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1 Introduction

Many properties of supersymmetric quantum field theories can be found by compactification
from higher dimensional string-, M-, F- or field theories on manifolds preserving some super-
symmetry. Such efforts have led to understanding several features and even classifications
of strongly coupled theories and superconformal field theories (SCFTs) in 6d [1–5] and
in 5d [6–16]. Moving down to 4d, many properties of 4d N = 2 Lagrangian as well as
strongly coupled non-Lagrangian theories and relations to 6d (2, 0) SCFTs compactified on
Riemann surfaces were found in the seminal work of Gaiotto [17], and a classification was
suggested in [18]. In recent years a similar effort was focused on understanding properties
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of less understood 4d N = 1 models using relations to compactifications of 6d (1, 0) SCFTs
on a Riemann surface with flux [19–32] (see also [33] for a recent review).1 These efforts
have revealed many dualities and symmetry enhancements of the underlying 4d N = 1
theories understood from geometry, yet there are many models that are not well understood
including many strongly coupled theories and SCFTs. One may hope that framing these
known relations in terms of geometric engineering from M- or F-theory, as it was done in
5d and 6d, may lead to a better understanding of 4d N = 1 theories as this will allow the
use of many powerful tools of geometric engineering.

In this work we focus on the constructions of 4d N = 1 models related to compactifica-
tions of 6d (1, 0) SCFTs on a tube or torus with flux for the global symmetry, as it was
considered in [22–24]. In these constructions one starts by compactifying a 6d (1, 0) SCFT
on a circle with some choices of holonomies for continuous abelian subgroups of the 6d flavor
symmetry. These result in 5d Kaluza-Klein (KK) theories, which in some favourable cases
have low energy effective field theory descriptions in terms of weakly coupled gauge theories.
In the cases in which the KK theory admits a gauge theory description, one can then build
duality domain walls with half-BPS boundary conditions relating two such 5d effective field
theories. In this construction the two theories will be associated with two different values
of the holonomy, and will have the same UV fixed point SCFT [40]. With some abuse of
terminology this phenomenon is sometimes referred to as “UV duality”, hence the name
duality domain wall. Note that in general such duality domain walls will contain 4d N = 1
degrees of freedom which are not always easy to predict and in general only half of the 5d
supersymmetry will be preserved. When the two theories related by the duality domain
wall have a UV completion in 6d and their KK theories differ by an holonomy for abelian
factors of the 6d flavor symmetry, this set-up is denoted as a flux domain wall.

These flux domain walls will be the basic building blocks to generate more general flux
tube and torus compactifications. Indeed, one can concatenate several such flux domain
walls to generate others with different values of the flux.2 Such a concatenation will include
non-trivial identifications in the gluing region that will determine the total domain wall
flux. One can also concatenate flux domain walls in this way on a circle to generate flux
tori. Generating a flux tube will require to cap the two sides of the domain wall with
half-BPS boundary conditions preserving the same half supersymmetry of the domain wall
BPS boundary conditions (see figure 1).

The above constructions were mostly used in past works to construct examples of
such reductions for various 6d SCFTs. In this work we aim to study the construction
itself in a top-down approach in which we work out its details starting from 6d using
field theory analysis. Specifically we will study this construction more in terms of the 5d
KK theories and show why some results found for the 4d theories using 4d consistency
conditions and anomaly arguments, can be seen to be required from the 5d perspective and

1Recently in [34, 35] preliminary steps were made to investigating a similar problem, but starting from
5d N = 1 SCFTs and leading to 3d N = 2 theories upon compactification on Riemann surfaces with flux.
See also [36–39] for some results from the holographic perspective.

2Similar 4d N = 1 models which arise from concatenating on a circle several domain walls but between
5d gauge theories that are UV completed by 5d SCFTs have been studied in [41].
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Figure 1. In 6d the compactification on a flux tube or torus is constructed by gluing several basic
flux tubes with flux Fi, where the type of gluing determines the total flux. Each basic flux tube
is realized as a flux domain wall in 5d, and these are concatenated along an interval or circle to
generate a tube or a torus.

the consistency of the construction of the domain walls. Our analysis is indeed completely
independent of the study of anomalies and other protected observables in 4d, such as the
supersymmetric index.

Another motivation for this work is that the aforementioned 5d theories can be geo-
metrically engineered from M-theory on non-compact Calabi-Yau three-folds [6–16, 42–49].
This together with the exact details of the field theory construction we present, which
include the 5d extended Coulomb branch (ECB) phase on each side of each domain wall,
can be used in future work to generate G2 manifolds that will produce the resulting 4d
N = 1 models upon compactification from M-theory [50–71].

The rest of the paper is organized as follows. In the first part of section 2 we review 6d
(1, 0) and 5d N = 1 theories and how to relate them via circle reduction, while in the second
part we review the 5d extended Coulomb Branch (ECB) and its box graph description. In
section 3 we describe the construction of flux domain walls as a variation of a real mass
parameter in the 5d theory across one direction. In section 4 we show how to construct
higher flux domain wall and flux tori by concatenating several basic flux domain walls. In
section 5 we review the 4d domain wall theories and give arguments on how to conjecture
Lagrangians for them. In section 6 we review some of the properties of the 4d theories
arising from the flux tube compactification, showing how they match those predicted from
the 5d construction of the previous sections. We conclude the paper in section 7 and give
some future directions of research.

2 6d SCFTs to 5d KK theories

2.1 6d (1, 0) and 5d N = 1 field theories and their relations

We start by reviewing 6d (1, 0) theories. The 6d (1, 0) and (2, 0) supersymmetry algebras
can be extended to superconformal algebras, thus admitting the existence of 6d SCFTs [72].
6d (1, 0) theories have eight real supercharges and their bosonic symmetries are the Lorentz
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symmetry so(5, 1) and an su(2)R R-symmetry. Such 6d field theories admit the following
multiplets: hypermultiplets containing four real scalars parametrizing the Higgs branch of
vacua and a spinor, vector multiplets containing a vector and a spinor (co-spinor of so(5, 1))
in the doublet of su(2)R, and tensor multiplets containing a two-form with a self-dual field
strength, a real scalar parametrizing the tensor branch of vacua and a spinor in the doublet
of su(2)R.

Considering a theory with a simple gauge group and hypermultiplets, the gauge kinetic
term 1

g2
∫
tr (F ∧ ?F ) implies that g has dimension one making the theory IR free, but it

requires some UV completion. If we add a tensor to the theory we can’t write a well-defined
Lagrangian for the theory, as the self-dual field strength of the tensor makes the kinetic
term vanish H ∧ ?H = H ∧ H = −H ∧ H = −H ∧ ?H. Nevertheless, one can consider
such a theory as having a Lagrangian with the added self-duality constraint. In such a
description the tensor multiplet scalar φ couples to the gauge field with the term

c

∫
φ tr (F ∧ ?F ) , (2.1)

where c is a constant. Thus, we can redefine φ to absorb the gauge coupling, leading to an
effective coupling

1
g2

eff
= c〈φ〉 . (2.2)

This means that the gauge coupling is non-vanishing on the tensor branch. The theory also
has instantons (strings in 6d) and from the kinetic term we can see that they have tension
TBPS ∝ 1

g2
eff
. In addition, TBPS(∝ 1

g2
eff

) is the only dimensionful parameter of the theory
and it vanishes in the origin of the tensor branch, implying the theory could have a UV
completion that is conformally invariant giving an SCFT.

Before we continue by compactifying the 6d theory on a circle to 5d, we wish to
shortly review 5d N = 1 theories. The 5d N = 1 supersymmetry algebra can be extended
to a superconformal algebra,3 thus admitting the existence of SCFTs with this amount
of supersymmetry. 5d N = 1 theories have eight real supercharges and their bosonic
symmetries are the Lorentz symmetry so(4, 1) and an su(2)R R-symmetry. Such 5d field
theories admit the following multiplets: hypermultiplets including four real scalars and
a spinor, and vector multiplets including a gauge field, a real scalar and a spinor in the
doublet of su(2)R. One can also consider a tensor multiplet dual to a vector multiplet
containing a two-form, a real scalar and a spinor in the doublet of su(2)R. Due to this,
both the tensor and vector multiplets from 6d will reduce to 5d vector multiplets. The
moduli space of vacua of these theories may be composed by two types of branches: the
Coulomb branch parametrized by the scalars in the vector multiplets and the Higgs branch
parametrized by the scalars in the hypermultiplets.

Next, we wish to reduce a 6d (1, 0) SCFT and its effective tensor branch field theory
parametrized by scalars φ6d

i on a circle in the x5 direction with radius R5. The SCFT
reduction leads to the so-called 5d Kaluza-Klein (KK) theory, which has a Coulomb branch

3The 5d N = 2 algebra can’t be extended to a superconformal algebra on the other hand, see [72].
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of vacua parametrized by real scalars φ5d
i . These scalars are the zero modes of the tower of

massive KK modes produced by the reduction of φ6d
i on the circle.

The (1, 0) 6d SCFTs unlike the (2, 0) SCFTs in many occasions have a non-vanishing
flavor symmetry G6d

F and one can also consider coupling abelian sub-algebras u(1)h ⊂ g6d
F to

background gauge fields A6d
h,µ. Turning on a non-trivial holonomy for A6d

h,µ around the circle
and compactifying to 5d will then produce real mass parameters mh which will parametrize
the space of relevant deformations of the 5d KK theory. In addition, the circle radius R5 we
compactify on gives us an additional mass parameter mKK = R−1

5 . This mass parameter can
be related to the u(1)KK symmetry of translations along the compactification circle. These
mass parameters can naturally couple to the gauge kinetic term through mh

∫
tr (F ∧ ?F );

therefore the effective gauge coupling of each simple gauge factor will be determined by a
combination of the bare coupling coming from the scalar in the associated vector multiplet
and the real mass parameters. In total the vector multiplet scalars φ5d

i and the mass
parameters mh parametrize the so-called extended Coulomb branch (ECB) of the 5d theory.

On a generic point of the Coulomb branch, which is parametrized only by the φ5d
i , the

gauge group is broken to its Cartan U(1)r where r is the dimension of the Coulomb branch
and is called the rank of the 5d theory. The effective low energy Lagrangian is [42]

Leff = Gij
(
dφi ∧ ?dφj + F i ∧ ?F j

)
+ cij`

24π2A
i ∧ F j ∧ F ` + . . . , (2.3)

where we dropped the superscript 5d for brevity, as all the fields in the Lagrangian are of the
5d theory. In this Lagrangian the couplings are determined by the prepotential F , which
is a cubic polynomial of the vevs of the scalars φi and the real masses mh. The effective
gauge coupling which is the metric on the ECB Gij and the Chern-Simons coefficient cij`
are given by

Gij = ∂2F
∂φi∂φj

, cij` = ∂3F
∂φi∂φj∂φ`

. (2.4)

Note that the Chern-Simons coefficient cij` must be an integer in order to get a well-defined
theory. The prepotential is given by

F =
( 1

2g2
0
fijφ

iφj + k

6dij`φ
iφjφ`

)
+ 1

12

 ∑
α∈roots

∣∣∣αiφi∣∣∣3 −∑
h

∑
w∈Rh

∣∣∣wiφi +mh

∣∣∣3
 , (2.5)

where the first parenthesis contain the classical contribution, while the second parenthesis
contain the one-loop contribution. In the expression g0 denotes the bare gauge coupling, k
is the Chern-Simons level, fij = Tr (TiTj) , dij` = 1

2trF (Ti{Tj , T`}) where Ti are the Cartan
generators of the Lie algebra g associated to the gauge group G, α denote the roots of g
and w denote the weights of the representation Rh of g under which the hypermultiplet
h transforms. In the above expression repeated upper and lower indices are implicitly
summed, with i, j, ` = 1, . . . , rk(G).

The spectrum at each point of the ECB contains massive BPS particles and strings.
The particles (instantons) are electrically charged and their masses can be inferred from
the gauge kinetic term. Their charges are given by

m/
√

2 = Ze = nieφi + fhmh , (2.6)
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where nie denotes the electric charge under a low energy gauge symmetry u(1)i factor on
the Coulomb branch, while fh denotes the charge of a flavor u(1)h related to mh. The
strings are magnetically charged and descend from the 6d BPS strings that don’t wind the
compactification circle. Their tension is given by

T/
√

2 = Zm = nimφD,i , (2.7)

where nim are the magnetic charges under u(1)i and φD,i are derived from the prepotential
F as φD,i = ∂F

∂φi
.

Finally, in order to reach an SCFT point we need to take the compactification circle
radius to zero R5 → 0 (or equivalently take mKK →∞). This will make the entire tower of
KK modes infinitely massive and integrate them out leaving us only with the zero modes.
If we take the limit at the ECB origin we will find a 6d SCFT point, while taking some of
the real masses to infinity first, effectively integrating out some of the hypermultiplets, and
then taking R5 → 0 will lead to a genuine 5d SCFT.

Free hypermultiplet reduction example. Here we will give an example for the com-
pactification of a simple 6d N = (1, 0) field theory containing a free hypermultiplet
transforming under an su(2)F flavor symmetry along with the Lorentz and R-symmetry
so(5, 1)⊕ su(2)R. This analysis was initially done in [73] and we will summarize some of
the relevant results. We will use the free hypermultiplet example to exemplify some of the
features and properties of the compactification of 6d SCFTs on a flux tube to 4d. Going
back to the example, under so(5, 1)× su(2)R × su(2)F the supersymmetry generators Qiα
transform as (4,2,1), the fermions ψaα transform as (4,1,2), and the bosons φia transform
as (1,2,2). In addition we will choose anti-symmetric 6d Dirac matrices Γµαβ . Throughout
this example α, β, γ = 1, . . . , 4 are spinor indices of so(5, 1), µ, ν = 0, . . . , 5 are vector
indices of so(5, 1), i, j, k = 1, 2 and a, b, c = 1, 2 are indices of the su(2)R and su(2)F
doublets, respectively.

