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1 Introduction

The computation of multiloop scattering amplitudes in Quantum Chromodynamics (QCD)
plays a fundamental role for the Standard Model (SM) precision program carried out at
particle colliders such as the Large Hadron Collider (LHC) at CERN. Suitably combined
with real-radiation contributions, they provide a powerful tool to generate predictions for a
variety of collider observables, allowing for precise comparisons with experimental data [1].
In fact, matching the shrinking experimental errors with correspondingly precise theory
predictions allows one to discover even subtle signals from possible physics scenarios beyond
the SM.

In addition to their phenomenological significance, analytic computations of scattering
amplitudes enable investigations of general properties of perturbative Quantum Field Theo-
ries (QFT), including comparative studies of QCD amplitudes with their supersymmetric
counterparts. The more loops, external legs, or particle masses one is considering for
a scattering amplitude, the more challenging its computation becomes. In recent years,
significant progress has been achieved for the reduction of loop integrals to master inte-
grals and their analytical evaluation, resulting in the calculation of previously inaccessible
multiloop amplitudes. At two loops, various QCD amplitudes became available for 2 — 3
scattering processes involving mostly massless particles [2-27], paving the way for the first
Next-to-Next-to-Leading-Order (NNLO) studies at LHC [28-30]. At three loops, first QCD
amplitudes were computed for 2 — 2 scattering processes [31-34]. At four loops, 2 — 1
form factors were obtained in full-color QCD [35-37].



Analytical results for multiloop scattering amplitudes can also provide non-trivial
information about all-order results in QCD. An interesting case is the so-called Regge
limit [38] of large collision energy, where universal factorization properties can be ob-
served in QCD amplitudes. The BFKL formalism [39, 40] allows one to describe all-order
structures in QCD through the exchange of so-called “Reggeized gluons”, which resum
leading contributions of the quark and gluon interactions at high energies. With the recent
determination of the three-loop Regge trajectory [33, 41], the last missing ingredient for
next-to-next-to-leading-logarithmic analysis became available.

This paper concludes our analytical calculation of all four-parton scattering amplitudes
in three-loop QCD. Previously, we presented the helicity amplitudes for the process
qq7 — ¢'¢’ and crossed channels [32] and for the process gg — gg [33]. In this work, we
provide the helicity amplitudes for qg — gg scattering and crossed channels in full-color,
massless QCD. Our calculation checks the predicted quadrupole contribution to the infrared
poles for a process with external legs in different color representation [42, 43]. By analyzing
the high-energy limit of the gqg — gqg amplitude, we check the universality of the predicted
factorization and the three-loop expression for the Regge trajectory [33, 41].

The rest of this paper is organized as follows. In section 2, we set up our notation and
describe the color and Lorentz decomposition of the scattering amplitude. In section 3 we
discuss our computation of the bare helicity amplitudes employing the tensor decomposition
provided in the previous section and analytical solutions for the master integrals [34, 44].
In section 4, we describe the UV renormalization and give details for the subtraction of
IR poles up to three loops. In section 5 we present our final results and enumerate the
checks we have performed to verify their correctness. Finally, in section 6 we discuss
the high energy (Regge) limit of the qg — gg amplitudes. We draw our conclusions in
section 7. We reserve the appendices for lengthy formulas with explicit results for all the
relevant anomalous dimensions (appendix A) and for the impact factors and the gluon
Regge trajectory (appendix B).

2 Color and Lorentz decomposition

We consider the quark-gluon scattering process

q(p1) + q(p2) + g(p3) + g(ps) — 0, (2.1)

in massless QCD, where the momenta satisfy

pl=ps=p3=pi=0, P +ph+ps+pf=0. (2:2)
The kinematics of the process eq. (2.1) can be parametrized in terms of the usual Mandelstam
invariants
s=(1+p)>  t=1+p3)’  u=(p2+p) (2:3)
with u = —t — s. We find it convenient to introduce the dimensionless variable
x=—t/s (2.4)

to parametrize our results.



The primary physical scattering process considered in this paper is

q(p1) +q(p2) — 9(p3) +g(pa), (2.5)

which can be obtained from the process (2.1) by a crossing of external legs with p3 4 — —p3 4.
For this process, the physical region of the phase space is given by

5s>0, t,bu<O0 = 0<z<l1. (2.6)

Results for other physical scattering processes will subsequently be derived from the result
for process (2.5) by considering further crossings. The bare amplitude for process (2.5) can
be decomposed in three different color structures C;,

3
»Ai1,i2,a3,a4 = 47ras,b Z -AMCZ . (27)

=1

Here, i1 and i9 are the fundamental color indices of the external quarks with momenta p;
and po, and a3 and a4 are the adjoint color indices of the external gluons with momenta
ps and p4, respectively. Further, ayy is the bare strong coupling. In eq. (2.7) we also
introduced the notation [¢] to indicate a color component index of the amplitude. The three
color structures are

Cr = (T®T)ip,, Co = (TT)ip,, Cs = 0" 6,04, (2.8)

where we work in QCD with color group SU(N.) and ny massless quark flavors. The
matrices (7%);,;, are the generators of SU(IV,) in the fundamental representation. We use
Te[TeT?) = %5,15 and denote the quadratic Casimir operators in the fundamental and adjoint
representation by Cr and C4, respectively.

