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1 Introduction

The origin of neutrino mass and the nature of dark matter are two pieces of well-established
evidence for physics beyond the standard model (SM). Among various beyond SM scenarios
an attractive route is to correlate these two seemingly separate problems and solve them
within the same theoretical framework. In this respect the scotogenic model [1] provides
a nice example that can explain the origin of neutrino mass and dark matter (DM) in a
single simple framework, with the introduction only of three Z2-odd right-handed singlet
fermions N and one Z2-odd scalar doublet η on top of the SM content. The main merit
of the model is that neutrinos gain radiative mass from interactions with particles in the
dark sector. The lightest of the latter is stable due to the presumed exact Z2 symmetry,
and thus potentially serves as a DM candidate. Since it was first proposed in 2006, the
model has attracted a lot of attentions from various phenomenological aspects including
the lepton flavor violating (LFV) golden modes µ→ eγ, 3e and µ–e conversion in nuclei [2–
7], the scalar DM scenario [8–11], the fermionic WIMP and FIMP DM cases [12–16], the
running effect of neutrino masses [17] and the neutrino mass matrix textures [18], low
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scale leptogenesis [16, 19, 20], the signals at hadron and lepton colliders [14, 21, 22] and in
gravitational waves [23], and the LFV Z and Higgs boson decays [24], etc.

Nevertheless, there is no definite signature so far for the predicted particles on the
observational side. It then looks natural to assume that the new particles lie well above the
SM electroweak scale to be inaccessible to current high energy colliders. This motivates us
to study their indirect effects on low energy observations by working with an effective field
theory (EFT) in which they are integrated out. The standard model effective field theory
(SMEFT) is tailored exactly for this purpose. It is a low energy effective field theory for
SM particles below some new physics scale. In this framework the SM interactions appear
as the leading term in a systematic series expansion, and the effects from new physics at
a high scale are incorporated as suppressed high-dimensional operators and modifications
to the SM parameters. The most appealing feature of SMEFT is perhaps its universality.
It contains exclusively the SM fields which are governed by the SM gauge symmetries but
is otherwise not constrained. Different high scale new physics will be reflected in Wilson
coefficients (WCs) and their interrelations. In the past years, the bases of complete and
independent high dimensional operators have been built for the SMEFT up to dimension
nine (dim-9) [25–33]. To apply the SMEFT to low energy phenomenology, one evolves it
to the electroweak scale with the help of SMEFT renormalization group equations (RGE),
matches it with the low energy effective field theory (LEFT) at the electroweak scale, and
further evolves the latter to the experimental scale via the LEFT RGEs where one finally
calculates the physical observables. In this way, low energy experimental data can be
employed complementarily to constrain physics in the ultraviolet (UV).

An important task in this approach is the matching of a UV theory onto the SMEFT
at the UV scale. Assuming the UV theory is perturbative, the matching is a double
expansion, one in the number of loops and the other in the inverse power of the heavy
scale. The tree-level matching can be easily done by solving the classical equations of
motion (EoM) for the heavy fields followed by a low energy expansion to the desired
order. However, in some cases interesting phenomenology (like flavor changing neutral
currents) arises as a loop effect or precision data demands an improved theoretical analysis,
so that one-loop matching becomes more and more relevant. Confronted with this, the
recently developed functional matching via the effective action is a tailor-made method
to achieve this goal [34–44]. Unlike the diagrammatic approach, the matching is done
by calculating some functional supertraces without computing Feynman diagrams one by
one for a designed set of amplitudes. Some (semi-)automatic tools have been developed
to facilitate this job for the tree-level matching [45–47] and one-loop matching [43, 47–
49]. One-loop matching has recently been practiced for several UV models, such as the
three tree-level seesaws [50–54], the Zee model [51], leptoquark models [51, 55, 56], and
others [57–63].

Considering rich phenomenology of the scotogenic model and null experimental searches
for new heavy states, it is plausible to take the above EFT approach to investigate its low
energy effects by treating both N and η as heavy states. It turns out that the existence of Z2
symmetry implies no tree-level matching to the SMEFT. Then we investigate its one-loop
matching up to dim-7 operators. The direct result of functional evaluation is organized in
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the so-called Green basis with a handful of operators whose origin can be relatively easily
tracked from the diagrammatic picture. To recast the result in terms of the standard dim-
5 Weinberg operator [25], the dim-6 Warsaw basis [26] and the dim-7 basis [29] (further
improved in [64]), some manipulations have to be made of the SM equations of motion
(EoM), integration by parts (IBP) and the Fierz identities (FI).

The rest of the paper is organized as follows. In section 2 we review the basic ingredients
of the functional matching in effective field theory. Section 3 is a brief introduction of the
scotogenic model as well as our notational convention. In section 4 we consider the one-loop
matching for the scotogenic model to the SMEFT, and show our main result in both Green
and standard bases. The phenomenological analysis together with brief comparisons to the
literature is included in section 5. In section 6, we draw our conclusions. Supplementary
materials presented in the appendices include the collection of the SMEFT operator bases
up to dimension 7 in appendix A, the calculation of the supertrace for four-lepton operators
in appendix B, and the reduction of operators from the Green basis to the standard basis
in appendix C.

2 Basics of functional matching

For a UV field theory, whether fundamental or effective, with a hierarchical field spectrum,
we collectively denote the heavy and light (scalar, fermion, or vector) fields as Φ and φ,
respectively, with a mass hierarchy mΦ � mφ. The low energy dynamics for light particles
can be calculated either from the UV Lagrangian LUV(Φ, φ) consisting of both heavy and
light fields, or from the EFT Lagrangian LEFT(φ) consisting only of light fields. In matching
calculation LUV(Φ, φ) is supposed to be known while LEFT(φ) is searched for. To reproduce
the low-energy physics of LUV(Φ, φ), LEFT(φ) has to be carefully determined from LUV(Φ, φ)
by integrating out Φ and performing a matching calculation. Conventionally, this matching
is done by designing judiciously a complete set of amplitudes, computing them in both
theories and equating them to determine the Wilson coefficients in LEFT(φ) which depend
on the parameters associated with Φ. The main drawback of this diagrammatical matching
is that one has to first determine the correct basis of operators at each dimension for the
sought LEFT(φ) and compute amplitudes twice. The procedure necessarily involves infrared
physics of light particles which however eventually does not enter LEFT(φ) itself, causing
unnecessary complications.

A more elegant approach is the functional matching in the path integral formalism [34–
44]. The starting point is the identification of one-particle-irreducible (1PI) generating
functionals ΓEFT[φ] = ΓL

UV[φ] at the matching scale mΦ. Here ΓL
UV[φ] is computed in the

UV theory and irreducible only to the light field φ while ΓEFT[φ] is computed in the EFT.
This identification is made in a double expansion, one in the inverse power expansion of
mΦ and the other in the number of loops. At the tree order, this is easy: one solves in
the UV theory the classical EoM for Φ = Φc[φ] in terms of the light field φ which is a
functional, and makes the inverse power expansion in mΦ to turn it into an infinite series
of local functions Φ = Φc(φ). Substituting it into LUV(Φ, φ) yields the answer:

Ltree
EFT (φ) = LUV(Φc(φ), φ). (2.1)
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To perform one-loop matching, let us start on the EFT side whose Lagrangian is

LEFT(φ) = Ltree
EFT (φ) + L1-loop

EFT (φ) + · · · , (2.2)

where the dots stand for higher-loop contributions and L1-loop
EFT (φ) is what we are seeking.

The above contributes to the one-loop 1PI generating functional in two manners,

Γ1-loop
EFT [φ] =

∫
ddx L1-loop

EFT (φ) + i

2STr[ln(HEFT)], (2.3)

where the second term arises from one-loop diagrams formed with interactions defined in
Ltree

EFT (φ). The supertrace (STr) includes a minus sign for fields that are quantized as a
Grassmanian field. In the path integral formalism, it results from the Gaussian integral
with the Hessian matrix being

HEFT(x, y) = δ2Stree
EFT [φ]

δφ̄(x)δφ(y)
, (2.4)

where Si
a [ϕ] =

∫
ddz Li

a(ϕ(z)) denotes the action in d dimensional spacetime at the i order
in the a theory for the field ϕ. (A global factor of µd−4 has been suppressed for brevity
where µ is the usual renormalization scale.) To count correctly independent degrees of
freedom, the fields have been arranged in a self-conjugate form up to a rotation R, i.e., the
conjugate pair of fields ϕ̄ and ϕ is related by ϕ̄ = ϕTR with |det(R)| = 1 [43, 48]. The
supertrace term in eq. (2.3) contains all infrared physics associated with the light field φ.

A similar 1-loop manipulation can be made for the generating functional ΓL
UV[φ] in the

UV theory. An important difference from the usual case is that it is a generating functional
only for and irreducible only to the light field φ although the UV theory contains the
heavy field Φ as well. Therefore when we make Legendre transform from the generating
functional for connected Green’s functions of φ to that for 1PI Green’s functions φ, we
have to implement the classical EoM for the Φ field simply because no external source has
been introduced to it. With this point in mind, we have,

ΓL,1-loop
UV [φ] = i

2STr[ln(HUV)], (2.5)

where
HUV(x, y) = δ2SUV[ϕ]

δϕ̄(x)δϕ(y)

∣∣∣∣∣
Φ=Φc(φ)

. (2.6)

We notice that the Hessian matrix is defined for the whole field space ϕ = (φ,Φ) and the
substitution Φ = Φc(φ) is made only after the functional derivatives have been finished.