The hypermultiplet action is

S =
∫
d6x

[
−1

4εijεab∂µφ
ia∂µφjb + 1

2εabψ
a
αΓµαβ∂µψbβ

]
, (2.8)

with equations of motion

∂µ∂
µφia = 0 , Γµαβ∂µψaα = 0 . (2.9)

The supersymmetry transformations are given by

δφia = 2ηαiψaα , δψaα = ηβiεijΓµαβ∂µφ
ja , (2.10)

where ηαi is the supersymmetry parameter.
When compactifying the above theory on a circle to 5d, a KK tower of states is

generated with the lowest state being massless and constant on the circle. Looking at
u(1)F ⊂ su(2)F corresponding to the T 3 generator of su(2)F (the third Pauli matrix), it
has an associated current Jµ which we can couple to a background gauge field Aµ = A3,µT

3.
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Creating a Wilson line for Aµ around the circle is equivalent to changing the periodicity of
the 6d hypermultiplet fields, which will be identified up to a u(1)F rotation with themselves.
Setting A3,5 = m gives the hypermultiplet fields the following x5 dependence

φa(xµ̃, x5) = φb(xµ̃)
(
eimx

5T 3)a
b
,

ψa(xµ̃, x5) = ψb(xµ̃)
(
eimx

5T 3)a
b
, (2.11)

where µ̃ = 0, . . . , 4 is a vector index of so(4, 1) and

T 3 =
(

1 0
0 −1

)
. (2.12)

The action in 5d is found by inserting the above field assignments into the 6d action

S =
∫
d5x

[
−1

4εijεab
(
∂µ̃φ

ia∂µ̃φjb +m2φiaφjb
)

+ 1
2εabψ

a
αΓµ̃αβ∂µ̃ψ

b
β + 1

2 imεab(T
3) b
c ψ

a
αΓ5αβψcβ

]
. (2.13)

The associated equations of motion are the equations of a massive 5d hypermultiplet

(∂µ̃∂
µ̃ +m2)φia = 0 , Γµ̃αβ∂µ̃ψ

a
α + im(T 3) a

b Γ5αβψbα = 0 . (2.14)

The supersymmetry transformations derived form the 6d ones are

δφia = 2ηαiψaα , δψaα = εijη
βiΓµ̃αβ∂µ̃φ

ja + imεijη
βiΓ5

αβ(T 3) a
b φ

jb . (2.15)

2.2 5d gauge theories ECBs and the box graph description

We will now discuss the Coulomb branch and extended Coulomb branch (ECB) phases
of 5d N = 1 gauge theories and review a compact and visual way to present the ECB
phases known as the (decorated) box graph description [74–77] (see also [14] for specific
applications to 5d SCFTs).

Consider a gauge theory with gauge algebra gguage =
⊕

i gi⊕u(1)1⊕· · ·⊕u(1)rA , where
gi are simple algebras of rank ri. The Coulomb branch of the theory is isomorphic to

RrA ×
∏
i

Ci , (2.16)

where Ci = Rri/Wgi is the Weyl chamber cone and Wgi is the Weyl group of gi. It is natural
to choose a root basis ~α(i)

j of positive simple roots of gi,4 such that Ci are the fundamental
Weyl chambers of gi

Ci =
{
~φ ∈ Rri | 〈~φ, ~α(i)

j 〉 > 0 ∀ j
}
. (2.17)

Suppose now that we have a hypermultplet transforming in representation Rh of the
gauge symmetry g. Under the r Cartan u(1)’s of g it carries charges in accordance with
the weights ~wI of the representation Rh. Some hypermultiplet becomes massless on points

4In the following sections we will need to change this basis to a less natural basis when we glue flux tubes.
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of the Coulomb branch where 〈~φ, ~wI〉 = 0 for some ~wI ∈ Rh. These loci represent walls
separating the Coulomb branch to subchambers or phases where 〈~φ, ~wI〉 has a non vanishing
value for each ~wI ∈ Rh. The signs of these 〈~φ, ~wI〉 determine a unique phase of the Coulomb
branch and the relations between these phases describe the Coulomb branch structure.

We will use the decorated box graph to represent the above Coulomb branch phases.
The box graphs are used to represent the weight diagram of an irreducible representation,
where each box represents a weight and its neighbouring boxes represent weights related
to it by an addition or subtraction of a simple positive root ~αj . The decorated box graph
is a box graph with additional ± signs, where in each box related to a weight ~w the sign
corresponds to the sign of 〈~φ, ~w〉. We will use a convention where weights represented by
boxes are related to other boxes lying above or to the left by additions of positive simple
root. Thus, above and to the left of a positive sign box one can only assign positive signs.
Vice versa below and to the right of a negative sign box one can only assign negative signs.

We can further use the (decorated) box graphs to describe the ECB. This is done by
promoting the hypermultiplet masses mh to parameters of the Coulomb branch, effectively
weakly gauging part of the flavor symmetry. The box graph describing the ECB will be the
one for matter in representations (Rgauge, RBG) of ggauge ⊕ gBG, where gBG is the flavor
symmetry. Each box of the graph now corresponds to a weight ~wI,J = (~wgauge,I , ~wBG,J)
of (Rgauge, RBG) and the ± sign associated to it corresponds to the sign of 〈(~φ, ~m), ~wI,J〉,
where (~φ, ~m) is a vector collecting all the vevs for the vector scalars φi and all the real
masses mh. The ECB phase will determine which hypermultiplets can become massive and
thus be decoupled. Specifically, each hypermultiplet corresponds to a fixed weight ~wBG,J ,5

of the flavor symmetry and transforms in a representation Rgauge of the gauge symmetry,
and we will be able to give mass to it only if all of its weights under the gauge symmetry
~wI,gauge are such that they have the same sign of 〈(~φ, ~m), ~wI,J〉.

2.2.1 Example: ECB phases for the 5d reduction of the rank 1 E-string

As an example, we will consider the simplest class of 5d SCFT: the rank one 5d theories
arising from the 6d rank one E-string theory reduced on a circle possibly with holonomies
for the flavor symmetry which will be mapped to mass deformations in 5d. Reducing
without holonomies for flavor symmetries we find the marginal theory [13], which at weak
coupling admits a low energy effective sp(1) = su(2)gauge gauge theory description with
8 fundamental hypermultiplets [78, 79] (semotimes we will compactly refer to this gauge
theory as su(2) + 8F ). Due to the pseudo reality of su(2)gauge the flavor symmetry is
so(16). Thus the ECB phases will be those of matter in the representation (2,16) of
su(2)gauge ⊕ so(16).

In order to represent the ECB phases we will first define a basis for the relevant roots
and weights. We will use a basis where the so(16) vector representation 16 weights are
given by (±1, 0, 0, 0, 0, 0, 0, 0) + permutations (16 total), while the roots of so(16) are given
by (±1,±1, 0, 0, 0, 0, 0, 0) + permutations (112 total) and the spinor representation weights
are given by (±1

2 ,±
1
2 ,±

1
2 ,±

1
2 ,±

1
2 ,±

1
2 ,±

1
2 ,±

1
2) with even number of minus signs for the

5Or pairs of opposite weights if the flavor symmetry is a real group.
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Figure 2. The rank one 5d SCFT undecorated box graph presenting the (2,16) representation of
su(2)gauge ⊕ so(16). Each box represents a weight ~wi,j in the representation, where i = 1, 2 labels a
weight in the doublet representation of su(2)gauge and j = 1, . . . , 16 labels a weight in the vector
representation of so(16). The weights are related to one another by the simple positive root ~αsu(2)

of su(2)gauge and ~αso(16)
j of so(16).

spinor and odd for the cospinor (128 each).6 In this basis the positive simple roots are
given by

so(16) :



~α
so(16)
1 = (0; 1,−1, 0, 0, 0, 0, 0, 0), ~α

so(16)
2 = (0; 0, 1,−1, 0, 0, 0, 0, 0),

~α
so(16)
3 = (0; 0, 0, 1,−1, 0, 0, 0, 0), ~α

so(16)
4 = (0; 0, 0, 0, 1,−1, 0, 0, 0),

~α
so(16)
5 = (0; 0, 0, 0, 0, 1,−1, 0, 0), ~α

so(16)
6 = (0; 0, 0, 0, 0, 0, 1,−1, 0),

~α
so(16)
7 = (0; 0, 0, 0, 0, 0, 0, 1,−1), ~α

so(16)
8 = (0; 0, 0, 0, 0, 0, 0, 1, 1),

su(2) : ~αsu(2) = (2; 0, 0, 0, 0, 0, 0, 0, 0) , (2.18)

while the highest weight of (2,16) is ~w1,1 = (1; 1, 0, 0, 0, 0, 0, 0, 0). We present the undeco-
rated box graph for this representation in figure 2.

Adding the decoration to the box graphs one can write all the consistent ECB phases.
Turning on no holonomies for 6d flavor symmetries corresponds to no masses for the 5d
hypermultiplets giving the marginal theory. Thus, the consistent decorated box graph for
this phase is the one where each of the two 16 representation graphs have opposite uniform
coloring, where we assign blue/yellow to the +/− signs, respectively. In addition recall
that this representation is self-conjugate requiring the total number of + boxes to equal the
number of − boxes, see the top left corner of figure 3. One can then start flipping signs of
boxes in a consistent manner to reach phases where one can give masses to some or even
all the hypermultiplets. The full depiction of the consistent ECB phases of the rank one
theory is given in figure 3 [14].

6This basis will prove useful for describing the eventual 4d flux tube theories.
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Figure 3. All the possible consistent ECB phases of the rank one 5d su(2) + 8F gauge theory
described by decorated box graphs. On the top left corner we have the phase matching the marginal
theory. Each subsequent arrow leads to a phase with one flipped box sign in each of the 16
representations allowing an additional hypermultiplet mass to be turned on.

Finally, note that the holonomies for the abelian subgroup of the 6d flavor symmetry
that we can turn on correspond to generators of this symmetry. In the case of the rank one 5d
theories these arise from the 6d rank one E-string SCFT compactification. Thus, the abelian
symmetries we turn on holonomies for correspond to generators of e8, whose non-vanishing
generators in our chosen basis are given by (±1,±1, 0, 0, 0, 0, 0, 0) + permutations (112 total)
and (±1

2 ,±
1
2 ,±

1
2 ,±

1
2 ,±

1
2 ,±

1
2 ,±

1
2 ,±

1
2) with even number of minus signs (128 total). These

together with the eight singlets are exactly the weights of the adjoint 120 representation and
spinor 128 representation of so(16), respectively. One can see that in the free hypermultiplet
example (2.12) we also chose a generator of su(2) for the 6d flavor symmetry. On the other
hand, the masses we turn on in the 5d theory correspond to individual hypermultiplets,
which in our chosen basis correspond to each placing in the basis vector. This means that in
order to get a specific number of hypermultiplets to be massive could require more than a
single generator whose associated holonomy is turned on. In fact the only two cases of this
example that only require a single generator are giving the same mass (up to a sign) to all the
hypermultiplets corresponding to the generators (±1

2 ,±
1
2 ,±

1
2 ,±

1
2 ,±

1
2 ,±

1
2 ,±

1
2 ,±

1
2) again

with even number of minuses and giving the same mass (up to a sign) to two hypermultiplets
corresponding to the generators (±1,±1, 0, 0, 0, 0, 0, 0) + permutations. In section 6 we will
show how this fact translates to the simplicity of the matching flux domain wall 5d/4d
coupled system theories compared to others.

3 5d flux domain walls

3.1 General discussion

After having reviewed some facts about circle compactifications of 6d theories to 5d, we will
now move to discuss the so-called 5d flux domain walls. A 5d domain wall is a configuration
in which two distinct 5d theories are separated by an interface at a position, say, x4 = 0 in
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the x4 direction. On the wall it will typically leave some 4d degrees of freedom (d.o.f.’s) that
interact in some way with the 5d bulk theories. Such a set-up was studied in [40], where in
particular duality domain walls were considered. This refers to the situation in which the
two 5d bulk theories are actually different gauge theory phases of the same UV SCFT. The
typical situation considered in [40] is the one in which the two 5d bulk theories are the same
gauge theory, but with a non-trivial identification of their flavor symmetry mass parameters
which corresponds to a Weyl reflection of the UV flavor symmetry which is not part of the
Weyl group of the IR flavor symmetry. Hence, from the low energy gauge theory perspective
the deformations are different, but they are instead equivalent from the point of view of
the UV SCFT so in this sense they are “dual”.7 In this configuration, one doesn’t turn on
vevs for the vector multiplet scalars φi, while turning on mass parameters that the Weyl
reflection acts on non-trivially. In the simplest situations that we will consider only a single
mass parameter will be turned on, even though the corresponding Weyl transformation may
be associated with a combination of several positive roots and not just a single one.

Although this construction applies to arbitrary 5d theories, we will consider the case
in which the theories descend from some 6d SCFT, like the su(2) + 8F theory that is UV
completed by the 6d rank 1 E-string theory which we reviewed in the previous section. In
this case the 5d duality domain wall induced by the non-trivial identification of the flavor
mass in the gauge theories, can also be understood as the compactification of the 6d theory
on an infinitely long tube with flux for part of its flavor symmetry g6d

F , which is why this
set-up is called a flux domain wall. To see this, we should imagine that the aforementioned
mass parameter, call it m, has a non-trivial profile m(x4) in the x4 direction such that
its value will change between the left and the right 5d bulk theories. Remember from the
discussion of the previous section that mass parameters in 5d KK theories descend from the
x5 direction component of the background gauge field A6d

µ of the corresponding symmetry.
Hence, a variable mass parameter in the x4 direction will naturally lead to a non-vanishing
F 6d

45 which is the source of the flux

1
2π

∫
Σ
F 6d

45 6= 0 . (3.1)

Notice that at this stage Σ is an infinitely long tube, so the flux does not need to be
integrally quantized. We will come back to the quantization condition in the next section
when considering the case of the torus compactification.

It turns out the precise profile of the variable mass is not important, while the only
relevant thing is that its value changes sign between x4 → −∞ and x4 → +∞. In particular,
the mass has to cross the zero value at the location of the wall x4 = 0 in order for some
non-trivial 4d theory to live on the wall. Notice that this means that the Weyl reflection
relating the mass parameter between the left and the right 5d bulk theories corresponds
to complex conjugation of the u(1) inside the flavor symmetry that is associated to such a
mass, which is the main situation we will consider. The sign change of the mass can be
understood considering again the simple example of the free hypermultiplet in 6d. Even

7In some cases, the symmetry relating the two 5d bulk theories is not a Weyl element of the continuous
global symmetry at the UV point, but it is still a discrete symmetry of the SCFT.
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though the analysis can’t be applied in the same way, one can expect the same conclusion
to hold also for flux tube compactifications of 6d SCFTs. Again, the discussion for the free
hypermultiplet can be found in [73] and here we shall review its main points.

