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1 Introduction

The fact that the classical limit of scattering amplitudes can correctly capture black hole
dynamics, is on itself a fascinating subject irrespective of its remarkable success in appli-
cations to gravitational wave physics, which has helped brought into the spotlight since
the land mark detection by the LIGO/Virgo collaboration [9, 10]. That point-like sources
can faithfully reproduce effects of gravitational field in the weak field limit was appreciated
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long ago in the seminal work of ref. [11], where it was shown that the Schwarzschild metric
can be perturbatively reconstructed order by order in G through Feynman diagrams. This
was later bolstered by the computations of perturbative stess-energy form factors [12, 13].
Later development focused on the Post Minkowskian (PM) expansion [14–23] for conserva-
tive two-body potential of binary black holes, which can be extracted from the gravitational
scattering amplitude of massive scalars [24–27]. By matching the field theory amplitude
to effective field theory (EFT) description [28], the on-shell simplification led to rapid
progress, culminating in the state of the art 4 PM conservative potential [29–31]. As the
PM expansion is exact in velocity (v2), the results can be directly compared and matched
to the post-Newtonian (PN) expansion [32–39].

The extension to spinning black holes brings in a new angle to the correspondence. It
was already shown in the early work of refs. [40, 41] that the spinning Hamiltonian can be
captured by the scattering of elementary spinning particle. However, the absence of ele-
mentary particle beyond spin-2 casts an intriguing conundrum for the program. This was
partially overcome by the kinematic definition of minimal coupling for arbitrary spin parti-
cle [42] whose classical spin-limit (~→ 0, s→∞ and s~ held fixed) successfully reproduced
the 1 PM dynamics of Kerr black hole [43–50]. For non black hole spinning bodies, in the
PN EFT approach one introduces spins as extra degrees of freedom [51] on the worldline
for the point particle effective action, accompanied by an infinite number of spin-induced
multipole operators whose strengths are parametrised by the corresponding Wilson coeffi-
cients [52, 53]; see refs. [54–57] for recent works, ref. [58] in the context of PM EFT, and
refs. [59–61] for worldline QFT. On the amplitude side, this can be incorporated by match-
ing the Wilson coefficients to those of non-minimal couplings [46, 62], or to introduce a field
theory effective lagrangian [2]. The latter approach has been implemented at 2 PM to ob-
tain the spin-dependent part of the conservative hamiltonian up to fifth order in spin [4, 7].

In going beyond the quartic order in spin at 2 PM, from the on-shell approach one
needs the gravitational Compton amplitude for the interaction of higher spin states which
are not unique [42, 45]. A proposal utilizing appropriately conserved off-shell current was
given for spin-5/2 in ref. [63] (see ref. [64] for a compact expression of the ambiguity). When
translated to the effective field theory Lagrangian approach in ref. [2], the issue becomes
the determination of black hole Wilson coefficients at 2 PM. In a nutshell, the question is
can one identify the underlying principles that determine the Kerr black hole limit ?

A natural starting point is to examine the 1 PM dynamics and to take note of any
special aspects emerging in the Kerr limit. It was observed in ref. [65] that the change in
spin-entanglement entropy is minimized for minimal couplings, which was later identified
as the suppression of spin-flipping sector in the eikonal phase [66]. The absence of spin-
flipping sectors for the 1 PM eikonal amplitude is not surprising as minimal coupling for
massive spinning higher spins are defined such that it has optimal power counting in the
UV, which corresponds to helicity preserving interactions. Besides optimal UV behaviour,
an interesting aspect of the 1 PM potential is the presence of shift symmetry. For general
spinning bodies, the 1 PM potential depends on the spin vector through the combination
ε(q, p2, p1, S) [62], which exhibits the independence on the longitudinal part of the spin
vector along the impact parameter plane, i.e. the potential is invariant under the shift
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symmetry proposed in ref. [7],

Sµi → Sµi + ξi
qµ

q2 . (1.1)

On the other hand, preservation of this symmetry at 2 PM becomes a nontrivial constraint.
Earlier, it was noted that in the spin bilinear sector the spin-spin interaction (S1 ·S2) only
occurs through a special combination [2, 40, 67, 68]

(q · S1)(q · S2)− q2(S1 · S2) ,

which is secretly related to shift symmetry, as will be explained. This combination can be
generalised to the case where spin vectors are taken from the same body, i.e.

(q · Si)(q · Sj)− q2(Si · Sj) , (1.2)

where i = j is also allowed. It was noted in refs. [3, 4] that for 2 PM classical amplitude,
from which the conservative Hamiltonian is extracted, the black hole limit (defined by ab-
sence of tidal terms or by correct spin-quadrupole moments) is special in that the structure
eq. (1.2) appears, at least to quadratic or bilinear order in spin. A related observation is
that when the spin operators are expanded on the basis of Lorentz invariants

{(q · Si) , (pj · Si) , ε(q, p1, p2, Si)} , (1.3)

the black hole limit is special in that (q · Si) terms all vanish, at least to quartic order in
spin [5](appendix B).1 The two observations are related since the structure eq. (1.2) ap-
pears when the product ε(q, p1, p2, Si)ε(q, p1, p2, Sj) is reorganised using Levi-Civita identi-
ties. Also, the latter observation is equivalent to shift symmetry eq. (1.1); ε(q, p2, p1, S) is
manifestly invariant, while (pj ·Si) is invariant classically. Recently, these equivalent condi-
tions on the spin structures of the Hamiltonian were used with an additional assumption of
favorable high energy behaviour to fix Wilson coefficients that determine spinning-spinless
sectors at 2 PM [6–8].2

In this paper, we revisit the classical limit of the gravitational Compton amplitude
with spin effects included. The goal is twofold: on the one hand a rotating object will
induce Lense-Thirring (or gravitomagnetic frame-dragging) effects, which can rotate the
polarization plane of propagating electromagnetic or gravitational waves as in figure 1. This
effect should be visible through the classical Compton amplitude describing the scattering
of photons or gravitons off a spinning object. At the same time, the role of shift symmetry
or the distinctive spin-spin interaction in determining the black hole limit can be tested in
this context, as the amplitude will be parameterised by the worldline Wilson coefficients
for linear coupling to gravitons.

1The validity of the exponential form of the Kerr Compton amplitude used in refs. [5, 44, 47, 49, 69]
to O(S4) has been confirmed by comparing to black hole perturbation theory. The authors would like to
thank Justin Vines for sharing conclusions of their upcoming work [70].

2The authors would like to thank Kays Haddad for clarification on the relation of the spin structure
eq. (1.2) to the Kerr limit.
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Figure 1. A cartoon of gravitational Faraday effect. The polarisation direction (black double
arrow) of the electromagnetic wave propagating along the direction of the spinning axis gets
rotated (red double arrow) by the frame-dragging effect of the spinning body.

Earlier studies of gravitational Compton amplitude focused on the photon/graviton
and massive scalar system, where one is interested in the corrections to the scattering angle
(light bending) of null geodesics [71–74] and Shapiro time delay [75, 76]. An important
tool is the eikonal approximation, corresponding to large center of mass energy and small
scattering angle (s � t), where the amplitude exponentiates [77–84]. Importantly, since
the amplitude depends on the external helicity states, instead of the eikonal phase we have
the eikonal phase matrix [75, 76] δ+,+ δ−,+

δ+,− δ−,−

 = δ̄ I+αi σi , (1.4)

where we use 2 → 2 convention for the helicity states, and the matrix is written in a
manifest Hermitian form. The phases δ̄, αi, which are functions of impact parameter b and
frequency ω of the massless mode, can be perturbatively computed in powers of G. Previous
computations focused on δ̄ = (δ+,++δ−,−)/2, from which one extracts the scattering angle
and time delay, via

θ = 1
ω

∂

∂b
δ̄(b, ω), δt = ∂

∂ω
δ̄(b, ω) . (1.5)

For scalar Compton α3 = 0 due to the lack of parity violating interactions, while α1,2
was studied for the effects of higher derivative corrections to Einstein-Hilbert term, which
generate non-trivial same helicity sector at tree and one-loop [75, 76]. These helicity non-
preserving components modify circular polarisation states to elliptical polarised states.

We will compute the Compton eikonal matrix for general spinning bodies up to O(G2).
The resulting scattering angle and time delay will be a function of Wilson coefficients. In
contrast with the eikonal phase for massive scattering amplitudes, there is a new dimen-
sionless parameter in the classical regime: 1/ωb = λ/b where λ is the wavelength of the
gravitational/EM wave. Thus for spinning bodies we have a double expansion in λ/b and
a/b, where a = S/m is the spin length. From dimensional analysis, we can see that λ/b
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corrections in the classical limit only occurs at O(G2):

O(G2) : δ̄ = 15πG2m2ω

4b

[
1−(k̂2 × ~a) ·~b

3b2 +O
(
a2

b2

)]
,

α := −α3
|h|

= 5πG2m2(k̂2 · ~a)
4b3

[
1−(1+CS2)9(k̂2 × ~a) ·~b

8b2 +O
(
a2

b2

)]
, (1.6)

where k̂2 is the spatial direction of the incoming massless plane wave. Here we are giving the
result in terms of an a/b expansion. Note that LO for α3 is subleading for the individual
eikonal phase δ+,+ and δ−,−. We identify α as the rotation angle of the gravitational
Faraday effect [1, 85–92] whose name is an analogy to the magneto-optical effect bearing
the same name; for linearly polarised EM waves, the polarisation direction rotates due to
the “magnetic” background. Indeed we see that α is only present when there is a non-
zero spin and the leading linear in spin term matches with that computed using parallel
transport along null geodesics [1]. While the leading term for α is universal, the subleading
terms depend on the Wilson coefficients. We provide the result up to 14th order in spin,
for both photons and gravitons.

Note that the spin dependence in the computation of the classical Compton amplitude
stems from the product of spinning three-point amplitudes. In the black hole limit, where
one has minimal coupling, the product of two three-point amplitudes in the classical limit
can be written as  ∏

i=2,3
M3,i

 exp

− ∑
i=2,3

εµνρσ(Fi)µνp1ρSσ
2(P · εi)

 (1.7)

where
∏
iM3,i is the product of scalar three-point amplitudes, (Fi)µν = −2iki[µεi,ν] is the

field strength, and
∑
i sums over the massless legs with P representing the momentum of

the intermediate massive leg (P = −p1−k2). The expression can be derived from eq. (A.6)
of ref. [5] with zi = 1, neglecting quantum commutator terms from the BCH formula. The
expression is gauge invariant with on-shell kinematics, and a similar expression for spinning
soft factor described in terms of the field strength Fµν appeared in ref. [69]. A remarkable
property of this form is that under the shift operation in eq. (1.1), it transforms as

eq. (1.7)
∣∣∣∣
Sµ→Sµ+ξ q

µ

q2

=

 ∏
i=2,3

M3,i

 exp

− ∑
i=2,3

εµνρσ(Fi)µνp1ρSσ
2(P · εi)


× exp

(
−ξ

(
∑
i∈+ ki · q)−(

∑
j∈− kj · q)

q2

) (1.8)

where
∑
i∈+ ki sums over the momenta of positive helicity legs and

∑
j∈− kj sums over

negativity helicity. Thus one immediately sees that for helicity preserving configuration,
the product is shift invariant! For helicity non-conserving configuration, the shift would
not be an invariance, which was already observed in ref. [6]. As only the former contribute
to the 2 PM classical Compton amplitude, this suggests that it is in fact shift invariant.
We will demonstrate that this is indeed the case.
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Finally by considering the normalized quantity α3/|h| along with δ̄, one can show
that equivalence principle holds at leading order in λ/b expansion. At subleading order
in λ/b both of these properties begin to deviate. The deviations can be understood as
the eikonal limit being the geometric optics limit, where one ignores the wave nature of
electric-magnetic/gravitational waves and treat it as null rays. This is valid when the wave
length is much smaller than the impact parameter λ

b � 1. Thus expansion in λ
b would

correspond to corrections to the approximation.
This paper is organized as follows: we begin with a brief discussion of λ/b corrections to

the eikonal phase and their physical interpretation in section 2. Then in section 3 we com-
pute the O(G1) eikonal phase for general spinning body, and derive physical observables.
In section 4 , we present the computation and result for O(G2) eikonal phase.