The identification at the 1-loop order of Γ1-loop
EFT [φ] = ΓL,1-loop

UV [φ] then implies∫
ddx L1-loop

EFT (φ) = i

2STr[ln(HUV)]− i

2STr[ln(HEFT)]. (2.7)

The recent development in functional matching is based on the following crucial realiza-
tion [36, 38, 39, 43]. When the loop integrals in the UV theory is calculated by integration
by regions [65, 66],

i

2STr[ln(HUV)] = i

2STr[ln(HUV)]
∣∣∣∣
hard

+ i

2STr[ln(HUV)]
∣∣∣∣
soft

, (2.8)
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the soft term exactly cancels out the EFT term in eq. (2.7). The calculation of one-loop
matching then boils down to the calculation of the hard part in the UV term:∫

ddx L1-loop
EFT (φ) = i

2STr[ln(HUV)]
∣∣∣∣
hard

, (2.9)

where the subscript hard means that the loop integrands are first Taylor-expanded for
q ∼ mΦ � mφ, k where q, k stand for the loop and external momenta respectively, and
then evaluated for the whole q space in d dimensions.

The second functional derivative is split into two parts, HUV = K − X, where K
contains only kinetic and mass terms and X includes all remaining interactions. The
matrix K is in a block-diagonal form:

Ki =


P 2 −m2

i for spin-0 fields
/P −mi for spin-1/2 fields
−gµν(P 2 −m2

i ) for spin-1 fields in Feynman gauge
, (2.10)

where Pµ = iDµ with Dµ being the covariant derivative with respect to background gauge
fields whose operators are under consideration. To proceed further, we make the Taylor
expansion,

ln(K −X) = ln(K) +
∞∑
n=0

1
n

(K−1X)n. (2.11)

Since X contributes at least a mass dimension 1 (3/2) to operators in search when it
involves a bosonic (fermionic) field and K−1 contributes a nonnegative mass dimension
upon finishing loop integrals, the expansion actually terminates for the sought operators
with a given mass dimension. The evaluation of supertraces is then classified into a log-type
and a power-type,∫

ddxL1-loop
EFT [φc] = i

2STr [ln(K)]
∣∣∣
hard
− i

2

∞∑
n=1

1
n

STr
[(
K−1X

)n] ∣∣∣
hard

. (2.12)

The log-type supertrace depends only on the representation in a gauge group and is thus
universal. The evaluation of the supertraces is done by the technique of covariant deriva-
tive expansion (CDE) [67–69], which automatically leads to gauge invariant operators.
These methods have been implemented into semi-automatic tools like STrEAM [43, 48] and
SuperTracer [49]. In this work, we will calculate both manually and with the help of
SuperTracer to achieve identical results.

3 Review of scotogenic model

We start first with the convention for the SM part. We denote the SM left-handed lep-
ton and quark doublet fields as L(1, 2, 1/2) and Q(3, 2, 1/6), the right-handed up-type
quark, down-type quark, and charged lepton singlet fields as u(3, 1, 2/3), d(3, 1,−1/3), and
e(1, 1,−1), and the Higgs doublet as H(1, 2, 1/2), respectively. Here the numbers in brack-
ets are the corresponding representations under the SM gauge group SU(3)C × SU(2)L ×
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U(1)Y , and the flavor index of the fermions is suppressed for simplicity. Dropping the
gauge-fixing related terms and topological terms, the SM Lagrangian is,

LSM = −1
4G

A
µνG

Aµν − 1
4W

I
µνW

Iµν − 1
4BµνB

µν

+|DµH|2 + µ2
H(H†H)− λH(H†H)2

+
∑

Ψ=Q,L,u,d,e
Ψ̄i /DΨ−

(
Q̄YuuH̃ + Q̄YddH + L̄YeeH + h.c.

)
, (3.1)

where µ2
H is related to the vacuum expectation value (vev) v of the Higgs field via the

relation, µ2
H = λHv

2, with λH being the Higgs self-coupling consant. The superscripts A
and I count the generators of the groups SU(3)C and SU(2)L, respectively. Yu, Yd, Ye are
the Yukawa couplings which are complex matrices in flavor space, and H̃i = εijH

∗
j . The

covariant derivative is defined by

Dµ = ∂µ − ig3T
AGAµ − ig2T

IW I
µ − ig1Y Bµ, (3.2)

where g1, g2 and g3 are the corresponding coupling constants for U(1)Y , SU(2)L, and
SU(3)C , and TA, T I , Y are the generator matrices appropriate for the fields to be acted on.

The scotogenic model proposed by E. Ma [1] is the extension of the SM with three gener-
ations of the right-handed singlet fermion N(1, 1, 0) and a second scalar doublet η(1, 2, 1/2).
A discrete Z2 symmetry is imposed under which these new fields are odd and the SM fields
even. The complete Lagrangian of the scotogenic model takes the form [1],

L = LSM + LN,η,

LN,η = N̄i/∂N −
(1

2NmNN
C + L̄η̃YηN + h.c.

)
+ |Dµη|2 − V (H, η),

V (H, η) = m2
ηη
†η + 1

2λ2(η†η)2 + λ3(H†H)(η†η)

+λ4(H†η)(η†H) + 1
2λ5[(H†η)2 + (η†H)2]. (3.3)

The charge conjugation field is defined as NC ≡ CN
T with (NC)C = N , where the charge

conjugation matrix C satisfies the relations CT = C† = −C and C2 = −1. mN is the
Majorana mass matrix and assumed without loss of generality to be diagonal with real
positive elements mNi , and Yη is the new Yukawa coupling that will enter the generation
of neutrino mass. While the couplings λ2,3,4 are real by themselves, the coupling λ5 can
be chosen real by a phase redefinition of η, which only modifies the global phase in the
Yukawa coupling Yη. Assuming µ2

H > 0 and m2
η > 0, when H0 develops a vev as in the

SM, η0 is guaranteed not to because of the exact Z2 symmetry. The mixing between H

and η is also forbidden by the symmetry.
In this work we assume both η and N particles are much heavier than the electroweak

scale and we match the scotogenic model to the SMEFT at the scale mη,N . Thus we will
not shift the vev from the Higgs field H to maintain the complete SM gauge symmetry.
In particular, the whole λ3,4,5 terms which would correct the mass of or even lift the
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degeneracy of the η components upon including the vev, will be treated as perturbative
interactions. This is indeed in accord with the EFT approach. Because of Z2 symmetry,
the terms in L are of even powers in N and η, so that their classical EoMs are of odd
powers. This means that they cannot be solved in terms of pure SM fields. Therefore,
no higher dimensional operators can appear from tree-level matching in this case. This is
obvious diagrammatically: pure Z2-even external lines cannot be connected at tree level
with pure Z2-odd internal lines. The non-trivial matching then starts to appear at the
one-loop level. For the other two possible cases in which one of N and η is treated as light
and the other as heavy, tree-level matching indeed exists. For the case with a heavy η and
light Ns, the model will match onto the sterile neutrino extended SMEFT (νSMEFT) [70],
with the lightest N being DM. For the opposite case, it will match onto the DM EFT
with a Z2-odd scalar doublet [71], of which the lightest neutral scalar could act as DM.
These latter two cases have very different phenomenology and we defer the study of these
possibilities to a future publication.

4 One-loop matching onto the SMEFT

To perform the one-loop matching using the functional method, we follow the notations in
refs. [43, 48, 49] and introduce the pairs of fields that are self-conjugate up to a rotation
matrix:

ϕN ≡ N +NC, ϕη ≡

 η

η∗

 . (4.1)

ϕ̄N = ϕT
NC, ϕ̄η = ϕT

η

(
0 1
1 0

)
= (η†, ηT ). (4.2)

This facilitates their path integral formulation as they appear like real variables. Let us
first determine the interaction kernels Xij entering the power-type supertraces. The Z2
symmetry and that both η and Ns are heavy have the consequences: only the η,N entries
of X and only the η,N -independent terms in those entries contribute to the matching.
The former is because η,N are odd and SM fields even under Z2, and the latter is due to
absence of relevant terms from EoMs of η,N . Thus we only have the following three Xs:

X
[3/2]
Nη =

(
Y †η PL(εTL) Y T

η PR(εTLC)
)
, (4.3a)

X
[3/2]
ηN =

 (L̄ε)PRYη

(LCε)PLY ∗η

 , (4.3b)

X [2],ij
ηη =

λ3(H†H)δij + λ4H
iHj∗ λ5H

iHj

λ5H
i∗Hj∗ λ3(H†H)δij + λ4H

i∗Hj

+ · · · , (4.3c)

where the superscript number in square brackets indicates the minimal canonical dimension
of X and the dots stand for irrelevant η-dependent terms thus stated above.
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4.1 Matching result in a Green basis

With the kernels in eq. (4.3) at hand, we form the supertraces that induce the SMEFT
operators up to dim 7:∫

ddxL1L, dim≤7
EFT =

{
i

2STr logK − i

2STr
(
K−1
η X [2]

ηη

)
− 1

2
i

2STr
(
K−1
η X [2]

ηη

)2
− 1

3
i

2STr
(
K−1
η X [2]

ηη

)3

− i

2STr
(
K−1
η X

[3/2]
ηN K−1

N X
[3/2]
Nη

)
− 1

2
i

2STr
(
K−1
η X

[3/2]
ηN K−1

N X
[3/2]
Nη

)2

− i

2STr
(
K−1
η X [2]

ηηK
−1
η X

[3/2]
ηN K−1

N X
[3/2]
Nη

)
− i

2STr
[(
K−1
η X [2]

ηη

)2
K−1
η X

[3/2]
ηN K−1

N X
[3/2]
Nη

]} ∣∣∣∣
hard

. (4.4)

Note that symmetry factors have been included. An inspection ofX shows that the first six
terms only contribute to the lepton-number-conserving (LNC) operators with an even mass
dimension, the last but one term contributes to both LNC and lepton-number-violating
(LNV) operators, and the last one only yields LNV dim-7 operators.

