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1 Introduction

In supersymmetric quantum field theories, recent localization techniques enable us to ob-
tain various exact results which are made accessible to researchers for understanding or
proposing conjectural dualities and for providing various mathematical conjectures, etc.
See e.g. [1] for a review and references therein. In this paper, we focus on the A-twisted
partition function of 3D N = 2 gauge theory on S2 ×q S1, with the Ω-deformation param-
eter ~ = − log q, known as the twisted index and obtained exactly by Benini and Zaffaroni
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in [2], where the twisted partition function is factorized into the K-theoretic vortex parti-
tion functions which are considered as the partition functions on D2×q S1 with appropriate
boundary conditions [2–11].

The main object of this paper is to construct 3D N = 2 abelian gauge theories T [K] for
knots K, and show that the colored Jones polynomials of K in S3, which can be understood
as the Wilson loop expectation values along K in SU(2) Chern-Simons gauge theories on
S3 [12], are obtained as the K-theoretic vortex partition functions of T [K]. Therefore, our
construction gives a new correspondence between 3D N = 2 abelian gauge theories and
3D SU(2) Chern-Simons gauge theories:

vortex partition function of T [K] = Wilson loop along K in SU(2) Chern-Simons theory.

This reminds of the 3D-3D correspondence [4, 13–19] (see also [20]) which is a 3D-3D
analogue of the Alday-Gaiotto-Tachikawa (4D-2D) correspondence [21, 22], and says that
the compactification of the 6D (2,0) theory of type A1 twisted along a 3-manifold M3
implies that a 3D N = 2 abelian gauge theory T [M3] labeled by M3 is related to a 3D
SL(2,C) Chern-Simons gauge theory on M3.1 Remark that our correspondence treats
Wilson loops in SU(2) Chern-Simons theories which are more manageable than SL(2,C)
Chern-Simons theories.

More specifically, we propose how the colored Jones polynomials of knots, associated
with the quantum group Uq(sl2), are constructed as K-theoretic vortex partition functions,
obtained from a factorization of the twisted indices of abelian gauge theories on S2 ×q
S1, where the deformation parameter q of Uq(sl2) is identified with the Ω-deformation
parameter. Our strategy is to construct the building blocks of the colored Jones polynomial,
given by the R-matrix etc. assigned to a tangle diagram of a knot [23] (see [24] for a survey),
as building blocks of a K-theoretic vortex partition function. Then, for any knot diagram,
we systematically associate a matter content and Chern-Simons couplings in 3D N = 2
abelian gauge theory whose K-theoretic vortex partition function, in a certain specific limit,
gives the colored Jones polynomial of the knot. In this paper, we refer to the gauge theories
T [K] labeled by knot diagrams as knot-gauge theories. Here, for a knot, one can consider
infinitely many tangles, related by the Reidemeister moves I, II and III, which provide the
same colored Jones polynomial of the knot. As a result, for a knot K, we have infinitely
many 3D N = 2 gauge theories T [K] that are hopefully related to one another by some
3D dualities.

The localization formula in [2] of the A-twisted partition function is written as a middle-
dimensional contour integral, in the space parametrized by the complex scalars (the real
scalars in the vector multiplet and the holonomies of the gauge fields along S1), which
is organized as the Jeffrey-Kirwan (JK) residue [25] (see also [26–28]). The JK residue
depends on the choice of a vector (stability parameters), and the most technical part of
our gauge theory constructions is how to choose the vector. In this paper, we show that
there exists a choice of the vectors which gives identifications between K-theoretic vortex

1Although the relation between the gauge theories T [K] in this paper and the gauge theories T [M3]
in the context of the 3D-3D correspondence is not clear, we use the same notation T [K] to denote our
gauge theories.
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partition functions and the colored Jones polynomials for a class of tangle diagrams of
2-bridge knots with certain specific twists. We expect that, by a refinement of the choice,
the identifications are also established for any knot diagram.2

It is expected that the K-theoretic vortex partition function of T [K] is interpreted as
a generating function of Euler characteristics for moduli spaces of vortices [10, 11, 29, 30].
Under our correspondence, it implies that we have a new geometric interpretation of the
colored Jones polynomial. This will be an interesting mathematical and physical problem.

This paper is organized as follows. In section 2, the A-twisted partition function
(twisted index) of 3D N = 2 gauge theory on S2 ×q S1 in [2] is recalled, and then the
factorization into the K-theoretic vortex partition functions is provided. In section 3,
we first construct elementary constituents of knot-gauge theories which correspond to the
building blocks of the colored Jones polynomials of knots as R-matrix. We then construct
the knot-gauge theories T [K], and discuss the JK residue procedure in detail. In particular,
we show Proposition 3.10 for a class of 2-bridge knots, and exemplify the trefoil knot as well
as the unknot. In section 4, we construct yet another but simpler abelian gauge theories
T red[K] labeled by knot diagrams referred to as reduced knot-gauge theories, and exemplify
the trefoil knot, the figure-eight knot and the 3-twist knot. In appendix A, properties of
the q-Pochhammer symbol are summarized.