2 General discussion of λ/b corrections

The kinematics of interest has four length scales; the Compton wavelength λC ∼ m−1

controlling the “quantumness” of the massive body, the wavelength λ = ω−1 of the massless
particle,3 the spin length a ∼ |~S|m−1 controlling the “size” of the massive body and the
impact parameter b controlling the separation. In the (classical) geometric optics regime
the scale hierarchy is4

λC � λ� a� b . (2.1)

Treating the internal nature of the massive body as quantum, the separation between
“quantum” and “classical” effects amounts to utilizing the scale hierarchy between λC and
all other scales:

λC
b
∼ ~
mb

,
λC
a
∼ ~
|~S|

,
λC
λ
∼ ~ω

m
, (2.2)

where ~ω is the energy of the massless particle of momentum. Considering that the transfer
momentum q ∼ b−1 is the Fourier dual of the impact parameter b, the classical limit
corresponds to the following ~ scaling for the variables:

qµ → ~qµ, kµ → ~kµ, Sµ → Sµ

~
, m→ m, ω → ~ω , G→ G

~
. (2.3)

Due to the separation of scale in eq. (2.1), we have two classical expansion parameters:

a

b
∼ |

~S|
mb

,
λ

b
= 1
bω

. (2.4)

Thus we will only compute the leading term in ~ → 0 limit, with the spin and energy
expansion a/|~b|, (ωb)−1 being an additional expansion in the classical regime. From now
on we will suppress ~ dependence for brevity by setting ~ = 1.

3For massless particles we consider the wavenumber four-vector k̄µ := kµ/~ as the classical quantity.
4The hierarchy λ� a is only needed for the conceptual foundation of geometric optics and is irrelevant for

any of the analyses in this paper. In terms of wavepackets, there is an additional scale hierarchy λ� ξ � b

where ξ is the wavepacket size [93]. JWK would like to thank Donal O’Connell for discussions on this point.

– 6 –



J
H
E
P
1
2
(
2
0
2
2
)
0
5
8

p1

k2 k3

p4

Figure 2. The diagram shows the configuration of the Compton amplitudes in our consideration.
The wavy line represents the massless particle and solid line is the massive spinning object. The
arrows show the directions of momentum flow.

Let’s consider the Compton amplitude where the incoming massless state (with k2)
scatters off a massive object (with momenta p1) as in figure 2. Due to vanishing/suppressed
helicity-flip amplitudes in general relativity, the outgoing massless state (with k3) will
be of the same helicity as the incoming state. The Compton amplitude of interest is
M(12±h3±h4), where h = 1, 2 denotes photon and graviton respectively. The eikonal
approximation is an all-order resummation of M4 where the amplitude is reorganised as a
phase factor iM4 = eiδ − 1, which has been extensively studied in the literature [77–84].
The eikonal phase δ(b) is obtained by Fourier transforming the 2→ 2 amplitude to impact
parameter space5

eiδ±,± − 1 :=
∫

dDq

(2π)D δ̂(2p1 · q)δ̂(2k2 · q)
[
e−ib·qiM4(12±h3±h4)

]
= i

4mω

∫
dD−2q

(2π)D−2

[
ei
~b·~qM4(12±h3±h4)

]
,

(2.5)

where δ̂(x) = 2πδ(x) and Mandelstam invariants are parametrised as:

s = (p1+k2)2 = 2mω+m2 , t = (k3−k2)2 = −|~q|2 , u = (p1−k3)2 = m2−2mω + |~q|2 . (2.6)

This parametrises ω = (p1 ·k2)/m as the frequency of the incoming massless particle in the
rest frame of p1. The transfer momentum from the massive to massless state is qµ = kµ3−k

µ
2

and its spatial part in centre of momentum (COM) frame is the three-vector ~q.

pµ1 = (
√
m2 + k2,−~k) , pµ4 = (

√
m2 + k2,−~k − ~q) ,

kµ2 = (k,~k) , kµ3 = (k,~k + ~q) ,
(2.7)

where the COM frame variable k is given by ω through the relation

(k2/m2) =
√

1 + 4(ω2/m2)− 1
2 = (ω2/m2)× [1 +O(~2)] , (2.8)

and can be considered as ω in the classical limit.
5Different definitions for the impact parameter space are also used in the literature, which is reviewed

in appendix A.
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2.1 Dimensional analysis

Before we begin, let’s first perform a dimension analysis to determine the allowed operators
that can accompany various subleading (in λ/b) corrections. Each element of the eikonal
phase matrix, which we collectively denote by δ, can be expanded as a perturbative series
in the coupling G, the spin S, and the dimensionless ratio λ/b.

δ =
∞∑
L=0

GL+1δ(L) =
∞∑
L=0

GL+1

 ∞∑
j=0

δ
(L)
Sj

aj

bj

 =
∞∑
L=0

GL+1

 ∞∑
j=0

aj

bj

( ∞∑
i=0

δ
(L,i)
Sj

λi

bi

) , (2.9)

where the superscript (L) denotes the L-loop (O(GL+1)) contribution and subscript Sn

denotes the O(Sn) contribution of the given L-loop contribution. The second subscript
i of the paired subscript (L, i) denotes subleading (λ/b)i order contribution to the given
L-loop contribution.

Let’s define M (L,0,0)
4 as the terms of the Compton amplitude M4 that determine the

leading spin-less sector δ(L,0)
S0 of the L-loop eikonal phase δ(L), andM (L,i,j)

4 as that which de-
termines (λ/b)i(a/b)j corrections (δ(L,i)

Sj ). The classical limit of background-test mass 2→ 2
scattering has only one master scalar integral (the L-loop fan integral) at each loop order,
while other remaining integrals contribute to the iteration terms required from the expo-
nentiation in the eikonal approximation [94]. Thus as long as the eikonal approximation is
valid and iteration holds, only one integral is relevant at each loop. Defining the ratio:

F(L,i,j) := M
(L,i,j)
4

M
(L,0,0)
4

, (2.10)

becomes simply the ratios of the integral coefficient of the master scalar integral, and thus
functions of Lorentz invariants (the helicity weight is cancelled in the ratio). To analyse
F(L,i,j) we first write all possible Lorentz invariants that can be constructed from kinemat-
ics. There are Mandelstam invariants which we can combine into a dimensionless expansion
parameter λ/b:6

(s−m2) ∼ mω ∼ m

λ
, t = −|~q|2 ∼ 1

b2
⇒

[
m
√
−t

s−m2

]
∼ λ

b
(2.11)

The introduction of the spin vector brings three new invariants due to the transverse con-
dition p · S = 0. The three Lorentz invariants can be combined into the independent
dimensionless expansion parameter a/b as:

(q · S) ∼ ma

b
⇒

[
q · S
m

]
∼ a

b

(n · S) ∼ m2a

λb
⇒

[
n · S

m(s−m2)

]
∼ a

b

(k2 · S) ∼ ma

λ
⇒

[√
−t(k2 · S)
s−m2

]
∼ a

b
.

(2.12)

6We ignore O(1) numerical factors in power counting analysis.
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The orthogonal vector nµ is defined as nµ = εµαβγp1αk2βqγ . These invariants form a basis
for F(L,i,j)

F(L,i,j) =
∑

α+β+γ=j
α,β,γ≥0

ci,α,β,γ

[
m
√
−t

s−m2

]i [
q · S
m

]α [ n · S
m(s−m2)

]β [√−t(k2 · S)
s−m2

]γ
, (2.13)

where ci,α,β,γ are numerical coefficients. Since F(L,i,j) is a rational function, the powers of√
−t must add up to an even number and we have the constraint i + γ ∈ 2Z. We list the

consequences of this constraint:

1. There are no λ/b corrections at O(G1). The scalar term M
(0,0,0)
4 contains a t−1 pole

prefactor. As any expansion in λ/b must be combined to form integer powers of
−t = |~q|2, the corrections will cancel the t−1 pole and result in derivatives of delta
functions in impact parameter space, which do not contribute to long range effects.

2. At O(G2), the scalar term M
(1,0,0)
4 contains a 1/|~q| prefactor from the scalar triangle

integral. The non-analytic structure of the 1/|~q| prefactor yields long range contri-
butions which cannot be cancelled by integer powers of −t, allowing arbitrary order
λ/b corrections. The condition i + γ ∈ 2Z forces odd powers of λ/b corrections to
accompany odd powers of (k2 · S), and the first λ/b correction to be at (λ/b)2 order
for spinless case (j = 0). The corrections at this order are dependent on conventions
for the eikonal phase as explained in appendix A.

As we will argue in the following, the polarisation plane rotation is an O(λ/b) correction
from the leading eikonal approximation, thus it is first observed at one-loop order. his
is consistent with the conclusion in ref. [95] that gravitational Faraday effect cannot be
observed at O(G1) order.

2.2 Subleading λ/b corrections and rotations of polarization planes

Previous studies on eikonal phases of gravitational Compton scattering mostly ignored
subleading effects in the λ/b expansion. These subleading corrections are related to the
wave-like nature of the massless particle since they depend on the wavelength λ of the
particle, but which physical properties are these terms reflecting?

To answer this question, we consider geometric optics. The propagation of light (or
gravitational wave) is treated as a classical curve where the tangent vector at each point of
the curve is normal to the wavefront. For an introduction, see e.g. section 53 of ref. [96]. We
consider the propagation of waves as a classical trajectory in the limit λ→ 0 or λ/b� 1.
Selecting a component of the wave (e.g. any component of ~E or ~B for a electromagnetic
wave) and denoting it as f , we can write an ansatz7

f = aeiψ , (2.14)

where a = a(x, t) is the amplitude of the particular component and ψ = ψ(x, t) is the
phase of the wave. ψ is called the eikonal and its derivative k̄µ = −∂µψ is regarded as the

7The terminology WKB approximation is also used in the literature for this ansatz, e.g. ref. [97].
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local wavenumber four-vector of the ray, which is normal to the wavefront and tangent to
the propagation direction [96]. Since ψ changes by 2π as one transverses one λ, the limit
λ→ 0 implies large gradient of ψ. Now recall that the wave equation is given by:

∂2f

∂xµ∂xµ
=
[

∂2a

∂xµ∂xµ
eiψ + 2i ∂a

∂xµ

∂ψ

∂xµ
eiψ + ∂2ψ

∂xµ∂xµ
f

]
− ∂ψ

∂xµ

∂ψ

∂xµ
f = 0 . (2.15)

Since ∂ψ ∼ 1
λ is large, we expect the first three terms in square brackets to be subleading

compared to the last by a factor of λ/b. Amongst the three terms in the square brackets,
since ∂a

∂xµ
is accompanied by a factor of ∂ψ

∂xµ , the subleading corrections at this order will
be dominated by the change in the wave amplitude denoted as a, which also encodes po-
larisation data. Thus if we can identify ψ with δ(b), the λ/b corrections reflect polarisation
dependence. We provide an argument in appendix B on why we can identify the eikonal ψ
in eq. (2.14) as the eikonal phase δ(b) in eq. (2.5). Indeed in section 4, our explicit results
show that

δ+,+ = δ−,− × [1 +O (λ/b)] . (2.16)

that is, the polarization dependence occurs at subleading order in λ/b.
The difference 2α3 ≡ (δ+,+ − δ−,−), which characterises the first subleading order

in λ/b, has an interpretation as the rotation angle of the polarisation plane. To see this,
consider positive and negative helicity one-particle states propagating along the z direction.
The two states will acquire opposite phases under a rotation of angle α around the z-axes,
which is simply a little group rotation.

|+〉′ → e−iαJ
12 |+〉 = e−ihα|+〉, |−〉′ → e−iαJ

12 |−〉 = e+ihα|−〉 . (2.17)

The difference of the phase gained by positive and negative helicity photons (|h| = 1) is
tied to the rotation angle of the polarisation plane α by

α = −δγ,+,+ − δγ,−,−2 . (2.18)

There is an additional factor of 2 for gravitons (|h| = 2),

α = −δg,+,+ − δg,−,−4 , (2.19)

which compensates for the spin of the graviton. We show that indeed the difference in
eikonal phase reproduces the result of ref. [1], where the polarisation plan rotation angle
was computed by considering a parallel transport along the light ray’s null geodesic. Finally,
we see that the angle can be identified with the σ3 component of the eikonal phase matrix:
α = −α3/|h|.