The supertraces are calculated in a gauge invariant way by the covariant derivative
expansion method [34, 36]. It has been incorporated into partially automatic Mathmatica
packages like STrEAM [48] and SuperTracer [49]. For practical purposes, we have com-
puted these supertraces both with the help of the SuperTracer package and manually as
a crosscheck. In table 1, we first provide the final matching result up to dim 7 in a mini-
mal Green basis without implementing the field redefinitions or EoMs to go back into the
standard basis [26, 64]. Such a basis are helpful in that one can relatively easily track the
origin of the matched operators from the diagrammatic viewpoint. In addition, a handful
of operators appear for the matching at each dimension. For the result in table 1, several
comments are in order:

1. We have defined Lη ≡ ε−1 + ln(4πµ2/m2
η)− γE and LN ≡ ε−1 + ln(4πµ2/m2

N )− γE,
which are related to the UV divergence in the modified minimal subtraction scheme
in d = 4− 2ε dimensions;

2. The log-type supertrace is only for the scalar η due to its non-trivial SU(2)L×U(1)Y
representation, and it generates the operators consisting exclusively of gauge fields
that are marked by a �;

3. The IBP relations and group SU(2)L and four-fermion Fierz identities are extensively
used to achieve the operators in the table. For instance, for the dim-6 operators with
pure Higgs fields and a pair of derivatives, we have used the following transformations
to reach the operators in the table,

(H†H)|DµH|2
IBP==⇒ 1

2(H†H)∂2(H†H)− 1
2[(H†H)(H†D2H) + h.c.],

(4.5a)

(H†DµH)(H†DµH) IBP==⇒ −1
2(H†H)∂2(H†H)− |H†DµH|2

− 1
2[(H†H)(H†D2H)− h.c.], (4.5b)
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dim Operator WCs [1/(16π2)]

2 H†H (1 + Lη)(2λ3 + λ4)m2
η

4

BµνB
µν (�) −Lη

24 g
2
1

W IµνW I
µν (�) −Lη

24 g
2
2

Lpi /DLr

[
Yη

(1+2Lη)m4
η−4(1+Lη)m2

Nm
2
η+(3+2LN )m4

N

4(m2
η−m2

N )2 Y †η

]
pr

(H†H)2 Lη
2 (2λ2

3 + 2λ3λ4 + λ2
4 + λ2

5)

5 εimεin(LiCp Ljr)HmHn + h.c. −λ5

[
Y ∗η mN

m2
η−(1−Lη+LN )m2

N

2(m2
η−m2

N )2 Y †η

]
pr

6

∂µB
µν∂ρBρν (�) − g2

1
120m2

η

DµW
IµνDρW I

ρν (�)(>) − g2
2

120m2
η

εIJKW Iν
µ W Jρ

ν WKµ
ρ (�) g3

2
360m2

η

(H†H)3 −2λ3
3+λ3

4+3(λ3+λ4)(λ3λ4+λ2
5)

6m2
η

(H†H)∂2(H†H) −2λ2
3+2λ3λ4−λ2

5
12m2

η

|H†DµH|2 −λ2
4−λ

2
5

6m2
η

(H†H)(H†D2H) + h.c.(>) −λ2
4+λ2

5
12m2

η

(H†H)BµνBµν
g2

1(2λ3+λ4)
48m2

η

(H†H)W IµνW I
µν

g2
2(2λ3+λ4)

48m2
η

(H†σIH)W IµνBµν
g1g2λ4
24m2

η

(H†H)(Lpi
←→
/D Lr) −(2λ3 + λ4)

[
Yη

m4
η−4m2

Nm
2
η+(3−2Lη+2LN )m4

N

8(m2
η−m2

N )3 Y †η

]
pr

(H†σIH)(Lpi
←→
/D ILr) λ4

[
Yη

m4
η−4m2

Nm
2
η+(3−2Lη+2LN )m4

N

8(m2
η−m2

N )3 Y †η

]
pr

Lpi
←−
/D /D /DLr

[
Yη

m6
η−6m2

Nm
4
η+3(1−2Lη+2LN )m4

Nm
2
η+2m6

N

6(m2
η−m2

N )4 Y †η

]
pr

BµνLpσµνi /DLr + h.c. g1

[
Yη

m6
η−6m2

Nm
4
η+3(1−2Lη+2LN )m4

Nm
2
η+2m6

N

48(m2
η−m2

N )4 Y †η

]
pr

DνB
µνLpγµLr −g1

[
Yη

2m6
η−9m2

Nm
4
η+18m4

Nm
2
η−(11−6Lη+6LN )m6

N

72(m2
η−m2

N )4 Y †η

]
pr

W IµνLpσ
Iσµνi /DLr + h.c. −g2

[
Yη

m6
η−6m2

Nm
4
η+3(1−2Lη+2LN )m4

Nm
2
η+2m6

N

48(m2
η−m2

N )4 Y †η

]
pr

DνW
IµνLpσ

IγµLr g2

[
Yη

2m6
η−9m2

Nm
4
η+18m4

Nm
2
η−(11−6Lη+6LN )m6

N

72(m2
η−m2

N )4 Y †η

]
pr

(LpγµLr)(LsγµLt)

−1
4

{[
(Lη−LNv )m2

Nv

(m2
Nv
−m2

Nw
)(m2

η−m2
Nv

)2 + v ↔ w

]
+ 1

(m2
η−m2

Nv
)(m2

η−m2
Nw

)

}
×mNvmNw(Yη)pw(Y T

η )ws(Y ∗η )rv(Y †η )vt

−1
8

{[
(Lη−LNv )m4

Nv

(m2
Nv
−m2

Nw
)(m2

η−m2
Nv

)2 + v ↔ w

]
+ m2

η

(m2
η−m2

Nv
)(m2

η−m2
Nw

)

}
×(Yη)pw(Y †η )wt(Yη)sv(Y †η )vr

7

εimεjn(LiCp Ljr)HmHn(H†H) + h.c. (λ3 + λ4)λ5

[
Y ∗η mN

m4
η+2(Lη−LN )m2

Nm
2
η−m4

N

2m2
η(m2

η−m2
N )3 Y †η

]
pr

εimεjn(LiCp D2Ljr)HmHn + h.c. λ5

[
Y ∗η mN

m4
η+4(1+Lη−LN )m2

Nm
2
η−(5−2Lη+2LN )m4

N

4(m2
η−m2

N )4 Y †η

]
pr

εimεjn(LiCp Ljr)(DµH
mDµHn) + h.c. λ5

[
Y ∗η mN

m6
η−6m2

Nm
4
η+3(1−2Lη+2LN )m4

Nm
2
η+2m6

N

12m2
η(m2

η−m2
N )4 Y †η

]
pr

εimεjn(LiCp Ljr)HmD2Hn + h.c. λ5

[
Y ∗η mN

m6
η−6m2

Nm
4
η+3(1−2Lη+2LN )m4

Nm
2
η+2m6

N

12m2
η(m2

η−m2
N )4 Y †η

]
pr

Table 1. The one-loop matching result for the scotogenic model in the heavy N and η case in a
Green basis. The pink sector contributes to the threshold correction, while the blue sector will be
reduced by using EoMs. See the text for the notations � and >.
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(H†i←→DµH)(H†i
←→
DµH) IBP==⇒ (H†H)∂2(H†H) + 4|H†DµH|2, (4.5c)

(H†i←→Dµ
IH)(H†i

←→
DµIH) IBP==⇒ 3(H†H)∂2(H†H)− 2[(H†H)(H†D2H) + h.c.]. (4.5d)

4. A WC in the form, [Yηf(mN )Y †η ]pr, should be understood as a matrix multiplication,
(Yη)pxf(mNx)(Y †η )xr with the dummy index x of Nx being summed over. In other
words, the factor sandwiched between the two Yuwaka matrices is understood as a
diagonal matrix with the x-th diagonal element evaluated atmNx . The same notation
is used throughout the paper.

5. The four-lepton operators in the last row of dim-6 sector are generated by the 5th
power-type supertrace in eq. (4.4). Since the current version of SuperTracer pack-
age cannot deal with the non-degenerate fermion case in a fully automatic way, we
demonstrate our manual calculation in appendix B. In the degenerate mass limit, we
find our result is consistent with the output from using SuperTracer.

6. The dim-4 or less operators in the pink sector give the so-called threshold corrections
to the SM, and they lead to the renormalization of the SM parameters. The dim-6
and dim-7 operators in blue are not yet in the standard basis [26, 64] and will be
carefully dealt with in the following subsection to obtain the final matching result in
the standard basis.

7. An interesting feature for the matching result in table 1 is that UV divergence only
appears in the WCs of dim ≤ 4 operators (characterized by the Lη) and cancels out
for dim ≥ 5 operators in a combination form, Lη − LN = ln(m2

N/m
2
η). This is as

expected, since a correct implementation of renormalization should guarantee that
all UV divergence in a renormalizable theory like the scotogenic model can always be
absorbed into its parameters associated with dim ≤ 4 operators.