Back to the free hypermultiplet example. The 6d free hypermultiplet theory has a
Noether current JAµ in the adjoint of su(2)F with A = 1, 2, 3. Using the supersymmetry
transformations on the current one can find its full supermultiplet

JAµ = 1
4 iεijεab(T

A) b
c (φjc∂µφia − ∂µφjcφia)−

1
2 iεab(T

A) b
c Γαβµ ψaαψ

c
β ,

Sj,Aα = iεba(TA) b
c φ

jaψcα ,

∆ij,A = 1
2 iεba(T

A) b
c φ

icφja , (3.2)

where TA denote the Pauli matrices. The supersymmetry transformations are

δJµA = εijη
αi(Γµν) β

α ∂νS
j,A
β ,

δSj,Aβ = ηjγΓµβγJ
A
µ + εkiη

γkΓµβγ∂µ∆ij,A ,

δ∆ij,A = ηαiSj,Aα + ηαjSi,Aα , (3.3)

where we used the equation of motion (2.14) for ψα in the transformation of JAµ .
Next we wish to consider the case where the A5 component varies along the x4 direction,

meaning the field strength F45 is non-vanishing. This will generate a 5d hypermultiplet
with a varying mass m(x4). Coupling the background gauge field Aµ to the theory requires
adding to the action ∫

d6xJµA
µ (3.4)

plus a term proportional to A2 to preserve gauge invariance. This coupling gives the terms
proportional to m and m2 in the action (2.13) when considering only the J3

µ component
related to the subgroup u(1)F ⊂ su(2)F . The variation of this action with a varying mass is
given by

δS =
∫
d5xm′(x4)εijεab(T 3) b

c η
γi(iΓ4Γ5)αγψaαφjc , (3.5)

with m′(x4) ≡ dm/dx4. In order to preserve supersymmetry we demand that the super-
symmetric variation of the full action vanishes. Let’s consider adding the following term to
the Lagrangian:

Lnew = 1
4m
′(x4)εab(T 3) b

c εij(T 3) j
k φ

iaφkc . (3.6)

The supersymmetric variation of this term is

δLnew = 1
2m
′(x4)εab(T 3) b

c εij(T 3) j
k 2ηαiψaαφkc . (3.7)

Thus the supersymmetric variation vanishes if

(T 3) i
j η

αj = ηγi(iΓ4Γ5)αγ . (3.8)
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This equation breaks half of the supersymmetry, leaving 4d N = 1 supersymmetry in the
directions x0, · · · , x3. The term added to preserve supersymmetry is proportional to ∆12,3,
and since m′(x4) is

∫
dx5F45 we see that the extra term it is proportional to∫

d6xF45∆12,3 , (3.9)

which is required to be added together with (3.4) due to supersymmetry.
The full action for a hypermultiplet with a varying mass is thus

S =
∫
d5x

[
−1

4εijεab(∂µ̃φ
ia∂µ̃φjb +m(x4)2φiaφjb −m′(x4)(T 3) b

c (T 3) j
k φ

iaφkc)

+1
2εabψ

a
αΓµ̃αβ∂µ̃ψ

b
β + 1

2 im(x4)εab(T 3) b
c ψ

a
αΓ5αβψcβ

]
. (3.10)

It preserves the supersymmetry transformations (2.15) when η solves (3.8). The equations
of motion are (

∂µ̃∂
µ̃ +m(x4)2

)
φia −m′(x4)(T 3)ij(T 3)abφjb = 0 ,

Γµ̃αβ∂µ̃ψ
a
β + im(x4)(T 3)abΓ5αβψbβ = 0 . (3.11)

We want to determine the 4d modes obtained from this construction. The bosons and
fermions will have a 4d massless mode for every solution of the equations of motion (3.11).
The solution to the fermionic equation is

ψ(x4) = e−iΓ
4Γ5T 3

∫ x4

0 m(y)dyψ0 , (3.12)

where we suppressed the indices. Both matrices iΓ4Γ5 and T 3 have eigenvalues +1 and −1.
Thus, for the solution to be normalizable we require∫ x4

0
m(y)dy x4→±∞−−−−−→∞ or

∫ x4

0
m(y)dy x4→±∞−−−−−→ −∞ . (3.13)

In the former case the solution is normalizable if ψ0 has the same eigenvalue under iΓ4Γ5

and T 3 and in the latter case the eigenvalues must be opposite. In both cases we get two
chiral spinors related by a reality condition leaving one independent chiral spinor.

For the bosonic equation in a similar way the solution is

φ(x4) = e−iT
3
RT

3
F

∫ x4

0 m(y)dyφ0 , (3.14)

where T 3
R and T 3

F are the third pauli matrix of the su(2)R and su(2)F flavor symmetry,
respectively. There is a normalizable solution in the same two cases from before, both with
two solutions related by the reality condition. Thus, in total we get a single massless N = 1
chiral multiplet.

The condition (3.13) for the existence of the zero modes implies that m(x4) must cross
zero at some point, as mentioned before. Notice that in the case of a 5d gauge theory that
is UV completed by an SCFT tuning the mass parameter to zero, which is the only ECB
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deformation we are turning on, corresponds in general to going back to the strongly coupled
point. In the case of 5d gauge theories descending from 6d SCFTs, this corresponds to the
5d KK theory obtained from circle compactification with a codimension one locus where
the holonomies of the 6d theory vanish. Hence, we generically expect our flux domain wall
configuration to be characterized by strong coupling effects localized on the wall where the
4d theory lives. This makes the determination of the 4d d.o.f.’s in the case of a 6d SCFT a
difficult task, unlike the case of the free hyper that we just reviewed. We will come back to
this point in section 6.

3.2 Example: basic flux domain wall for the rank 1 E-string

We will now apply these ideas to study flux domain walls associated with the rank 1 E-string
theory. The simplest domain wall we can consider is the one associated with the following
flux for the e8 global symmetry:8

~F =
(
−1

2 ,−
1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2

)
, (3.15)

where we are parametrizing the flux vector in terms of the Cartan of e8 given by the
embedding so(2)8 ⊂ so(16) ⊂ e8 and the normalization is consistent with our definitions
in (2.18). In a different parametrization, this corresponds to flux −1

2 for the u(1) that is the
Cartan of the su(2) in the decomposition e7⊕ su(2) ⊂ e8. Hence, the associated flux domain
wall is characterized by two copies of the 5d su(2) + 8F gauge theory with a variable mass
parameter mu(1) for the u(1) in the decomposition su(8) ⊕ u(1) ⊂ so(16). In particular,
as we discussed, the mass should invert its sign between the two sides of the wall, which
corresponds to complex conjugation for such u(1) symmetry. Remember that so(16) is the
flavor symmetry of the gauge theory, which is enhanced to the full e8 only in the UV. The
sign flip of the mass parameter corresponds to a Weyl reflection of e8 which is not in the
Weyl group of so(16), specifically it is the Weyl reflection of the su(2) in the decomposition
e7 ⊕ su(2) ⊂ e8. This means that we are really considering a duality domain wall in the
sense of [40].

We would like now to determine the ECB phases of the two 5d bulk theories that are
consistent with such a configuration. For this purpose, it is useful to look at the branching
rule of the vector representation of so(16), under which the 8 hypers or equivalently the 16
half-hypers transform, with respect to its su(8)⊕ u(1) subgroup, as

16→ 8+1 ⊕ 8−1
. (3.16)

We then see that turning on the mass parameter mu(1) for the u(1) corresponds to giving
mass to all the flavors. Hence, we must be in the ECB phase where all the 8 flavors can be

8Notice that this flux violates Dirac’s quantization condition for a closed Riemann surface, but as we
commented previously this is admissible since we are compactifying the 6d E-string theory on an infinitely
long tube. Nonetheless, one can use such flux for a closed Riemann surface with the addition of discrete flux.
We will discuss flux quantization more thoroughly in the next section.
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integrated out, which is the following:9

(3.17)

If we fix the above box graph to describe the ECB phase for one of the two 5d bulk
theories, say the left one, then the box graph of the other theory is in principle not well-
defined. This is because the inner products of the left theory 〈(φ, ~m), ~wI,J〉 will have definite
signs specified by the box graph in (3.17), while those of the right theory 〈(φ, ~̃m), ~wI,J〉 do
not have a definite sign, since the map of the mass parameters between the two sides in the
su(8)⊕ u(1) ⊂ so(16) parametrization is

(mu(1) +m1
su(8), · · · ,mu(1) +m8

su(8)) → (−mu(1) +m1
su(8), · · · ,−mu(1) +m8

su(8)) , (3.18)

where
∑8
a=1m

a
su(8) = 0. Nevertheless, we should remember that the only parameter that

we want to turn on is the mass mu(1), while the vector scalar vevs φ and the other masses
ma

su(8) are set to zero. In this situation, the sign flip of mu(1) is effectively equivalent to the
sign flip of the entire vector of masses ~m, so the box graph associated with the 5d bulk
theory on the right of the wall is

(3.19)

At first sight, this box graph might seem inconsistent, especially because it violates
the rule that above and to the left of a positive sign box one can only assign positive signs,
while vice versa below and to the right of a negative sign box one can only assign negative
signs. We should remember, though, that this is just a matter of conventions depending
on the subset of roots we choose to define the box graph. Specifically, the conventional
choice is to pick the positive simple roots, which we wrote in (2.18) for the case under
consideration. The point is that if we select the positive simple roots for the left theory,
then necessarily we have to pick the negative simple roots10 for the right theory. This is
because, in our set-up where only mu(1) is turned on, its sign flip is effectively equivalent at

9This is not the only phase which is consistent with integrating out all the flavors. There is also another
phase, that the reader can find depicted in the bottom left of figure 3 or in the second to last row of
table 6 of [14]. The theory resulting from integrating out the flavors is again a pure SU(2) gauge theory, but
with a theta-angle θ = π. Upon reduction to 4d this is expected to lead to a Witten anomaly [80] for the
corresponding global symmetry of the puncture of the tube, since both the theta-angle in 5d and the Witten
anomaly in 4d are controlled by π4(SU(2)) = Z2. All the 4d models we consider are free of such an anomaly,
so we will not consider this phase.

10The negative simple roots are the positive simple roots with the sign flipped.
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su(2) + 8F
φ, ~msu(8) = 0, mu(1) > 0

α
(L)
i = α

so(16)
i

x4

x4 = 0

su(2) + 8F

φ̃, ~̃msu(8) = 0, mu(1) < 0

α
(R)
i = −αso(16)

i

Figure 4. Structure of the ECB phases associated with the domain wall of flux ~F =
(
− 1

2 , · · · ,−
1
2
)
.

The symbols φ̃, m̃su(8) denote the parameters in the right theory.

the level of the box graph to the flip of all the so(16) roots.11 Another way to say this is
that the ECB is defined modulo the Weyl action of the group, that is we consider only one
Weyl chamber representative. If we choose the usual Weyl chamber for the left theory, then
we have to choose a different Weyl chamber for the right one because of the non-trivial
map of the parameters between the two. In fact, we can equivalently represent the ECB
phase of the theory on the right side of the wall with the usual box graph provided that
we use a different convention for the roots, namely if the roots on the left of the wall are
α

(L)
i = α

so(16)
i then those on the right are α(R)

i = −αso(16)
i . The configuration that we just

described associated with the domain wall of flux ~F =
(
−1

2 , · · · ,−
1
2

)
is summarized in

figure 4.
We will present more complicated flux domain walls in the next section, after having

discussed how to glue several copies of this basic one in order to generate configurations
with multiple domain walls concatenated. We will also come back to this basic flux domain
wall in section 6, where we will review the field content of the 4d model resulting from
the configuration in figure 4 after further compactifying the x4 direction, which was first
proposed in [22].

4 Higher flux domain walls, tubes and tori

4.1 Flux quantization, hypermultiplet masses, and the ECB phases

The set-up offered so far of 5d flux domain wall corresponds to a compactification of a 6d
(1, 0) SCFT on an infinite flux tube. In this section we will generalize this construction to a
torus compactification that will enforce a quantization of the flux supported on it. The
flux torus can be thought of as a concatenation of several flux domain walls, which are

11Notice that this is a Weyl operation of so(16), which seems to be in contrast with our previous statement
that the sign flip of mu(1) is equivalent to a Weyl reflection of e8 which is not in the Weyl group of so(16).
The crucial point is that we can equivalently use the so(16) Weyl transformation once we have set to zero
all the masses ma

su(8).
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our building blocks, on a circle. The quantization condition on the torus thus allows us to
associate a flux to each fundamental flux domain wall. We will also consider flux domain
walls associated with different values of the flux.

In order to construct a 4d theory generated by a compactification of a 6d (1, 0) SCFT
on T 2, we will consider a compact x4 direction in addition to the x5 direction. As before
we will turn on a background gauge field Ah,µ associated to a single U(1)h ⊂ G6d

F ,12 such
that it satisfies the quantization condition

1
2π

∫
T 2
Fh,45 = n

q6d
min

, n ∈ Z , (4.1)

where q6d
min is the minimal charge under U(1)h that appears in the spectrum of the 6d theory.

Let us consider a regime where R5 � R4 with Rµ the radius of the S1 in the xµ direction.
We can then first reduce along the x5 direction with holonomy

W (x4) =
∫ 2πR5

0
Ah,5(x4, x5)dx5, (4.2)

that varies from 0 to 2πn/q6d
min as x4 varies from 0 to 2πR4 such that (4.1) is satisfied.

Next, we want to look at weakly coupled regimes of the 5d KK theory. Assuming
we don’t turn on vevs for the vector multiplet scalars and we only turn on an holonomy
for U(1)h ⊂ G6d

F , the parameters that will control the gauge coupling will be mh, the
hypermultiplet mass parameter associated to the holonomy W (x4), and mKK = R−1

5 , the
compactification circle length scale. Compactifying a 6d hypermultiplet on a circle generates
a tower of KK states. As we saw in (2.13)–(2.14), if the 5d hypermultiplet coming from a
6d circle compactification has charge q5d

h under U(1)h, then the holonomy we turn on shifts
the masses of the tower of states such that they are given by

mh,`(x4) =
∣∣∣∣∣q5d
h W (x4)
2πR5

− `

R5

∣∣∣∣∣ , (4.3)

with ` ∈ Z. In the low energy limit only the lowest mass state will be relevant. Since the
masses depend on x4 the lowest mass state will change with x4, thus giving us an effective
low energy description near each x4 value where W (x4) is an integer multiple of 2π/q5d

h

with a specific mass parameter. Note that if we have matter with different charges under
U(1)h, the strongest condition will come from the one with minimal charge q5d

min. Thus, the
masses of all the 5d states will approach zero near each x4 value where W (x4) is an integer
multiple of 2π/q5d

min.
It is then important to determine what are the minimal charges q6d

min and q5d
min. In the

general case the 6d theory won’t necessarily include hypermultiplets and may include BPS
instantons (strings). To determine q6d

min we can simply decompose the representations of all
the hypermultiplets and BPS strings under

G6d
F →

H6d
F ×U(1)h
Z6d , (4.4)

12In this section we pay particular attention to the precise global structure of all the groups and do not
just focus on their Lie algebras.