2 K-theoretic vortex partition function

In this section, we first recall the A-twisted partition function of 3D N = 2 gauge theory
on S2 ×q S1 in [2], with the Ω-deformation parameter ~ = − log q, and then provide the
building blocks of K-theoretic vortex partition function by factorizing the twisted parti-
tion function.3

2.1 Twisted partition function on S2 ×q S1

Consider a topologically twisted 3D N = 2 gauge theory on S2 ×q S1 which consists of
vector multiplet V with rank(g) Lie algebra g of a gauge group G and N chiral multiplets
Φri
Ri
, i = 1, . . . , N , with representation Ri of g, U(1)R charge ri ∈ Z, and (complexified)

mass γi = U
ρf,i
f , where U f are the (complexified) holonomies (the real masses and the

holonomies of the background gauge fields along S1) associated with a global symmetry
Gf and ρf,i are the flavor weights.4 In [2], by the supersymmetric localization [1], the A-
twisted partition function of the 3D gauge theory is obtained and written in terms of the

2The full twisted index with the boundary contribution in (2.3) should not depend on the stability
vector. In this paper, we ignore the boundary contribution by assuming that it is irrelevant to the vortex
partition functions obtained for our choice of stability parameters. If the stability parameters are changed,
the boundary contribution would need to be taken into account for obtaining the colored Jones polynomials.
This is a subtle point, and it may be interesting to investigate other choices of the stability vectors in the
knot-gauge theories.

3The N = 2 superconformal index on S2 ×q S1 without the topological twist [31–33] also enjoys the
similar factorization [5].

4Although, for 3D-3D correspondence discussed in this paper, it is enough to consider the cases with
abelian symmetries, we will not assume it in this section.
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following building blocks associated with the vector multiplet V and each chiral multiplet
Φr
R of mass γ as

ẐVd (U ; q) =
(
−q−

1
2
)∑

α∈∆+
α(d) ∏

α∈∆+

(
1−U−αq

1
2α(d)

) (
1−Uαq

1
2α(d)

)
, (2.1)

ẐΦr
R

d (U ; γ, q) =
∏
ρ∈R

(γUρ)
ρ(d)+1−r

2(
γUρq

r−ρ(d)
2 ; q

)
ρ(d)+1−r

, (2.2)

where ∆+ is the set of positive roots of g, α(∗) and ρ(∗) are the canonical pairings, and
U = (U1, . . . , Urank(g)), Ua = e−ua , Uα = e−α(u), Uρ = e−ρ(u). Here u = (u1, . . . , urank(g)),
ua ∈ h ⊗R C, are the complex scalars (the real scalars in the vector multiplet V and the
holonomies of the gauge fields along S1), where h is the Cartan subalgebra of g. These
building blocks are indexed by the magnetic fluxes d = (d1, . . . , drank(g)), da ∈ Z, associated
with U(1)rank(g)(⊂ G) gauge fields on S2. The q-Pochhammer symbol (x; q)d is defined
in (A.1). When the gauge group contains central U(1)c ⊂ G factors, the gauge theories
admit deformations with the 3D complexified Fayet-Iliopoulos (FI) parameters τa, a =
1, . . . , c. Then the A-twisted partition function on S2 ×q S1 without Chern-Simons factors
(see Remark 2.1 for Chern-Simons factors) is given by [2]

ZS2×qS1(z,γ, q) = 1
|W|

∑
d∈Zrank(g)

∮
Γ
d rank(g)u Ẑtotal

d (U ; z,γ, q) + boundary contribution,

Ẑtotal
d (U ; z,γ, q) := zd ẐVd (U ; q)

N∏
i=1
Ẑ

Φri
Ri

d (U ; γi, q). (2.3)

Here |W| is the order of the Weyl group of G, and zd = e2πi τ(d), where the pairing
τ(d) =

∑
a τ

ada is defined by the embedding τ ↪→ h∗ ⊗R C. The middle-dimensional
contour integral along Γ is defined by the JK residue [25] (see also [26–28]) which picks

up relevant poles in Ẑ
Φri

Ri
d depending on the choice of a vector (stability parameters).

In this paper, for simplicity we identify the stability parameters with the FI parameters
ξa = Im(τa) (see [28] for the difference between them). Although the partition function
has a boundary contribution at ua = ±∞, we assume that the boundary contribution is
irrelevant to the vortex partition functions in this paper and only focus on the bulk (first)
factor (see [34] for an interpretation of the boundary contribution as topological saddles of
an effective supersymmetric quantum mechanics).

Note that, the background magnetic fluxes df associated with the global symmetry
Gf are also introduced by the shifts in (2.2) as

ρ(d)→ ρ(d) + df,i, df,i = ρf,i(df ). (2.4)

Remark 2.1. Assume that the gauge symmetry G to be abelian (or consider abelian
factors in G). The gauge/flavor-gauge/flavor/R Chern-Simons factors associated with G
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and Gf are introduced by [2, 35, 36] (see also [37])

Ẑg-g
d (U ;k) =

∏
a,b

Ukabdba , Ẑg-f
d,df

(U ;γ,kg-f) =
∏
i,a

(
γdai U

df,i
a

)kg-f
ai
, (2.5)

Ẑ f-f
df

(γ,kf-f) =
∏
i,j

γ
kf-f
ij df,j
i , Ẑg-R(U ;kg-R) =

∏
a

Uk
g-R
a

a , Ẑ f-R(γ,kf-R) =
∏
i

γ
kf-R
i
i .