4.2 Matching result in the standard basis

To translate the matching result in the Green basis in table 1 into one in the standard
dim-6 [26] and dim-7 basis [64], we need to tackle both the threshold correction to the
SM terms in eq. (3.1) and the reduction of those higher dimensional operators not in the
standard basis by field or coupling redefinitions. For this purpose one first renormalizes the
SM terms, derives EoMs from the renormalized SM Lagrangian and applies them to the
reduction of higher dimensional operators. From the pink sector in table 1 the modified
SM terms are,

LSM ⊃ −
1
4(1 + δZB)BµνBµν − 1

4(1 + δZW )W I
µνW

Iµν

+L(1 + δZL)i /DL+ µ̂2
HH

†H − λ̂H(H†H)2, (4.6)
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where the field renormalization constants and modified parameters in the Higgs potential
due to one-loop matching are given by

δZB = 1
16π2

Lη
6 g2

1, (4.7a)

δZW = 1
16π2

Lη
6 g2

2, (4.7b)

(δZL)pr = 1
16π2

[
Yη

(3 + 2LN )m4
N − 4(1 + Lη)m2

Nm
2
η + (1 + 2Lη)m4

η

4(m2
N −m2

η)2 Y †η

]
pr

, (4.7c)

µ̂2
H = µ2

H + 1
16π2 (1 + Lη)(2λ3 + λ4)m2

η, (4.7d)

λ̂H = λH −
1

16π2
Lη
2 (2λ2

3 + 2λ3λ4 + λ2
4 + λ2

5), (4.7e)

with δZ†L = δZL. To bring kinetic terms into the canonical form, we make the following
field and coupling redefinitions,

Bµ →
(

1− 1
2δZB

)
Bµ, W I

µ →
(

1− 1
2δZB

)
W I
µ , Lp →

(
1− 1

2δZL
)
pr
Lr, (4.8a)

g1 →
(

1 + 1
2δZB

)
g1, g2 →

(
1 + 1

2δZB
)
g2. (4.8b)

The gauge coupling redefinitions ensure the covariant derivative is unchanged under gauge
field redefinitions. These redefinitions restore the SM Lagrangian in its canonical form but
with modified lepton Yukawa coupling and Higgs potential parameters,

LR
SM = −1

4G
A
µνG

Aµν − 1
4W

I
µνW

Iµν − 1
4BµνB

µν

+|DµH|2 + µ̂2
H(H†H)− λ̂H(H†H)2

+
∑
Ψ

Ψ̄i /DΨ−
[
Q̄YuuH̃ + Q̄YddH + L̄ŶeeH + h.c.

]
, (4.9)

where the renormalized µ̂2
H and λ̂H are given in eq. (4.7) and the renormalized lepton

Yuwaka coupling is
(Ŷe)pr = (Ye)pr −

1
2(δZL)ps(Ye)sr. (4.10)

The above redefinition or renormalization also modifies the one-loop generated higher di-
mensional operators, but the effect is a two-loop correction and can thus be neglected in
our one-loop matching.

We can now derive the EoMs from the renormalized SM Lagrangian LR
SM which are

the usual ones with the substitutions, (µ2
H , λH , Ye) → (µ̂2

H , λ̂H , Ŷe). For the reduction
of operators in the blue sector in table 1, only the following ones are required,

∂νBµν = g1

[1
6Q̄γµQ+ 2

3 ūγµu−
1
3 d̄γµd−

1
2 L̄γµL− ēγµe+ 1

2H
†i
←→
DµH

]
, (4.11a)

DνW I
µν = g2

2
[
QσIγµQ+ LσIγµL+H†i

←→
Dµ

IH
]
, (4.11b)
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D2H = µ̂2
HH − 2λ̂H(H†H)H − εTQ̄Yuu− d̄Y †dQ− ēY

†
e L, (4.11c)

(D2H)† = µ̂2
HH

† − 2λ̂H(H†H)H† − ūY †uQε− Q̄Ydd− L̄Ŷee, (4.11d)

i /DL = ŶeeH, (4.11e)

−iL̄
←−
/D = H†ēY †e , (4.11f)

i /De = Ŷ †e H
†L, (4.11g)

−iē
←−
/D = L̄ŶeH. (4.11h)

Once again since the higher dimensional operators are generated at one-loop order, the hat
in the three parameters can be dropped causing a negligible two-loop error in the result.

Using the above EoMs together with IBP and Fierz relations, we can reduce the opera-
tors mentioned above to the standard basis. The final matching results for the LNC dim-6
and LNV dim-5 and dim-7 operators are tabulated in table 2 and table 3 respectively. We
provide some details of reduction in appendix C. In the tables we introduced some loop
functions appearing in table 1 for brevity. Denoting the ratio of the two masses squared
x ≡ m2

N/m
2
η where the flavor index of N is not shown for brevity, we define the five loop

functions associated with the dim-6 LNC operators,

F1(x) ≡ 1− 4x+ 3(1− 2 ln x)x2

(1− x)3 , (4.12a)

F2(x) ≡ 1− 6x+ 3(1− 2 ln x)x2 + 2x3

(1− x)4 , (4.12b)

F3(x) ≡ 2− 9x+ 18x2 − (11− 6 ln x)x3

2(1− x)4 , (4.12c)

F4,1(xv, xw) ≡ −
√
xvxw
4

{[
xv ln xv

(xv − xw)(1− xv)2 + v ↔ w

]
+ 1

(1− xv)(1− xw)

}
, (4.12d)

F4,2(xv, xw) ≡ 1
8

{[
x2
v ln xv

(xv − xw)(1− xv)2 + v ↔ w

]
+ 1

(1− xv)(1− xw)

}
. (4.12e)

Note that the functions F4,1(xv, xw) and F4,2(xv, xw) depend on two masses of Nv and Nw.
In the degenerate limit of xv = xw = x, they become F4,i(x, x) = F4,i(x) where

F4,1(x) ≡ −(2 + ln x)x− (2− ln x)x2

4(1− x)3 , (4.13a)

F4,2(x) ≡ 1 + 2x ln x− x2

8(1− x)3 . (4.13b)

The four loop functions associated with the LNV dim-5 and dim-7 operators are,

G1(x) ≡ 1− (1− ln x)x
(1− x)2 , (4.14a)

G2(x) ≡ 1 + 2x ln x− x2

(1− x)3 , (4.14b)
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Class Operator WCs [1/(16π2m2
η)]

X3 OW 1
360g

3
2

H6 OH −1
6 [2λ3

3 + λ3
4 + 3(λ3 + λ4)(λ3λ4 + λ2

5)] + 1
60 [20(λ2

4 + λ2
5)− g4

2]λH

H4D2 OH� − 1
12(2λ2

3 + 2λ3λ4 − λ2
5)− 1

480(g4
1 + 3g4

2)

OHD −1
6(λ2

4 − λ2
5)− 1

120g
4
1

ψ2H3 + h.c.
OpreH

1
240 [20(λ2

4 + λ2
5)− g4

2](Ye)pr − 1
4λ3

[
YηF1(x)Y †η Ye

]
pr

+ 1
12

[
YeY

†
e YηF2(x)Y †η Ye

]
pr

OpruH
1

240 [20(λ2
4 + λ2

5)− g4
2](Yu)pr

OprdH
1

240 [20(λ2
4 + λ2

5)− g4
2](Yd)pr

X2H2
OHW 1

48g
2
2(2λ3 + λ4)

OHB 1
48g

2
1(2λ3 + λ4)

OHWB
1
24g1g2λ4

ψ2XH + h.c. OpreW − 1
48g2

[
YηF2(x)Y †η Ye

]
pr

OpreB
1
48g1

[
YηF2(x)Y †η Ye

]
pr

ψ2H2D

O(1),pr
Hl

1
240g

4
1δpr − 1

72g
2
1

[
YηF3(x)Y †η

]
pr

O(3),pr
Hl − 1

240g
4
2δpr + 1

72g
2
2

[
YηF3(x)Y †η

]
pr

OprHe
1

120g
4
1δpr + 1

12

[
Y †e YηF2(x)Y †η Ye

]
pr

O(1),pr
Hq − 1

720g
4
1δpr

O(3),pr
Hq − 1

240g
4
2δpr

OprHu − 1
180g

4
1δpr

OprHd
1

360g
4
1δpr

(L̄L)(L̄L)

Oprstll

F4,1(xv, xw)(Yη)pw(Y T
η )ws(Y ∗η )rv(Y †η )vt − F4,2(xv, xw)(Yη)pw(Y †η )wt(Yη)sv(Y †η )vr

+ 1
144

{
(g2

1 − g2
2)
[
YηF3(x)Y †η

]
pr
δst + 2g2

2

[
YηF3(x)Y †η

]
pt
δrs + (pr)↔ (st)

}
− 1

480 [(g4
1 − g4

2)δprδst + 2g4
2δptδrs]

O(1),prst
qq − 1

4320g
4
1δprδst

O(3),prst
qq − 1

480g
4
2δprδst

O(1),prst
lq

1
720g

4
1δprδst − 1

216g
2
1

[
YηF3(x)Y †η

]
pr
δst

O(3),prst
lq − 1

240g
4
2δprδst + 1

72g
2
2

[
YηF3(x)Y †η

]
pr
δst

(R̄R)(R̄R)

Oprstee − 1
120g

4
1δprδst

Oprstuu − 1
270g

4
1δprδst

Oprstdd − 1
1080g

4
1δprδst

Oprsteu
1
90g

4
1δprδst

Oprsted − 1
180g

4
1δprδst

O(1),prst
ud

1
270g

4
1δprδst

(L̄L)(R̄R)

Oprstle − 1
120g

4
1δprδst + 1

36g
2
1

[
YηF3(x)Y †η

]
pr
δst

Oprstlu
1

180g
4
1δprδst − 1

54g
2
1

[
YηF3(x)Y †η

]
pr
δst

Oprstld − 1
360g

4
1δprδst + 1

108g
2
1

[
YηF3(x)Y †η

]
pr
δst

Oprstqe
1

360g
4
1δprδst

O(1),prst
qu − 1

540g
4
1δprδst

O(1),prst
qd

1
1080g

4
1δprδst

Table 2. The matching result of dim-6 operators in the standard basis [26].
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Class Operator WCs [1/(16π2)]

ψ2H2 OprLH,5 − λ5
2m2

η

{[
Y ∗η mNG1(x)Y †η

]
pr
− µ2

H
6m2

η

[
Y ∗η mNG4(x)Y †η

]
pr

}

ψ2H4 OprLH
λ5

2m4
η

{
(λ3 + λ4)

[
Y ∗η mNG2(x)Y †η

]
pr
− λH

3

[
Y ∗η mNG4(x)Y †η

]
pr

}
ψ2H3D OprLeHD

λ5
4m4

η

[
Y ∗η mNG3(x)Y †η Ye

]
pr

ψ2H2X OprLHW − λ5
16m4

η

[
Y ∗η mNG3(x)Y †η

]
pr

ψ2H2D2 OprLDH2
λ5

12m4
η

[
Y ∗η mNG4(x)Y †η

]
pr

ψ4H

OprstēLLLH
λ5

12m4
η
(Y †e )pr

[
Y ∗η mNG4(x)Y †η

]
st

Oprst
d̄QLLH1

λ5
12m4

η
(Y †d )pr

[
Y ∗η mNG4(x)Y †η

]
st

Oprst
Q̄uLLH

− λ5
12m4

η
(Yu)pr

[
Y ∗η mNG4(x)Y †η

]
st

Table 3. The matching result of dim-5 and dim-7 operators in the standard bases [25, 64]. Seven
out of twelve dim-7 LNV but baryon-number-conserving operators are generated.