– 17 –



J
H
E
P
1
2
(
2
0
2
2
)
0
1
7

where H6d
F is the simply connected group of the algebra which is the commutant of U(1)h

in G6d
F and Z6d is some discrete group which is a subgroup of the center of H6d

F such that
none of the states in the 6d spectrum are charged under it. Note that in this decomposition
G6d
F is the flavor symmetry group of the 6d theory and not the flavor symmetry algebra, so

the precise global structure of the symmetry is crucial in order to understand what Z6d is.
In the case in which Z6d = Zk, the minimal charge under U(1)h will be q6d

min = k.
In the above circle reduction from 6d to 5d we intentionally distinguished between

the minimal charge in 6d q6d
min and 5d q5d

min as these can differ. The 5d minimal charge is
determined in a similar way to the 6d minimal charge, but now we have to consider the
decomposition of the 5d flavor symmetry

G5d
F →

H5d
F ×U(1)h
Z5d . (4.5)

Again, H5d
F is the simply connected group of the algebra which is the commutant of U(1)h

in G5d
F and Z5d is some discrete subgroup which will determine the minimal charge q5d

min.
For Z5d = Zm we will have q5d

min = m. G5d
F is the flavor symmetry of the 5d KK theory

not including U(1)KK, which can differ from the flavor symmetry G6d
F at the SCFT point.

This difference can lead to a difference between Z6d and Z5d and thus also to q6d
min 6= q5d

min.
In general q5d

min ≥ q6d
min and in the case of inequality this will lead to n · q5d

min/q
6d
min instead

of n domain walls required to build a torus with flux n/q6d
min. This implies that the flux

associated to a single domain wall is 1/q5d
min. Note that q5d

min/q
6d
min ∈ Z and we will usually

work in a normalization where q6d
min = 1 for simplicity. Below we will show using the rank 1

E-string example how this comes into play.
Going back to the mass parameters in (4.3), we can relate the lowest mass parameters

around each point in the x4 direction where W (x4) crosses a multiple of 2π/q5d
min by setting

m
(0)
h = mh,`=0(x4) around x4 = 0, while the other mass parameters are set to be

m
(p)
h = mh,`=p(x4) = m

(0)
h − pmKK (4.6)

around x4 satisfying W (x4) = 2πp/q5d
min, where p = 0, · · · , ñ and ñ = nq5d

min/q
6d
min. In the

5d theory this can be thought of as turning on a mass parameter corresponding to the
symmetry13

U(1)(p)
h = 1

2

(
U(1)(0)

h −
1
p

U(1)KK

)
. (4.7)

This shows explicitly that in the case of a flux torus as described above we have a theory with
a U(1)(0)

h symmetry while the U(1)KK symmetry is actually broken to a Zñ symmetry. Indeed,
on the torus the points x4 = 0 where W (x4) = 0 and x4 = 2πR4 where W (x4) = 2πn/q6d

min
are actually identified because of the periodic boundary conditions and imposing that
U(1)(0)

h = U(1)(ñ)
h or equivalently m(0)

h = m
(ñ)
h implies that all the charges under the KK

symmetry are identified modulo ñ.14

13This notation refers to the charges under the various abelian symmetries.
14This can be easily seen at the level of fugacities. Denoting by h(p) the U(1)(p)

h fugacity for p = 0, · · · , ñ
and by κ the U(1)KK fugacity, the relation (4.7) implies that h(p) = h(0)κ

−p. Requiring h(̃n) = h(0) indicates

that κ is a Z
ñ
fugacity satisfying κñ = 1.
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With the above picture in mind we can now see that for all the x4 values where W (x4)
is an integer multiple of 2π/q5d

min the effective gauge coupling goes to infinity indicating a
strongly coupled theory located on the 4d domain wall. These interfaces are also where
the mass parameter crosses zero. Since R5 � R4 we can think of the region near these x4

values as approximately being a flux domain wall or an infinite flux tube as we discussed
in the previous section. Thus, we can expect as in the free hypermultiplet example that
there are chiral zero modes localized on these interfaces. Note that in order to get a
higher flux with n > 1 the mass parameters need to cross zero in the same direction
ñ times. In our convention the crossing is from a negative sign on the left of the wall
to a positive sign on the right of the wall for a positive flux. This is possible thanks
to the fact that the mass parameter we are considering near the p-th domain wall is
m

(p)
h = m

(0)
h − pmKK = m(p−1) −mKK, so that even if the mass m(p−1) of the previous

domain wall already changed from negative to positive, the shift by −mKK allows the mass
m

(p)
h to be negative before the p-th domain wall, so that it can again cross zero from negative

to positive value. On the other hand if the crossing of the mass is in an opposite direction
for two flux domain walls, concatenating them will lead to a cancellation of the flux. In this
case the mass parameter on both walls remains the same one and the associated U(1)(p)

h

symmetry is not shifted by U(1)KK between the two walls.
The final knot to tie in the above picture is how to relate the 5d ECB phases of

neighbouring flux domain walls15 when concatenating them to create a higher flux domain
wall as part of a higher flux tube or torus. As it was discussed in the former section the two
ECB phases on the two sides of the domain wall can be related by a Weyl reflection. Thus,
in the same manner we can identify the ECB phase on the right side of one domain wall
with the ECB phase on the left side of its neighbouring domain wall up to a Weyl element.
Denoting by ~F1 and ~F2 the fluxes of the glued domain walls under the Cartans of G5d

F and
by w ∈WG a Weyl element of G5d

F , then the resulting flux will be

~Ftot = ~F1 + w
(
~F2
)
. (4.8)

The simplest situation is the one in which w is the trivial Weyl element. If we glue several
copies of the same flux domain wall in such a way, then the resulting flux will just be that of
the single domain wall multiplied by the number of glued domain walls. On the other hand,
we can consider a Weyl reflection that flips the sign of all the entries of the flux vector.
Relating the ECB phases of two neighbouring domain walls in such a way will lead to a
cancellation of the flux and give in total a trivial domain wall. This gluing will accordingly
lead to a non-trivial identification of the flavor symmetries of the 5d theories, in particular
we will have that U(1)(0)

h = −U(1)(1)
h .

In general when the 5d effective low energy description has more then one hypermultiplet
and thus more then one possible mass parameter, one can choose to glue domain walls in a
way that adds the flux for some of the U(1)’s associated to some hypers and deduct the
flux for others. This is done by identifying the glued domain walls with a Weyl element
that flips the sign of only some of the entries of the flux vector. In this case each U(1) we

15The gluing points in the x4 direction will be where W (x4) is an odd integer multiple of π/q5d
min.
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wish to add its flux in the gluing will mix with U(1)KK while the others won’t as prescribed
above. The mapping of the ECB phases between the two domain walls will depend on the
choice of Weyl transformation. This will also imply a non-trivial identification of the U(1)’s
of the glued walls on top of the aforementioned shift by U(1)KK. In what comes next we
will continue with the rank 1 E-string theory flux domain wall example and show several
instances of gluings.

4.2 Example: higher flux domain walls and tori for the rank 1 E-string

In the following examples we will show how one can combine several copies of the simple
rank 1 E-string domain wall discussed in the former section of flux ~F =

(
−1

2 , · · · ,−
1
2

)
,

the building block of our construction, to generate various other flux domain walls and
tori. Here we will consider flux domain walls of the form ~F = (−n, . . . ,−n, 0, . . . , 0) with k
non-vanishing entries and 8− k zeros. Let us start describing some general properties of
these configurations and later we will explain the gluing needed to generate them in some
examples. We will mostly focus on the case of even k as the odd k case is more involved on
the one hand and adds no qualitative value on the other hand.

The above flux breaks the 6d global symmetry as follows:

E8 →
H ×U(1)h

Z2
, (4.9)

where the commutant H of the U(1)h that gets flux depends on the value of k, specifically
it is E7 for k = 2, 8, Spin(14) for k = 4 and E6 × SU(2) for k = 6 [22]. The global structure
of the residual group can be understood by looking at the branching rules (see for example
appendix A of [22]) and it tells us that in this case Z6d = Z2. Hence, in a canonical
normalization of the U(1)h symmetry, the minimal charge in 6d is q6d

min = 2.
On the other hand, in the 5d KK theory the E8 flavor symmetry is broken to a

Spin(16)/Z2 flavor symmetry.16 Then the flux breaks it further as follows:

Spin(16)
Z2

→ SU(8)×U(1)a
Z4

→ SU(k)× SU(8− k)×U(1)a ×U(1)b
Z4

, (4.10)

where k is even and the flux is associated to a combination of U(1)a and U(1)b that we will
pin down in the examples below.17 Accordingly, the vector representation 16 which the
hypermultiplets transform under will follow the branching rules

16→ 8+1 ⊕ 8−1 → (k,1)+1,+(4− k
2 ) ⊕ (1,8-k)+1,− k

2 ⊕ (k,1)−1,−(4− k
2 ) ⊕ (1,8-k)−1,+ k

2 .

(4.11)
16The Z2 quotient is due to the decomposition of the representation 248 of e8 to representations of so(16),

where we find the spinor charged under one of the Z2’s of Spin(16), allowing us to mod out by the other.
Note that this group is different from the flavor symmetry group of the low energy effective field theory
which is SO(16)/Z2 due to the matter in the vector representation and where now the Z2 quotient is thanks
to a reabsorbtion by a gauge transformation associated with the Z2 center of the SU(2) gauge group.

17For the case of odd k < 7 one can expect the decomposition

SO(16)→ SU(8)×U(1)a

Z4
→ SU(k)× SU(6− k)×U(1)a ×U(1)3

Z4
.

For k = 7 one should expect the same decomposition as k = 1.
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The above global structure of the flavor symmetry breaking under the flux can be
deduced by the branching rules of the E-string theory BPS string in the 248 of e8 under
e8 → so(16) and the subsequent above decomposition. After the first decomposition in (4.10)
we have

248→ 120⊕ 128→
[
630 ⊕ 10 ⊕ 28+2 ⊕ 28−2]⊕ [700 ⊕ 28−2 ⊕ 28+2 ⊕ 1±4

]
, (4.12)

where we define R±q , R+q⊕R−q for a representation R. One can see these representations
aren’t charged under a Z4 subgroup of the Z8 center. For example, the 28 has charge +2
under the Z8 center and gets an additional contribution of +2 from the U(1); thus, the 28+2

has charge +4 under the Z8 center preserving a Z4 subgroup.18 The last decomposition
gives

248→ [(Asu(k),1)0,0 ⊕ (1,Asu(8−k))0,0 ⊕ (k,8-k)0,+4 ⊕ (k,8-k)0,−4]

⊕ [(Λ2
su(k),1)±2,(8−k) ⊕ (k,8-k)±2,(4−k) ⊕ (1,Λ2

su(8−k))±2,−k]

⊕ [(Λ2
su(k),1)±2,−(8−k) ⊕ (k,8-k)±2,−(4−k) ⊕ (1,Λ2

su(8−k))
±2,k]

8−k⊕
`=0

(Λk−4+`
su(k) ,Λ`

su(8−k))0,2(2`−8+k) ⊕ 2× (1,1)0,0 ⊕ (1,1)±4,0 (4.13)

where A and Λm,Λm correspond to the adjoint, and the irreducible m index antisymmetric
and its complex conjugate representations, respectively.19 Note that all the representations
under the decomposition so(16)→ su(k)⊕ su(8− k)⊕ u(1)a ⊕ u(1)b are not charged under
a Z4 subgroup of the center remembering that k is even.20

This leads to the relation q5d
min = 2q6d

min for the above decompositions. Therefore, we
should expect a flux n domain wall or torus to be composed of 2n minimal flux domain
walls with flux to the same u(1). In particular, we can see that the flux associated to the
domain wall we considered in figure 4, which corresponds to the case k = 8, is −1

2 .
As we will see momentarily, in these more general configurations there are several mass

parameters turned on and they all change as we move in the x4 direction. Nevertheless,
the change is such that eventually we have flux only for one specific u(1), while there is
no flux for the others. This is achieved by changing the mass parameter associated to
several hypermultiplets that see the flux from positive to negative at each domain wall
location, while the other mass parameters change continuously from positive to negative at
the (2i− 1)-th domain wall and back to positive at the 2i-th domain wall, with i = 1, · · · , ñ2 .
This is possible thanks to an mKK shift at the concatenation interface of the two domain
walls for the hyper multiplet masses related to the u(1) with flux, while employing no such
shift for the rest of the mass parameters, as we will show momentarily. It turns out that the

18Another way to say this is that the representation 28+2 is invariant under a transformation of SU(8)×U(1)
which is of the form diag(e 2πi

4 , · · · , e 2πi
4 ) for the SU(8) part and e 2πi

4 for the U(1) part and thus preserves a
Z4 diagonal subgroup of the SU(8) center Z8 and of U(1).

19Note that Λm
su(n) is empty if m < 0 or m > n in the above notation.

20In the case of odd k the decomposition would be different but we expect to still have a Z4 subgroup of
the center under which no representation is charged.
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su(2) + 8F

φ,m1≤i≤k > 0, mk<i≤8 = 0

α
(L)
i = α

so(16)
i

k 8− k
k8− k

x4

x4 = 0

su(2) + 8F

φ,m1≤i≤k < 0, mk<i≤8 = 0

α
(R)
1≤i<k = α

so(16)
i , α

(R)
k<i≤8 = −αso(16)

i

α
(R)
k = α

so(16)
k + 2

∑6
i=k+1 α

so(16)
i

+α
so(16)
7 + α

so(16)
8

Figure 5. The ECB phases associated with a domain wall of flux ~F = (−1, . . . ,−1, 0, . . . , 0) with
even k (−1) entries and 8− k zeroes. Note that in this diagram mi denotes the mass of the i-th
hypermultiplet. In the figure we show the example of k = 4 for illustration.

only ECB phase consistent with the shift of the masses imposed by the gluing required to
form the desired flux domain wall, is the one where k hypers can be integrated out, which
is shown on the left of figure 5. Accordingly on the other side of the domain wall we will
need to flip the mass sign of k hypermultiplet masses which would amount to flipping the
sign of k boxes on each side of the box graph. Nevertheless, as we showed in figure 4 for
the case k = 8, there is a non-trivial identification of the Weyl chamber used for the right
and left sides of the domain wall, as specified in figure 5.21 We will show how to determine
the Weyl chamber of each side in the following examples.