The amplitude coefficients Al can be decomposed further into Lorentz-covariant
structures 7,

4 o
Al =S Flil 7, (2.9)
j=1

where the F ]m are scalar form factors. To regulate ultraviolet and infrared divergences,
we employ dimensional regularization and use d = 4 — 2¢ for the number of space-time
dimensions. We denote the external gluon polarization vectors as e(p;) = ¢; with the
transversality condition for the external gluon momenta €(p;) -p; = 0 (i = 3,4). To
simplify the Lorentz decomposition, we also fix the gauge of the external gluons such that
€3 - p2 = €4 - p1 = 0, which leads to the following gluon polarization sums

M, v VoM
> +
Egeg _ _g/u/ + P3D2 P3P;

pol b2 -p3
H, v |04
—+
Z e = —g + PaP1 T PaPy (2.10)
pol b1 - P4



Since we are ultimately interested in computing the helicity amplitudes for this process in
the 't Hooft-Veltman scheme (tHV) scheme, we use the Lorentz structures [31, 45, 46]

u(p2)fau(p1) €3 - p1,
= u(p2)pzulp1) €3 - €4, (2.11)

u(p2)f3u(p1) €4 - p2,
u(p2)psu(p1) €3 - pres - p2,

S
I
S

and introduce projection operators P; which extract the form factors from the amplitude,

P; - All = 3 p; Al :;j[il, j=1,...,4. (2.12)

pol

In eq. (2.12), we introduced the short-hand notation P; - A which implies a sum over the
polarizations of the external particles. By introducing the matrix

Mi; =T, - T;,

the projectors can be compactly defined as

4
Pi=) (MYyT" = Pi-T=6;, (2.13)
j=1
where
t2u? 0 —tu? 0
1 0 t%u? tu? 0

Mt (2.14)

- 2(d — 3)s2t3u | —tu® tu?® (du® — 4st) (s —t)st
0 O (s —t)st 5212

We stress that in conventional dimensional regularization there is a fifth Lorentz structure
which would need to be taken into account in eq. (2.9). In the tHV scheme we take
internal momenta in d = 4 — 2¢ dimensions and keep external momenta and polarizations
in four dimensions. As explained in refs. [45, 46], this allows us to essentially ignore
this fifth evanescent structure completely and work with just the four structures (2.11),
which are linearly independent in four space-time dimensions. We also point out that the
decompositions of egs. (2.7) and (2.9), as well as the explicit form of the projectors (2.13),
hold to any orders in perturbation theory.

3 Helicity amplitudes

From the form factors F; one can construct amplitudes for definite helicities of the external
particles. We denote the helicity of the incoming quark as \,; the helicity of the incoming
anti-quark Az is then automatically fixed due to helicity conservation along the massless
quark line. We refer to the quark line helicity with the symbol A\;z = {A\jAg} which can
take two possible values: A\jg = L, R = {—+},{+—}. Further, we denote the helicities
of the outgoing gluons as A3 and Ag4. After exploiting parity, charge-conjugation and



Bose symmetry relations [31], one is left with only two independent helicity configurations.
However, we choose to compute the overcomplete set of four helicity configurations

{Nghs\a} ={L— -} {L—+},{L+—-}, {L++} (3.1)

which allow us to perform a consistency check on our calculation. Results for right-handed
quarks can subsequently be obtained by a parity transformation. We write for the left-
handed spinors ur(p2) = (2|, ur(p1) = |1], and for the polarization vector of the gluons

_ 2Bl b (py) = B2l

5-(p3) = V2(23) €3 4(P3) = V232 (3.2)
_ (4] _ ("]
h—(pa) = T i (pa) = NI (3.3)

Inserting these equations into the Lorentz structures 7; (2.11) gives the helicity amplitudes