3 The O(G1) Compton eikonal phase for spinning objects

We begin with the O(G1) Compton eikonal phase for general spinning body. This will
allow us to introduce the setup which will carry over to the O(G2) computation in the next
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section. Furthermore, the O(G1) result will be important in checking whether the box and
the cross box contributions at O(G2) matches with the square of the former, as required
from exponentiation pattern of the eikonal amplitude.

While helicity non-preserving amplitudes are present for the Einstein-Hilbert ac-
tion [76], they are suppressed by O((λ/b)4) compared to their helicity preserving coun-
terparts, both at tree and one-loop level. As we are not interested in λ/b expansion to such
high orders, we will solely focus on helicity preserving processes.

3.1 The tree amplitude for eikonal phase

Here we will only consider the helicity conserving configuration M̃4(12+h3+h4) of the clas-
sical amplitude. Here we use ˜ to make a distinction between the classical amplitude from
“semi”-classical amplitude. From the previous discussion we’ve seen that helicity depen-
dence of the eikonal phase can only be subleading in λ/b, while dimensional analysis tells
us that such corrections start at O(G2). Thus this tell us that at O(G1), the amplitudes
M̃4(12±h3±h4) must be identical. Indeed this is verified through our explicit computation.
The gravitational coupling constant is normalised as κ =

√
32πG, where G is the Newton’s

constant.
The eikonal phase is given by the fourier transform of the Compton amplitude in the

q2 → 0 limit. At O(G1) this limit is given by the product of two three-point amplitudes,
one corresponding to graviton coupling to massive spinning and the other massless helic-
ity states. This can be extracted from the following integral formula, motivated by the
exponentiated representation for amplitudes of Kerr black holes [5, 44, 47, 49, 69]8

M s
4 = M s=0

4

∮
dz

2πiz

∑
j

CSjz
j

 exp (−iKµLνJµν) ,

Kµ = −q
µ

z
, Lµ = 〈3|σ

µ|2]
〈3|p1|2] ,

(3.1)

where the scalar factor M s=0
4 is the spin-independent part, i.e. it represents the Compton

amplitude for two massive scalar and two identical helicity state generated via a graviton
exchange. The above can be viewed as a semi-classical amplitude where the spin is taken
to the classical limit, i.e. s→∞ and ~→ 0 with ~s held fixed. Indeed taking s finite, and
CSj = 1, this reduces to the Compton amplitude for minimally coupled spinning particle [5].
FromM s

4 we can derive the fully classical amplitude M̃ by further expanding the kinematic
variables with appropriate ~ counting.

The spin factor refers to the remaining auxiliary residue integral terms in eq. (3.1),
where the contour is taken to be encircling the origin counter-clockwise. The spin factor is
motivated to capture the full t-channel (graviton pole) factorization limit, which is modified
from the spinless case by the Wilson coefficients CSn parametrising the spin-multipole
moments [45, 46, 53, 62]. In particular, the t = 0 limit can be attained by either setting
|2〉 ∝ |3〉, or |2] ∝ |3]. For the former, the scalar factor M s=0

4 factorizes to (in all incoming
8The expression is 2→ 2 continued from the 4→ 0 expression. Spinor notations follow that of ref. [45].
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convention)

−tM s=0
4 →M+h,−h,+2

3 ×M s=0
3− , (3.2)

where M+h,−h,+2
3 is the amplitude of a helicity h particle coupling to a positive helicity

graviton and M s=0
3− = −κ(p1 · ε3−)2 is the amplitude for a massive scalar coupling to a

negative helicity graviton. The spin factor in eq. (3.1) becomes

Kµ = −q
µ

z
, Lµ →

εµq−

εq− · p1
⇒ exp(−iKµLνJµν)→ exp

(
i
qµενq−Jµν

(p1 · εq−)z

)
, (3.3)

which reproduces the spin factor of eq. (B.1) in ref. [5].9 The factorisation behaviour for
the case |2] ∝ |3] can be analysed in a similar manner. Although eq. (3.1) has spurious
poles due to the factor 〈3|p1|2] in the denominator of the exponent, the spurious poles can
be resolved by terms that do not affect the t-channel pole which determines the O(G1)
eikonal phase, therefore only considering the terms in eq. (3.1) is enough to compute the
O(G1) eikonal phase.

The scalar amplitudes for massive (uncharged) scalar interacting with massless spin-|h|
states through graviton exchange are given as

M s=0
4

(κ/2)2 =



− (s− u)2

4t h = 0

− [2|p1|3〉(s− u)
2t h = 1/2

− [2|p1|3〉2

t
h = 1

[2|p1|3〉3(s− u)
2(s−m2)(u−m2)t h = 3/2

[2|p1|3〉4

(s−m2)(u−m2)t h = 2

. (3.4)

Explicit evaluation of relevant spinor contractions yield

[2|p1|3〉 = [3|p1|2〉 = 2mω

√
1−
|~q|2(1 + 2ω

m )
4ω2 = 2mω ×

[
1 +O(q2/ω2 , ~)

]
,

[23] = −〈23〉 = |~q| ,
(3.5)

up to phase factors for little group scaling, thus all scalar amplitudes in eq. (3.4) can be
treated as

M s=0
4 ' 32πGm2ω2

~q2 , (3.6)

in the eikonal phase computation, regardless of the helicity. Therefore, the classical part of
the eikonal phase at tree order and the observables derived from it are independent of the

9The |2] spinors of Lµ are interpreted as the auxiliary spinor of εµ
q− . The relative sign difference is due

to outgoing convention for q.
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~d

~k2

~a⊥

~a

Figure 3. Kinematic set-up of the vectors describing spin orientation. ~a is the spin-length vector
and ~k2 is the momentum of the incoming massless particle. ~a⊥ is the projected component of ~a
orthogonal to ~k2. The vectors ~d , ~a⊥ and ~k2 are respectively orthogonal with |~d| = |~a⊥|.

massless particle’s helicity, which can be understood as a manifestation of the equivalence
principle.

Before closing we remark that the M s
4 in eq. (3.1) for h = 2 differs from the clas-

sical gravitational Compton amplitude in eq. (B.12) of ref. [5], as the latter was further
constrained to have the correct massive factorization channel residues. However for our pur-
pose, the O(G1) eikonal phase, both yield the same result as we demonstrate in appendix C.

3.2 The O(G1) eikonal phase and observables

Following conventions of refs. [2, 4, 5], we identify the Lorentz generator Jµν as the spin
tensor Sµν = − 1

mεµναβp
α
1S

β . The exponent in the spin factor eq. (3.1) becomes

i
qµ〈3|σν |2]Sµν
z〈3|p1|2] = − i(n · S)

m2ωz
+O(|~q|2, ~1) , (3.7)

where nµ = εµαβγp1αk2βqγ and only the relevant term for O(G1) eikonal phase has been
kept. Note that the apparent spurious 〈3|p1|2] pole simply becomes ω in the q2 → 0 limit.
Furthermore, the ω → 0 limit is non-singular since nµ vanishes. Similar comment applies
to our O(G2) analysis. The classical amplitude is then given by:

M̃4|O(G1) = −32πGm2ω2

q2

∮
dz

2πiz

∑
j

CSjz
j

 exp
(
− i(n · S)
m2ωz

)
. (3.8)

To obtain the eikonal phase, we Fourier transform to impact parameter space,

δ(0)(b) = 1
4mω

∫
dD−2q

(2π)D−2

[
ei
~b·~qM̃4(q)|O(G1)

]
, (3.9)

which identifies ∇b ⇔ i~q. We define the following impact parameter space variables.

~a =
~S

m
, k̂2 =

~k2
ω
, ~d = k̂2 × ~a , ~a⊥ = ~a− (~a · k̂2)k̂2 . (3.10)

The unit vector k̂2 defines the direction orthogonal to the impact parameter space (k̂2 ·~b =
0), and ~a⊥ is the projection of the spin-length vector ~a onto the impact parameter plane
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so that ~a ·~b = ~a⊥ ·~b. Since ~d · ~a⊥ = 0, the two vectors ~a⊥ and ~d span the two-dimensional
impact parameter space. These variables are related to the spin Lorentz invariants by

− i(n · S)
m2ω

=
(
k̂2 × ~a

)
· (i~q)⇔

(
k̂2 × ~a

)
· ∇b = ~d · ∇b

− i(q · S)
m

= ~a · (i~q)⇔ ~a · ∇b = ~a⊥ · ∇b
k2 · S
mω

⇔ −k̂2 · ~a

(3.11)

The tree order eikonal phase δ(0) can be obtained from the tree amplitude eq. (3.1) by
expanding eq. (2.5) to leading coupling order,

δ(0)(b) = 1
4mω

∮
dz

2πiz

∑
j

CSjz
j

∫ dD−2q

(2π)D−2

[
ei[~b+(~d/z)]·~qM̃ s=0

4 (q)
]
, (3.12)

where the order of integration has been changed, and the exponent has been simplified
using eq. (3.7). Inserting eq. (3.6) and performing the Fourier integral in D = 4 leads to
the eikonal phase

δ(0)(b)− δ(0)
IR = −

(
κ

2

)2 mω

2π

∮
dz

2πiz

∑
j

CSjz
j

 log
∣∣∣∣∣~b+

~d

z

∣∣∣∣∣
= −2Gmω

[
2 log b+ 2~d ·~b

b2
+ CS2

(
−2(~d ·~b)2

b4
+ d2

b2

)

+ CS3

(
8(~d ·~b)3

3b6 − 2(~d ·~b)d2

b4

)

+ CS4

(
−4(~d ·~b)4

b8
+ 4(~d ·~b)2d2

b6
− d4

2b4

)
+ · · ·

]
, (3.13)

δ
(0)
IR = −4Gmω

4−D (3.14)

where we have separated the IR divergence δ(0)
IR . Setting all Wilson coefficients to Kerr

value CSn = 1 the residue integral localises to z = 1 and we obtain the eikonal phase
eq. (5.32) of ref. [98], reproduced below.

δ
(0)
Kerr(b)− δ

(0)
IR = −4Gmω log |~b+ ~d| .

The time delay can be computed from eq. (3.13) using eq. (1.5), where the IR scale b0 � b
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was introduced as the reference so that the time delay becomes a finite quantity [75, 76]

δt(0) = −
(
κ

2

)2 m

2π

∮
dz

2πiz

∑
j

CSjz
j

 log
∣∣∣∣∣~b+

~d

z

∣∣∣∣∣
= −2Gm

[
2 log b

b0
+ 2~d ·~b

b2
+ CS2

(
−2(~d ·~b)2

b4
+ d2

b2

)

+ CS3

(
8(~d ·~b)3

3b6 − 2(~d ·~b)d2

b4

)

+ CS4

(
−4(~d ·~b)4

b8
+ 4(~d ·~b)2d2

b6
− d4

2b4

)
+ · · ·

]
. (3.15)

The conventional scattering angle is not well-defined in presence of spin, as the motion is no
longer restricted to lie on the orbital plane. One way to proceed is to define the scattering
angle θ as a vectorial quantity ~θ that is directed along the direction of the impulse [99].
The impulse for the massless probe ~q can be computed from the eikonal via

~q = ∇bδ(b) , (3.16)

therefore the vectorial scattering angle ~θ is given as

~θ := ∇bδ̄(b, ω)
|~k2|

= 1
ω
∇bδ̄(b, ω) , (3.17)

since the size of the incoming momentum ~k2 is ω. The vectorial scattering angle is

~θ(0) = −
(
κ

2

)2 m

2π

∮
dz

2πiz

∑
j

CSjz
j

 ~b+ ~d/z

|~b+ ~d/z|2

= −4Gm
[
~b

b2
+
(
~d

b2
− 2(~d ·~b)

b4
~b

)
− CS2

(
2(~d ·~b)2

b4
~d+ b2d2 − 4(~d ·~b)2

b6
~b

)

+ CS3

(
4(~d ·~b)2 − b2d2

b6
~d+ 4(~d ·~b)(b2d2 − 2(~d ·~b)2)

b8
~b

)

+ CS4

(
4(~d ·~b)(b2d2 − 2(~d ·~b)2)

b8
~d

+ b4d4 − 12b2d2(~d ·~b)2 + 16(~d ·~b)4

b10
~b

)
+ · · ·

]
. (3.18)

Calculation of O(G2) scattering angle requires a modified equation suggested in ref. [2] as
eq. (7.15), but since the scattering angle is not the main focus of this paper the calculations
will be omitted.
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1

2 3

4
`

(a) triangle

1

2 3

4
`

(b) box

1

2 3

4

`

(c) crossed box

Figure 4. The cut diagrams relevant to classical physics. The thick sold lines, wavy lines and
double wavy lines represent massive spinning bodies, massless particles and gravitons, respectively.
The cut propagators are labeled by the red dotted lines. 1 and 2 are ingoing, 3 and 4 are outgoing,
and ` labels the loop momentum.