G3(x) ≡ 1 + 4(1 + ln x)x− (5− 2 ln x)x2

(1− x)4 , (4.14c)

G4(x) ≡ 1− 6x+ 3(1− 2 ln x)x2 + 2x3

(1− x)4 . (4.14d)

Except for F4,i, all functions are normalized to unity at x = 0. We make a few comments
concerning the matching result. First, the operators in blue in table 2 and table 3 are
completely generated through the EoM operators in blue in table 1. Second, application
of the EoMs also causes significant changes in the WCs for the operators already in the
standard form, except for a few operators, i.e., OW,HW,HB,HWB in table 2, and OLDH2 in
table 3. And finally, application of EoMs for the two operators with a > in table 1 results
in a further shift in the Higgs self-coupling λ̂H in eq. (4.7) with the final answer being

λ̂H → λ̃H ≡ λ̂H + 1
16π2

1
120

µ2
H

m2
η

[20(λ2
4 + λ2

5)− g4
2]

= λH −
1

16π2

{
Lη
2 (2λ2

3 + 2λ3λ4 + λ2
4 + λ2

5)− 1
120

µ2
H

m2
η

[20(λ2
4 + λ2

5)− g4
2]
}
.

(4.15)

5 Phenomenology

From the SMEFT matching result in table 2 and table 3, together with the matching results
onto the LEFT given in [72, 73], one can readily consider interesting physical processes to
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explore the parameter space of the model. Differently from all previous studies on the
scotogeneric model [2–24], we here use the SMEFT approach to consider the heavy new
physics implications for low energy physics, with both mη and mN being above the TeV
scale. We will also make comparisons with the study in literature when necessary.

5.1 Dim-5 and dim-7 LNV processes

Neutrino mass. The neutrino mass is generated from both the dim-5 Weinberg operator
OLH,5 and the dim-7 operator OLH . By going to the Higgs phase H → v/

√
2, we obtain

the symmetric Majorana neutrino mass matrix as

Mν
pr = λ5v

2

32π2m2
η

{
Y ∗η mN

[
G1(x)− (λ3 + λ4)v2

2m2
η

G2(x)
]
Y †η

}
pr

, (5.1)

where the G1(x) part comes from the dim-5 Weinberg operator and the G2(x) part is due
to the dim-7 contribution. The contributions associated with G4(x) loop function for dim-5
operator OLH,5 and dim-7 operator OLH cancel out. These contributions come from the
reduction of the last operator in table 1 by the EoM of Higgs field in eq. (4.11c). After
replacing the Higgs field by its vev v/

√
2, the pure scalar field sector in D2H relating to

operators OLH,5 and OLH vanishes due to µ2
H = λHv

2. We recall that a sum over Nw is
implied in the above, where the subscript enters mNw(Y ∗η )pw(Y ∗η )rw and xw = m2

Nw
/m2

η.
In the limit of λ5 → 0, our result for the dim-5 contribution differs from the original one
given in eq. (12) in [1] by a factor of 2, but is consistent with the correct result reported
in [17], as the latter was further confirmed by other independent calculations like [74]. The
dim-7 contribution is new and has not been considered before in the literature. To assess
roughly its potential relevance, we consider the ratio of their contributions:

(λ3 + λ4)v2

2m2
η

G2(x)
G1(x) ∼ 0.3λ3 + λ4

10

(
1 TeV
mη

)2

G2/1(x), (5.2)

where G2/1(x) ≡ G2(x)/G1(x) deceases monotonically from 1 at x = 0 to 0.17 at x = 103

(figure 1). Thus, for a relatively large λ3,4 ∼ O(1) − O(10) and mη ∼ O(TeV), the dim-7
contribution could be non-negligible and should be included in a refined analysis.

Neutrino transition moment. From the matching results in table 3 one would expect a
contribution to the Majorana neutrino electromagnetic moment from the operator OprLHW .
However, this potential contribution vanishes since its WC CprLHW is symmetric in the flavor
indices while the neutrino transition magnetic moment is antisymmetric. It is evident from
Feynman diagrams as there is no contributing diagram due to the Z2 symmetry and charge
conservation.

Effects of remaining dim-7 operators. To see the relative size of LNV signals due
to the matching results of other dim-7 operators, it is helpful to first compare the loop
functions G2,3,4(x) in dim-7 WCs with G1(x) for the dim-5 Weinberg operator. In figure 1
we show the ratios of the three functions, Gi/1(x) = Gi(x)/G1(x) for i = 2, 3, 4. As can be
seen in the figure, G2,3,4(x) are almost always smaller than G1(x) in the whole range, with
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Figure 1. Ratios of loop functions associated with LNV dim-5 and dim-7 matching coefficients as
a function of the mass squared ratio x.

the only exception of G4(x) for 0 ≤ x ≤ 1 where the two functions are comparable. Thus
to explore their potential largest effects, we can approximately replace G2,3,4(x) by G1(x)
and λ5v

2/(32π2m2
η)[Y ∗η mNG1(x)Y †η ]pr by the neutrino mass matrix Mν

pr. This results in
the estimation:

|CprLeHD| .
(MνYe)pr

2v2m2
η

; |CprLHW |, |C
pr
LDH2| .

Mν
pr

6v2m2
η

;

|CprstēLLLH |, |C
prst

d̄QLLH1|, |C
prst

Q̄uLLH
| . (Yx)prMν

st

6v2m2
η

, (5.3)

where in the last line Yx = Y †e , Y
†
d , Yu for the three different WCs in question. Clearly,

these WCs are suppressed by the neutrino mass as well as the heavy scale mη, and in
some cases further suppressed by the SM Yukawa couplings. If we take Mν ∼ O(0.1 eV)
and mη ∼ O(1 TeV), the largest WC is |Cprst

Q̄uLLH
| . 1/(104 TeV)3(TeV/mη)2, far below the

current sensitivity of nuclear neutrinoless double-β decay (0νββ) [75, 76]. We therefore
conclude that the most interesting LNV processes like 0νββ are dominantly mediated by
the neutrino mass term through the contribution of dim-5 and dim-7 Weinberg operators
OLH,5 and OLH , and the effects from the remaining dim-7 operators can be safely neglected.
This pattern of LNV signals being bound to the tiny neutrino mass is understandable from
the fact that lepton number violation can only happen for λ5Y

∗
η Y
†
η 6= 0, to which the

neutrino mass matrix is proportional.

5.2 LNC processes due to dim-6 operators

CDF W -mass anomaly. The CDF collaboration recently reported a measurement for
the W boson mass mCDF

W = 80433.5 ± 9.4 MeV [77], which is a 7σ deviation from the SM
prediction,mSM

W = 80357±4 MeV [78]. Combining the result with all previous measurements
yields a new world average, mnew ave

W = 80417±18 MeV [78], which is still far away from the
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SM prediction. Assuming Gaussian error propagation, the CDF result implies the following
relative size of the excess,

δm2
W

m2
W

∣∣∣∣∣
CDF

≡
m2
W,CDF −m2

W,SM

m2
W,CDF

= (0.95± 0.13)× 10−3,

δm2
W

m2
W

∣∣∣∣∣
new ave

= (0.75± 0.23)× 10−3. (5.4)

The anomaly has stimulated many studies, see for instance [79–82] and references therein.
An investigation of the scotogenic model to explain the anomaly has been given in [83]. We
will work with the SMEFT approach by using the matching result obtained in the previous
section to examine its implications.

