〉

=

√√√√ 4∏
i=1

x′i · x′i〈φ
′a(x′+, x′−1 , x′1)φ′a(x′+, x′−2 x′2)φ′b(x′+, x′−3 , x′3)φ′b(x′+, x′−4 , x′4)〉

We are now in a configuration of type (A) so that we can apply the mid point OPE given
in (A.6) to obtain a convergent s-channel OPE.

A.2 Converting between η and σ

Both η(x+, x−1 , x1, x
−
2 , x2) and σ(x+, x−1 , x1, x

−
2 , x2) appear. They are defined as

σ(x+, x−1 , x1, x
−
2 , x2) = φa(x+, x−1 , x1)φa(x+, x−2 , x2) (A.20)

and

η(x+, x−1 , x1, x
−
2 , x2) =: φa(x+, x−1 , x1)φa(x+, x−2 , x2) : (A.21)

so that we can write the operator equation

σ(x+, x−1 , x1, x
−
2 , x2) = η(x+, x−1 , x1, x

−
2 , x2) + 〈σ(x+, x−1 , x1, x

−
2 , x2)〉 (A.22)

This is an operator equation so it can be used inside any correlation function. As an
example

〈η(x+, x−1 , x1, x
−
2 , x2)η(x+, x−3 , x3, x

−
4 , x4)〉 = 〈σ(x+, x−1 , x1, x

−
2 , x2)σ(x+, x−3 , x3, x

−
4 , x4)〉

− 〈σ(x+, x−1 , x1, x
−
2 , x2)〉〈σ(x+, x−3 , x3, x

−
4 , x4)〉 (A.23)

Consequently any expectation value of η’s can be turned into an expectation values involv-
ing only σ’s.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
the goals of the International Year of Basic Sciences for Sustainable Development.
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