4 The O(G2) eikonal phase and observables

In this section, we compute the O(G2) eikonal phase for massless helicity states scattering
of a general spinning body. Expanding l.h.s. of eq. (2.5) to O(G2) yields two terms.

eiδ − 1
∣∣∣
O(G2)

= iδ(1) −

[
δ(0)

]2
2 . (4.1)

The matching terms on the r.h.s. of eq. (2.5) is the one-loop (O(G2)) amplitude, which can
be expanded on a basis of master scalar integrals, whose coefficients can be computed via
generalized unitarity methods [100–104]. Only the scalar triangle integral with one massive
propagator I4 and the box integrals I� and I ./ are relevant for the classical limit [12]

M̃4
∣∣∣
O(G2)

= [c4 I4 + c� I� + c ./ I ./]
∣∣∣
~→0

. (4.2)

The other triangle topology, which requires the Compton amplitude for evaluation, only
contains massless propagators and become irrelevant in the classical limit. Thus, the kine-
matical setup allows us to compute higher spin orders without encountering any spurious
singularities. The contributions from the box integrals, c�I� + c ./I ./, are known to repro-
duce the iteration terms of the eikonal phase, −[δ(0)]2/2 [83, 84]. Therefore for computing
the one-loop eikonal phase δ(1) it suffices to compute the triangle coefficient c4. However,
to check consistency, we will also compute the box and cross box coefficients and study
exponentiation. Interestingly, the exponentiation is manifest only if we assume black hole
values for the spin coupling.

We will give the leading (λ/b) corrections from the triangle coefficient as an expansion
in the spin a/b. This will capture the classical gravitational Faraday effect, and reproduce
the linear in spin term computed via null geodesic parallel transport computation in
ref. [1]. We will give the subleading in a/b corrections up to a14. The O(G2) eikonal
phase also provides a consistency test to the proposed universal spin-tensor structure
conjectured in ref. [6] (and equivalently shift symmetry in ref. [7]) in the black hole limit
for the scattering phase.
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4.1 Extraction of scalar integral coefficients

It will be more convenient to use the triple cut of the loop integrals as the seed to compute
the triangle, box and crossed box coefficients. The triple cut can be used to extract the
triangle coefficient and, by imposing one more cut condition, can lead to quadruple-cuts
to generate the box and crossed box coefficients. In our case, the triple-cut is formed
by gluing a massless-massless-graviton-graviton amplitude to a product of two three-point
graviton-massive-massive amplitudes together.

Here we list the relevant tree amplitudes with the ingoing momenta of 1 and 2 and
outgoing momenta 3 and 4. The explicit form of the massless-massless-graviton-graviton
amplitude is

MEH
4 (1+h, 2+2, 3+2, 4+h) =

(
− [24]

[12]

)4−2h [12]4〈34〉4

stu
, (4.3)

where ±h are the helicities of the massless particles. The product of two three-point
graviton-massive-massive amplitudes can be found in ref. [5],

C4(1s, 2+, 3+, 4s) ≡ M3(1s, 2+, P )M3(−P, 3+, 4s) = − [2|p1|3〉4

t2
S{++}(1, 2, 3, 4) , (4.4)

C4(1s, 2−, 3+, 4s) ≡ M3(1s, 2−, P )M3(−P, 3+, 4s) = −〈23〉4

t2
S{−+}(1, 2, 3, 4) , (4.5)

where P = p1 + k2 and

S{++}(1, 2, 3, 4) =
∮ ∏

k=1,2

dzk
2πizk

(∑
m

CSmz
m
k

)
e
−i
(
v1
z1

+ v2
z2

)
, (4.6)

S{−+}(1, 2, 3, 4) =
∮ ∏

k=1,2

dzk
2πizk

(∑
m

CSmz
m
k

)
e
−i
(
v1
z1
−
v∗2
z2

+ v3
z1z2

)
, (4.7)

v1 = −i(k2 · S) , v2 = − i
[
(2m2 − t)(k2 · S) + 2m2(q · S) + 2i(n · S)

]
2m2 ,

v3 = −it(k2 · S) + 2(n · S)
2m2 ,

v∗2 is the complex conjugate of v2 and the irrelevant quantum contributions from f(x) factor
in ref. [5] were omitted. The O(Sn) contribution is obtained by expanding the exponential
to O(Sn), and then performing the auxiliary zk integrals.

According to the triple-cut diagram shown in figure 4, the cut conditions are

`2 = ` · p1 = 0 , 2` · q = −q2 . (4.8)

Also, the triple-cut involves two types of cuts, depending on whether the two cut gravitons
have equal helicity. For external helicity h < 2 only the opposite helicity cut is non-
vanishing, while for gravitons, the equal helicity is non-vanishing for the helicity non-
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preserving case:

C
{h}
{++} =

∑
h′=±2

C4(1sa , `+h′ ,−`+h′1 , 4sa)MEH
4 (2+h, `−h

′

1 ,−`−h′ , 3+h)

∣∣∣∣∣∣
eq.(4.8)

= [−tr− (k3`p1`1)]4−2h

t3(2`1 · k3)(2` · k3)

[tr− (k2`p1`1k3p1)
[3|p1|2〉

]2h
S{++}(1, `,−`1, 4)

+ (` ←→ `1)
∣∣∣∣
eq.(4.8)

, (4.9)

C
{h=2}
{−+} =

∑
h′=±2

C4(1sa , `−h′ ,−`+h′1 , 4sa)MEH
4 (2−2, `−h

′

1 ,−`+h′ , 3+2)
∣∣∣∣
eq.(4.8)

= m4〈23〉4t
(2` · k3)(2`1 · k3)S{−+}(1, `,−`1, 4) + ( ` ←→ `1 )

∣∣∣∣
eq.(4.8)

, (4.10)

C
{h 6=2}
{−+} = 0 , (4.11)

where `1 = −` − q, tr−(. . . ) = 1
2tr[(1 − γ5) . . . ] and the subscripts denote the sign of

{h2, h3}. As mentioned before, we will use these triple-cuts to compute all the relevant
integral coefficients in the following subsections.

4.1.1 Extraction of box and crossed box coefficients

The box coefficient can be computed from the quadruple cut using unitarity meth-
ods [100–104]. We can impose one more cut condition (see figure 4) ` · k2 = 0 to get the
box cut or ` · k3 = 0 to get the crossed box cut. For each quadruple cut, there are two
solutions to loop momentum which solve the cut conditions. We use the loop momentum
parametrisation of ref. [2] to compute the quadruple cut, with small modifications to
account for masslessness of kµ2 .

`µ = αpµ1 + βkµ2 + γqµ + δηµ ,

ηµ = 〈p[1|σµ|k2] , p[1 = p1 −
m

2ωk2 .
(4.12)

p[1 is a null vector computed using Mandelstam parametrisations eq. (2.6). The solutions
to the cut conditions,

`2 = p1 · ` = k2 · ` = 0 , q · ` = −q
2

2 , (4.13)

are given as

`µ− = − q2

2q · ηη
µ , `µ+ = −(2q2ω)pµ1 + 2q2(m+ ω)kµ2 − 4mω2qµ

mq2 + 2q2ω + 4mω2 + q2

2q · ηη
µ . (4.14)

The coefficient of the box integral can be computed as an average over the two loop
momentum solutions `± ,

c
{h}
�,+± = 1

2
∑
`=`±

[
C+±
� (`,−`1)S{+±}(1, `,−`1, 4) + C+±

� (`1,−`)S{+±}(1, `1,−`, 4)
]
`·k2=0

,

(4.15)
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where C±+
� is the part of [C{±+}(−2` · k2)]`·k2=0 without the spin factor S{±+}. The

(helicity factor stripped) crossed box coefficient can be obtained from that of the box by
the substitution k2 → −k3, k3 → −k2, h2 → −h3, and h3 → −h2. For example,

c
{h}
�,++

(〈3|p1|2])h

∣∣∣∣∣∣
±k2↔∓k3

=
c
{h}

./,−−
(〈2|p1|3])h . (4.16)

Similar relations hold for other helicity sectors such as c{h}�,+− and c{h}./,++.

4.1.2 Extraction of triangle coefficients

For the triple-cut as shown in figure 4, the cut-satisfied loop momentum can be
parametrized as

`µ± = −
(

t

t− 4m2

)
pµ1 +

(
2m2

t− 4m2

)
qµ + zPµ± +

[
m2t

4γ±(t− 4m2)

]
Qµ±
z
, (4.17)

where the ± labels two independent solutions for the cut conditions and

γ± = 1
2

(
−t±

√
t(t− 4m2)

)
. (4.18)

The explicit forms of P and Q are not important but they satisfy the following relations

P 2
± = Q2

± = P± · p1 = P± · q = Q± · p1 = Q± · q = 0 , P± ·Q± = 2γ± , (4.19)

which imply a useful formula for the loop computation,

Pµ±Q
ν
± = γ±η

µν + 4γ±
t− 4m2

[
pµ1p

ν
1 + m2qµqν

t
+ pµ1q

ν + qµpν1
2 − i(2m2 + γ±)

2γ±
εµνρσ(p1)ρqσ

]
.

(4.20)
By averaging the residues of the triple-cut with loop momentum solutions eq. (4.17) at
z =∞, we can obtain the triangle coefficients c{h}{+,±}, formally as,

c
{h}
{+,±} = 1

2Resz=∞

∑
`=`±

C
{h}
{+±}(`)

 . (4.21)

Note that for the helicity preserving case, we can rewrite eq. (4.9) as

C
{h}
{+,+} = −

( [2`]
[3`]

)2h tr [(1− γ5)k3`p1`1]4 S{++}(1, `,−`1, 4)
t3(2` · k3)(2`1 · k3)

∣∣∣∣
eq.(4.8)

+ (`←→ `1) . (4.22)

In the leading order in (q/ω)-expansion, [2`] ' [3`], so C{h}{+,+} is independent of |h| and this
can be understood as a manifestation of the equivalence principle. However, in the sublead-
ing order C{h}{+,+} is no longer |h| independent and the equivalence principle ceases to apply.
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4.2 Eikonal phase and its exponentiation

The main contribution to tree order eikonal phase matrix comes from helicity preserving
processes, therefore studying c++

� is enough for checking exponentiation. The box coeffi-
cient for the helicity non-preserving case c+−

� either vanishes (|h| < 2) or is suppressed by
O((q/ω)4) compared to c++

� (|h| = 2) which is beyond the regime where exponentiation
holds.