3 ‘ 3 .
A =sp- S e, Ay =s4 S Hi e,
=1 =1
3 ' 3 .
App- = sp- Y HY G, Apps = sppy Y HY €, (3.4)
=1 =1

where the little group scaling is captured by the overall spinor factors

o 2[34]2 ooo_2eamy 2@y 2(34)? (3.5)
=== s3]y "F T T @3ypd] 0 MY T a2 T T @3]
and we have defined the scalar helicity amplitudes
2l L <]_—[z] . i Rp) M — ( Fil 4 fm)j
7 % 7 t 7 t [ 7 7 7
i — d (FH Flil _ 2f£}_5f£]>’ M — (flmr Lyl _ fH)‘ (3.6)

The amplitudes for right-handed quarks are related to those for left-handed quarks by

ARz = (AL—xs,-x) (i) i) - (3.7)

By exchanging the two outgoing gluons, we find that Bose symmetry implies the relations
M) = +HP(1-2),  HI@) =+1(1-2), H(@) =+1]0- ),

Hih(@) = -HP (1 —2),  HO@) =-HU0-2),  H@) = -H0-2). (38)

We also note that ‘
Hi (@) = ~H (). (3.9)

These identities will serve as an important check of our calculations.
We expand the helicity amplitudes in a;p = o, p/(47),

1l = ZH[;']’“) (Gsp50)" + O (at,) (3.10)
/=0
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Figure 1. Sample three loop diagrams contributing to the process qqg — gg.

for A\=1,...,4, where S, = (4m)%e~“72. The normalization factor S, absorbs constants in
the bare amplitude and matches the usual MS conventions in the renormalization of the
strong coupling performed below. In the expansion of the amplitude, 7—[[;]’(3) is the three
loop contribution, which we compute here for the first time. We have also recomputed the
tree-level, one-loop and two-loop contributions using the form factor decomposition defined
in eq. (2.11).

We employ Qgraf [47] to produce Feynman diagrams and find 3 diagrams at tree level,
30 diagrams at one loop, 595 diagrams at two loops and 14971 at three loops. We give a few
representative samples of the three-loop diagrams contributing to the process in figure 1.

We use Form [48] to apply the Lorentz projectors of eq. (2.11) to the diagrams and
to perform the Dirac and color algebra. In this way, we obtain the form factors as linear
combinations of a large number (~ 107) of scalar Feynman integrals with rational coefficients.
We parametrize the corresponding ¢-loop Feynman integrals according to

Ttop _ 2 EevE/ﬁ <ddkj> 1 (3.11)
ni,n2,..ny - HO € - it | DDEE DN :

where v = 0.5772 is Euler’s constant, pg is the scale of dimensional regularization, and
the denominators D; are inverse propagators for the respective integral family “top”. More
details on the integral families can be found in ref. [32]. Using Reduze 2 [49, 50] and
Finred, an in-house implementation of the Laporta algorithm [51] based on finite field
arithmetic [52-55] and syzygy algorithms [56-61], we reduced these integrals to a linear
combination of 486 master integrals. Upon insertion of the recently computed solutions for
the master integrals [34, 44] we arrive at an analytical result for the helicity amplitudes in
terms of harmonic polylogarithms.

4 UV and IR subtractions

The bare helicity amplitudes (3.10) contain UV and IR divergences, which appear as poles
in the Laurent expansion in e. The MS renormalized strong as(u) is defined through

Qs p /L(2)6 Se = s M%Z[&s] ) (4'1)



where ag = ag(p)/(47), p is the renormalization scale and

_ p g B
Zlas) =1 — ag O—I-Oz (63—2i>—

(B ThuBL | B

The S-function coefficients are defined in the standard way through

da

= Blas) — 2eqs,  B(as) = —2a, Z Bé@ﬁ—H- (4.3)

dlog i >0

We also recall the values of the standard quadratic Casimir constants for a SU(IV.)
gauge group:

N2 -1
Cy= N, Cr= oN (4.4)
With this, up to third order of the perturbative expansion, we have
11 2

Bo = ?CA - g ng,

34 10
b1 = < 3 C’A—C’Anf) —2Cpny,

1415 2857 205 79
52_‘@@%”1’ 54 CA_ 180ACan—|—5CAnf—i-CFTLf—i-gCan (4.5)

In the following, we use boldface symbols to denote vectors in colour space, that is, we

define
H = (M, 12 BT (4.6)

for the decomposition of the amplitude with respect to the basis C;. Using the expansion
of (3.10), we collect the a; coefficients of the UV finite, but IR divergent, amplitudes as

0 0
", =,
’H(Al)ren Y 50%@)’
2 2 250 (Qﬁ Bie)
Hg\,)ren :Hg\) 77‘1’)\ OQT%)\ )
38 382 — Bre 781 Boe — 633 — 2Ba¢€?
) g B8y (e b2y,

so that the renormalized helicity amplitudes can be written as

%/\,ren = Z EHS\ 1en

£>0

The IR singularity structure of QCD amplitudes has been studied at two loops in ref. [62] and
was extended up to three loops in refs. [42, 63-70]. The IR divergences can be subtracted
from our renormalized amplitudes multiplicatively:

