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1 Introduction

Indirect CP violation in the neutral kaon system, parameterized by εK , is one of the most
sensitive precision probes of new physics. The parameter εK can be expressed to excellent
approximation as [1]

εK ≡ eiφε sinφε
1
2 arg

(−M12
Γ12

)
. (1.1)

Here, φε = arctan(2∆MK/∆ΓK), with ∆MK and ∆ΓK the mass and lifetime difference
of the weak eigenstates KL and KS . M12 and Γ12 are the Hermitian and anti-Hermitian
parts of the Hamiltonian that determines the time evolution of the neutral kaon system.
The short-distance contributions to εK are then contained in the matrix element M12 =
−〈K0|L∆S=2

f=3 |K̄0〉/(2∆MK), up to higher powers in the operator-product expansion.
Experimentally, |εK | = (2.228± 0.0011)× 10−3 [2], with an uncertainty at the permil

level. From the theory side, recent progress indicates that we will be able to predict εK
in the Standard Model (SM) with an uncertainty at the percent level in the not-so-far
future. Currently, the combined perturbative uncertainty is of the order of 3%, while the
non-perturbative uncertainty is of the order of 3.5% [3]. Interestingly, both these errors
can in principle be reduced by perturbative calculations, the first by computing the three-
loop QCD corrections to the top-quark contribution to εK , and the second by computing
the two-loop conversion to the MS scheme of the hadronic matrix element. The non-local
long-distance contributions to εK , estimated in refs. [1] and [4], can be improved in the
future with lattice calculations (see ref. [5] for recent results).

With theory uncertainties approaching the percent level, also parametrically smaller
corrections have been taken into consideration recently. The power corrections to the
effective Lagrangian [6] have been revisited in an extended analysis [7], leading to a one-
percent increase of the SM prediction of εK . On the perturbative side, the electroweak
corrections to the top-quark contribution to εK have been calculated by some of us [8].
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In this work, we complete the analysis of the leading perturbative electroweak and
QED corrections to εK by considering the mixed charm-top contributions. The paper is
organized as follows. The analytic results, including the details of our calculation, are
presented in section 2. The numerical evaluation, as well as a discussion of the results, can
be found in section 3, where we also give an updated SM prediction for εK . Appendix A
contains the definition of evanescent operators used in our calculation.

2 Electroweak corrections in the charm-top sector

In this section we provide the details of the renormalization-group (RG) analysis. We
will show the analytic results only for the electroweak and QED corrections; the QCD
corrections to C̃utS2 have already been presented in refs. [9, 10] and can be transcribed
to our convention for the effective Lagrangian as explained in ref. [3]. In particular, the
NNLL QCD results are not needed as an ingredient of our calculation. Of course, they are
included in our final numerics.

2.1 The effective Lagrangians

As shown in ref. [3], it is advantageous to choose the effective Lagrangian describing the
|∆S| = 2 transition in the three-flavor theory as

L|∆S|=2
f=3 = −G

2
FM

2
W

4π2
[
λ2
uC̃

uu
S2(µ) + λ2

t C̃
tt
S2(µ) + λuλtC̃

ut
S2(µ)

]
Q̃S2 + h.c. + . . . , (2.1)

because then the higher-order QCD corrections are small. Here, GF denotes Fermi’s con-
stant, and MW the W -boson mass. The parameters λi ≡ V ∗isVid comprise the Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements. The |∆S| = 2 transition is induced by the
local operator

Q̃S2 = (s̄LγµdL)(s̄LγµdL) , (2.2)

where sL, dL denote the left-handed strange- and down-quark fields, respectively. The
ellipsis in eq. (2.1) denotes non-local contributions as well as the contribution of higher
dimension operators [6, 7]. The combination of CKM matrix elements, λu, is real and the
coefficient C̃uuS2 does not affect εK (it does contribute to the kaon mass difference ∆MK).
The coefficient C̃ttS2 depends on the top-quark mass and is independent of the charm-quark
mass to excellent approximation. It is known including next-to-leading-logarithmic (NLL)
QCD corrections [11], while the electroweak corrections have been presented in ref. [8]. The
coefficient C̃utS2, on the other hand, depends on both the charm and top masses and has been
predicted including next-to-next-to-leading-logarithmic (NNLL) QCD corrections [3, 9, 10].
Here, we calculate the electroweak corrections to C̃utS2.