An interesting behaviour of the quadruple cut eq. (4.15) is that only one helicity
configuration contributes to each loop momentum solution `+ and `−, thus the sum over
all cut solutions and intermediate massless states becomes a sum over two terms

c
{h}
�,++ = 1

2
[
C++
� (`+,−`1+)S{++}(1, `+,−`1+, 4)

+C++
� (`1−,−`−)S{++}(1, `1−,−`−, 4)

]
`·k2=0

, (4.23)

where the spin factors are

S{++}(`±) =
∮ ∏

k=1,2

 dzk
2πizk

∑
j

CSjz
j
k

 eibµν± Sµν , (4.24)

where S{++}(`+) and S{++}(`−) refer to the spin factors appearing in the first and second
line of (4.23) respectively. Note that the spin factors S{++}(`±) are distinct. By using the
loop momentum solutions (4.14) and the explicit form of spin factor (4.6) subjected to the
cut conditions the exponent of the spin factor can be reorganised as

ibµν± Sµν = −
( 1
z1

+ 1
z2

)
i(n · S)
2m2ω

∓
( 1
z1
− 1
z2

) (q · S)
2m +O(|~q|2, ~1) , (4.25)

where the subleading classical terms of order O(|~q|2~0) have been omitted, since they do
not contribute to exponentiation. However, the distinct spin factors can be reorganised
into a common factor that can be pulled out from the sum eq. (4.23), due to the symmetry
of the auxiliary integrals in zk; bµν+ becomes bµν− to the order considered in eq. (4.25), when
exchanging the auxiliary variables z1 ↔ z2 for the cut solution `+. The full box coefficient
is now a product of the common spin factor and the scalar factor c++

� , (s=0), which is the
box integral coefficient for the massive scalar-massless scattering.

c
{h}
�,++ =

∮ ∏
k=1,2

 dzk
2πizk

∑
j

CSjz
j
k

 eibµνSµν × c++
� , (s=0)

[
1 +O(|~q|2, ~1)

]
,

c++
� , (s=0) = C++

� (`+,−`1+) + C++
� (`1−,−`−)

2 ,

(4.26)

where we have omitted the subscript in bµν− = bµν for brevity. Up to the considered order,
the spin factor eibµνSµν is the same spin factor eq. (C.2) of the gravitational Compton
amplitude eq. (C.1).

Applying the rules (4.16) to eq. (4.26) yields the factorised form of the crossed box
coefficient

c++

./ =
∮ ∏

k=1,2

 dzk
2πizk

∑
j

CSjz
j
k

 eibµνSµν × c++

./ , (s=0)

[
1 +O(|~q|2, ~1)

]
. (4.27)
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The box coefficient and the crossed box coefficient for the massive scalar are equal in the
classical limit, i.e.

c++

./ , (s=0) = c++
� , (s=0)

[
1 +O(~1)

]
, c++

� , (s=0) = 16(κ/2)4m4ω4
[
1 +O(|~q|2, ~1)

]
, (4.28)

which means the sum of eq. (4.26) and eq. (4.27), the full box topology contribution, also
factorises into the spin factor and the scalar factor,

[
c++
� I� + c++

./ I ./

]
=
∮ ∏

k=1,2

 dzk
2πizk

∑
j

CSjz
j
k

 eibµνSµν × c++
� , (s=0) [I� + I ./] , (4.29)

up to subleading O(|~q|2, ~1) terms, which are irrelevant for exponentiation. The validity
of approximating box integral contributions by eq. (4.29) has been explicitly checked up
to O(S4) order; the difference between the classical box and the classical crossed box
coefficient for a specified spin sector appears at quantum subleading order

c++

./ = c++
� ×

[
1 +O

(
~1
)]

. (4.30)

The difference between c++
� and c−−� , which signifies breaking of exponentiation as α3 = 0

at tree order, appears at O((q/ω)3) subleading order.

c−−� = c++
� ×

[
1 +O

(
(q/ω)3, ~1

)]
. (4.31)

The difference term should be added as corrections to one-loop eikonal phase, corresponding
to NLO for α (contributions to α(1,1)). Moreover, the O(|~q|2~0) subleading classical terms
of the spin factor eq. (4.25) also results in terms not captured by exponentiation. These
terms yield NLO corrections to δ̄ (contributions to δ̄(1,1)).

In impact parameter space, eq. (4.29) scales as ∝ ω2 and provides the iteration term of
tree eikonal phase [76]. In particular the non-spinning part can be matched to the square
of the tree-eikonal phase:

c++
� , (s=0) [I� + I ./]⇔ −

[δ(0)
S0 (b)]2

2 . (4.32)

The full spinning contribution in impact parameter space can be written as

[
c++
� I� + c++

./ I ./

]
⇔
∮ ∏

k=1,2

 dzk
2πizk

∑
j

CSjz
j
k

 eibµνSµν ×
− [δ(0)

S0 (b)]2

2

 , (4.33)

where the spin factor exponent is a derivative operator

ibµνSµν =
( 1
z1

+ 1
z2

) ~d · ∇b
2 +

( 1
z1
− 1
z2

)
i(~a⊥ · ∇b)

2 , (4.34)

acting on the “square” of non-spinning tree eikonal phase. Computation of O(Sn) terms
follow the same procedure of computing the box coefficients; the exponential is expanded
to O(Sn), the zk auxiliary integrals are performed, and then the derivative operators ∇b
are evaluated.
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Note that for general Wilson coefficients the resulting expression will be different from
“squaring” the tree eikonal phase eq. (3.13). For example, the finite part is different for
the O(S2) term[

c++
� I� + c++

./ I ./ +
[δ(0)(b)]2

2

]
O(S2)

= 4G2m2ω2((~a⊥ ·~b)2 − (~d ·~b)2)
b4

(CS2 − 1) . (4.35)

where for the l.h.s. we’ve taken the quadratic in spin part of the difference between the
box contribution and the square of tree eikonal phase.

Such mismatch similarly occurs for higher spin orders. In the Kerr limit CSj = 1 the
spin factor simplifies to

∮ ∏
k=1,2

 dzk
2πizk

∑
j

CSjz
j
k

 eibµνSµν CSj→1
→ exp

(
− i(n · S)

m2ω

)
⇔ exp

(
~d · ∇b

)
, (4.36)

which is a constant shift by ~d = k̂2 × ~a in impact parameter space. This is consistent
with the fact that the tree eikonal phase for Kerr is obtained from the spinless case by a
constant shift in impact parameter space [98],

δ
(0)
Kerr(~b) = δ

(0)
Scalar(~b+ ~d) , (4.37)

and exponentiation becomes manifest. The fact that the exponentiation of the eikonal
phase correctly captures the eikonal limit of the amplitude only for black hole, or equiva-
lently minimal coupling, is reminiscent of similar statement for g = 2 in exponentiation of
electromagnetic scattering [105–108].

4.3 Results

We are interested in the helicity-preserving parts of the eikonal phase in the classical limit,
which we decompose as

δ̄ := δ+,+ + δ−,−
2 , α := δ−,− − δ+,+

2|h| . (4.38)

The superscripts and subscripts for δ(b) defined in eq. (2.9) will be used to denote the
same perturbative expansions of δ̄ and α. As explained in section 2.2, α is identified as the
polarisation plane rotation angle. For all spin sectors we find

α

δ̄
∼ O

( 1
ωb

)
, (4.39)

confirming the expectation eq. (2.16) based on geometric optics analysis.
The leading order terms of δ̄ and α have the dependence

LO : δ̄LO ∼
G2m2ω

b
, αLO ∼

G2m2

b2
(4.40)

where each is multiplied by dimensionless combinations of spin vectors, impact parameter
and momenta. The results are independent of helicity, which can be understood as the
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non-vanishing coefficients in BH limit vanishing coefficients in BH limit

Z2,1 = 1 + CS2 Z2,2 = 1− CS2

Z3,1 = 3CS2 + CS3 Z3,2 = CS2 − CS3

Z4,1 = 3C2
S2 + 4CS3 + CS4

Z4,3 = C2
S2 − CS4

Z4,4 = 3C2
S2 − 4CS3 + CS4

Z5,1 = 10CS2CS3 + 5CS4 + CS5
Z5,2 = 2CS2CS3 − CS4 − CS5

Z5,3 = 2CS2CS3 − 3CS4 + CS5

Z6,1 = 10C2
S3 + 15CS2CS4 + 6CS5 + CS6

Z6,2 = 2C2
S3 + CS2CS4 − 2CS5 − CS6

Z6,3 = 10C2
S3 − 15CS2CS4 + 6CS5 − CS6

Z6,4 = 2C2
S3 − CS2CS4 − 2CS5 + CS6

Table 1. The table provides the specific combination of Wilson coefficients used in the results of
δ̄ and α. Note that Z4,2 appears in [7] which does not appear in our results.

equivalence principle in the geometric optics limit. In the Kerr limit CSn = 1, we find
that only particular spin structures appear, which can be connected to the shift symmetry
eq. (1.1) considered by Bern et al. [7]. Furthermore, the leading terms δ̄LO were checked
to be consistent with eq. (5.38) of ref. [98]. We report triangle coefficients cLO together
with δ̄LO and αLO to O(S6) in the main text, and report higher spin order terms in the
ancillary file.

The NLO terms have the dependence

NLO : δ̄NLO ∼
G2m2

b2
, αNLO ∼

G2m2

b3ω
, (4.41)

which do not depend on |h|; the equivalence principle still holds. However, the NLO
terms are purely imaginary in impact parameter space, and new spin structures that are
inconsistent with the shift symmetry eq. (1.1) appear in the Kerr limit. Together with the
triangle coefficients cδ̄/α, we also report residual contributions from box topology cδ̄/α� that
contribute to δ̄NLO and αNLO, up to O(S2) in the main text and to O(S4) in appendix D.

4.3.1 Leading order

The triangle coefficients are normalised by iM4 = (κ/2)4c4I4 + · · · . Our results can be
summarized into the defined coefficient average cδ̄ = c+++c−−

2 and coefficient difference
cα = c−−−c++

2|h| . Both cδ̄ and cα are independent of |h| at this order.
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To linear order in spin,

cS1

δ̄,LO = 20im2ω(n · S) , cS1
α,LO = 5m3q2(k2 · S) ,

δ̄S1
LO = −5πG2m2ω(~d ·~b)

b3
, αS1

LO = 5πG2m2(k̂2 · ~a)
4b3 ,

(4.42)

where α matches with the null geodesic parallel transport computation of ref. [1].
At quadratic order in spin

cS2

δ̄,,LO = 5
16
{
Z2,1

[
19(n · S)2 + 7m2q2(k2 · S)2

]
+ 12Z2,2m

2ω2(q · S)2
}
,

δ̄S2
LO = 5πG2m2ω

64

{
Z2,1

[
19
(

3(~d ·~b)2 − d2b2

b5

)
− 7(k̂2 · ~a)2

b3

]

+12Z2,2

[
3(~a ·~b)2 − a2

⊥b
2

b5

]}
,

cS2
α,LO = −15iZ2,1mq

2(n · S)(k2 · S)
8ω , αS2

LO = −45Z2,1πG
2m2(k̂2 · ~a)(~d ·~b)

32b5 . (4.43)

At cubic order in spin

cS3

δ̄,LO = − i(n · S)
8m2ω

[
Z3,1

{
9(n · S)2 + 7m2q2(k2 · S)2

}
+ 20Z3,2m

2ω2(q · S)2
]
,

δ̄S3
LO = −3πG2m2ω(~d ·~b)

32

{
Z3,1

[
9
(

5(~d ·~b)2 − 3d2b2

b7

)
− 7

(
(k̂2 · ~a)2

b5

)]

+20Z3,2

[
5(~a ·~b)2 − a2

⊥b
2

b7

]}
,

cS3
α,LO = −q

2(k2 · S)
96mω2

[
Z3,1

{
39(n · S)2 − 7m2q2(k2 · S)2

}
+ 60Z3,2m

2ω2(q · S)2
}
,

ᾱS3
LO = 3πG2m2(k̂2 · ~a)

128

{
Z3,1

[
13
(

5(~d ·~b)2 − d2b2

b7

)
+ 7(k̂2 · ~a)2

b5

]

+20Z3,2

[
5(~a ·~b)2 − a2

⊥b
2

b7

]}
. (4.44)