H)\, ren — Z %)\, fin- (48)



Here Z is a color matrix acting on the space spanned by the C; basis vectors (2.8) and
), fn are finite remainders, also called hard scattering functions. The matrix Z can be
written as

z-pep[[” fj‘,'r({p}, W) (1.9)

where P denotes the path-ordering of color operators [67] in increasing values of p/ from
left to right. It can be omitted up to three loops, since to this order [I'(u),I'(1')] = 0. The
color-space correlation structure at three-loops allows one to decompose the soft anomalous
dimension operator I' into so-called dipole (Tgipole) and quadrupole (A4) contributions
according to

I' = TCaipole + Ay (4.10)
The dipole term I'gipole can be written as
12
Taipole({p}, 1) = > T¢ TG ¥ () log( 5) +Z v (@), (4.11)
1<i<j<4 —Sij Tt

where vX (&) is the cusp anomalous dimension [71-76] and ' the quark (gluon) collinear
anomalous dimension [77-80] of the i-th external particle, which are given in our notation in
appendix A. Further, T¢ represents the color generator of the i-th parton in the scattering
amplitude,

(T?)ap = tagp for a final(initial)-state quark (anti-quark),

(T{)ap = —th, for a final(initial)-state anti-quark (quark),

(T%)pe = —if® for a gluon. (4.12)
The quadrupole term A, contributes for the first time at three loops. It can be written in

the kinematical region (2.6) as [32, 33, 42, 43]
ALY =128 fupe feae | T{TSTYT] Dy () = TITYTSTY D(a)|

4
- 16fabefcdecz Z {T?,T?} T? 27 (413)
i=11<j<k<4
Gkt
where C' = (5 +2(2(¢3 and D;(x), Da(x) are linear combinations of harmonic polylogarithms
as [32, 33, 42, 44]. They read

Dy =-2G14—Go3z— G32+2G113+2G122—-2G130— G220~ G310+2G1,120
—2G1,2,00+2G1,2,1,0+4G1,0,0,00—2G1,1,0,0,0 + %5 —502(3+(2[bG3+5Ga0+2G1 00

—6(Gr2+ Gi10)]+G(Ga+2G10—2G1 1) —in[—(3Go+ G2 2+ G390+ G31+ G200
+2(Gi13—Gr12— Gi21— Gi000)] +inCa(—Ga+2(Gra+ Giyp)) — 1lim(y, (4.14)

Dy =2G23+2G32—G113—G122—2G212+2G220—2G221+2G31,0—2G31,1—G1,120
—G1210—2G21,10+4G211,1 — (5 +403+ 3611 +G[-6G3 —6G20+2G2 1

+5(Gra+ Gi,10)]+im((3G1+2G30— Gr12— Gioo— Gi21+2G2,00—2G210
+2G2,171 — G171707o) +17(o (4G2 — Gl,l) . (4.15)



Figure 2. Sample diagrams with quadrupole soft divergences, reinterpreted as tree-level diagrams
(black lines) plus virtual gluons (red lines). Diagrams (a) and (b) involve colour correlations between
four and three external partons and contribute to the first and second line of eq. (4.13), respectively.

Here the argument x has been suppressed, and for the HPLs we used a compact notation
similar to [81, 82]:

Gai,...an0,...,0 = G(0,...,0,sgn(az),...,0,...,0,sgn(ay),0,...,0;x).
~—— —— —— ——
no la1]—1 lan|—1 no

In terms of the color vector space introduced in (2.8) and of the quantities we have just
defined we find the explicit form

—2NC(2D1 + Dy 4+ 4C) 2N.(2D1 + 3Dy + 20) 2N62(2D2 -0C)
AP =8| 2N.3Dy + 2Dy +2C)  —2N.(Dy +2D, —4C)  2N22D,—C) |, (4.16)
D1+2N:’_D2—Nc_c 2NC+D1+D2—NC_C GNC(D1+D2—C)
where Nf = (N2 +1)/2 and C = (5 + 2(2(3. Unlike L gipoles Af’) does not depend
explicitly on the factorization scale 2. We highlight the contributions to the quadrupole
soft divergences, and in particular to the colour correlation pattern in the first and second

line of eq. (4.13), by drawing a couple of representative diagrams in figure 2. The coefficients
of the perturbative expansion for the finite remainders

Haen = Y alH\p, (4.17)
£>0

can be obtained according to
0 0
MY =)
’Hg\l,)ﬁn — W Il’H(O)