We will now show how to construct these flux domain walls for generic k, as well as
the associated flux tori from the basic flux domain wall with k = 8 shown in figure 4 using
the above gluing procedure. This will be clarified first by using specific examples.

4.2.1 Flux ~F = (−n,−n,−n,−n,−n,−n,−n,−n)

We start with the simplest example of higher flux domain wall and torus, where we simply
add the fluxes of several ~F =

(
−1

2 , · · · ,−
1
2

)
flux domain walls. In this case the mixing of

the u(1) we give flux to with u(1)KK is as described in the general case in (4.7). Moreover,
the Weyl transformation relating the right side of the left domain wall with the left side
of the right domain wall is the trivial one since we only want to add the flux of the two
domain walls. This means that the roots of the so(16) global symmetry for the two 5d
theories are trivially identified

α
(R,0)
i = α

(L,1)
i , (4.14)

where α(R,0)
i are the roots of the theory on the right of the left domain wall, while α(L,1)

i

are the roots of the theory on the left of the right domain wall. This in particular means
that the flavor symmetry is trivially identified between the two walls.

21For odd k the picture would be similar but the minimal flux is (−2, · · · ,−2, 0, · · · , 0) with k (−2) entries.
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su(2) + 8F

φ, ~msu(8) = 0,

m
(0)
u(1) > 0

α
(L,0)
i = α

so(16)
i

x4 = 0

su(2) + 8F

φ, ~msu(8) = 0,

m
(0)
u(1) < 0

α
(R,0)
i = −αso(16)

i

x4 =W−1(π)

x4

su(2) + 8F

φ, ~msu(8) = 0,

m
(1)
u(1) > 0

α
(L,1)
i = −αso(16)

i

x4 =W−1(2π)

su(2) + 8F

φ, ~msu(8) = 0,

m
(1)
u(1) < 0

α
(R,1)
i = α

so(16)
i

Figure 6. Structure of the ECB phases associated with the domain wall of flux ~F = (−1, · · · ,−1).
Here the box graphs on the two sides of each domain wall are identical since they are drawn using
different conventions for the so(16) roots as specified. Note that m(1)

u(1) = m
(0)
u(1) −mKK.

Note that the mass parameter m(0)
u(1) associated to the left domain wall is negative in its

right region, while the mass parameter m(1)
u(1) associated to the right domain wall is positive

in its left side due to the shift by mKK we described in (4.6). Hence, since the roots are
identified but the mass parameter changes sign, the box graph encoding the ECB phase
of the theory on the left of the first domain wall and that encoding the ECB phase of the
theory on the right of the second domain wall are oppositely coloured. We summarize this
concatenation of two ~F =

(
−1

2 , · · · ,−
1
2

)
flux domain walls in figure 6.

One can join ñ copies of the ~F =
(
−1

2 , · · · ,−
1
2

)
flux domain wall to generate a

~F =
(
− ñ

2 , · · · ,−
ñ
2

)
flux domain wall in a similar manner. When trying to generate a flux

torus, one needs to close the x4 direction to a circle. We see that this can consistently be
done provided that ñ is even due to Dirac’s quantization condition (4.1). Indeed, in this
way the total flux for the u(1) is n = ñ

2 ∈ Z in our normalization in which q6d
min = 1. We

can also see that if we have an even number ñ of domain walls building the torus, then we
can consistently identify the so(16) roots of the theory on the very left with those of the
theory on the very right

α
(L,0)
i = α

so(16)
i = α

(R,2n)
i , (4.15)

as it can be seen explicitly in figure 6 for ñ = 2. Moreover, the identification of the mass
parameters

m
(0)
u(1) = m

(2n)
u(1) = m

(0)
u(1) + 2nmKK (4.16)

implies that the charges of the KK symmetry should be 0 modulo 2n, that is it is broken to
its discrete subgroup

u(1)KK → Z2n . (4.17)

It is actually also possible to consider the situation in which the number of domain
walls ñ is odd. As discussed in [22], the resulting torus can be made consistent even if the
flux for the u(1) is half-integer by including a flux for the Z2 center of the e7 symmetry
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preserved by the flux, which is enhanced from su(8) at the SCFT point. This discrete flux
nevertheless breaks the e7 symmetry to a subgroup, such that under the branching rules the
resulting representations won’t be charged under the center Z2. The maximal subgroup of e7
that can be preserved is f4 (see appendix C of [22]).22 The su(8) symmetry of the 5d gauge
theory is accordingly broken to so(8). This can be directly seen in the configuration with
stacked domain walls, since the roots of so(16) of the theory on the left of the first domain
wall are αL,0i = α

so(16)
i while those on the right of the last domain wall are αR,ñi = −αso(16)

i

for odd ñ. Thus, in the gluing we should identify the 8 of the residual su(8) symmetry of
one side of the domain wall with the 8 on the other side, breaking su(8)→ so(8).23 Such a
breaking instead doesn’t occur for even ñ = 2n, as expected. The u(1)KK is still broken to
Zñ, so for example in the case of the torus of flux −1

2 made of a single basic domain wall
there is no residual symmetry.

4.2.2 Flux ~F = (−n,−n,−n,−n,−n,−n, 0, 0)

Now we move to a more involved example where we add the flux of the first six entries
of the neighbouring ~F =

(
−1

2 , · · · ,−
1
2

)
domain walls and subtract the last two entries to

generate a ~F = (−1, · · · ,−1, 0, 0) domain wall. This is achieved by using the Weyl element
that flips the sign of the last two entries of the flux vector when performing the gluing.

In order to describe this gluing, we need to decompose su(8)→ su(6)⊕ su(2)⊕ u(1)b
according to the flux. The u(1) symmetry associated to the flux will be a combination of
u(1)b and the u(1) that had flux in the ~F =

(
−1

2 ,−
1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2

)
domain

wall, which we will denote as u(1)a. Accordingly the 8 hypers transforming in the 5d theory
as the 16 of so(16) will transform under su(6)⊕ su(2)⊕ u(1)a ⊕ u(1)b as

16→ 8+1 ⊕ 8−1 → (6,1)+1,+1 ⊕ (1,2)+1,−3 ⊕ (6,1)−1,−1 ⊕ (1,2)−1,+3 . (4.18)

We can see that the parametrization of the hypermultiplet masses is now

~m = (ma+mb+m1
su(6), . . . ,ma+mb+m6

su(6),ma−3mb+msu(2),ma−3mb−msu(2)) , (4.19)

with the constraint
∑6
a=1m

a
su(6) = 0.

Before figuring out how the mass parameters of the two glued domain walls are identified,
let us discuss the action on the roots. The first 5 simple roots of so(16) are the su(6) roots
which relate to the first six flux entries. Since we want to add the flux related to these first
six entries, we should map these in a trivial way between the 5d theory on the right of the
first domain wall and that on the left of the second domain wall. The roots α7, α8 of so(16)
are the so(4) roots related to the last two flux entries. Since for these we want to deduct
the flux, we should reflect these roots. Finally the root α6 allows us to combine the so(4)
and su(6) symmetries to get an so(16) box graph. Thus, there is only one sensible choice
taking α(L,1)

6 = α
(R,0)
6 + α

(R,0)
7 + α

(R,0)
8 . One can check that this choice indeed leads to a

22This can be seen by using the decomposition e8 → e7⊕su(2)→ f4⊕su(2)⊕su(2)→ f4⊕su(2)d → f4⊕u(1),
where su(2)d is the diagonal of both su(2).

23In [27] it was shown that this so(8) symmetry can get enhanced to f4 for the higher rank E-string.
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Figure 7. The mass variation of different mass parameters across two concatenated domain walls.
The dashed purple line shows the mass parameter m(0)

a associated to u(1)a in the left domain wall
and its extension to the right domain wall. For simplicity we chose a linear dependence of m(0)

a in
x4. The dashed blue line shows the mass parameter m(0)

b which is similarly extended and is chosen
to be vanishing here for simplicity. In green we have the mass parameter ma +mb for the first six
hypermultiplets associated with the flux. This mass parameter is given as m(0)

a +m
(0)
b in the range

x4 ∈ (−π, π), and as m(1)
a +m

(1)
b in the range x4 ∈ (π, 3π). One can see it passes through zero twice

in the same direction, and in the gluing interface it jumps; this amounts to a −1 flux. We similarly
show in red the mass parameter ma − 3mb of the other two hypers which is continuous and passes
through zero twice but in opposite directions, which amounts to a 0 flux as required.

root of so(16). Summarizing, the identifications of the roots is

α
(L,1)
1≤i≤5 = α

(R,0)
i , α

(L,1)
6 = α

(R,0)
6 + α

(R,0)
7 + α

(R,0)
8 , α

(L,1)
7≤i≤8 = −α(R,0)

i . (4.20)

This identification of the flavor symmetry translates into a non-trivial identifications
of the u(1)a and u(1)b symmetries of the first and the second domain wall, which we shall
denote by u(1)(p)

a and u(1)(p)
b for p = 0, 1. These symmetries also mix with u(1)KK in a

way that shifts the first six mass parameters ma +mb, while leaving the other two mass
parameters ma − 3mb unchanged. In addition, remember that the only non-vanishing mass
parameter for the ~F =

(
−1

2 , · · · ,−
1
2

)
flux domain wall was ma, which flips its sign from

positive to negative as we cross the wall. Thus, we demand m
(0)
b = C with constant C,

while m(0)
a varies from mKK

2 − 2C at x4 = W−1(−π) to −mKK
2 at x4 = W−1(π). In general

we can consider m(0)
a as a monotonically decreasing function of x4 dropping by an amount

mKK
2 −C between x4 = W−1((n−1)π) and x4 = W−1(nπ), see figure 7 for an example with

C = 0. Considering these changes of the mass parameters we would expect the following
relations between the mass parameters:

m(1)
a +m

(1)
b = m(0)

a −m
(0)
b +mKK , m(1)

a − 3m(1)
b = −(m(0)

a + 3m(0)
b )−mKK , (4.21)

where at the transition point we flip the sign for the mass parameter ma + mb, from
−mKK

2 + C to mKK
2 − C, but keep it monotonically decreasing (the sign of the coefficient of
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m
(0)
a is positive), while for the mass parameter ma − 3mb we do the opposite (the sign of

the coefficient of m(0)
a is negative). This can be translated into the following identification

of the mass parameters

m(1)
a = 1

2m
(0)
a −

3
2m

(0)
b + 1

2mKK , m
(1)
b = 1

2m
(0)
a + 1

2m
(0)
b + 1

2mKK . (4.22)

Now, we can understand the combination of u(1)’s that gets flux denoted u(1)F and
the orthogonal combination which doesn’t denoted u(1)O. For u(1)F we demand that the
charges of all the representations in the decomposition (4.18) on the left side of the first
domain wall will be mapped to the same representations with an opposite charge on the
right side of the second domain wall. Under u(1)O we demand the representations in the
same respective locations will have the same charges. Before determining the above u(1)’s,
first note that between the two sides of each domain wall the u(1)a charges are flipped.
In addition, we need to use (4.22) to map the charges of the second domain wall to the
notation of the first domain wall. All in all, the representations and charges under u(1)(0)

a

and u(1)(0)
b of the right side of the second domain wall are

(6,1)0,+2 ⊕ (1,2)−2,0 ⊕ (6,1)0,−2 ⊕ (1,2)+2,0 . (4.23)

Considering the above constraints we find that

u(1)F = 1
4
(
−3u(1)(0)

a + u(1)(0)
b

)
, u(1)O = 1

4
(
u(1)(0)

a + u(1)(0)
b

)
, (4.24)

where the charges are in the convention of the left side of the first domain wall. In addition,
the normalization was chosen to match the flux quantization. Under this choice of charges
we have the following u(1)F and u(1)O charges on the two sides:

(L, 0) : (6,1)−
1
2 ,+

1
2 ⊕ (1,2)−

3
2 ,−

1
2 ⊕ (6,1)+ 1

2 ,−
1
2 ⊕ (1,2)+ 3

2 ,+
1
2 ,

(R, 1) : (6,1)+ 1
2 ,+

1
2 ⊕ (1,2)+ 3

2 ,−
1
2 ⊕ (6,1)−

1
2 ,−

1
2 ⊕ (1,2)−

3
2 ,+

1
2 . (4.25)

The last comment is that if we take the ECB phases of the first domain wall to be as in
figure 4, then after the identifications (4.20)–(4.22) we would get non-sensible ECB phases
for the second domain wall. In order to get a consistent picture, we need to start from the
ECB phase depicted on the left of figure 5 with k = 6. Then the previous identifications
are as summarized in figure 8, so that the final ECB phase on the very right coincides with
the one we drew on the right of figure 5.

With the ~F = (−1, · · · ,−1, 0, 0) flux domain wall at hand we can now construct
~F = (−n, · · · ,−n, 0, 0) flux domain walls and tori by gluing n copies of it, or equivalently
2n copies of the most basic domain wall with half-integer flux. The gluing of two ~F =
(−1, · · · ,−1, 0, 0) domain walls is done by identifying the roots of the right side of the left
domain wall with the roots of the left side of the right domain wall with the trivial Weyl
element, as we did in the previous example of subsubsection 4.2.1. Recall that in this case
there is no non-trivial identification of the flavor symmetries and the masses of all the
hypers are shifted by mKK according to (4.6). Note that in the general case of non-vanishing
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m
(0)
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(0)
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α
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m
(1)
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(1)
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(1)
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(1)
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α
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6 = −∑8

j=6 α
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α
(L,1)
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so(16)
i

x4 =W−1(2π)

m
(1)
a − 3m

(1)
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m
(1)
a +m

(1)
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α
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α
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α
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i

Figure 8. Structure of the su(2) + 8F ECB phases associated with the domain wall of flux ~F =
(−1, · · · ,−1, 0, 0). For brevity sake we didn’t include that the vector of scalars as well as all the other
mass parameters are set to zero throughout this diagram. Note that m(1)

a = 1
2m

(0)
a − 3

2m
(0)
b + 1

2mKK

and m
(1)
b = 1

2m
(0)
a + 1

2m
(0)
b + 1

2mKK. For simplicity we assume a step function profile for m(0)
a

dropping from 3mKK
10 to −mKK

2 at x4 = 0 and again from −mKK
2 to − 13mKK

10 at x4 = W−1(2π), while
keeping constant m(0)

b = mKK
10 .

m
(0)
b = C we need to identify in addition m(p+1)

b = −m(p)
b for odd p, since as in the previous

example one needs the sign of all the masses to flip sign at the gluing interface. As in the
former example, generating a flux torus with odd n will require a flux for a Z2 subgroup of
the center and this will break the flavor symmetry, while an even n will correspond only to
flux for the u(1) symmetry.