The Lagrangian (2.1) is valid below the charm-quark scale. Its Wilson coefficients are
obtained by matching from the effective four- and five flavor Lagrangians

Lefff=4,5 = −4GF√
2

 ∑
q,q′=u,c

V ∗qsVq′d(C+Q
qq′

+ + C−Q
qq′

− )− λt
∑
i=3,6

CiQi

+

− G2
FM

2
W

4π2 λ2
tC

tt
S2QS2 − 8G2

F

(
λuλt + λ2

t

)
C̃7Q̃7 + h.c. ,

(2.3)
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after the appropriate RG evolution, as described below. The first line in eq. (2.3) contains
the |∆S| = 1 current-current operators, defined as

Qqq
′

± = 1
2
(
(s̄αLγµqαL)(q̄′βL γ

µdβL)± (s̄αLγµq
β
L)(q̄′βL γ

µdαL)
)
. (2.4)

Here, α, β are SU(3) color indices. The QCD-penguin operators Qi, i = 3, . . . , 6, are
defined, e.g., in ref. [10]. They are neglected in this work as they constitute a percent-level
correction to our numerically small results (see section 3 below; cf. also ref. [12]). The
|∆S| = 1 operators mix, via bilocal insertions, into the local |∆S| = 2 operator. For the
contributions proportional to λuλt, the Glashow-Iliopoulos-Maiani mechanism ensures that
the mixing starts at order m2

c ; it is therefore convenient to define a rescaled version of the
QS2 operator as

Q̃7 = m2
c

g2
sµ

2ε (s̄LγµdL)(s̄LγµdL) . (2.5)

This operator is formally of dimension eight. The appearance of the strong coupling con-
stant in the denominator takes account of the large logarithm in the LO result.

2.2 RG analysis of the charm-top contribution

To begin, we briefly discuss the structure of the RG-improved perturbation series. Recall
that the leading QCD RG evolution of C̃utS2 reproduces the large logarithm log

(
m2
c/M

2
W

)
that appears in the (fixed-order) Inami-Lim function [13], and sums this logarithm to all
orders. As these leading-order boxes involve no gluon exchange, it is conventional to rescale
the |∆S| = 2 effective operator (2.2) with an inverse power of g2

s (see eq. (2.5)). In this
way, the leading-logarithmic (LL) series has the standard form, with terms proportional to
(αs log)n, where n = 1, . . . . The terms in the NLL and NNLL series are then proportional
to αs(αs log)n and α2

s(αs log)n, respectively.
Here, we will sum the two series whose terms are proportional to ααns logn+1 (“LL

QED”) and α(αs log)n (“NLL QED”). The former series receives contributions only from
the one-loop QED running of the current-current operators (see below), while the latter
requires the calculation of the one-loop electroweak initial conditions in the current-current
sector, the mixed QED-QCD RG evolution of the current-current operators, and the QED
corrections to the anomalous dimension tensor, encoding the mixing of current-current op-
erators into the |∆S| = 2 sector. In contrast to the case of C̃ttS2(µ), the two-loop electroweak
initial condition of the Wilson coefficient in the |∆S| = 2 sector is not needed, due to the
presence of the large logarithm in the leading-order (LO) result. In addition to summing
these series, our calculation fixes the renormalization scheme of the electroweak input pa-
rameters. That is achieved by normalizing [14] the initial conditions of the current-current
Wilson coefficients to the Wilson coefficient for muon decay, in analogy to the procedure in
ref. [8]. In this way, a large part of the radiative corrections is absorbed into the measured
value of the muon decay rate [15], and GF is the only requisite electroweak input parameter
for our calculation.