A, ren A, ren
%g\%)ﬁn = Hg\%)ren B IQ%&?)ren B Il?-l’gxl,)ren ’
%g\?:)ﬁn = Hg\?:)ren - I3%g\(?)ren - 12%&1,)ren - Ing\%)ren ) (418)
with
Ti=2, Th=2-22 Ti=23-2Z2Z+2+AY, (4.19)



where the Z,, are the coefficients of the expansion of Z in & and explicitly read [32, 67]:

Zy=1,

T
zZ =0, -9
D742 " e

| A VA 3 Ty A Y
Zy=-2_4+ 0 2 Ty — 2 il §
2 3264+8€3<0 250) sz (Do = 260) + 162+4e

IVSEYS VAN
+

F/
0 0 . _ = 0
38466 | 6ded (Fo—300) + 3264 (FO 37 °> <F° A °> T Gaed

F Iy F, 20 o'y

TR 1565 L0 —260)(To — 460)+ 1663 ( ﬁl) 3263 (r°_9ﬁ°) TR

B+ BTy | T5 T+t AP
6e2 36¢2 6e '

Zy =

(4.20)

Above we have used

_ b O‘snu —
I'(as) = ((gligﬂ Ak ZC’ > altTy, (4.21)
>0

with the last equal sign giving the definition of the perturbative coefficients I'.
The explicit expression for the perturbative expansions of the cusp anomalous dimension
and of the quark (gluon) collinear anomalous dimensions are given in the appendix.

5 Checks and exact results

First, we have checked that our results for the lower loop amplitudes are consistent with
the literature. In particular, we have compared our tree-level, one-loop and two-loop results
for the bare helicity amplitudes for ¢¢ — gg in the helicity configurations (3.1) against the
results provided in the ancillary files of ref. [83] and find analytical agreement through to
weight six. We have also checked that our one-loop expressions for q¢ — gg and qg — qg
match results obtained with the automated one-loop generator OpenLoops [84, 85]. At the
three-loop level, we have verified that the IR singularities of our results for the renormalized
helicity amplitudes in eq. (4.7) match the pattern predicted by eqs. (4.8)—(4.19), which
provides a highly non-trivial check. From the high energy limit of our amplitudes we
extract the quark and gluon impact factors and find that they are consistent with previous
results, which tests lower loop contributions to the renormalized amplitude up to weight six.
Moreover, we extract the gluon Regge trajectory and find agreement with previous results,
which provides a stringent check of the finite contributions to the three-loop amplitudes
presented in this paper. The high energy limit will be described in more detail in the
next section.

Our analytic results for the three-loop finite remainders H ) g, are expressed in terms
of harmonic polylogarithms with transcendental weight up to six. Alternatively, these
can be converted to a functional basis of logarithms, classical polylogarithms and a few
multiple polylogarithms with at most three-fold nested sums [31]. We provide a general

~10 -
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Figure 3. Perturbative amplitudes up to three loops interfered with the tree-level amplitude for
qq — gg (panel a) and gg — qg (panel b) in dependence of x = —t/s. The two-loop contribution to
qq — gg diverges to +oo near x = 0%, 1~ (panel ¢ shows details near z = 07), while the three-loop
contribution to qg — gg diverges to —oco near z = 0% (panel d).

conversion table for harmonic polylogarithms up to weight six in the supplementary material
of this article.

From our results for the process q¢ — gg we also derive explicit expressions for
the helicity amplitudes for gqg — g scattering, which requires a non-trivial analytical
continuation. Details for this procedure are given in ref. [32]. The remaining partonic
channels gg — qq and gq — gq are not provided explicitly, since they can be obtained by a
simple crossing of external legs without any non-trivial analytic continuation. While our
results are relatively compact, of the order of 1 megabyte per partonic channel, they are
too lengthy to be presented here. We include them in computer-readable format in the
supplementary material.

In figure 3 we show the finite remainder of the amplitude at different loop orders
interfered with the tree-level amplitude for the processes q¢ — ¢gg and qg — ¢gg. The
interferences are averaged (summed) over polarizations and color in the initial (final) state.
Additionally, since with the results of this paper all 2 — 2 partonic channels are now
available in three-loop massless QCD, we find it useful to compare virtual corrections for the
processes ¢4 — 99, 49 — q9, 99 — gg and ¢ — QQ. In figure 4, we show the contributions
to the squared amplitude at different orders in &g, normalized by the respective tree-level
squared amplitude. Again, we average (sum) over polarization and color in the initial (final)
states. Below we define more in detail the quantities we present in the plots.

- 11 -
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Figure 4. Perturbative expansion of the amplitude squared for the processes q¢ — gg, q9 —
q9, 99 — gg and q7 — QQ as functions of 2 = —t/s. Values are normalized by the tree-level
amplitude squared.