We can determine how the KK symmetry is broken when considering a torus as follows.
Let us focus on the case of n = 2 for concreteness. The configuration then involves 2n = 4
copies of the basic domain wall with flux (−1

2 , · · · ,−
1
2). We shall denote by u(1)(p)

a and
u(1)(p)

b for p = 0, 1, 2, 3 the abelian symmetries around each of the domain walls. From our
previous discussion, we see that these are identified according to (4.22) for the 0/1 and the
2/3 domain walls, that is

m(p+1)
a = 1

2m
(p)
a −

3
2m

(p)
b + 1

2mKK , m
(p+1)
b = 1

2m
(p)
a + 1

2m
(p)
b + 1

2mKK (4.26)

for p = 0, 2, while they are identified according to (4.6) for the 1/2 and the 4/1 domain
walls, that is

m(p+1)
a = m(p)

a +mKK , m
(p+1)
b = −m(p)

b (4.27)

for p = 1, 3, where the inversion of the u(1)b mass parameter is needed since this gluing
increases the flux under u(1)a and not under u(1)b. Consistency of the torus then requires
that the charges of the 5d hypermultiplets go back to their original value, which at the level
of the mass parameters means

m(0)
a +m

(0)
b = m(3)

a +m
(3)
b = m(0)

a +m
(0)
b + 2mKK ,

m(0)
a − 3m(0)

b = m(3)
a − 3m(3)

b = m(0)
a − 3m(0)

b + 6mKK . (4.28)
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The stronger condition comes from the first line and it translates to the following condition
on charges:

u(1)(0)
a + u(1)(0)

b = u(1)(0)
a + u(1)(0)

b + 2u(1)KK , (4.29)
which tells us that the charges under the KK symmetry should be 0 modulo 2, hence the
u(1)KK symmetry is broken to a discrete subgroup

u(1)KK → Z2 . (4.30)

For generic flux (−2n,−2n,−2n,−2n,−2n,−2n, 0, 0) the symmetry is instead broken to Z2n.

4.2.3 Flux ~F = (−n, . . . ,−n, 0, . . . , 0)

In this final example we will give a general prescription generalizing the former examples to
give a ~F = (−n, . . . ,−n, 0, . . . , 0) flux domain wall and torus with k entries equal to −n
and 8− k zeroes. The prescription will be dependent on the parity of k due to the fact that
the e8 roots of the form (±1

2 , · · · ,±
1
2) corresponding to the basic flux domain walls come

only with even number of minus signs.
We start with the case of even k for which we have already covered the cases of

k = 6, 8 in the former examples. The prescription here relies as before on gluing two
~F =

(
−1

2 , · · · ,−
1
2

)
flux domain walls in a way that adds the flux of the first k entries and

deducts the flux of the last 8− k entries. This is achieved by identifying the domain walls
up to the Weyl element that flips the sign of the last 8− k entries of the flux vector. The
mapping of the roots of so(16) between the right side of the left domain wall and the left
side of the right domain wall is given in this general case by

α
(L,1)
1≤i≤k−1 = α

(R,0)
i , α

(L,1)
k = α

(R,0)
k +2

6∑
i=k+1

α
(R,0)
i +α(R,0)

7 +α(R,0)
8 , α

(L,1)
k+1≤i≤8 = −α(R,0)

i .

(4.31)
As we did before, we first look at the branching rules of the 16 under the decomposition

so(16)→ su(8)⊕ u(1)a → su(k)⊕ su(8− k)⊕ u(1)a ⊕ u(1)b

16→ 8+1 ⊕ 8−1 → (k,1)+1,+(4− k
2 ) ⊕ (1,8-k)+1,− k

2 ⊕ (k,1)−1,−(4− k
2 ) ⊕ (1,8-k)−1,+ k

2 .

(4.32)
From this decomposition we find that the hypermultiplet masses are given by

~m =
(
ma +

(
4− k

2

)
mb +m1

su(k), . . . ,ma +
(

4− k

2

)
mb +mk

su(k),

ma −
k

2mb +m1
su(8−k), . . . ,ma −

k

2mb +m8−k
su(8−k)

)
, (4.33)

with the constraint
∑n
a=1m

a
su(n) = 0.

In a similar way to the former example we can figure out what are the mapping of the
mass parameters between the first and second domain wall from the hypermultiplet masses

m(1)
a =

(
k

4 − 1
)
m(0)
a + k

(
k

8 − 1
)
m

(0)
b +

(
k

4 − 1
)
mKK ,

m
(1)
b = 1

2m
(0)
a +

(
k

4 − 1
)
m

(0)
b + 1

2mKK . (4.34)
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Note that in the case of k = 8 the second line of the mapping is irrelevant since there is
no mb parameter, and the identification of the ma parameter is given only by the first
line. This again guarantees that as we move in the x4 directions the masses of the first k
hypers change sign from positive to negative value twice thanks to the jump by mKK at the
junction of the two walls, while those of the other (8− k) hypers change from positive to
negative and eventually back to the original positive value. Again similarly to the former
example these mass mappings allow us to find the u(1) we give flux to and the orthogonal
combination

u(1)F = 1
4

(
−k2u(1)(0)

a + u(1)(0)
b

)
, u(1)O = 1

4

(8− k
2 u(1)(0)

a + u(1)(0)
b

)
, (4.35)

where this is again only relevant for k 6= 8.
One can use the above prescription to generate a ~F = (−1, . . . ,−1, 0, . . . , 0) flux domain

wall with an even number k of −1 entries. Moreover, with this domain wall at hand we can
concatenate n copies of it with the trivial Weyl element. As we explained in Example 4.2.1,
this further gluing will trivially identify the abelian symmetries and shift the masses of all
the hypers by mKK. This will generate a ~F = (−n, . . . ,−n, 0, . . . , 0) flux domain wall or
torus. Generating a flux torus with odd n will correspond to an additional flux for a Z2
subgroup of the center of the flavor symmetry that breaks it to the invariant subgroup,
while an even n will lead to flux only to the chosen u(1).

Similarly to what we did for k = 6, 8, we can determine how the KK symmetry is
broken when considering a torus. Again let us focus on the case of n = 2 for simplicity.
The configuration then involves 2n = 4 copies of the basic domain wall with flux −1

2 . The
identification of the u(1)(p)

a and u(1)(p)
b for p = 0, 1, 2, 3 between each domain wall is

m(p+1)
a =

(
k

4 − 1
)
m(p)
a + k

(
k

8 − 1
)
m

(p)
b +

(
k

4 − 1
)
mKK ,

m
(p+1)
b = 1

2m
(p)
a +

(
k

4 − 1
)
m

(p)
b + 1

2mKK (4.36)

for p = 0, 2, while it is

m(p+1)
a = m(p)

a +mKK , m
(p+1)
b = −m(p)

b (4.37)

for p = 1, 3. Consistency of the torus then requires that the charges of the 5d hypermultiplets
go back to their original value

m(0)
a +

(
4− k

4

)
m

(0)
b = m(3)

a +
(

4− k

4

)
m

(3)
b = m(0)

a +
(

4− k

4

)
m

(0)
b + (k − 4)mKK ,

m(0)
a −

k

2m
(0)
b = m(3)

a −
k

2m
(3)
b = m(0)

a −
k

2m
(0)
b + kmKK , (4.38)

meaning that u(1)KK is broken to the smallest group between Z|k−4| and Zk. For generic
(−2n, . . . ,−2n, 0, . . . , 0) flux the symmetry is instead broken to the smallest group between
Zn|k−4| and Znk.24

24For k = 4 the residual group is Z4n, since the constraint from the first line in (4.38) is trivial.
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The case of odd k is more involved, as the former prescription will not work for
it. The reason for this is that the former prescription of gluing two ~F =

(
−1

2 , · · · ,−
1
2

)
domain walls actually shifts the flux of the right domain wall such that it corresponds to
a ~F = (−1

2 , . . . ,−
1
2 ,

1
2 , . . . ,

1
2) flux domain wall, with k entries equal to −1

2 . This domain
wall can only be generated for even k, as it needs to correspond to a root of e8.25 Thus, the
minimal domain wall flux we can generate with odd k will be for n = 2, and its generation
will require at least four ~F =

(
−1

2 , · · · ,−
1
2

)
domain walls. For example for k = 1, 3, 5 we

can generate such a domain wall by the following concatenation of domain walls

(−2, . . . ,−2︸ ︷︷ ︸
k

, 0, . . . , 0︸ ︷︷ ︸
8−k

) =
(
−1

2 , . . . ,−
1
2︸ ︷︷ ︸

k+1

,
1
2 , . . . ,

1
2︸ ︷︷ ︸

7−k

)
+
(
−1

2 , . . . ,−
1
2︸ ︷︷ ︸

k

,
1
2 ,−

1
2 ,

1
2 , . . . ,

1
2︸ ︷︷ ︸

6−k

)

+
(
−1

2 , . . . ,−
1
2︸ ︷︷ ︸

k

,
1
2 ,

1
2 ,−

1
2 , . . . ,−

1
2︸ ︷︷ ︸

6−k

)
+
(
−1

2 , . . . ,−
1
2
)
, (4.39)

where the relative signs between the flux domain walls imply the required gluing. We will
not explicitly show the building of such domain walls as they are quiet involved and just
require several gluings as the ones we have shown before.

5 The 4d domain wall theory

In this section we focus on the 4d theory living on a fundamental flux domain wall. We
define a fundamental flux domain wall as a domain wall whose flux is associated with a single
root of the 6d flavor symmetry, rather than a combination of roots. We will in particular
provide some reasoning for determining such theory from the 5d field theory point of view.
Since at the domain wall location the gauge coupling of a general KK theory goes to infinity,
the theory on the domain wall will be determined by strong coupling dynamics. This means
that in the general case field theory arguments alone can provide very little insights, and
one needs stronger tools such as geometric engineering from M-theory. Nevertheless, one
can still extract some information and clues about the 4d domain wall theory, which in
many cases allows us to guess a Lagrangian for it.

5.1 Determining the domain wall Lagrangian

We start by considering the half-BPS boundary conditions one can give at the position of
the 4d domain wall. A 5d vector multiplet gives a 4d N = 1 vector multiplet and a 4d
N = 1 adjoint chiral multiplet. Consider choosing Neumann boundary conditions for the
4d vector multiplet, while the 4d adjoint chiral multiplet gets Dirichlet boundary conditions.
This choice is similar to the boundary conditions an NS5-brane enforces on the u(N) N = 2
vector multiplet coming from a stack of N D4-branes. In this more supersymmetric analogue,
the 5d N = 2 vector multiplet gives a 4d N = 2 vector multiplet and a 4d N = 2 adjoint
hypermultiplet, which get Neumann and Dirichlet boundary conditions, respectively. The

25Remember the e8 roots corresponding to ~F =
(
± 1

2 ,±
1
2 ,±

1
2 ,±

1
2 ,±

1
2 ,±

1
2 ,±

1
2 ,±

1
2

)
only come with even

number of minus signs.
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resulting theory from the 5d perspective has two u(N) gauge nodes coming from the two
half-infinite stacks of N D4-branes, and a bifundamental 4d hypermultiplet coming from
u(N) adjoint strings split between the two gauge copies by the NS5-brane. Considering
lowering the amount of supersymmetry, one can think of F-theory on Calabi-Yau four
manifolds, where a complex codimension one locus in the base with IN fiber on top of it
gives an su(N) symmetry, which is a gauge symmetry if the locus surface is compact. When
one collides two such codimension one loci in the base we find bifundamental matter of the
two gauge symmetries. Going back to our case, we can expect a 5d unitary gauge symmetry
to split to two copies, one for each half-infinite side, in accordance with our discussion from
the previous sections. In addition, each 4d adjoint chiral coming from each 5d unitary
gauge node vector multiplet can be conjectured to give a bifundamental chiral operator of
the two copies. Specifically in the case of an su(N) gauge node one needs to remove the
singlet generated from F ⊗ F = Adj ⊕ 1. This can be done by the superpotential term
δW = FON where F is the flipping field for the ON operator giving a singlet under the
two gauge nodes. This matches all the examples given in [22, 24] of rank 1 E-string and
general (GADE , GADE) conformal matter flux domain walls. In these examples the operator
is a simple chiral field, but in general this doesn’t have to be the case even for unitary
gauge nodes.26

For non unitary 5d gauge symmetries one can still expect two copies of the gauge
symmetry for each half-infinite side, or one can in some cases couple using a duality domain
wall two UV dual 5d theories with different gauge symmetry as in [23]. In such cases the
matter connecting the two gauge nodes is unknown in general and requires a string/M-
theoretic understanding of this construction as we have in the higher supersymmetry cases.
From the few known examples [23, 27] of higher rank E-string and minimal (D,D) conformal
matter flux domain walls it seems one still gets a bifundamental operator between the gauge
nodes on the two sides.

Next, we consider the half-BPS boundary conditions we can impose on the 5d hypermul-
tiplets. Each 5d N = 1 hypermultiplet reduced to 4d gives two 4d N = 1 chiral multiplets in
complex conjugate representations. We have two options for half-BPS boundary conditions
in which we need to give a Neumann boundary condition to one of the two chirals while
giving a Dirichlet boundary condition to the other. Thus, on the 4d domain wall only the
chiral with the Neumann boundary condition will remain. Note that for each hypermultiplet
of the 5d gauge theory we need to make two such choices, one for the left 5d theory hyper
and one for the right 5d theory hyper.