The actual RG analysis involves the determination of the initial conditions of the
Wilson coefficients at the electroweak scale, and the subsequent RG evolution down to the
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hadronic scale where the local hadronic matrix element is evaluated. The steps of this
analysis have been discussed extensively in the literature and no new conceptual questions
arise in our analysis, so we can afford to be brief in our exposition.

Expanding all Wilson coefficients in the five- and four-flavor effective theories as

Ci(µ) = C
(0)
i (µ) + α

αs(µ)C
(e)
i (µ) + α

4πC
(es)
i (µ) , (2.6)

we find by performing an explicit matching calculation at the electroweak scale

C
(0)
± (µW ) = 1 , C

(e)
± (µW ) = 0 , C

(es)
± (µW ) = −22

9 −
4
3 log µ

2
W

M2
Z

, (2.7)

consistent with the results in the literature [16, 17]. The initial conditions for the Wil-
son coefficients in the |∆S| = 2 sector vanish at this order, i.e., we have C̃(e)

7 (µW ) =
C̃

(es)
7 (µW ) = 0.

In order to evolve the Wilson coefficients down to the hadronic scale, we need to solve
the set of RG equations

µ
d

dµ
Ci(µ) = Cj(µ)γji , i, j = +,− , (2.8)

and
µ
d

dµ
C̃7(µ) = C̃7(µ)γ̃77 +

∑
k,l=+,−

Ck(µ)Cl(µ)γ̂kl,7 . (2.9)

Here, γ̃77 = γ̃S2 + 2γm + 2β is given in terms of the anomalous dimension γ̃S2 of the local
operator Q̃S2. The quark anomalous dimension and the beta function appear because
of the explicit factors of mc and gs in the definition of Q̃7. Further, γij denotes the
anomalous dimension matrix in the current-current sector, and γ̂kn,7 is the anomalous
dimension tensor, describing the mixing of the dimension-six operators into Q̃7. Defining
dgs/d logµ = β, with

β(gs, e) = −β0
g3
s

16π2 − β1
g5
s

(16π2)2 − βes
e2g3

s

(16π2)2 + . . . , (2.10)

and dm/d logµ = −mγm, with

γm(gs, e) = γ(0)
m

g2
s

16π2 + γ(1)
m

g4
s

(16π2)2 + γ(e)
m

e2

16π2 + γ(es)
m

e2g2
s

(16π2)2 + . . . , (2.11)

we have [8, 18]
γ̃

(0)
S2 = 4 , γ̃

(e)
S2 = 4

3 , γ̃
(es)
S2 = −148

9 , (2.12)

and

γ(0)
m = 8 , γ(e)

m = 8
3 , γ(es)

m = 32
9 , (2.13)

β0 = 11− 2
3f , βe = 0 , βes = −8

9

(
fu + fd

4

)
, (2.14)
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Q± Q± Q± Q±

Figure 1. Sample Feynman diagrams with bilocal insertions of the current-current operators Qqq′

± .
Solid lines denote appropriate quark flavors, and wavy lines denote photons.

where fu and fd denote the number of up- and down-type quark flavours, and f = fu + fd.
Moreover [19]

γ(0) =
(

4 0
0 −8

)
, γ(e) =

−8
3 0

0 −8
3

 , γ(es) =

107
9 −18
−9 38

9

 , (2.15)

and

γ̂
(0)
kl,7 =

(
3 −1
−1 1

)
, γ̂

(e)
kl,7 =

(
0 0
0 0

)
, γ̂

(es)
kl,7 =

 43 −43
3

−43
3

43
3

 , (2.16)

with an expansion defined in analogy to eq. (2.11). The result for γ̂(es)
kl,7 is new. It has

been calculated in terms of the renormalization constants [20] for bilocal insertions of
current-current operators (see figure 1 for sample Feynman diagrams). All diagrams have
been calculated using self-written FORM [21] routines, implementing the two-loop recursion
presented in refs. [22, 23]. The amplitudes were generated using qgraf [24]. We used the
algorithm in ref. [25] to isolate the UV divergences.