We rewrite the finite amplitude as a vector in color and helicity space

A) = 4ma, Y al [AD) (5.1)
£>0
and define the contraction between different elements in this vector space as
(AOIAD) =N 37 clejlsaP il 1. (5:2)
i,

where the factor 4rag in eq. (5.1) replicates the overall normalization of eq. (2.7). N is
the initial-state color and polarization averaging factor, which depends on the process and
takes the following values:

e for 47 — gg.
1
INET) for qg — qy,
N — 4NC(1]V371) (53)
INZ-1)2 for gg — gy,
ﬁ for q7 — QQ.

The initial and final state polarization sum runs over all helicity configurations. The color
factors C; and the spinor factors sy are different for the various processes: for qq — gg
they are given in egs. (2.8) and (3.5), while for gg — gg they are obtained by applying
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the transformation ps <> p3 to those of ¢q¢ — gg. For the other two channels gg — gg and
qq — QQ, they can be found in refs. [33] and [32] respectively.

We expand the squared amplitude normalized by the tree-level contribution in &,
according to

(AlA)

TAO|A0] = VO +a,v® 4 a2y@ 1 @30 L o) (5.4)
with
-
M 4M® 0)].4(2) Oy e 0)].43)
(A Ay =7 A0 40) < ©)] A©) (A©)] 40

Finally, for the numerical evaluation, we have set u? = s = m¥%, as(u) = 0.118, ny = 5 and
N, = 3.

6 High energy limit

In the high-energy or Regge limit, quantum field theoretic scattering amplitudes become
particularly simple and are known to exhibit universal factorization properties. In the
following, we consider the process

q(p1) +9(p2) — a(ps) + g(ps), (6.1)

for which t-channel gluon exchanges provide the dominant contribution to the amplitude
at high energies. The Regge limit is defined as s — oo for fixed scattering angle, that is,
|s| ~ |u| > |t|, where s = (p1 + p2)?, t = (p1 — p3)?, u = —s — t in terms of the momenta
n (6.1). For the variable z = —t/s, the Regge limit corresponds to  — 0.

Following the investigation [86, 87], we split the renormalized amplitude into the definite
§ +» u signature component

1

Hqg—>qg,ﬂ: = 9

The definite-signature amplitudes Hqg—sqg,+ and Hgg—qe,— are referred to as the even and

[Hag—ag(s:u) & Hag—qg(u, s)] - (6.2)

odd amplitudes. We expand them up to third order in &g,

Hog—qe,+ = Z Qg Z Lk%éﬁi&: (6.3)

where we use for the signature-symmetric logarithm

L= —1In(z)— %T N % [m (_S__t M) +In (‘“__t Zd)} (6.4)

and the color operators [88, 89] are

T2 = (T14T2)*(T1+T2)%, T? = (T1+T3)%(T1+T3)%,

1
T2 = (T1+Ty)%(T14+Ty)*, T2 ,= 5(T§ —T?). (6.5)

~13 -



Here the T; (i=1,...,4) are assigned according to eq. (4.12). Explicitly, we find

Ca+Cp 0 2 Cy 0 0 Cr 0 -2
T2 = 0 Crp -2 ,T?2= 0 Cy 0|, T2=| 0 Ca+Cr 2
1/2 0 Ca+Cr -1/2 -1/2 0 0 1/2 Cu+Cp

(6.6)

Following ref. [86], one can show that the coefficients Hég%qg(%%_{gé) are purely imag-

inary(real). The t-channel exchange of an even number of Reggeons contributes only to

%é}‘ﬁﬁg, while the ¢-channel exchange of an odd number of Reggeons contributes only to

Hqgﬁgg A single Reggeon exchange contributes to the Regge pole contribution, while a
multiple Reggeon exchange in general can have non-vanishing contributions to both Regge
pole and Regge cuts [41, 87, 90, 91]. Up to next-to-leading logarithmic (NLL) accuracy, the
odd signature amplitude is completely determined by the gluon Regge trajectory and by
the so-called quark and gluon impact factors, that describe the interaction of the reggeized
gluon with external states. The factorization structure for the odd amplitude becomes more
complex in the next-to-next-to-leading logarithmic (NNLL) approximation, as both Regge
pole and Regge cut [86, 88, 92, 93] contribute at this order. For the even amplitude, only
the Regge cut contributes at the NLL level [86] and breaks the simple exponential structure
already at this logarithmic order. Starting from NNLL, the odd-signature amplitude receives
contributions from both Regge pole and Regge cuts. In ref. [91], a scheme has been proposed
to disentangle the two. As in our previous paper [33], we adopt this scheme to study the
high-energy behaviour of qg — qg to three loops up to NNLL.