Thus far we went over the gauge and the matter content, but for 4d N = 1 supersym-
metry one also needs to specify the superpotential among the chiral fields. We already

26For example, this kind of a naive guess doesn’t work for the u(1)t symmetry of the general 6d (A,A)
conformal matter SCFT, which is the symmetry under which each pair of bifunadmental half-hypers are
oppositely charged in the tensor branch quiver description of the theory. Specifically, this naive guess only
works for the next-to-minimal conformal matter SCFT related to two M5-branes probing a Zk singularity.
In this family one can also consider the case of k = 1 where we find by compactification to 4d models of
class S where again such a flux domain wall and subsequently N = 1 class S flux tube is only possible for
the theory described by N = 2 M5-branes [31, 81–84].
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mentioned the superpotential term in which we flip some of the operators of the theory
when we discussed the vector multiplet boundary conditions. As noted before reducing the
5d theory to 4d, the 5d vector multiplet contributes a 4d adjoint chiral multiplet Φ while the
5d hypermultiplet contributes two 4d chiral multiplets Q and Q̃. If the 5d hypermultiplet
transforms under a gauge symmetry associated to the 5d vector multiplet, their 4d matter
contributions will be related by a superpotential term

δW = QΦQ̃ , (5.1)

with the implied gauge indices contractions. From the above discussion we expect to have
on the 4d domain wall an operator O transforming in the bifundamental representation
of two copies of each 5d gauge node with a non-trivial boundary condition coming from
its associated 5d vector multiplet and the adjoint 4d chiral it contributes. In addition, we
expect from each hypermultiplet with half BPS boundary conditions on the domain wall to
get two chiral multiplets q, q̃ one from each side of the domain wall. Thus we expect to
have on the domain wall a superpotential term relating these chiral multiplets as

δW = qOq̃ . (5.2)

Note that the chirals of the trivial reduction of the 5d hypermultiplet to 4d have opposite
charges and conjugate representations under the 5d flavor symmetry, but on the two sides
of the domain wall we flip the sign of the u(1) that gets flux; thus, the aforementioned two
chirals will in fact have the same charge under this u(1). Considering the superpotential
relating the charges of these two chirals to the bifundamental chiral going between the
two sides, one finds this bifundamental chiral is charged only under the u(1) which we
give flux to out of the full 6d flavor symmetry. This in turn fixes the charge of the
flipping field mentioned before. In addition note that the superpotential implies that for a
fundamental flux domain wall one can’t freely choose the half-BPS boundary conditions for
the hypermultiplets on the two sides and we need to choose the opposite half BPS boundary
conditions on the two sides to get chirals related by the superpotential (5.2). One additional
comment is that in the case where the hypermultiplet is not charged under the u(1) we give
flux to, the two chirals coming from the two sides will remain with opposite charges and the
bifundamental chiral going between the two sides will have no charges. This will identify
the two gauge nodes on the two sides leaving a single one and will leave the superpotential
with a mass term for the two chirals coming from the two sides effectively removing them
in the IR.

Before giving some examples let us discuss the boundary conditions required on the
two sides of the domain wall in order to cut the infinite tube to a finite tube. We start from
the 5d N = 1 vector multiplet giving in 4d an N = 1 vector and adjoint chiral multiplets.
On both edges of the tube we choose Dirichlet boundary conditions for the 4d N = 1
vector multiplet and Neumann boundary condition for the adjoint chiral multiplet. This
effectively freezes the gauge symmetry to become non-dynamical and gives a 4d global
symmetry on each side of the tube associated to each of the punctures of the tube, while
the adjoint chiral doesn’t survive due to the Dirichlet boundary conditions on the domain
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2

Q̃1Q1

Q̃2Q2

Φ
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6
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×
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Figure 9. On the right of each pair we have the Lagrangians for the half-BPS 5d/4d
coupled system of the fundamental rank 1 E-string theory flux domain walls with fluxes
(− 1

2 ,−
1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ) and (−1,−1, 0, 0, 0, 0, 0, 0), respectively. On the left of each

pair we display the 5d theory where we place the domain wall, where we display the fields as the
chirals they contribute when compactified to 4d. Square and circle nodes denote special unitary
global and gauge symmetries, respectively, while lines connecting them denote chiral fields, with the
outgoing arrows standing for fundamental and ingoing arrows for anti-fundamental representation.
The cross denotes a flipping field coupled by a superpotential term for which we don’t write the
charges. We denote in black the field names while in blue we denote the natural R-charge coming
from 5d and the charges under the abelian symmetries, encoded in the powers of the fugacities
a, b and f . Specifically, f denotes the fugacity for the residual u(1)KK coming from 5d. In the
left pair we specify the Lagrangian for the (− 1

2 ,−
1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ) flux domain wall,

with the superpotential W = qOq̃ + FO2. In the right pair we specify the Lagrangian for the
(−1,−1, 0, 0, 0, 0, 0, 0) flux domain wall, with the superpotential W = q1Oq̃1 + q2Oq̃2 + FO2. Note
that in this case the superpotential forces us to choose matching boundary conditions for the lower
and upper hypermultiplets.

wall. The 5d N = 1 hypermultiplet gives in 4d two N = 1 chiral multiplets in conjugate
representations, for which we can choose Neumann boundary conditions for one of the
chirals and Dirichlet for the other. If the hyper boundary conditions on the edge of the
tube match the boundary conditions on the domain wall in the same side, the chiral with
Neumann boundary conditions will survive, while if the boundary conditions are opposite
both chirals won’t survive.

5.2 Example: rank 1 E-string fundamental domain wall 4d theories

In the former section we mentioned two fundamental flux domain walls for the rank 1 E-string
theory associated with fluxes (−1

2 ,−
1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2 ,−

1
2) and (−1,−1, 0, 0, 0, 0, 0, 0).

The associated 4d flux domain wall theories are known from [22], and follow the above
matter content and superpotential to give WZ models as shown in figure 9. These are
the theories before cutting the edges of the tube, so they actually describe a coupled
5d/4d system which is why we still have gauge symmetries.27 For the (−1

2 , . . . ,−
1
2) flux

27Notice that the charge assignements in figure 9 are also compatible with the cancellation of gauge
anomalies on the 4d interface. To check this, remember that the bifundamental field is a genuine 4d field,
while the diagonal fundamental fields descent from 5d fields that were given Neumann boundary conditions,
so their contribution to the anomalies should be divided by 2. Similar anomaly checks were done in [22, 40].
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0, f−1β2/β3

1, tβ3/γ3 1, ft−1γ3/β2

Figure 10. On the right we have the Lagrangian for the half-BPS 5d/4d coupled system of the
fundamental (su(k), su(k)) conformal matter theory flux domain wall with flux (0,− 1

k ,
1
k , 0, . . . , 0)

for su(k)β and vanishing flux for the rest of the 6d flavor symmetry. On the left we display the
5d theory where we place the domain wall. As before we display the fields as the chirals they
contribute when compactified to 4d. The dashed lines indicate the quivers continue on depending
on the value of k and eventually close off in a circular manner. We denote in black the field names
while in blue we denote the natural R-charge coming from 5d and the charges under the abelian
symmetries, encoded in the powers of the fugacities t, βi, γj and f . Specifically, f denotes the
fugacity for the residual u(1)KK coming from 5d. The superpotential for the 4d domain wall theory is
W = q2Oq̃2 + q3Oq̃3 +FON . Note that in this case the superpotential forces us to choose matching
boundary conditions for the lower and upper hypermultiplets.

domain wall we give flux to u(1)a and therefore flip its sign on the right side of the quiver.
In this Lagrangian one gets the expected superpotential terms discussed above. In the
(−1,−1, 0, 0, 0, 0, 0, 0) flux domain wall we give flux to u(1)F = 1

4(−u(1)a + u(1)b) and not
to u(1)O = 1

4(3u(1)a + u(1)b). This translates to flipping the sign of the combination a−1b3

and keeping the sign of ab on the right side of the quiver. This together with the required
superpotential forces us to choose the pairs Q1, Q̃2 or Q̃1, Q2 on the left side of the quiver,
where the former will give the wanted flux and the latter a flipped sign flux. Note that in
both cases we add the u(1)KK charge on the left denoted by the f fugacity. This in turn
forces the O field to be charged under u(1)KK due to the superpotential.
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5.3 Example: (A, A) conformal matter fundamental domain wall 4d theories

Here we consider the fundamental flux domain walls of the (Ak−1, Ak−1) conformal matter.
Domain walls of (GADE , GADE) conformal matter were studied in [24], where the D and E
type follow a similar construction; therefore, we will exemplify the fundamental domain
wall only for the A case. In this case the 6d flavor symmetry is u(1)t ⊕ su(k)β ⊕ su(k)γ and
we will only consider flux for u(1) subgroups of su(k)β ⊕ su(k)γ as in [24]. On the left of
figure 10 we give the Lagrangian for the 5d low energy effective field theory for the 5d KK
theory of the (Ak−1, Ak−1) conformal matter SCFT composed of N minimal (Ak−1, Ak−1)
conformal matter SCFTs. This 5d Lagrangian is the affine Ak−1 quiver of k su(N) gauge
nodes on a circle with bifundamental hypers between any two neighbouring gauge nodes. On
the right of figure 10 we give the fundamental flux domain wall with flux (0,− 1

k ,
1
k , 0, . . . , 0)

for su(k)β and vanishing flux for the rest of the 6d flavor symmetry.28 This domain wall
corresponds to the root (0,−1, 1, 0, . . . , 0) of su(k)β , and one can concatenate several such
domain walls to find the non-fundamental domain walls described in [24]. Specifically in this
example the above flux implies we need to flip the sign of the fugacity combination β3/β2
and keep the sign of β2β3 on the right side. This together with the implied superpotential
requires us to choose the pairs Q2, Q̃3 or Q3, Q̃2 on the left side of the quiver, where the
latter will give the chosen flux and the former a flipped sign flux. In this case we have in 5d
many gauge nodes with hypermultiplets that are uncharged under the u(1) for which we
turn on flux, this means the associated superpotential on the domain wall of the inherited
chirals will lead to a single gauge node and a mass term for the chirals coming from the
two sides. Thus, these hypers will give no chirals on the domain wall and lead to unrelated
gauge nodes. Note that this doesn’t mean we can ignore these gauge nodes since chirals
relating them can be added when cutting these infinite tubes to finite tubes and also when
concatenating several such domain walls. As in the former example we also write down the
u(1)KK charges according to the prescription given before.

6 Explaining observations of the 4d theories

In this section, we review some properties of the 4d flux domain wall theories that one can
determine using the analysis of section 5 and show how these match our predictions from
the 5d perspective given in sections 3 and 4. We will consider not only the fundamental
domain walls, that is those associated with a flux that corresponds to a single root of the
6d flavor symmetry, but also more complicated flux domain walls. These can be obtained
from the fundamental ones via a suitable gluing procedure, which is the 4d analogue of the
one we described in 5d in section 4 and which we are going to review. As before, our main
example will be the rank 1 E-string theory.

28In this example one can also check that the charge assignments give vanishing gauge anomalies on the
4d interface. See [24] for similar anomaly checks.
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Figure 11. The 4d N = 1 Lagrangian for the compactification of the rank 1 E-string theory
on a tube with flux − 1

2 for a u(1) whose commutant inside e8 is e7. Square nodes denote special
unitary global symmetries, while lines connecting them denote chiral fields, with the outgoing
arrows standing for fundamental and ingoing arrows for anti-fundamental representation. On the
left we specify the names that we give to each fields. On the right we specify, in order, a possible
assignement of R-charge and the charges under the abelian symmetries, encoded in the powers of
the fugacities a and f . In particular here we are using the R-symmetry coming from the Cartan of
the 6d R-symmetry su(2)R, but this will not in general be the 4d superconformal one since it can
mix with the other abelian symmetries via a-maximization [85].

6.1 Example: 4d compactification of the rank 1 E-string theory

6.1.1 Flux ~F =
(
−1

2 ,−1
2 ,−1

2 ,−1
2 ,−1

2 ,−1
2 ,−1

2 ,−1
2

)
We first consider the fundamental flux domain wall with ~F =

(
−1

2 , · · · ,−
1
2

)
that was

determined in [22] and which we reviewed in subsection 5.2. Its construction from the 5d
perspective is summarized in figure 4. As we discussed in section 4, we can construct more
general flux tubes and tori by gluing several such domain walls. After compactifying the x4
direction on an interval and giving the boundary conditions, the su(2) gauge symmetry of
the two theories on the two sides of the domain wall are turned into su(2) global symmetries
associated to the two punctures. Moreover, we retain a set of chirals in the fundamental
of su(2) and in the 8 of su(8) from the theory on one side of the domain wall and a set of
chirals in the fundamental of su(2) and in the 8 of su(8) from the theory on the opposite
side of the domain wall. The last ingredient is the domain wall contribution to the 4d
theory, which was found out in [22] building on previous results of [40]. In accordance
with the reasoning we provided in the previous section, it is given by just an su(2)⊕ su(2)
bifundamental plus a signlet chiral field that flips the quadratic invariant made from the
bifundamental. The matter content of the resulting theory is summarized in the quiver
diagram in figure 11 and the superpotential is

W = bQ2 +
8∑
i=1

LiQR
i . (6.1)

The manifest global symmetry of this theory is

su(8)u ⊕ u(1)a ⊕ u(1)f ⊕ su(2)⊕ su(2) , (6.2)

where u(1)a is the symmetry for which we turn on the flux, su(8)u is its commutant inside
the 5d so(16) global symmetry, the two su(2) are the symmetries of the punctures and u(1)f
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is a symmetry that we can identify with the KK symmetry, as we will argue momentarily.
This symmetry has been often neglected in the literature and it was identified with the
isometry of the compactification manifold in [31], where it was related to the su(2) isometry
in the case of sphere compactifications.

In [22] it was argued that the flux associated with this model is −1
2 by using anomaly

matching arguments, that is comparing the anomalies of the theory with those predicted
from 6d by compactifying the 8-form anomaly polynomial on the tube. This matches with
the 5d prediction given in section 4 using a top-down approach.