Solving the inhomogeneous system of differential equations (2.8) and (2.9) is tedious.
It is, however, straightforward to verify that eqs. (2.8) and (2.9) are equivalent to the
homogeneous system of equations

µ
d

dµ
D(µ) = D(µ)γ , (2.17)

with1

D(µ) =


C+(µ)2

C+(µ)C−(µ)
C−(µ)2

C̃7

 (2.18)

and

γ =


2γ++ γ+− 0 γ̂++,7
2γ−+ γ++ + γ−− 2γ+− γ̂+−,7 + γ̂−+,7

0 γ−+ 2γ−− γ̂−−,7
0 0 0 γ̃77

 . (2.19)

1All penguin contributions to the QCD RG evolution are included in our final numerics, and have
been evaluated using a straightforward generalization of these definitions. We checked explicitly that we
reproduce the QCD results in the literature, up to NNLL.
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This can be solved using standard methods (see, for instance, Reference [26]). The RG
evolution can be conveniently written in terms of an evolution matrix, such that D(µ) =
D(µ0)U(µ0, µ, α). We expand

U(µ0, µ, α) = U (0)(µ0, µ) + α

αs(µ)U
(e)(µ0, µ) + α

4πU
(se)(µ0, µ) + . . . . (2.20)

Here, µ0 and µ denote the generic “high” and “low” scale of the RG evolution (i.e., µ0 = µt
and µ = µb in the five-flavor, and µ0 = µb and µ = µc in the four-flavor theory). We find
the following contributions to the Wilson coefficient at the low scale:

D(0)(µ) = D(0)(µ0)U (0)(µ0, µ) , (2.21)

D(e)(µ) = D(0)(µ0)U (e)(µ0, µ) + η−1D(e)(µ0)U (0)(µ0, µ) , (2.22)

D(se)(µ) = ηD(1)(µ0)U (e)(µ0, µ) + η−1D(e)(µ0)U (1)(µ0, µ)

+D(se)(µ0)U (0)(µ0, µ) +D(0)(µ0)U (se)(µ0, µ) ,
(2.23)

where we have introduced the ratio η = αs(µ0)/αs(µ). The explicit expression for the
evolution matrix, in terms of the anomalous dimensions of the Wilson coefficients, can be
found in ref. [27].

At the bottom threshold, µb ∼ mb, the bottom quark is removed as a dynamical degree
of freedom. Numerically, the impact of this threshold correction is small. In fact, since
we neglect the contribution of penguin operators for the QED and electroweak corrections,
the only effect is the decoupling of αs from f = 5 to f = 4:

α(5)
s = α(4)

s

(
1 + 2

3
α

(4)
s

4π log
(
µ2
b/mb(µb)2

))
, (2.24)

leading to an additional logarithmic contribution to all Wilson coefficients. Requiring the
equality of all Green’s functions at the matching scale and writing δC(µb) = Cf=5(µb) −
Cf=4(µb) we find, for the dimension-six Wilson coefficients,

δC
(0)
i = 0 , δC

(e)
i = 0 , δC

(es)
i = 2

3C
(e)
i log

(
µ2
b

mb(µb)2

)
, (2.25)

and for the dimension-eight Wilson coefficient (taking into account the factor m2
c/g

2
s in the

definition of the operator)

δC̃
(0)
7 = 0 , δC̃

(e)
7 = 0 , δC̃

(es)
7 = 4

3 C̃
(e)
7 log

(
µ2
b

mb(µb)2

)
. (2.26)

At the scale µc ∼ mc the charm quark is removed from the theory as a dynamical
degree of freedom, and the effective Lagrangian is now given by eq. (2.1). Requiring the
equality of the Green’s functions in both the four-flavor and three-flavor theories at the
charm-quark scale leads to the matching condition

∑
k,l=+,−

Ck(µc)Cl(µc)〈QkQl〉(µc) + C̃7(µc)〈Q̃7〉(µc) = M2
W

32π2 C̃
ut
S2(µc)〈Q̃S2〉(µc) , (2.27)

– 6 –
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where the angle brackets denote the partonic |∆S| = 2 matrix elements. We parameterize
these matrix elements in the following way:

〈Q̃7〉 = rS2〈Q̃7〉(0) , 〈Q̃S2〉 = rS2〈Q̃S2〉(0) , and 〈QiQj〉(µc) = m2
c(µc)

32π2M2
W

rutij,S2〈Q̃S2〉(0) .