Following the framework outlined in [91], we assume that, by setting the renormalization
scale to u? = —t, eq. (6.3) can be written as

2 (£
Mg s = 7 740 Z L0 O s (67)
=0 k=0
where 7, = >, aly is the gluon Regge trajectory and the factors Z, = D=0 o?f,Z(ge) and
Zg = - df;Zy) capture the collinear poles of the amplitude [86] for quarks and gluons,
respectively. Up to O(as) we have

70 =1,
1 1
Zl(l) - CZ’Y{{ + 4’}/1
1 3 N X2 8%
( ) _ — 2 (’Yl ) e ( fO 4%> _ 1’221 + 672% (4% _ 50) + % (6.8)

The odd signature color operators (’),;’(Z) contributing at NNLL [86] are
o, =1, (6.9)
oy W =10+ 77,
0y = [T + T4 + TIT{] + B"(2>[(T2 W) — N2 /4],
o;® =912 12 12 )+ B8, P12, T2 T2

s—u’
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and the even signature ones contributing at NLL [86] are

oW = i gt T2

o ? = iz BHO) 12, T2_,),
O =iz O 12,12, T2 ]]. (6.10)

The coefficients B describe the process independent Regge cut contributions [86, 91, 94]
and we report them below for convenience. The odd-signature ones are

2
B2 — 2%7% ( 3 18€C3 — 27€%¢y + 0(6)> )

€2
—3) _ 2 3 1 37
Bl = 6477' TF (4862 + 24C3 + O(€)> 5
_u(3) — 2.3 1 i
B, = 64nrp (2462 + 12C3 + O(€)> , (6.11)

while for even signature one finds

BHM — T 27
€

2
BT — _%F (42 + T2(3e + 108(4e” + 0(63)) :
€
3
B =T (i — 1763 — 264Cse — 5712G5¢” + 0<e3)>- (6.12)
€

T} and 7] are the perturbative expansion coefficients of the quark and gluon impact factors;
they can be extracted from the one- and two-loop calculation [83]. The explicit expressions
are rather long and are reported to the required orders in € in appendix B.

With the perturbative expansion of 74, up to the three-loop order obtained in [33] (and
provided in appendix B), we have all the ingredients to fully predict the Regge limit of the
process qg — qg through eq. (6.7), which only requires the tree-level amplitude Hé%)ﬁqg as
an input.

We find by explicit calculation that the high energy limit of our results for the qg — qg
three-loop amplitude indeed agrees with this prediction and confirms in particular the
literature results [41, 86, 95-97] for the gluon Regge trajectory as well as quark and gluon
impact factors in QCD. This provides a highly non-trivial test of the universality of high
energy factorization in QCD.

7 Conclusions

In this paper, we have presented the three-loop helicity amplitudes for quark-gluon scattering
processes in full-color, massless QCD. To perform this calculation, we have made use of
various cutting-edge techniques, in particular to handle the Lorentz decomposition of the
scattering amplitude and to solve the highly non-trivial system of integration-by-parts
identities required to reduce the amplitude to master integrals.
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In addition to our previous calculations for the scattering of four quarks and of four
gluons, these latest analytical results confirm predictions for the infrared poles of four-point
amplitudes in QCD, also for processes with external states in different color representations.
Moreover, our results have made it possible to verify the factorization properties of partonic
amplitudes in the Regge limit. With this work, all three-loop amplitudes for parton-
parton scattering processes are publicly available, providing the virtual corrections to dijet
production at N3LO.
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A  Anomalous dimensions

In this appendix, we list the perturbative expansions of the cusp anomalous dimension and
of the quark and gluon collinear anomalous dimensions,

K as\"* 9/ as\" _ag A

The required expansion coefficients of the cusp anomalous dimension read [71-73]

=4,

268 472 40

K

== |C4- =

’Yl <9 3> A gnfa

490 536> 44m' 88 80x% 836 112

K 2

=Ci|— -5+ +—G|+C — -
72T ( 3 27 45 3 C3> A ( 27 21 3 <3>

110) 16 , (A2)

The required expansion coefficients of the quark collinear anomalous dimension are [78]

78 = _3CF7

3 961 1172 65 2
q 2 2
= —2 4 on? - 24¢s ) + o +26(3 | + 24
V= C% ( 5 gg,) CrCy ( G 6§3> Crny (27 ; > :
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29 8t 1672
v =C3 <_2—3 2—?—68(3+ 63+24OC5)
151 20572 24774 844 87r
e b - ——(3—12
4-(jp(14 ( 4 + 9 + 135 (3 (3 0<5>
139345 716372 837* 3526 4472
+CrC <_ 5016~ 486 90 T 9 @~ G = 136<5)