At quartic order in spin

cS4

δ̄,LO = −1
1536m4ω2

{
Z4,1

[
294m2q2(n · S)2(k2 · S)2 − 21m4q4(k2 · S)4 + 239(n · S)4

]
+ 60Z4,3m

2ω2(q · S)2
[
19(n · S)2 + 7m2q2(k2 · S)2

]
+ 120Z4,4m

4ω4(q · S)4
}
,

δ̄S4
LO = 3πG2m2ω

256

{
7Z4,1

4

[
−7 (k̂2 · ~a)2

(
5(~d ·~b)2 − d2b2

b7

)

− 3(k̂2 · ~a)4

2b5 + 239
42

(
35(~d ·~b)4 − 30(~d ·~b)2d2b2 + 3d4b4

b9

)]
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+ 5Z4,3
2

[
−7 (k̂2 · ~a)2

(
5(~a ·~b)2 − a2

⊥b
2

b7

)

+ 19
(

35(~a ·~b)2(~d ·~b)2 − 5(~a ·~b)2d2b2 − 5(~d ·~b)2a2
⊥b

2 + d2a2
⊥b

4

b9

)]

+ 5Z4,4

[
35(~a ·~b)4 − 30(~a ·~b)2a2

⊥b
2 + 3a4

⊥b
4

b9

]}
, (4.45)

cS4
α,LO = iq2(n · S)(k2 · S)

384m3ω3

{
Z4,1

[
23(n · S)2 − 7m2q2(k2 · S)2

]
+ 90Z4,3m

2ω2(q · S)2
}
,

αS4
LO = −5πG2m2(k̂2 · ~a)(~d ·~b)

512

{
Z4,1

[
23
(

7(~d ·~b)2 − 3d2b2

b9

)
+ 21(k̂2 · ~a)2

b7

]

+90Z4,3

[
7(~a ·~b)2 − a2

⊥b
2

b9

]}
. (4.46)

At quintic order in spin

cS5

δ̄,LO = i(n ·S)
768m6ω3

{
Z5,1

[
−3m4q4(k2 ·S)4 +22m2q2(k2 ·S)2(n ·S)2 +13(n ·S)4

]
+12Z5,2m

2ω2(q ·S)2
[
7m2q2(k2 ·S)2 +9(n ·S)2

]
+40Z5,3m

4ω4(q ·S)4
}
,

δ̄S5
LO =−5πG2m2ω(~d ·~b)

1024b11

{
Z5,1

[
−9b4(~k2 ·~a)4 +22(~k2 ·~a)2

(
3b4d2−7b2(~d ·~b)2

)
+13

(
−70b2d2(~d ·~b)2 +63(~d ·~b)4 +15b4d4

)]
+12Z5,2

[
7(~k2 ·~a)2

(
a2
⊥b

4−7b2(~a ·~b)2
)
−189(~a ·~b)2

(
b2d2−3(~d ·~b)2

)
+9a2

⊥b
2
(
3b2d2−7(~d ·~b)2

)]
−120Z5,3

(
14a2
⊥b

2(~a ·~b)2−21(~a ·~b)4−a4
⊥b

4
)}

,

cS5
α,LO = q2(k2 ·S)

15360m5ω4

{
Z5,1

[
9m4q4(k2 ·S)4−50m2q2(k2 ·S)2(n ·S)2 +105(n ·S)4

]
+20Z5,2m

2ω2(q ·S)2
[
39(n ·S)2−7m2q2(k2 ·S)2

]
+200m4ω4Z5,3(q ·S)4

}
,

αS5
LO = 15πG2m2(~k2 ·~a)

4096b11

{
Z5,1

[
9b4(~k2 ·~a)4−10(~k2 ·~a)2

(
b4d2−7b2(~d ·~b)2

)
+21

(
−14b2d2(~d ·~b)2 +21(~d ·~b)4 +b4d4

)]
−4Z5,2

[
7(~k2 ·~a)2

(
a2
⊥b

4−7b2(~a ·~b)2
)

+91(~a ·~b)2
(
b2d2−9(~d ·~b)2

)
−13a2

⊥b
2
(
b2d2−7(~d ·~b)2

)]
+40Z5,3

(
a4
⊥b

4−14a2
⊥b

2(~a ·~b)2 +21(~a ·~b)4
)}

. (4.47)

At sextic order in spin

cS6

δ̄,LO = 1
491520m8ω4

{
Z6,1

[
33m6q6(k2 · S)6 − 345m4q4(k2 · S)4(n · S)2

+1615m2q2(k2 · S)2(n · S)4 + 745(n · S)6
]

− 40Z6,2m
2ω2(q · S)2

[
21m4q4(k2 · S)4 − 294m2q2(k2 · S)2(n · S)2 − 239(n · S)4

]
+ 320Z6,3m

6ω6(q · S)6 + 400Z6,4m
4ω4(q · S)4

[
7m2q2(k2 · S)2 + 19(n · S)2

] }
,
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δ̄S6
LO = −15πG2m2ω

131072b13

{
Z6,1

[
33b6(~k2 · ~a)6 − 69(~k2 · ~a)4

(
b6d2 − 7b4(~d ·~b)2

)
+ 323(~k2 · ~a)2

(
−14b4d2(~d ·~b)2 + 21b2(~d ·~b)4 + b6d4

)
+149

(
−105b4d4(~d ·~b)2 + 315b2d2(~d ·~b)4 − 231(~d ·~b)6 + 5b6d6

)]
+ 8Z6,2

[
98(~k2 · ~a)2

(
a2
⊥b

4
(
b2d2 − 7(~d ·~b)2

)
− 7(~a ·~b)2

(
b4d2 − 9b2(~d ·~b)2

))
− 21(~k2 · ~a)4

(
a2
⊥b

6 − 7b4(~a ·~b)2
)

+ 239
(
a2
⊥b

2
(
−14b2d2(~d ·~b)2 + 21(~d ·~b)4 + b4d4

)
−7(~a ·~b)2

(
−18b2d2(~d ·~b)2 + 33(~d ·~b)4 + b4d4

))]
+ 64Z6,3

[
−105a4

⊥b
4(~a ·~b)2 + 315a2

⊥b
2(~a ·~b)4 − 231(~a ·~b)6 + 5a6

⊥b
6
]

+ 80Z6,4
[
19
(
−14a2

⊥b
2(~a ·~b)2

(
b2d2 − 9(~d ·~b)2

)
+ 21(~a ·~b)4

(
b2d2 − 11(~d ·~b)2

)
+a4
⊥b

4
(
b2d2 − 7(~d ·~b)2

))
+ 7(~k2 · ~a)2

(
−14a2

⊥b
4(~a ·~b)2 + 21b2(~a ·~b)4 + a4

⊥b
6
)]}

,

cS6
α,LO = − iq

2(k2 · S)(n · S)
737280m7ω5

{
3600Z6,4m

4ω4(q · S)4

+ Z6,1
[
81m4q4(k2 · S)4 − 290m2q2(k2 · S)2(n · S)2 + 465(n · S)4

]
+ 240Z6,2m

2ω2(q · S)2
[
23(n · S)2 − 7m2q2(k2 · S)2

] }
,

αS6
LO = −105πG2m2(~k2 · ~a)(~d ·~b)

65536b13

{
Z6,1

[
27b4(~k2 · ~a)4 − 58(~k2 · ~a)2

(
b4d2 − 3b2(~d ·~b)2

)
+31

(
−30b2d2(~d ·~b)2 + 33(~d ·~b)4 + 5b4d4

)]
+ 16Z6,2

[
23
(
(~a ·~b)2

(
33(~d ·~b)2 − 9b2d2

)
+ a2
⊥b

2
(
b2d2 − 3(~d ·~b)2

))
(4.48)

−7(~k2 · ~a)2
(
a2
⊥b

4 − 9b2(~a ·~b)2
)]

+ 240Z6,4
[
a4
⊥b

4 − 18a2
⊥b

2(~a ·~b)2 + 33(~a ·~b)4
]}

.

4.3.2 Subleading order

The residuals from the box contribution not cancelled by iteration of tree contribute to
subleading δ̄ and α. The coefficients are normalised by iM4 = (κ/2)4c�[I� + I ./] + · · ·
with coefficient average cδ̄� = c++

� +c−−�
2 and coefficient difference cᾱ� = c−−� −c++

�
2|h| . All integral

coefficients (cδ̄, cα, cδ̄�, and cα�) are independent of |h| at this order.
Note that δ̄ and α are purely imaginary at this order, which are written as a sum of

two terms. The first part containing π is from the triangle coefficients and the secont part
without π is from the box coefficients. The box coefficient contributions were obtained by
removing O(ω2) terms corresponding to “squaring” of the tree eikonal phase.

At linear order in spin

c S1

δ̄,NLO = 0 , c̄ S1, δ̄
�,NLO = 4im2q2ω(n · S) , δ̄ S1

NLO = 0 + i

[
8G2m2(~d ·~b)

b4

]
,

c S1
α,NLO = 5m3q2(q · S)

2 , c S1, α
�,NLO = 2m3q4(k2 · S) ,

α S1
NLO = i

[
15πG2m2(~a ·~b)

8b5ω

]
− i

[
8G2m2(k̂2 · ~a)

b4ω

]
. (4.49)
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At quadratic order in spin

c S2

δ̄,NLO = 35(1 + CS2)m2q2(q · S)(k2 · S)
16 ,

c̄ S2, δ̄
�,NLO = q2 (CS2 + 1)

(
m2q2(k2 · S)2 + 2(n · S)2

)
,

δ̄ S2
NLO

iG2m2 = −105(1 + CS2)π(k̂2 · ~a)(~a ·~b)
64b5 +

4(CS2 + 1)
[
b2a2 − 4(~d ·~b)2

]
b6

,

c S2
α,NLO = −15i(1 + CS2)mq2(q · S)(n · S)

16ω ,

c S1, α
�,NLO = − imq

4 (CS2 + 1) (k2 · S)(n · S)
ω

,

ω α S2
NLO

iG2m2 = −225(1 + CS2)π(~a ·~b)(~d ·~b)
64b7 + 16(CS2 + 1)(~d ·~b)(k̂2 · ~a)

b6
. (4.50)

a2 = d2 + (k̂2 · ~a)2 = a2
⊥ + (k̂2 · ~a)2 has been used to simplify δ̄ S2

NLO.

4.4 Discussions: equivalence principle, spin structures and massless limits

In the geometric optics limit, the observables considered in this paper—the observables
eq. (1.5) derived from δ̄ and the rotation angle α—has geometric interpretations in classical
general relativity which do not depend on worldline degrees of freedom. This means the
observables do not depend on the details of the particle, which can be understood as a
manifestation of the equivalence principle. For the computations considered in this paper,
the equivalence principle is realised as the independence of δ̄ and α from helicity |h| of
the massless particle. The term equivalence principle will be used to denote this helicity
independence when referring to eikonal phase variables.

Since λ/b is the classical expansion parameter that parametrises deviations from the
geometric optics limit, we expect the equivalence principle to be obeyed by δ̄ and α at
leading order in λ/b. Indeed this is the case. The LO δ̄ and α obeys the equivalence
principle, at least up to one-loop order. The general expectation is that the equivalence
principle for δ̄ and α is broken at sufficiently high orders in λ/b, since the corrections in
λ/b can be interpreted as wave property corrections to the point particle approximation;
the equivalence principle only applies to the strict point particle limit where tidal effects
can be neglected, while a characteristic property of waves is that they cannot be localised
to a point. Interestingly, the equivalence principle is still obeyed at NLO for both δ̄ and α.

Spin structures. As mentioned in the introduction, the product of the two three point
amplitudes transform nicely under the spin-shift eq. (1.1) in the black hole limit. In
particular, this suggests that the 2PM classical Compton amplitude is invariant. Let us
verify this explicitly.