To study the correction to m2
W in SMEFT we proceed as in [82] and employ the

following most precisely known parameters as the input:

α−1
em(mZ) = 127.95, GF = 1.16638× 10−5 GeV−2, mZ = 91.1876 GeV. (5.5)

Then the correction to m2
W enters through the modifications to the expressions of mZ and

the Fermi constant GF measured in muon decay, which are mainly induced by the four
dim-6 SMEFT operators,

OHWB = H†σIHW I
µνB

µν , OHD = |H†DµH|2,

Oll = (LγµL)(LγµL), O(3)
Hl = (H†i

←→
DI
µH)(LσIγµL). (5.6)

The first two affect the SM prediction on mZ through field diagonalization while the latter
two lead to a correction to GF . Defining the effective weak mixing angle by the input
parameters as,

cos2 θW ≡
1
2

(
1 +

√
1− 4παem√

2GFm2
Z

)
, (5.7)

the correction to the pole mass mW relative to the SM prediction (mSM
W = m2

Z cos2 θW )
takes the form, to the linear order in the WCs associated with the above operators,

δm2
W

m2
W

= − sin 2θW
cos 2θW

1
8GF

[cos θW
sin θW

CHD + 4CHWB

+ sin θW
cos θW

(
2C(3),ee

Hl + 2C(3),µµ
Hl − Cµeeµll − Ceµµell

)]
. (5.8)

If the SU(3)5 global flavor symmetry is assumed, the above expression reduces to eq. (2.3)
given in [82]. Note that the usual electroweak oblique parameters S and T [85] are related
to CHWB and CHD via the relations S = (4 sin θW cos θW /αem)CWB/(

√
2GF ) and T =

−(1/2αem)CHD/(
√

2GF ). From the matching result in table 2, we obtain,

δm2
W

m2
W

= tan 2θW
128π2GFm2

η

[
(4π)2α2

em
15 sin3 2θW

+ cos θW
sin θW

λ2
4 − λ2

5
6 − 4παemλ4

3 sin 2θW
+ 2 sin θW

cos θW
C̃eµµell

]
,

(5.9)
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Figure 2. The allowed region in the mη–λ4 plane for explaining the W boson mass anomaly at
the 1σ level.

where we have used the approximate relations g1 = e/ cos θW , g2 = e/ sin θW , and αem =
e2/(4π), as well as the abbreviation

C̃eµµell = F4,1(xw, xv)(Yη)1w(Y T
η )w2(Y ∗η )1v(Y †η )v2

−F4,2(xw, xv)(Yη)1w(Y †η )w1(Yη)2v(Y †η )v2, (5.10)

where summation over Nv, Nw is implied.
Since λ5 is related to the Majorana neutrino mass, it is naturally much smaller than

unity to yield an O(0.1 eV) neutrino mass for O( TeV) scale heavy masses. Dropping the
λ5 term and using the values in eq. (5.5), we obtain

δm2
W

m2
W

= 10−3
(

TeV
mη

)2 (
1.6× 10−4 + 0.046λ2

4 − 0.006λ4 + 0.168C̃eµµell

)
. (5.11)

To reproduce the amount of excess in eq. (5.4) for O(TeV) scale mη, it requires either
a relatively large λ4 or C̃eµµell . Let us first consider the case with negligible C̃eµµell . To
explain the CDF anomaly, the allowed parameter space in the mη–λ4 plane is shown in
figure 2 for the two cases: the CDF-only and the new world average. It can be seen that
λ4 & 4 is necessary to match the excess for mη ≥ 1 TeV. This result basically agrees with
the estimation given in [80]. On the other hand, the excess could be accommodated by
C̃eµµell ∈ [4.9, 6.4] ([3.1, 5.8]) for the CDF-only (new world average) case as well. Since
the loop functions are bound by F4,1 ≤ 1/24 and F4,2 ≤ 1/8, this would require O(few)
Yukawa couplings to achieve a large enough C̃eµµell . This may cause some tension with the
constraints from the LFV processes (µ→ eγ and µ→ 3e), and needs a careful analysis of
the Yukawa sector.

Lepton g−2 and LFV decay `i → `jγ. These observables are connected to the dim-5
dipole operator in the LEFT,

Leγ = CpreγOpreγ + h.c. = CpreγeLpσµνeRrF
µν + h.c., (5.12)
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where the WC Cpreγ in LEFT are related to those in table 2 by

Cpreγ = v√
2

(− sin θwCpreW + cos θwCpreB) = emr

384π2
1
m2
η

[
YηF2(x)Y †η

]
pr
. (5.13)

We have assumed that the SM Yukawa coupling matrix for charged leptons has been
diagonalized so that Me = vYe/

√
2 = diag(me,mµ,mτ ). The decay width for the LFV

process `i → `jγ is given by

Γ`i→`jγ =
m3
`i

4π
(
|Cjieγ |2 + |Cijeγ |2

)
=

αemm
5
`i

(384π2)2m4
η

∣∣∣∣[YηF2(x)Y †η
]
ji

∣∣∣∣2 , (5.14)

where in the second step we have neglected the small correction proportional to m2
`j
/m2

`i

from |Cijeγ |2. The above decay width leads to the branching ratio

B`i→`jγ
BSM
`i→`j ν̄jνi

=
Γ`i→`jγ

ΓSM
`i→`j ν̄jνi

= αem
768πG2

Fm
4
η

∣∣∣∣[YηF2(x)Y †η
]
ji

∣∣∣∣2

= 2.2× 10−8
(

TeV
mη

)4 ∣∣∣∣[YηF2(x)Y †η
]
ji

∣∣∣∣2 , (5.15)

where the SM prediction for the dominant decay width has been used, ΓSM
`i→`j ν̄jνi = G2

Fm
5
`i
/

(192π3). In the heavy mass limit, our result agrees with those given in [2, 7]. The cur-
rent experimental upper bounds on these LFV processes are, Bexp

µ→eγ . 4.2 × 10−13 and
Bexp
τ→e(µ)γ . 3.3(4.4)× 10−8 [78], which implies

Bµ→eγ
BSM
µ→eν̄eντ

. 4.2× 10−13,
Bτ→eγ
BSM
τ→eν̄eντ

. 1.9× 10−7,
Bτ→µγ
BSM
τ→µν̄µντ

. 2.5× 10−7. (5.16)

As can be seen from the above, for mη,N ∼ O(TeV) and O(1) Yukawa couplings, the
branching ratios of the LFV processes τ → e(µ)γ are below the current experimental
bounds by an order of magnitude, whereas the µ→ eγ can probe the new physics scale up
to tens of TeV for O(1) Yukawa couplings.

While the electric dipole moment is not induced at one loop, there is a contribution to
the anomalous magnetic moment of charged leptons:

∆a` = m2
`

96π2m2
η

[
YηF2(x)Y †η

]
``
. (5.17)

Considering 0 < F2(x) ≤ 1, the anomalous magnetic moment is approximately bound by

|∆a`| . 1.2× 10−11m
2
`

m2
µ

(
1 TeV
mη

)2 ∣∣∣[YηY †η ]
``

∣∣∣ , (5.18)

which cannot fill the gap between the SM prediction and the observed values in the Fermilab
and BNL E821 experiments [86, 87], ∆aµ = a

exp
µ − aSM

µ = 251(59) × 10−11, for reasonably
large Yukawa couplings.
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LFV decay µ → 3e. In the LEFT framework [72, 88], the dominant contribution to
µ → 3e is from the long-distance dipole operator Oeµeγ through a virtual photon as well as
the following dim-6 contact interactions,

OV,LLeµee = (eLγµµL)(eLγµeL), OV,LReµee = (eLγµµL)(eRγµeR), (5.19a)
OV,LReeeµ = (eRγµµR)(eLγµeL), OV,RReµee = (eRγµµR)(eRγµeR), (5.19b)
OS,LLeµee = (eRµL)(eReL), OS,RReµee = (eLµR)(eLeR). (5.19c)

Based on the matching result in table 2 as well as the LEFT-SMEFT matching result in [72],
we find only the first two dim-6 operators (OV,LLeµee ,OV,LReeeµ ) have non-negligible contributions,

CV,LLeµee = 1
16π2m2

η

{
2C̃eµeell + e2

18
[
YηF3(x)Y †η

]
eµ

}
, CV,LReµee = 1

16π2m2
η

e2

18
[
YηF3(x)Y †η

]
eµ
.

(5.20)
Rewriting the WC of the dipole operator in eq. (5.13) as Ceµeγ ≡ emµC̃

eµ
eγ , the decay width

of µ→ 3e takes the form [88],

Γµ→3e =
m5
µ

192π3

{
e4|C̃eµeγ |2

(
8 ln mµ

me
− 11

)
+ 1

8
(
2|CV,LLeµee |2 + |CV,LReµee |2

)
−e2<

[
C̃eµeγ (2CV,LLeµee + CV,LReµee )∗

]}
, (5.21)

where again we have neglected the small correction proportional to m2
e/m

2
µ from |C̃µeeγ |2.

In terms of branching ratios, we obtain

Bµ→3e
BSM
µ→eν̄eνµ

= 3e4

8G2
F

{8
3 |C̃

eµ
eγ |2

(
8 ln mµ

me
− 11

)
+ 1

3e4

(
2|CV,LLeµee |2 + |CV,LReµee |2

)
− 8

3e2<
[
C̃eµeγ (2CV,LLeµee + CV,LReµee )∗

]}
. (5.22)

Once again in the heavy mass limit, our result agrees with that in [7] upon the following
correspondence of WCs between ours and theirs,

C̃eµeγ = 1
2AD, CV,LLeµee = 1

2e
2(B + 2AND), CV,LReµee = e2AND. (5.23)

Besides the processes discussed above, our matching results can also be applied to many
other interesting processes, for instance, the LFV decays of the Higgs and Z bosons, the
LFV decays of heavy mesons and baryons, the µ–e conversion in nuclei, and non-standard
neutrino interactions, etc. This more complete phenomenological investigation deserves a
future work.