(2.28)
Taking into account the explicit factor of m2

c/g
2
s in the definition of Q̃7, we expand the

Wilson coefficient C̃utS2 as

C̃utS2 = 4π
α

(3)
s

C̃
ut(0)
S2 + 4πα

(α(3)
s )2

C̃
ut(e)
S2 + α

α
(3)
s

C̃
ut(es)
S2 + . . . , (2.29)

and find the following contributions to the matching:

C̃
ut(0)
S2 (µc) = 2m

2
c(µc)
M2
W

C̃
(0)
7 (µc) , (2.30)

C̃
ut(e)
S2 (µc) = 2m

2
c(µc)
M2
W

C̃
(e)
7 (µc) , (2.31)

C̃
ut(es)
S2 (µc) = 2m

2
c(µc)
M2
W

[
C̃

(es)
7 (µc)−

4
3 C̃

(e)
7 (µc) log µ2

c

mc(µc)2

]

+ m2
c(µc)
M2
W

[
C

(0)
i (µc)C(e)

j (µc) + C
(e)
i (µc)C(0)

j (µc)
]
r
ut,(0)
ij,S2 . (2.32)

Here, mc(µc) denotes the running charm-quark mass, including the leading QED running.
We see that for the electroweak corrections, the LO matching result is sufficient. According
to ref. [3], it can be taken as rutij,S2 = 2rccij,S2− rctij,S2 in terms of the results in refs. [3, 9, 10].
We find

r
ut,(0)
ij,S2 =

 9
2 − 3 log µ2

c
m2
c(µc)

−3
2 + log µ2

c
m2
c(µc)

−3
2 + log µ2

c
m2
c(µc)

3
2 − log µ2

c
m2
c(µc)

 . (2.33)

Finally, the RG evolution in the effective three-flavor theory involves only the single
physical operator Q̃S2, with anomalous dimension given in eq. (2.12). As discussed in
detail in ref. [8], the mixed two-loop anomalous dimension γ̃(es)

S2 is renormalization-scheme
independent, which prevents us from extending the definition of the scheme-independent
correction factors ηut to include electroweak corrections. Instead, we have to work with
Wilson coefficients directly. In particular, our result for C̃utS2 is not independent of the
renormalization scheme.

Of course, this residual scheme dependence will cancel once we multiply C̃utS2 by the
hadronic matrix element of the local operator Q̃S2, evaluated including the leading QED
corrections. While this matrix element is a non-perturbative quantity, and the QED cor-
rections are not (yet) available, it is easy to calculate the scheme-dependent part [8]. As
a cross check of our calculation, we kept the definition of all contributing evanescent op-
erators arbitrary (see appendix A) and verified that all scheme dependence completely
cancels in the product of the Wilson coefficient and (the scheme-dependent part of) the

– 7 –
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Figure 2. Residual dependence of the Wilson cofficient C̃ut
S2(2 GeV) on the electroweak (left panel)

and charm-threshold (right panel) matching scales. The short-dashed, dotted, and dash-dotted
lines show the LL, NLL, and NNLL QCD results, respectively. The long-dashed and solid lines
show the results including also the LL and NLL electroweak corrections.

matrix element. In particular, we verified that the only left-over dependence of C̃utS2 is on
the parameter a11; all other parameters cancel.2 We will discuss the numerical size of the
scheme-dependent term in the following section.

3 Discussion and conclusion

To obtain a numerical estimate of the size of the electroweak corrections, as well as an
estimate of the remaining perturbative uncertainties, we evaluate the Wilson coefficient
C̃utS2(2GeV), including now all known QCD corrections, and varying the electroweak and
charm-threshold matching scales in the intervals 40GeV ≤ µt ≤ 320GeV and 1GeV ≤ µc ≤
2GeV. (The dependence on the bottom-quark matching scale is negligible in comparison.)
The resulting residual scale variation is displayed in figure 2.