9 2053 1372 147t 256
O\ T Ty T ey T O

(8659 129772 117t 964 )

o T T T @
2417 107% 8
+ Cpn} ( —— = — C3> , (A.3)

while for the gluon collinear anomalous dimension [79] they read

'Vg = _/603

692 11 128
W =C3 ( o7 T Cz +2C3) + Cang ( - C2> +2Cpny,
—97186 6109 122, 319 40
g p— - - 1
=4 (Tog + et oty 5 S St~ 166;)

30715 1198 356
2 1198 356 82 1l s o
1217 152 269
+ CaCrny < — 202 — 7(3 - 8C4) + Can < TAES *Cz - C3> (A.4)

B Impact factors and gluon Regge trajectory

In this appendix we provide expressions relevant for the high-energy limit of the three-loop
amplitude discussed in the main text. The expansion coefficients for the quark and gluon

impact factors up to two loops read

4-2 7C 13\ By
N. +NC<2 +18)_9

) (o (-3

3¢, 35C;  7Cs 242) 1( 4744 ¢ )
2

N, (=252, 205 (83 | 272 L L
+6[<36+16 o T )T\ 5 116

)

L [N( 200ty 23? 4124 3(?5 - 9;23 1244536>
7@43 gy 14144 3G 28 4

<< 5 47¢4 35(3 97;)} 3 )

70 =

48 27 243

17 -



1 [ 7C(s 47¢4  93Cs | 49¢3  56¢3  9497°
4 ] 3
N - - - + - — +64

N (7@@, 121 611¢s 31¢;  91¢F  280¢s  977x° 8744)

18 81 288 15 18 81 120960+ 729
7 82 235 31 196 5840
. <_ C2C3+ C2+ C4+ C5+ G3 )] O(e),

- (B.1)
18 81 144 15 81 729

3N2(y 87C  25(y  41(3 22537 1 (216 83¢  15G 255)
q_ c N2 - o
= 262+C(4+16+9+2592)+ (4 16 2 32
23(3 @ nf< 19g3 505) 25n%  19¢,
+N0”f< =g 81) N\
4TG0 205G N 28787

8 18 648
161 4055 587 49 898 911797 140 5
+6[N2( C2C3+ C2+ C4+ C5+ C3+ ) ( C2)

81

54 2

C

6 144 12 2 27 15552 F\s1 18
1 (49@@ N 325,  201¢ 3¢ 166C3 2157>
N2 6 16 16 64

N ( 61¢; 247C;  85¢; 36031 ) 5507C; 746543
n _ _ _
"\ 36 24 21 972 54 3888

ny [ 13C; 83¢ 173 11983) 115g2 1283¢4 121@—)]
R i - - +1
+NC< 4 24 27 486 362G+ 8 2
3613CaCs  5131¢  31811¢s  94¢s  293¢2  12007¢; 325175
2| a2 [ _ 3
te {NC ( 18 864 T 288 5 18 T 648 120960
23246941 625(aCs  1475C;  T79¢, 143¢s  1993(s 805855)
et N, — _ —
93312 >+ ”f( 18 108 72 T 5832
1 2287¢y  5627¢s 9¢s  1255¢2  6205¢3 71937® 13575
1 _ _ > _
N2 < 0626+ =5 64 2 18 21 120060 ' 128
s <31c2g3 45(; 503¢s 151¢; | 623Cs 227023)
N.\ 9 1 144 15 81 2916
53¢ 5Cs  35C; 404\ 1613 197¢,  27175¢, 791
2 <_ C2+£_ € > C2C3+ G C4+ G

54 48 27 81 36 24 144 30
N 1621¢2 _ 170951¢3 N 1775 16114247

3 B.2
18 324 70 933283 ] +O(€), (B-2)

and

67 5n 17¢z  11¢ 202 ( C2 )
9 _ I I 4 N[ 253 _ _
= <4g2 18>+ 9 +el ( 3 + D 27>+nf +27
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In order to express the gluon Regge trajectory, we define

12 )2
Klas) = =1 [ S (a:09). B3

with the perturbative expansion K =} /> K, sat. The coefficients up to third order are

K
K1:m7

€
_ 29 Bt
€ 22’
1673 4Bt + 46817 | Bive
3e 3e2 3e3
The expansion coefficients of the gluon Regge trajectory 7, can then be written as [33, 41]

e T(1-¢)’T(1+¢)2

I'(1—2¢) €’

K,

Ky = + (B.6)
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Note that since one can expand 71 = K1 + O(e), the poles of 7, are given exactly by K
defined in eq. (B.5) (see also ref. [91]).

The expressions above are also provided in electronic format in the arXiv submission
of this article.
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