All LO triangle coefficients cδ̄,LO and cα,LO have the special property that their depen-
dence on (q · S) vanish in the Kerr limit CSj → 1. That is, projecting the spin-vector on
the basis of

{(q · S) , (k2 · S) , (n · S)}, (4.51)
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only the latter two appears. In the all massive setup relevant for the 2PM potential, similar
phenomenon was observed, which lead to the conclusion that the result is invariant under
the spin-shift. Indeed while (n · S) is manifestly invariant under the shift, the change
in (p2 · S1) is a quantum effect: (p2 · S1) ∼ O(~−1) is shifted by p2·q

q2 ∼ O(~0) where

we’ve used momentum conservation (pj · q) = ±q2/2; (pj ·q)/q2

(pj ·Si) = O(~1), thus the shift is
a quantum effect and the classical result is invariant. In our massless-massive setup one
naively encounters a violation of this symmetry. This is because the term (k2 · S) ∼ O(~0)
shifts as k2·q

q2 ∼ O(~0), i.e. it is shifted by a classical effect. This observation poses a puzzle
as the LO triangle coefficient is not shift invariant, but the integrand used to compute it
was manifestly shift invariant.

The apparant paradox is resolved when NLO triangle coefficients are also included in
the analysis. The NLO triangle coefficients all contain a factor of (q ·S), which is manifestly
not shift invariant. However, the terms arising from the shift (q · S) → (q · S) + ξ is no
longer subleading in the λ/b expansion, and the shift-generated terms of both the LO and
NLO triangle coefficients are of the same order in the λ/b expansion. Explicit calculations
show that the two terms cancel, and the shift symmetry is restored by the interplay of LO
and NLO triangle coefficients.

As a concrete example, consider triangle coefficients at linear order in spin.

cS1

δ̄,LO = 20im2ω(n · S) , cS1
α,LO = 5m3q2(k2 · S) , c S1

α,NLO = 5m3q2(q · S)
2 . (4.52)

Under the shift eq. (1.1) each coefficient transforms as

cS1

δ̄,LO → cS1

δ̄,LO ,

cS1
α,LO → cS1

α,LO −
5m3q2

2 ξ1 ,

c S1
α,NLO → c S1

α,NLO + 5m3q2

2 ξ1 ,

(4.53)

and shift-generated terms cancel due to the interference between LO and NLO contribu-
tions. Similar behaviour can be observed for terms of higher order in spin or λ/b expansion.

Leading order terms as the massless limit. It is known that the leading order δ̄LO
can be obtained as the massless limit of the massive case.10 Denoting the massive eikonal
phase as χ, the explicit map is

δ̄LO = lim
m2→0

χSn1 S0
2

∣∣∣
m2σ=ω

. (4.54)

The subscript denotes that we substitute σ = ω/m2 and then take the m2 → 0 limit. We
also find that αLO can be obtained as the massless limit of the massive case. We first align
the spin of the massive probe particle m2 so that the probe particle has a well-defined
helicity. In the rest frame of m1, we can write the relevant four-vectors as

pµ1 = (m1,~0) , pµ2 = (ω, kẑ) , Sµ2 = (hk/ω, hẑ) , (4.55)
10JWK would like to thank Francesco Comberiati and Leonardo de la Cruz for pointing this out.
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where ω2 = (k2 +m2
2) and h is the helicity defined by h = ~p2·~S2

|~p2| . The aligned configuration
sets n · S2 = 0, and “factoring” the helicity h by setting p1 · S2 = −m1σ we find that α
corresponds to the massless limit of χS1

2
.11

αLO = lim
m2→0

χSn1 S1
2

∣∣∣
m2σ=ω , n·S2=0 , p1·S2=−m1ω

m2

. (4.56)

The limit has been found by comparing to the results given in appendix B of ref. [5]. It
would be interesting to link the NLO imaginary terms of the eikonal phase variables to
massive eikonal phase.

Purely imaginary NLO terms. Both δ̄NLO and αNLO are purely imaginary in impact
parameter space. Imaginary terms of the eikonal phase are usually interpreted as signs of
non-conservative effects such as dissipation or radiation [94, 109–113]. However, the purely
imaginary NLO terms δ̄NLO and αNLO cannot be interpreted this way, as 2→ 2 scattering
at one-loop order is purely elastic. On the other hand, the imaginary term is NLO in λ/b,
which is the order the wave amplitude a correction enters the geometric optics eikonal ψ as
can be seen in eq. (2.15). Therefore a possible interpretation is that the imaginary terms
encode (de)amplification of the waves due to spin of the massive body, which may have
connections with polarising effects discussed in section 3.3 of ref. [98].

5 Conclusion

In this paper, we derive the O(G2) eikonal phase of graviton and photons scattering of
general spinning objects. This corresponds to the classical limit of the one-loop amplitude,
which in terms of scalar integral basis is given by the scalar triangle integral. We extract
its coefficient by computing the triple cut, which is the product of massless four-point
amplitude and two massive spinning three-point amplitudes. From the result we extract
the leading order gravitational Faraday effect, α := −α3/|h| for polarized electromagnetic
and gravitational waves, which is given as an expansion in the ratio of spin-length and
impact parameter, a/b. While the linear term for Kerr black hole matches with result
in [1], we provide the result for general spinning body up to 14th order in spin.

In computing the 2PM eikonal phase, the contribution from the box and cross-box
nicely reproduces the square of the 1 PM eikonal phase in the Kerr-limit, indicating that
the exponentiation correctly captures the eikonal limit amplitude. This is no longer true for
general Wilson coefficients. Such observation appears to be consistent with long known re-
sult that for electromagnetic scattering [105–108], the amplitude only exponentiates for g =
2. However this appears to render the extraction of classical observables for neutron stars
from eikonal amplitude challenging. We leave the resolution of this issue to future work.

In black hole limit, the O(G2) eikonal phase is invariant under the shift transformation
of the spin vector eq. (1.1) [6–8], whose origin can be traced back to the exponentiated
form of the product of spinning three-point amplitudes. As discussed in the introduction,

11This scaling keeps Pauli-Lubanski vector Wµ
2 = − 1

2 ε
µαβγk2αJβγ = m2S

µ
2 finite in the massless limit.
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for O(G2) calculation the spin factor gets multiplied by a factor of

exp
(
−ξ

(
∑
i∈+ ki · q)−(

∑
j∈− kj · q)

q2

)
(5.1)

which is in general non-unity. Beyond O(G2), one would have to consider the product of n
three-point amplitudes in the cut, where n ≥ 3. We expect the simple form of eq. (5.1) to be
generalised for arbitrary multiple products of three-point amplitudes, when the calculations
are reformulated in the framework such as HEFT [94, 114]/HPET [49, 68] where massive-
massless coupling vertices are treated in a homogeneous manner. If the expectation is
indeed the case, then the simplicity of the violation brings hope that one can write down
the explicit form of the “anomaly”, by inserting this factor into the unitarity cuts. We
leave this for future exploration.

Finally we find that at LO in λ/b the eikonal phase is universal between photons and
gravitons, while deviation occurs at NNLO. Given that the expansion in λ/b is an expansion
around the geometric optics approximation, the violation can be interpreted as the break-
down of eikonal approximation. Indeed we see that at this order, the overall box topology
contribution no longer matches the square of the tree eikonal phase as required from ex-
ponentiation. It would be interesting nonetheless to explore whether sensible observables
can be extracted from these terms.
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A Eikonal phase normalisation

We examine the different conventions and resulting differences in the definition of the
eikonal phase. In the 2 → 2 convention for the T -matrix element M4, where S = 1 + iT ,
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the definitions for the eikonal phase used in the literature generically takes the form

eiδ(b) − 1 :=
∫

dDq

(2π)D (2π)δ[V · q] (2π)δ[W · q] e−ib·q iM4

=
∫

dD−2q

(2π)D−2
i√

|V 2W 2 − (V ·W )2|

[
ei
~b·~qM4(q)

]
,

(A.1)

where qµ = pµ3 −p
µ
2 and different definitions differ by the vectors V µ andWµ used to define

the impact parameter space. For strict exponentiation of the classical terms at the diagram
level the vectors are defined as [94]

V = p4 + p1 , W = p3 + p2 , (A.2)

and the independent variable is average three-momentum ~̄p. The geometric interpretation
of eikonal variables in figure 1 of ref. [115] becomes natural for this choice of V µ and Wµ.
In centre of momentum (COM) frame the momenta are given as

pµ1 =
(√

m2
1 + ~̄p2 + ~q2/4,−~̄p+ ~q/2

)
, pµ4 =

(√
m2

1 + ~̄p2 + ~q2/4,−~̄p− ~q/2
)
,

pµ2 =
(√

m2
2 + ~̄p2 + ~q2/4, ~̄p− ~q/2

)
, pµ3 =

(√
m2

2 + ~̄p2 + ~q2/4, ~̄p+ ~q/2
)
,

(A.3)

with ~̄p · ~q = 0. The square of the Jacobian factor is

(V ·W )2 − V 2W 2 = 16|~̄p|2
[√

m2
1 + ~̄p2 + ~q2/4 +

√
m2

2 + ~̄p2 + ~q2/4
]2
. (A.4)

For both massive case (m1 6= 0 and m2 6= 0) we rescale ~q → ~~q. Only the q-dependent
terms carry extra powers of ~2 and the terms can be dropped in the classical limit.

(V ·W )2 − V 2W 2 = 16|~̄p|2
[√

m2
1 + ~̄p2 +

√
m2

2 + ~̄p2
]2

+O(~2) . (A.5)

For m2 = 0 we rescale ~̄p→ ~~̄p and ~q → ~~q. The classical limit is given as

(V ·W )2 − V 2W 2 = 16~2m2
1|~̄p|2

[
1 +O(~2)

]
. (A.6)

When comparing with the Mandelstam parametrisation using ω, we have the relation

~m1ω = p1 · p2 ⇒ ω = |~̄p|
√

1 + ~q2

4~̄p2

[
1 +O(~1)

]
. (A.7)

Therefore to the first subleading order in q/ω or q/p̄, the two ratios can be considered equal
q/ω = q/p̄× [1 +O((q/p̄)2)].

We use a simpler prescription used in the literature [76, 84]

V = 2p1 , W = 2p2 , (V ·W )2 − V 2W 2 = 16m2
1m

2
2

(
σ2 − 1

)
, (A.8)
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where σ := p1·p2
m1m2

. A slightly different parametrisation for the COM frame momenta is
more useful for this prescription:

pµ1 =
(√

m2
1 + ~p2,−~p

)
, pµ4 =

(√
m2

1 + ~p2,−~p− ~q
)
,

pµ2 =
(√

m2
2 + ~p2, ~p

)
, pµ3 =

(√
m2

2 + ~p2, ~p+ ~q

)
,

(A.9)

which yields the squared Jacobian factor

(V ·W )2 − V 2W 2 = 16m2
1m

2
2

(
σ2 − 1

)
= 16|~p|2

[√
m2

1 + ~p2 +
√
m2

2 + ~p2
]2
, (A.10)

which is exact. In the classical limit, this factor is equivalent to the factor eq. (A.5) up
to the loop order considered in this paper if p̄ is identified with p. For m2 = 0 the factor
simplifies to

(V ·W )2 − V 2W 2 = 16~2m2
1ω

2 , (A.11)

which gives the normalisation factor used in eq. (2.5). The difference of normalisation
factors eq. (A.6) and eq. (A.11) starts at O((q/ω)2) order, therefore the two prescriptions
are indistinguishable up to the first subleading order in q/ω.

B Linking eikonal phase to geometric optics

We present an argument why the eikonal phase δ(b) can be identified as the geometric
optics eikonal ψ, which can be viewed as a simplified version of the arguments presented
in ref. [116]. A related approach is to identify the eikonal phase as the Hamilton’s princi-
pal function for the massive case [31, 94, 117, 118]. We also comment that Hamiltonian
mechanics was developed from the correspondence between the eikonal and Hamilton’s
principal function.