6 Conclusion

The scotogenic model is an economical extension of the SM that generates tiny neutrino
mass at one-loop level, and at the same time naturally provides a dark matter candidate.
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The one-loop origin of neutrino mass implies a lower new physics scale than that of the
three tree-level seesaws, which makes this model potentially testable at the future high
energy colliders. Confronting with the current null experimental searches for weak scale
new particles, it is appropriate to assume these new particles are well above the electroweak
scale so that their indirect effects on low energy observables can be incorporated into an
effective field theory where they have been integrated out. With this spirit, we employ the
newly developed functional method to match the scotogenic model onto the standard model
effective field theory up to dimension 7 for the case when both new particles N and η are
heavy. Because of the Z2 symmetry, non-trivial matching only starts to appear at one loop.
Our matching results are first organized in a Green basis (see table 1) in which the origin
of the matched operators can be relatively easily tracked. Then we use the SM equations
of motion, the integration by parts relations, and various algebraic identities to recast the
results in the standard bases for dim-5 [25], dim-6 [26], and dim-7 operators [64] (table 2
and table 3). Finally, we apply our results to study implications on several interesting
physical processes at low energy and make comparisons with those in the literature to
further confirm our results.
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A Dim-5, dim-6, and dim-7 operator bases in the SMEFT

At dim 5, there is a unique LNV operator related to the Majorana neutrino mass [25]

OprLH,5 = εijεmn(LC,i
p L

m
r )HjHn, (A.1)

plus its hermitian conjugate. Table 4 and table 5 reproduce the bases of dim-6 and dim-7
operators conserving the baryon number in SMEFT [26, 27, 29], respectively. The con-
vention for fields is as follows: L, Q are the left-handed lepton and quark doublet fields,
u, d, e are the right-handed up-type quark, down-type quark, and charged lepton singlet
fields, and H denotes the Higgs doublet, respectively. For the dim-7 operators, they were
first systematically studied in [27], and corrected by [29]. In table 5 we use the further
improved basis in [64] in which lepton flavor symmetry is more manifest and the operators
containing both quark and lepton fields have a factorized quark-lepton current form.
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X3 ψ2H3 + h.c. (L̄L)(L̄L)

OG fABCGAνµ GBρν GCµρ OeH (H†H)(LeH) Oll (LγµL)(LγµL)

OG̃ fABCG̃Aνµ GBρν GCµρ OuH (H†H)(QuH̃) O(1)
qq (QγµQ)(QγµQ)

OW εIJKW Iν
µ W Jρ

ν WKµ
ρ OdH (H†H)(QdH) O(3)

qq (Qγµτ IQ)(Qγµτ IQ)

OW̃ εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ ψ2XH + h.c. O(1)

lq (LγµL)(QγµQ)

H6 OeW (Lσµνe)τ IHW I
µν O(3)

lq (Lγµτ IL)(Qγµτ IQ)

OH (H†H)3 OeB (Lσµνe)HBµν (R̄R)(R̄R)

H4D2 OuG (QσµνTAu)H̃GAµν Oee (eγµe)(eγµe)

OH� (H†H)�(H†H) OuW (Qσµνu)τ IH̃W I
µν Ouu (uγµu)(uγµu)

OHD (H†DµH)∗(H†DµH) OuB (Qσµνu)H̃Bµν Odd (dγµd)(dγµd)

X2H2 OdG (QσµνTAd)HGAµν Oeu (eγµe)(uγµu)

OHG H†HGAµνG
Aµν OdW (Qσµνd)τ IHW I

µν Oed (eγµe)(dγµd)

OHG̃ H†HG̃AµνG
Aµν OdB (Qσµνd)HBµν O(1)

ud (uγµu)(dγµd)

OHW H†HW I
µνW

Iµν ψ2H2D O(8)
ud (uγµTAu)(dγµTAd)

OHW̃ H†HW̃ I
µνW

Iµν O(1)
Hl (H†i←→DµH)(LγµL) (L̄L)(R̄R)

OHB H†HBµνB
µν O(3)

Hl (H†i
←→
DI
µH)(Lγµτ IL) Ole (LγµL)(eγµe)

OHB̃ H†HB̃µνB
µν OHe (H†i←→DµH)(eγµe) Olu (LγµL)(uγµu)

OHWB H†τ IHW I
µνB

µν O(1)
Hq (H†i←→DµH)(QγµQ) Old (LγµL)(dγµd)

OHW̃B H†τ IHW̃ I
µνB

µν O(3)
Hq (H†i

←→
DI
µH)(Qγµτ IQ) Oqe (QγµQ)(eγµe)

OHu (H†i←→DµH)(uγµu) O(1)
qu (QγµQ)(uγµu)

OHd (H†i←→DµH)(dγµd) O(8)
qu (QγµTAQ)(uγµTAu)

OHud + h.c. (H̃†iDµH)(uγµd) O(1)
qd (QγµQ)(dγµd)

O(8)
qd (QγµTAQ)(dγµTAd)

(L̄R)(R̄L) + h.c.

Oledq (Le)(dQ)

(L̄R)(L̄R) + h.c.

O(1)
quqd εij(Qiu)(Qjd)

O(8)
quqd εij(QiTAu)(QjTAd)

O(1)
lequ εij(Lie)(Qju)

O(3)
lequ εij(Liσµνe)(Qjσµνu)

Table 4. The Warsaw basis of dim-6 operators that conserve baryon and lepton number in
SMEFT [26]. Note that in our convention the capital symbols Q and L are used to represent
the quark and lepton doublets instead of q and l.
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ψ2H4 + h.c. ψ2H3D + h.c.

OLH εijεmn(LC,iLm)HjHn(H†H) OLeHD εijεmn(LC,iγµe)Hj(HmiDµHn)

ψ2H2D2 + h.c. ψ2H2X + h.c.

OLDH1 εijεmn(LC,i←→DµL
j)(HmDµHn) OLHB g1εijεmn(LC,iσµνL

m)HjHnBµν

OLDH2 εimεjn(LC,iLj)(DµH
mDµHn) OLHW g2εij(ετ I)mn(LC,iσµνL

m)HjHnW Iµν

ψ4D + h.c. ψ4H + h.c.

OduLDL εij(dγµu)(LC,ii
←→
D µLj) OeLLLH εijεmn(eLi)(LC,jLm)Hn

OdQLLH1 εijεmn(dQi)(LC,jLm)Hn

OdQLLH2 εijεmn(dσµνQi)(LC,jσµνLm)Hn

OduLeH εij(dγµu)(LC,iγµe)Hj

OQuLLH εij(Qu)(LCLi)Hj

Table 5. Basis of dim-7 lepton operators that conserve baryon number in SMEFT [64]. Here
DµH

n is understood as (DµH)n, etc.

B Calculation of a power-type supertrace with double insertions of XNη

and XηN

The supertraces to calculate all have a general form STr [f(Pµ, {Uk(x)})], where Pµ = iDµ

with Dµ being the usual covariant derivative operator and Uk is a set of Pµ-independent
functionals of classical fields and coupling constants. With the use of completeness relation
and Baker-Campbell-Hausdorff formula, the CDE method leads to [48]

Tr [f(Pµ, {Uk(x)})] =
∫ ddq

(2π)d 〈q |tr [f(Pµ, {Uk})]| q〉 =
∫

ddx
∫ ddq

(2π)d tr
[
f(P̄µ, {Ūk})

]
,

(B.1)
where the CDE transformed quantities are represented by a bar and take the following form,

P̄µ = Ḡµν ∂̃
ν − qµ,

Ūk =
∞∑
n=0

1
n! (Pµ1 · · ·PµnUk)∂̃µ1 · · · ∂̃µn ;

iḠµν =
∑
n=0

n+ 1
(n+ 2)!(Pµ1 · · ·PµnFµν)∂̃µ1 · · · ∂̃µn , (B.2)

where ∂̃µ ≡ ∂/∂qµ stands for the partial derivative with respect to the loop momentum.
With the above formula, the supertrace with double insertions of XNη and XηN in

eq. (4.4) becomes,

− i4STr
(
K−1
N X

[3/2]
Nη K

−1
η X

[3/2]
ηN

)2
∣∣∣∣
hard

=
∫

d4x
i

4µ
2ε
∫ ddq

(2π)d tr
(
K̄−1
N X̄

[3/2]
Nη K̄

−1
η X̄

[3/2]
ηN

)2
∣∣∣∣
hard

,

(B.3)
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where a minus sign is included due to the fermionic nature of the first propagator. Since
the fermion N is a gauge singlet, the CDE transformed inverse propagator K̄N = −/q+mN

with vanishing of ḠNµν due to FNµν = 0; while for the doublet η, K̄η = (Ḡηµν ∂̃ν − qµ)2 −m2
η

with F ηµν = g2W
I
µνσ

I/2+g1Bµν/2 entering into the definition of Ḡηµν in eq. (B.2). Denoting
the obtained effective Lagrangian by L4L (with integration over spacetime x implied on
both sides), we have

L4L
CDE= i

4µ
2ε
∫ ddq

(2π)d tr
[

1
q2 −m2

N

(−/q +mN )X̄ [3/2]
Nη

1
(Ḡηµν ∂̃ν − qµ)2 −m2

η

X̄
[3/2]
ηN

]2
∣∣∣∣∣∣
hard

.

(B.4)
Since eachX [3/2]

ηN contributes a lepton field L(LC) from eq. (4.3), the supertrace will generate
operators containing four L(LC)s without any Higgs field. Thus it cannot contribute to the
LNV dim-7 operators but only LNC dim-6 ones involving four leptons. Therefore, up to
dim-7 matching, we can remove the bars associated with CDE transformation and neglect
the Ḡηµν part in the denominator, which leads to

Ldim≤7
4L = i

4µ
2ε
∫

ddq

(2π)d tr
(
−/q +mN

q2 −m2
N

X
[3/2]
Nη

1
q2 −m2

η

X
[3/2]
ηN

)2
∣∣∣∣∣∣
hard

= i

4µ
2ε
∫ ddq

(2π)d
tr
[
(−/q +mNv)XNvηXηNw(−/q +mNw)XNwηXηNv

]
(q2 −m2

η)2(q2 −m2
Nv

)(q2 −m2
Nw

)
, (B.5)

where in the second step we have dropped the subscript “hard” since the integrand already
lives in the hard momentum region, and some flavor labels (v, w) associated with the
fermion N are added. By taking into account the XNη and XηN in eq. (4.3), the trace
part in the above can be calculated step by step as follows,

trace ≡ tr
[
(−/q +mNv)XNvηXηNw(−/q +mNw)XNwηXηNv

]
(4.3)= tr

{
(−/q +mNv)[(Y †η )vpPLLipL̄irPR(Yη)rw + (Y T

η )vpPRLiCp LiCr PL(Y ∗η )rw]