6.1.2 Flux ~F = (−n,−n,−n,−n,−n,−n,−n,−n)

As we learnt from our discussion in section 4, we can now glue copies of this basic flux
domain wall theory in different ways to generate tubes and tori with various values of flux.
For example, we can concatenate two such flux domain walls by gluing with the trivial Weyl
element. Remember that in 5d this amounted to identifying the su(8)u ⊕ u(1)a ⊂ so(16)
symmetry of the theory on the right of the first domain wall with that of the theory on the
left of the second domain wall. Denoting by L, R and by L′, R′ the fields of the first and
second domain wall theory respectively, this is achieved by introducing an su(2)⊕ su(8)u
bifundamental field Φ and the superpotential interaction

δW =
8∑
i=1

Φa

(
Ri + L

′i
)
. (6.3)

Such a gluing is usually referred to in the literature as Φ-gluing. It can also be understood as
the re-introduction of those 5d fields that were given Dirichlet boundary conditions, which
are needed since the gluing is effectively removing the boundary. In the same manner, we
should re-introduce the dynamical su(2) vector multiplet; thus, in the gluing we also gauge
the diagonal combination of the two su(2) puncture symmetries that are glued, which is the
combination preserved by (6.3). The superpotential (6.3) also makes Φ and a combination
of R and L′ massive, so that at low energies we are left with only one su(2) ⊕ su(8)u
bifundamental field. The result is the theory depicted in figure 12. The middle part of
the quiver can be understood as the 5d theory living between the two domain walls that
we concatenated, where according to our previous discussion the vector multiplet is given
Neumann boundary conditions at the location of both domain walls, while for each pair of
chirals one receives Neumann boundary condition at both walls while the other receives
Dirichlet boundary conditions.

Consider now the charge assignement of the fields after the gluing, which is summarized
in figure 12. Notice that due to the superpotential (6.3) as well as the requirement of
cancellation of gauge anomalies at the central su(2) gauge node the charges of the fields
under u(1)f have been shifted. In particular, comparing the fields of the left and right
domain wall we see that u(1)a mixes with u(1)f in terms of the fugacities a and f as

a→ af . (6.4)

In terms of the charges under these abelian symmetries we have

u(1)(1)
a = 1

2
(
u(1)(0)

a + u(1)f
)
, (6.5)
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Figure 12. The 4d N = 1 Lagrangian for the compactification of the rank 1 E-string theory on a
tube with flux −1 for a u(1) whose commutant inside e8 is e7. We focus here on the charges of the
fields under the abelian symmetries.

2

2

28

2

× ×

××
1, a = af4

1, af

1, af2

1, af3

0, a−2f−1 0, a−2f−3

0, a−2f−50, a−2f−7 = c−2f−3

Figure 13. The 4d N = 1 Lagrangian for the compactification of the rank 1 E-string theory on a
torus with flux n = − ñ2 = −2 for a u(1) whose commutant inside e8 is e7. The superpotential and
the anomaly cancellation condition imply that the u(1)f symmetry is broken to Z4, which at the
level of fugacities means that f4 = 1.

where u(1)(0)
a and u(1)(1)

a denote the u(1)a symmetries of the left and right domain wall,
respectively. This agrees with the 5d prediction from (4.7) and justifies why we can interpret
the flavor symmetry u(1)f of the 4d model as coming from the KK symmetry in 5d.

If we concatenate ñ such flux domain walls to build a flux ~F =
(
− ñ

2 , · · · ,−
ñ
2

)
domain

wall, this shift will persist at each gluing, so that overall the shift of the u(1)a symmetry by
u(1)f between the first and the last domain wall is

a→ af ñ , (6.6)

which in terms of the charges gives

u(1)(1)
a = 1

2

(
u(1)(0)

a + 1
ñ
u(1)f

)
, (6.7)

again in accordance with (4.7).
We can eventually glue the two ends of the tube with flux ~F =

(
− ñ

2 , · · · ,−
ñ
2

)
to

build a flux torus. As we saw in the previous section, the behaviour of this model changes
depending on the parity of ñ. Let us start from the case in which ñ = 2n is even, so that
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Figure 14. The 4d N = 1 Lagrangian for the compactification of the rank 1 E-string theory on a
torus with flux n = − ñ2 = − 1

2 for a u(1) whose commutant inside e8 is e7. The su(8)u symmetry is
broken to so(8), while the u(1)f symmetry is completely broken.

the torus has a properly quantized integer flux n. The last gluing will necessarily force us
to identify

a = af2n =⇒ f2n = 1 . (6.8)

The fact that f should be a 2n-th root of unity implies that the u(1)f symmetry is broken
to

u(1)f → Z2n . (6.9)

This again matches the 5d picture, see (4.17). Let us stress that this behaviour of the
u(1)f flavor symmetry of the 4d model was already pointed out in the literature [31], but a
top-down derivation as the one given in section 4 was missing. In figure 13 we summarize the
flux torus and the fields charge assignments for the case of gluing ñ = 4 flux domain walls.

For ñ odd the gluing superpotential (6.3) implies that the su(8) symmetry is manifestly
broken to so(8), in accordance with the discussion from section 4. In particular, for ñ = 1
one gets the model of figure 14, where the u(1)f is broken to Z1 so it is completely broken.
Remember that in order to make sense of this model, one should also turn on a flux for the
center Z2 subgroup of E7, which can preserve at most its F4 subgroup. In [22] it was found
by index calculations that the conformal manifold of the 4d model is not large enough to
accommodate a point where the enhancement so(8)→ f4 actually occurs, but in [27] it was
found that for the compactification of the higher rank E-string this is actually possible.

6.1.3 Flux ~F = (−n, . . . ,−n, 0, . . . , 0)

As our last example, we consider gluing two ~F = (−1
2 , · · · ,−

1
2) flux domain walls with

the Weyl element that flips the sign of the last 8 − k entries, such that we obtain a flux
~F = (−1, · · · ,−1, 0, · · · , 0) domain wall where the number of −1 entries is k. We explored
this gluing from the 5d perspective in section 4, accordingly we will focus on the cases where
k is even. Let us review the construction of [22] for the implementation of this gluing in 4d.

Remember that this operation breaks so(16)→ su(8)⊕ u(1)a → su(k)⊕ su(8− k)⊕
u(1)a ⊕ u(1)b, where the embedding is as specified in (4.32). Each octet of fields L, R in
the basic flux domain wall theory of figure 11 should be decomposed accordingly, so in
particular the set of 8 chiral fields is split into k plus 8− k. Then, we perform the Φ-gluing
for the k chirals, while we change the prescription for the (8− k) chirals

δW =
k∑
i=1

Φa

(
Ri + L

′i
)

+
8∑

i=k+1
RiL′i . (6.10)

The second superpotential term corresponds to another type of gluing usually referred to as
S-gluing in the literature. Its effect is of giving mass to both Ri and L′i for i = k+ 1, · · · , 8,
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Figure 15. The 4d N = 1 Lagrangian for the compactification of the rank 1 E-string theory on a
tube with flux ~F = (−1, · · · ,−1, 0, · · · , 0), with k (−1) entries. We focus here on the charges of the
fields under the abelian global symmetries, with the R-charges being as in the previous examples.

such that the resulting model has only k chirals transforming under the restored su(2) gauge
node. The result of the gluing is as depicted in figure 15.

The prescription for S-gluing can be understood as follows. The Weyl reflection we are
considering swaps the two 4d chirals inside a 5d hyper for 8 − k of the hypers of the 5d
gauge theory. This means that for 8− k of the chiral fields, the boundary conditions are
Neumann at the location of the first domain wall and Dirichlet at the location of the second
domain wall and oppositely for their partners. So these fields are expected not to survive the
reduction to 4d, in agreement with the fact that the second term of the superpotential (6.10)
kills any field transforming under the su(2) gauge node and the su(8− k) flavor node.

Notice that the flux domain wall model in figure 15 is dual to a Wess-Zumino (WZ)
model with no gauge group only for k = 2. This can be seen by Seiberg dualizing [86] the
apparent su(2) gauge node. For the case k = 8 without gluings as shown in figure 11 we
also find a WZ model as it also corresponds to a single e8 generator. This is related to
the fact that the flux for the cases k = 2, 8 is realized by holonomies corresponding to a
single E8 generator and so they constitute fundamental flux domain walls as we discussed
in section 5, while for the cases k = 4, 6 each is realized by holonomies corresponding to
multiple e8 generators, as was commented at the end of section 2.

In figure 15 we also specified the charge assignments of all the fields. This was determined
by taking the same assignment given in figure 11 for the left domain wall theory, performing
the decomposition (4.32) and imposing the constraints coming from the gluing, which are
due to the superpotential (6.10) and the gauge anomaly cancellation condition. We can see
that as a consequence of the gluing the abelian symmetries are identified in a non-trivial
way between the two domain walls. In terms of the fugacities we have

a→ a
k
4−1bk(

k
8−1)f

k
4−1 , b→ a

1
2 b

k
4−1f

1
2 . (6.11)

This matches with the 5d prediction for such a mixing, see (4.34), where again we identify
u(1)f with the KK symmetry.
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Figure 16. The 4d N = 1 Lagrangian for the compactification of the rank 1 E-string theory on
a torus with flux ~F = (−1, · · · ,−1, 0, · · · , 0). The superpotentials and the anomaly cancellation
condition imply that the u(1)f symmetry is broken to the smallest group between Z|k−4| and Zk,
which at the level of fugacities means that fk−4 = 1 and f−k = 1.

Finally, we can consider stacking various copies of this new theory with flux ~F =
(−1, · · · ,−1, 0, · · · , 0) using the trivial Weyl element, that is performing a Φ-gluing. We can
for example generate a flux ~F = (−ñ, · · · ,−ñ, 0, · · · , 0) by gluing ñ = 2n of the theories in
figure 15, which is done by stacking 2ñ = 4n copies of the basic flux domain wall theory of
figure 11.

Let us consider as an example the case of a torus with flux ~F = (−2, · · · ,−2, 0, · · · , 0).
The resulting model is depicted in figure 16. We can see that between the fields of each
fundamental domain wall block, corresponding to each triangle of the quiver, there is a
reparametrization of the abelian symmetries in accordance to what we previously described.
Labelling each domain wall block with an index p = 0, · · · , 3 where p = 0 is the upper left
triangle and increasing p corresponds to moving clockwise in the quiver, we see that the
fugacities a(p), b(p) for the abelian symmetries of each of these are redefined as in (6.11)
for p = 0, 2

a(p+1) = a
k
4−1
(p) b

k( k
8−1)

(p) f
k
4−1 , b(p+1) = a

1
2
(p)b

k
4−1
(p) f

1
2 , (6.12)

while they are redefined as in (6.6) for p = 1, 3

a(p+1) = a(p)f , b(p+1) = b−1
(p) . (6.13)

This is in accordance with the fact that the pairs first/second and third/fourth of domain
walls are glued with a non-trivial Weyl element, while the pairs second/third and fourth/first
are glued with the trivial Weyl element.
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After imposing the superpotentials and the anomaly cancellation constraints, we get

fk−4 = 1 , fk = 1 , (6.14)

which means that u(1)f is broken to the smallest group between Z|k−4| and Zk.29 This
is again compatible with our 5d expectation, see the discussion around (4.38), and the
identification of u(1)f with u(1)KK. For general even n, we expect the symmetry to instead
be broken to the smallest group between Zn|k−4| and Znk.

7 Conclusions and future directions

In this paper we revisited the problem of compactifying 6d SCFTs on tubes and tori with
flux to 4d N = 1 models and the connection with the study of duality domain walls in
5d KK theories. We focused in particular on the 5d perspective of the construction. This
allowed us to give a top-down prediction for some of the known and lesser known properties
of the resulting 4d N = 1 theories. In particular, the flux tube models generically possess
a u(1) flavor symmetry, which we can directly relate using the 5d analysis to the KK
symmetry arising from the 6d to 5d circle compactification. Such a symmetry is generically
broken to an abelian discrete symmetry when considering torus compactifications, which we
again managed to understand in terms of consistency of the 5d construction. Throughout
this paper we mainly focused on the example of the 6d rank 1 E-string theory, but this
phenomenon should be a general feature of the 6d to 4d compactification and it would be
interesting to investigate it also for the compactification of other 6d SCFTs. Another feature
of the 4d theories that we managed to recover from the 5d perspective is the flux associated
to a single domain wall, which was usually determined by anomaly matching arguments.

Our 5d analysis was performed in the language of the extended Coulomb branch phases
and their associated decorated box graphs representations. This characterization is in
direct correspondence with the geometric engineering picture of the 5d theories in terms
of M-theory on non-compact Calabi-Yau three-folds with conical singularities, where each
Coulomb branch phase is associated with a different resolution of the singularity. The hope
is that the perspective given in this paper on the 6d to 4d compactifications would facilitate
a geometrization of this field theory construction, allowing to possibly realize the same 4d
N = 1 models but from geometric engineering of M-theory on new G2-holonomy manifolds.
Such an effort can possibly allow us to construct flux tube and torus 4d N = 1 models for
many other 6d SCFTs for which no such models are known.

The analysis of this paper can be extended in many directions. One such generalization
would be to analyze flux tube and torus compactifications of 5d N = 1 SCFTs to 3d N = 2,
as was suggested in [34, 35], using the 4d Coulomb branch and varying complex mass in
a similar manner to what was done here. This could help build many other 3d N = 2
models especially considering the fact that this analysis doesn’t rely on ’t Hooft anomalies
which are lacking for continuous symmetries in 5d and 3d. Moreover, it could also help
in establishing a connection between the 5d to 3d compactifications and the geometric
engineering of 3d N = 2 models from M-theory on Calabi-Yau four-folds.

29For k = 4 the only non-trivial constraint is the second one f4 = 1, so the symmetry is broken to Z4.
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Another interesting direction to pursue that is related to this paper is to understand
the RG flows considered in [26, 28, 30] from the 5d KK-theory perspective. These RG flows
are generated by vevs to operators charged under the 6d flavor symmetry and allow us in 4d
to flow from flux tubes and tori to trinions with two maximal punctures and one minimal.
From the 5d perspectives, such deformations should correspond to Higgs branch flows and
it would be interesting to investigate how these affect the construction we provided in this
paper. Translating this to geometry could also allow us to construct many new 4d models
and gain a better understanding of the 4d N = 1 SCFTs from geometry.

Finally, one can consider expanding this research to include discrete flux tubes and
torus compactifications of 6d (1, 0) SCFTs. For example in [25] compactifications of Non-
Higgsable clusters with algebras su(3) and so(8) were considered. Specifically 4d Lagrangians
of compactifications on spheres with three and four punctures were found. These 6d SCFTs
are special as they posses no flavor symmetry, and thus one cannot generate flux tubes
and tori using the construction examined in this paper. Nonetheless, these theories do
posses discrete symmetries which are the outer automorphism symmetries of their Dynkin
diagram. One could study giving discrete flux to these symmetries in order to generate flux
tubes and tori and check if they are consistent with the known Lagrangians under a closure
of punctures.
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