To build the connection, we identify the field component f in eq. (2.14) as the following
matrix element in a specified gauge, e.g. radiation gauge

aeiψ = f = 〈~p′|Aµ(x)|~p;~k, ε〉 , (B.1)

where ~p is the momentum of the incoming massive particle, ~p′ is the momentum of the
outgoing massive particle, and ~k is the momentum of the incoming photon with polarisation
ε. This matrix element can be converted to 2 → 2 scattering amplitude of a photon
scattering off a massive particle by the LSZ reduction formula

M4(p; k, ε; k′, ε′; p′) =
∫
ddxeik

′
µx
µ [ε′µ]∗∂ν∂ν〈~p′|Aµ(x)|~p;~k, ε〉 , (B.2)

which can be “inverted” to obtain an asymptotic form of the matrix element in eq. (B.1)

〈~p′|Aµ(x)|~p;~k, ε〉 '
∫

ddk′

(2π)d ε
′
µM4(p; k, ε; k′, ε′; p′) e−ik′µxµ , (B.3)
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where A4 is the scattering amplitude. The “sum” over k′ can be decomposed as a sum over
transferred momentum q = k′ − k and the “forward momentum” k̄ = (k + k′)/2, which we
set as k̄µ = (ω, k̄z ẑ). Combining with the identification eq. (B.1), eq. (B.3) is then recast as

aeiψ '
∫
dωdk̄z
(2π)2

∫
dd−2q

(2π)d−2 J e−i(ωt−k̄zz)
[
ei
~b·~qM4(q)

]
. (B.4)

where ~b is the impact parameter space coordinate12 and J denotes the unimportant terms;
the on-shell condition deltas, the Jacobian, and the polarisation vector. Note that the sign
of the Fourier factor ei~b·~q originates from the positive frequency plane wave factor e−ik′µxµ

with outgoing momentum k′ = k + q. Using eq. (2.5), eq. (B.4) can be recast as

eiψ+[log a] '
∫
dωdk̄z
(2π)2 [δo-s] e−i(ωt−k̄zz)+iδ(b)+[logN ′] , (B.5)

where N ′ = J/N is a slowly varying factor and δo-s gives the on-shell conditions. In other
words, we can approximate the eikonal ψ of geometric optics as

ψ(t, z,~b)− i[log a] ' −ωt+ k̄zz + δ(~b)− i[logN ′] . (B.6)

where terms in the square brackets are “small” compared to other terms. The polarisation
dependence is given by the ratio ∂[log a]/∂ψ, and estimating the amplitude variation
length scale as ∂[log a] ∼ b−1 we have the ratio ∂[log a]/∂ψ ∼ λ/b.

C Simplifying the spin factor for long-distance physics

The ansatz for the classical amplitude, eq. (3.1), is tailored to correctly capture the t-
channel residue. While the t-channel is the only physical channel for h ≤ 1, this is no
longer true for h > 1 and s- and u-channels will also become physical. For example,
the gravitational Compton amplitude eq. (B.12) of ref. [5], reproduced below with 2 → 2
continuation from 4→ 0, has a different spin factor from eq. (3.1).

M s
4 = M s=0

4

∮ ∏
k=1,2

 dzk
2πizk

∑
j

CSjz
j
k

 exp
(
−iK̄µLνJµν

)
,

K̄µ = kµ2
z1
− kµ3
z2
, Lµ = 〈3|σ

µ|2]
〈3|p1|2] .

(C.1)

The scalar factor As=0
4 is the h = 2 case of eq. (3.4), and the integration contours of the spin

factor encircle the origins z1,2 = 0 counter-clockwise. While the spin factor is motivated
to capture the s- and u-channel poles, it also correctly captures the t-channel pole. This
is because in the |2〉 ∝ |3〉 limit (|2] ∝ |3] limit) the vector Lµ becomes proportional to kµ2
(kµ3 ), so the z1 (z2) dependence of K̄µ drops out and the spin factor of eq. (C.1) effectively
reduces to that of eq. (3.1).

The gravitational Compton amplitude eq. (C.1) was motivated by the fact that all
physical channel poles are correctly captured, therefore it will only differ from the “real”

12In this case, the coordinate values of xµ in eq. (B.3) except the time t and z component.
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Compton amplitude by unknown polynomial terms, at least up to O(J4) since there are no
spurious poles. Since polynomial terms become (derivatives of) Dirac delta interactions in
impact parameter space and thus cannot affect long-distance physics, it is concluded that
the amplitude eq. (C.1) correctly captures the long-distance physics of graviton scattering
from a spinning compact object. The conclusion poses a mystery; while eq. (3.1) is linear
in Wilson coefficients, eq. (C.1) is quadratic. How can their long-distance behaviours be
equivalent?

In fact, there is a nontrivial cancellation for eq. (C.1) and the long-distance behaviour
reduces to that of eq. (3.1). To simplify the analysis, we recast the spin factor exponent
of eq. (C.1) in a form similar to eq. (3.7). Substituting the Lorentz generator Jµν by the
spin tensor Sµν and using the definition qµ = kµ3 − k

µ
2 ,

−iK̄µLνSµν = −
( 1
z1

+ 1
z2

)
i(n · S)
2m2ω

+
( 1
z1
− 1
z2

) (q · S)
2m +O(|~q|2, ~1) . (C.2)

Due to the antisymmetry of z1 and z2, any terms with odd powers of (q · S) become
irrelevant and only even powers of (q ·S) need to be considered. The even powers of (q ·S)
can be traded for even powers of (n · S)

[(q · S)
m

]2
=
[
− i(n · S)

m2ω

]2
+O(q2) , (C.3)

which is equivalent to the relation (~d ·∇b)2 = a2
⊥∇2

b− (~a⊥ ·∇b)2 in impact parameter space.
The Laplacian cannot contribute to the long-distance behaviour at tree level, therefore it
can be ignored in the analysis.

We now focus on the (effective) coefficient of (n · S)N term when the exponentials in
eq. (3.1) and eq. (C.1) are expanded to O(SN ) order. We will ignore the irrelevant (N !)−1

factor from the exponential function in both cases. For eq. (3.1) we get

∮
dz

2πiz

∑
j

CSjz
j

(− i(n · S)
zm2ω

)N
= CSN

(
− i(n · S)

m2ω

)N
. (C.4)

For eq. (C.1) the expansion is rather involved, as all even power contributions from (q · S)
must be included. Using the binomial theorem, collecting even powers of (q ·S), and using
eq. (C.3) to reorganise the expression as (n · S)N , the relevant O(SN ) term from eq. (C.1)
can be written as

∮ ∏
k=1,2

 dzk
2πizk

∑
j

CSjz
j
k

 gN (z1, z2)
(
− i(n · S)

m2ω

)N
,

gN (z1, z2) := 1
2N
bN/2c∑
M=0

(
N

2M

)( 1
z1

+ 1
z2

)N−2M ( 1
z1
− 1
z2

)2M
,

(C.5)
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where bxc is the floor function. The sum in gN (z1, z2) can be explicitly evaluated.

gN (z1, z2) = 1
2N

N∑
J=0

1 + (−1)J

2

(
N

J

)( 1
z1

+ 1
z2

)N−J ( 1
z1
− 1
z2

)J

= 1
2N+1

[
N∑
J=0

(
N

J

)( 1
z1

+ 1
z2

)N−J ( 1
z1
− 1
z2

)J

+
N∑
J=0

(
N

J

)( 1
z1

+ 1
z2

)N−J ( 1
z2
− 1
z1

)J]

= 1
2

(
1
zN1

+ 1
zN2

)
.

(C.6)

Therefore eq. (C.5) becomes

∮ ∏
k=1,2

 dzk
2πizk

∑
j

CSjz
j
k

( 1
2zN1

+ 1
2zN2

)(
− i(n · S)

m2ω

)N
= CSN

(
− i(n · S)

m2ω

)N
,

(C.7)
which is the same as eq. (C.4). In conclusion, the ansatz eq. (3.1) may be used in place of the
“correct” gravitational Compton amplitude eq. (C.1) for evaluating O(G1) eikonal phase.

D Eikonal phase at NLO to O(S4)

The relation a2 = d2 + (k̂2 · ~a)2 = a2
⊥ + (k̂2 · ~a)2 was used to simplify some expressions.

D.1 Cubic order in spin

c S3

δ̄,NLO = −7iq2(3CS2 + CS3)(q · S)(k2 · S)(n · S)
8ω , (D.1)

c̄ S3, δ̄
�,NLO = − iq

2(n · S)
2m2ω

[
(CS3 + 3CS2){m2q2(k2 · S)2 + (n · S)2}

+(CS2 − CS3)m2ω2(q · S)2
]
, (D.2)

δ̄ S3
NLO

iG2m2 = 105π(3CS2 + CS3)(k̂2 · ~a)(~d ·~b)(~a ·~b)
32b7

+ 4(~d ·~b)
b8

[
(CS3 + 3CS2)

{
6(~d ·~b)2 − b2(d2 + 2a2)

}
−(CS2 − CS3)

{
b2a2
⊥ − 6(~a ·~b)2

}]
, (D.3)

c S3
α,NLO = −q

2(q · S)
64mω2

[
(3CS2 + CS3)

{
13(n · S)2 − 7m2q2(k2 · S)2

}
− 20 (CS3 − CS2)m2ω2(q · S)2

]
, (D.4)

c̄ S3, α
�,NLO = −q

4(k2 · S)
(
(CS2 − CS3)m2ω2(q · S)2 + (CS3 + 3CS2)(n · S)2)

4mω2 , (D.5)
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ω α S3
NLO

iG2m2 = −75π(~a ·~b)
64b9

[
(CS3 − CS2) {7(~a ·~b)2 − 3a2

⊥b
2}

− (3CS2 + CS3)
20

{
21(k̂2 · ~a)2b2 + 13

(
7(~d ·~b)2 − d2b2

)}]
+ 4(k̂2 · ~a)

b8

[
(CS3 + 3CS2)

{
b2d2 − 6(~d ·~b)2

}
+(CS2 − CS3)

{
b2a2
⊥ − 6(~a ·~b)2

}]
. (D.6)

D.2 Quartic order in spin

c S4

δ̄,NLO = −7q2(q · S)(k2 · S)
256m2ω2

[
10(C2

S2 − CS4)m2ω2(q · S)2

+(3C2
S2 + 4CS3 + CS4)

{
7(n · S)2 −m2q2(k2 · S)2

}]
, (D.7)

c̄ S4, δ̄
�,NLO = − q2

24m4ω2

[
(CS4 + 4CS3 + 3C2

S2)(n · S)2
{

2(n · S)2 + 3m2q2(k2 · S)2
}

+ 3(C2
S2 − CS4)m2ω2(q · S)2

{
2(n · S)2 +m2q2(k2 · S)2

}]
, (D.8)

δ̄ S4
NLO

iG2m2 = −105π(k̂2 · ~a)(~a ·~b)
512b9

[
5 (C2

S2 − CS4) {7(~a ·~b)2 − 3a2
⊥b

2}

+
(3C2

S2 + 4CS3 + CS4)
2

{
3(k̂2 · ~a)2b2 + 7

(
7(~d ·~b)2 − d2b2

)}]

− 2
b10

[
(C2

S2 − CS4)
{

6(~a ·~b)2(8(~d ·~b)2 − b2a2) + b2a2
⊥(b2a2 − 6(~d ·~b)2)

}
+(CS4 + 4CS3 + 3C2

S2)
{
b4d2a2 − 6b2(~d ·~b)2(d2 + a2) + 16(~d ·~b)4

}]
, (D.9)

c S1
α,NLO = iq2(q · S)(n · S)

768m3ω3

[
(3C2

S2 + 4CS3 + CS4)
{

23(n · S)2 − 21m2q2(k2 · S)2
}

+ 90(C2
S2 − CS4)m2ω2(q · S)2

]
, (D.10)

c̄ S4, α
�,NLO = iq4(k2 · S)(n · S)

24m3ω3

[
(CS4 + 4CS3 + 3C2

S2)(n · S)2

+ 3m2ω2(C2
S2 − CS4)(q · S)2

]
, (D.11)

ω α S4
NLO

iG2m2 = −105π(~d ·~b)(~a ·~b)
512b11

[
45 (C2

S2 − CS4) {3(~a ·~b)2 − a2
⊥b

2}

+
(3C2

S2 + 4CS3 + CS4)
2

{
21(k̂2 · ~a)2b2 + 23

(
3(~d ·~b)2 − d2b2

)}]

+ 4(k̂2 · ~a)(~d ·~b)
b10

[
(CS4 + 4CS3 + 3C2

S2)
(
8(~d ·~b)2 − 3b2d2

)
− 3(C2

S2 − CS4)
(
b2a2
⊥ − 8(~a ·~b)2

)]
. (D.12)
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