To obtain a final value, we fix µt = mt and take the average of the highest and lowest
value of C̃utS2 in the interval for the variation of µc, and half the difference between the
highest and lowest values as the uncertainty. Retaining only the QCD corrections up
to NNLL, we find C̃ut,QCD

S2 = −13.84 ± 0.17. Including also the LL and NLL electroweak
corrections gives C̃utS2 = −13.92±0.16. This amounts to a −0.5% shift, while the uncertainty
is essentially unchanged.

What is the numerical impact of the unmatched scheme-dependent term on this result?
First, recall that the only dependence is on the parameter a11 (see appendix A); all other
scheme dependence fully cancels against the corresponding terms in the hadronic matrix

2In this context we note that one of the statements made below eq. (C.12) in ref. [8] is not correct: even
for scheme-independent γ̃(es)

S2 , the corresponding evolution matrix U (se) does depend on the renormalization
scheme via its dependence on the two-loop QCD anomalous dimension, γ̃(1)

S2 . However, our analytic check
shows that this dependence drops out completely in the product of Wilson coefficient and the (known) QCD
part of the hadronic matrix element. The same is true in the top-quark sector.

– 8 –
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element.3 Part of the dependence on a11 of our result arises from the dependence on the two-
loop QCD anomalous dimension; any such dependence is also canceled by the corresponding
scheme dependence of the hadronic matrix element. The only residual dependence on a11
is that related to the leading QED corrections to the matrix element; numerically, it is tiny:

C̃utS2(2GeV) = −14.075 + 0.001a11 . (3.1)

We obtained this number by setting all threshold matching scales to their respective quark
masses.

While a consistent estimate of the full electroweak and QED corrections can be ob-
tained only once a lattice calculation (or another systematic estimate) of the QED correc-
tion to the hadronic matrix element becomes available, we point out that this correction
is not enhanced by a large logarithm and thus of order α/(4π) ∼ 10−4, the same as the
residual scheme dependence. It is expected to be numerically negligible compared to the
−0.5% shift found above. It follows that for our numerics we can safely adopt the standard
definition of evanescent operators with a11 = 4.

To summarize, given the uncancelled (but small) residual scheme dependence of our
result, we propose a temporary prescription in analogy to the case of the top-quark con-
tribution [8]: we rescale the NNLL QCD value of ηut = 0.402(5) [3] by a factor of 1.005, to
take account of the electroweak corrections.4 Including also the power correction presented
in ref. [7], this leads to an updated SM prediction of

|εK | =
(
2.170± 0.065pert. ± 0.076nonpert. ± 0.153param.

)
× 10−3 . (3.2)

Here, the quoted errors correspond to the residual perturbative, non-perturbative, and
parametric uncertainties, respectively; see ref. [3] for details. We obtained this number
by employing the phenomenological expression in ref. [18], including the long-distance
corrections presented in refs. [4, 28].

All parametric inputs are taken from PDG [2]. In particular, as input for the top-quark
mass we use the MS mass mt(mt) = 162.92(67)GeV, obtained by converting the pole mass
Mt = 172.5(7)GeV [2] to MS at three-loop accuracy using RUNDEC [28].

In summary, we calculated the leading and next-to-leading electroweak corrections to
the charm-top contribution C̃utS2 to the effective |∆S| = 2 effective Lagrangian, using RG-
improved perturbation theory. We find a small negative shift of the Wilson coefficient, and
a corresponding small positive shift of εK . A systematic estimate of the QED corrections
to the hadronic matrix element would complete our analysis.

As consistency checks, we performed the calculation in generalized Rξ gauge for gluons
and photon and verified the gauge-parameter independence of our results. We analytically
checked that our results are independent of all matching scales, and that the dependence

3In practice, the hadronic matrix element is only converted to the MS scheme at NLO, such that part
of the NNLO QCD scheme dependence is not included. However, in the conventional formalism of the η
correction factors, the perturbative part of the result is scheme independent including NNLO, as far as QCD
is concerned.