× (−/q +mNw)[(Y †η )wsPLLjsL̄
j
tPR(Yη)tv + (Y T

η )wsPRLjCs L
jC
t PL(Y ∗η )tv]

}
,

(B.6)

where (i, j) stand for the SU(2)L doublet indices and (p, r, s, t, v, w) for the fermion flavor
indices. Using the chiral projection property PRPL = 0 and dropping the linear q terms
which vanish upon loop integration, it splits into two terms,

trace = mNvmNwT1 + qαqβT
αβ
2 , (B.7)

where

T1 = tr
[
(Y †η )vpLipL̄ir(Yη)rw(Y T

η )wsLjCs L
jC
t (Y ∗η )tv

+ (Y T
η )vpLiCp LiCr (Y ∗η )rw(Y †η )wsLjsL̄

j
t (Yη)tv

]
= −2(Y †η )vp(Yη)rw(Y T

η )ws(Y ∗η )tv
[
(L̄irLjCs )(LjCt Lip)

]
, (B.8a)
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Tαβ2 = tr
[
γβ(Y †η )vpLipL̄ir(Yη)rwγα(Y †η )wsLjsL̄

j
t (Yη)tv

+ γβ(Y T
η )vpLiCp LiCr (Y ∗η )rwγα(Y T

η )wsLjCs L
jC
t (Y ∗η )tv

]
= −2(Y †η )vp(Yη)rw(Y †η )ws(Yη)tv

[
(L̄irγαLjs)(L̄

j
tγ
βLip)

]
. (B.8b)

We have removed chiral projectors since our L(LC) is left-handed, finished the trace in the
spinor space, and reshuffled dummy indices to make the expressions more compact. Note
that a minus sign has been included when interchanging a pair of fermion fields. Finally,
we apply the FI in T1, 2(ψ1Lψ

C
3L)(ψC

4Lψ2L) = (ψ1Lγ
µψ2L)(ψ3Lγµψ4L), and make symmetric

loop integration in qαqβTαβ2 → (q2/d)gαβTαβ2 , to obtain

T1 = −(Yη)pw(Y T
η )ws(Y ∗η )tv(Y †η )vr(L̄pγµLr)(L̄sγµLt), (B.9a)

qαqβT
αβ
2 ⇒ −2q2

d
(Yη)pw(Y †η )wt(Yη)sv(Y †η )vr(L̄pγµLr)(L̄sγµLt). (B.9b)

The loop integrals in eq. (B.5) can now be worked out to yield the loop functions F4,1(x, y)
and F4,2(x, y). The end result is that the WC for the operator (L̄pγµLr)(L̄sγµLt) is
C̃prstll /(16π2m2

η), where

C̃prstll = F4,1(xv, xw)(Yη)pw(Y T
η )ws(Y ∗η )rv(Y †η )vt

−F4,2(xv, xw)(Yη)pw(Y †η )wt(Yη)sv(Y †η )vr, (B.10)

which is given in the last row of the dim-6 sector in table 1.

C Reduction into the standard basis

Using the integration by parts relations in eq. (4.5) and the EoMs in eq. (4.11), we reduce
the dim-6 non-standard basis operators (blue ones) in table 1 to the Warsaw basis as
follows,

∂µB
µν∂ρBρν

EoM==⇒ g2
1

[
1
6 Q̄γµQ+ 2

3 ūγµu−
1
3 d̄γµd−

1
2 L̄γµL− ēγµe+ 1

2H
†i
←→
DµH

]2

==⇒ g2
1
4 OH� + g2

1OHD −
g2

1
2 δprO

(1),pr
Hl − g2

1δprO
pr
He

+g2
1
6 δprO

(1),pr
Hq + 2

3g
2
1δprO

pr
Hu−

g2
1
3 δprO

pr
Hd

+g2
1
4 δprδstO

prst
ll + g2

1
36δprδstO

(1),prst
qq − g2

1
6 δprδstO

(1),prst
lq

+g2
1δprδstOee + 4

9g
2
1δprδstOprstuu + g2

1
9 δprδstO

prst
dd

−4
3g

2
1δprδstOprsteu + 2

3g
2
1δprδstO

prst
ed −

4
9g

2
1δprδstO

(1),prst
ud

+g2
1δprδstO

prst
le − 2

3g
2
1δprδstO

prst
lu + g2

1
3 δprδstO

prst
ld

−g
2
1
3 δprδstO

prst
qe + 2

9g
2
1δprδstO(1),prst

qu − g2
1
9 δprδstO

(1),prst
qd ,

(C.1a)
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DµW
IµνDρW I

ρν
EoM==⇒ g2

2
4

[
QσIγµQ+LσIγµL+H†i

←→
Dµ

IH
]2

==⇒ −g2
2µ

2
H(H†H)2 + 2g2

2λHOH + 3
4g

2
2OH�

+g2
2
2 δprO

(3),pr
Hl + g2

2
2 δprO

(3),pr
Hq

+g2
2
2
[
(Ye)prOpreH + (Yu)prOpruH + (Yd)prOprdH + h.c.

]
+g2

2
4 (2δptδrs− δprδst)Oprstll

+g2
2
4 δprδstO

(3),prst
qq + g2

2
2 δprδstO

(3),prst
lq , (C.1b)

(H†H)(H†D2H) + h.c. EoM==⇒ 2µ2
H(H†H)2− 4λHOH

−[(Ye)prOpreH + (Yu)prOpruH + (Yd)prOprdH + h.c.], (C.1c)

Cpr(H†H)(Lpi
←→
/D Lr)

EoM==⇒ (CYe)prOpreH + h.c., (C.1d)

Cpr(H†σIH)(Lpi
←→
/D ILr)

EoM==⇒ (CYe)prOpreH + h.c., (C.1e)

−CprLpi
←−
/Di /Di /DLr

EoM==⇒ (Y †e CYe)pr(H†ep)i /D(erH)

= (Y †e CYe)pr
[
(epγµer)(H†iDµH) + (H†H)(epi /Der)

]
IBP==⇒ 1

2(Y †e CYe)pr
[
(epγµer)(H†i

←→
DµH) + (H†H)(epi

←→
/D er)

]
EoM==⇒ 1

2(Y †e CYe)prO
pr
He + 1

2
[
(YeY †e CYe)prO

pr
eH + h.c.

]
, (C.1f)

CprB
µνLpσµνi /DLr

EoM==⇒ (CYe)prOpreB , (C.1g)

CprDνB
µνLpγµLr

EoM==⇒ Cprg
2
1(LpγµLr)

[
1
6 Q̄γµQ+ 2

3 ūγµu−
1
3 d̄γµd−

1
2 L̄γµL− ēγµe

+1
2H
†i
←→
DµH

]
==⇒ g1

2 CprO
(1),pr
Hl − g1

4 (Cprδst +Cstδpr)Oprstll + g1

6 CprδstO
(1),prst
lq

−g1CprδstOprstle + 2g1

3 CprδstOprstlu − g1

3 CprδstO
prst
ld , (C.1h)

CprW
IµνLpσ

Iσµνi /DLr
EoM==⇒ (CYe)prOpreW , (C.1i)

CprDνW
IµνLpσ

IγµLr
EoM= g2

2 Cpr(Lpσ
IγµLr)

[
QσIγµQ+LσIγµL+H†i

←→
Dµ

IH
]

==⇒ g2

2 CprO
(3),pr
Hl + g2

4
[
2Cptδrs−Cprδst + (pr)↔ (st)

]
Oprstll

+g2

2 CprδstO
(3),prst
lq , (C.1j)

where we have used a generic symbol Cpr to stand for the WCs of the operators involving
fermion fields. The WC of the operator Oprstll is made symmetric using the flavor sym-
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metry Oprstll = Ostprll . The doubly underlined terms contribute to the dim-4 Higgs quartic
interaction.

To reduce the two dim-7 EoM operators in table 1, we need the identities,

D2 = /D /D + 1
2σ

µνFµν , Fµν = i[Dµ, Dν ] = g1Y Bµν + g2T
IW I

µν , (C.2)

where Y is the hypercharge operator and T I the SU(2)L generators. For the lepton doublet
field L being acted on by D2, Y L = −1

2L and T IL = 1
2σ

IL, we have

εikεjl(Li,Cp D2Ljr)HkH l

= εik

[
εjl(Li,Cp /D /DLjr)−

g1
4 εjl(L

i,C
p σ

µνLjr)Bµν −
g2
4 (εσI)jl(Li,Cp σµνLjr)W I

µν

]
HkH l

EoM==⇒ (Ye)rsOpsLeHD −
1
4O

pr
LHB −

1
4O

pr
LHW , (C.3a)

εikεjl(Li,Cp Ljr)HkD2H l

EoM==⇒ εikεjl(Li,Cp Ljr)Hk
[
µ2
HH

l − 2λH(H†H)H l + εlmQmYuu− dY †dQ
l − ēY †e Ll

]
= µ2

HO
pr
LH,5 − 2λHOprLH − (Yu)vwOvwrpQ̄uLLH

+ (Y †d )vwOvwrpd̄QLLH1 + (Y †e )vwOvwrpēLLLH ,

(C.3b)

which lead to

Sprεimεjn(Li,Cp D2Ljr)HmHn

EoM==⇒ (SYe)prOprLeHD −
1
4SprO

pr
LHW , (C.4)

Sprεimεjn(Li,Cp Ljr)HmD2Hn

EoM==⇒ µ2
HSprO

pr
LH,5 − 2λHSprOprLH

+ (Y †e )prSstOprstēLLLH + (Y †d )prSstOprstd̄QLLH1 − (Yu)prSstOprstQ̄uLLH
. (C.5)

Here Spr stands for the corresponding WC which is flavor symmetric, Spr = Srp, and the
doubly underlined term contributes to the dim-5 Weinberg operator.
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