4Recall that ηut is defined via C̃utS2 = 2ηutSut(xc, xt), with the modified Inami-Lim function [3] being
negative.
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on the renormalization scheme is canceling by the corresponding scheme dependence of the
hadronic matrix element.

The aim of this work is to provide a further step in the prediction of εK with residual
theoretical uncertainty at the percent level. Further important directions of improvement
are the calculation of the three-loop QCD corrections in the top-quark sector of the effective
Lagrangian, and the NLO scheme conversion from RI/SMOM to MS for the hadronic
matrix element of the local |∆S| = 2 operator.
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A Definition of evanescent operators

In the context of dimensional regularization, evanescent operators arise in intermediate
stages of the calculation because certain relations (such as Dirac algebra and Fierz trans-
formations) are valid only in four space-time dimensions. In the dimension-six sector, we
define them as

E
qq′(1)
1 = (s̄Lγµ1µ2µ3T

aqL)⊗ (q̄′Lγµ1µ2µ3T adL)− (16−A11ε−A12ε
2)Qqq

′

1 , (A.1)

E
qq′(1)
2 = (s̄Lγµ1µ2µ3qL)⊗ (q̄′Lγµ1µ2µ3dL)− (16−B11ε−B12ε

2)Qqq
′

2 , (A.2)

E
qq′(2)
1 = (s̄Lγµ1µ2µ3µ4µ5T

aqL)⊗ (q̄′Lγµ1µ2µ3µ4µ5T adL)−
(

256−A21ε−A22ε
2
)
Qqq

′

1 ,

(A.3)

E
qq′(2)
2 = (s̄Lγµ1µ2µ3µ4µ5qL)⊗ (q̄′Lγµ1µ2µ3µ4µ5dL)−

(
256−B21ε−B22ε

2
)
Qqq

′

2 . (A.4)

while the evanescent operators in the dimension-eight sector have been chosen as

ẼF = m2
c

g2µ2ε (s̄
α
Lγµd

β
L)⊗ (s̄βLγ

µdαL)− Q̃7 , (A.5)

Ẽ
(1)
7 = m2

c

g2µ2ε (s̄
α
Lγµ1µ2µ3d

α
L)⊗ (s̄βLγ

µ1µ2µ3dβL)− (16− a11ε− a12ε
2)Q̃7 , (A.6)

Ẽ
(1)
8 = m2

c

g2µ2ε (s̄
α
Lγµ1µ2µ3d

β
L)⊗ (s̄βLγ

µ1µ2µ3dαL)− (16− b11ε− b12ε
2)(Q̃7 + ẼF ) , (A.7)

Ẽ
(2)
7 = m2

c

g2µ2ε (s̄
α
Lγµ1µ2µ3µ4µ5d

α
L)⊗ (s̄βLγ

µ1µ2µ3µ4µ5dβL)− (256− a21ε− a22ε
2)Q̃7 , (A.8)

Ẽ
(2)
8 = m2

c

g2µ2ε (s̄
α
Lγµ1µ2µ3µ4µ5d

β
L)⊗ (s̄βLγ

µ1µ2µ3µ4µ5dαL)− (256− b21ε− b22ε
2)(Q̃7 + ẼF ) .

(A.9)

Note that, to facilitate an additional check on our calculation, we have kept the coefficients
in front of the ε terms arbitrary. In the conventional definition of these operators, A1i =
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B1i = a1i = b1i = 4 where i = 1, 2, A21 = B21 = a21 = b21 = 224, a22 = 5712/25,
B22 = 10032/25, and a22 = b22 = 108 816/325. The evanescent operators related to Q̃S2
are defined with the same coefficients. We have checked explicitly that the terms quadratic
in ε do not contribute to the two-loop anomalous dimensions. All results quoted in the
main body of the paper correspond to the conventional definition of evanescent operators.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited. SCOAP3 supports
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