Here k, kg-f, kf-f, kg-R and kf-R are, respectively, the set of relevant Chern-Simons couplings
kab = kba, kg-f

ai , kf-f
ij = kf-f

ji , kg-R
a and kf-R

i .

2.2 K-theoretic vortex partition function by factorization

Let us recall how the A-twisted partition function is factorized into K-theoretic vortex
partition functions [2, 9–11]. For a choice of FI parameters, the contour Γ in (2.3) encloses
the poles in ẐΦr

R
d , with the inclusion of the background magnetic fluxes by (2.4), as

γUρ = q−
1
2ρ(d)+ 1

2 r+p, p = −1
2ρf (df ),−1

2ρf (df ) + 1, . . . , ρ(d) + 1
2ρf (df )− r, (2.6)

with ρ(d) + ρf (df )− r ≥ 0. By a change of variables

Ua = q
d′a−d

′′
a

2 σa, d = d′ + d′′, γ = q
ρf (d′

f
)−ρf (d′′

f
)

2 γ̃, df = d′f + d′′f , (2.7)

with ρ(d′) = p+ r/2− ρf (d′f )/2 + ρf (d′′f )/2, the poles (2.6) yield

γ̃σρ = 1, (2.8)

and the sum over the magnetic fluxes and the integration in (2.3) for Φr
R are written as

∑
ρ(d)+ρf (df )≥r

ρ(d)+ 1
2ρf (df )−r∑

p=− 1
2ρf (df )

∮
γUρ=q−

1
2 ρ(d)+ 1

2 r+p
=

∑
ρ(d)+ρf (df )≥r

ρ(d)+ρf (d′′f )− r
2∑

ρ(d′)= r
2−ρf (d′f )

∮
γσρ=1

=
∑

ρ(d′)+ρf (d′f ),ρ(d′′)+ρf (d′′f )≥ r
2

∮
γσρ=1

. (2.9)

Here, we can take d′f as an arbitrary integer satisfying 0 ≤ d′f ≤ df . Because the
twisted index and the discussion below do not depend on this choice, we will take, for
simplicity, d′f = d′′f below, and then γ̃ = γ. Under the reparametrization (2.7), by using
(x; q)d =

(
qd−1x; q−1

)
d
in (A.2) and (x; q)d1+d2

= (x; q)d1

(
qd1x; q

)
d2

in (A.3), the building
blocks (2.1) and (2.2) are factorized, respectively, as

ẐVd (U ; q) = IV1-loop(σ) IVd′(σ; q) IVd′′(σ; q−1), (2.10)

where

IV1-loop(σ) =
∏

α∈∆+

(−1)
(
σ
α
2 − σ−

α
2
)2
,

IVd (σ; q) =
∏

α∈∆+

(
−q−

1
2
)α(d) 1− σαqα(d)

1− σα =
∏

α∈∆+

(
−q−

1
2
)α(d) (qσα; q)α(d)

(σα; q)α(d)
,

(2.11)

– 5 –



J
H
E
P
1
2
(
2
0
2
1
)
1
9
7

and

ẐΦr
R

d (U ; γ, q) = I
Φr

R
1-loop(σ; γ, q) IΦr

R

d′
(σ; γ, q) IΦr

R

d′′
(σ; γ, q−1), (2.12)

where

I
Φr

R
1-loop(σ; γ, q) =

∏
ρ∈R

(γσρ)
1−r
2(

γσρq
r
2 ; q
)

1−r

,

I
Φr

R
d (σ; γ, q) =

∏
ρ∈R

q
1
4ρ(d)(ρ(d)+1−r) (γσρ)

1
2ρ(d)(

γσρq1− r
2 ; q
)
ρ(d)

,

(2.13)

and the background magnetic fluxes are now introduced by the similar shift to (2.4) (i.e.
ρ(d)→ ρ(d) + 2ρf (df ) for ẐΦr

R
d and ρ(d)→ ρ(d) + ρf (df ) for IΦr

R
d ). The twisted partition

function (2.3) is then factorized into

I1-loop(σ;γ, q) = IV1-loop(σ)
N∏
i=1

I
Φri

Ri
1-loop(σ; γi, q), (2.14)

and the K-theoretic vortex partition function

Ivortex(σ; z,γ, q) =
∑
d

Id(σ; z,γ, q) =
∑
d

zd IVd (σ; q)
N∏
i=1

I
Φri

Ri
d (σ; γi, q), (2.15)

as [2, 9–11] (see also [7, 8])5

ZS2×qS1(z,γ, q) ∼
∑
σ∗
I1-loop(σ∗;γ, q) Ivortex(σ∗; z,γ, q) Ivortex(σ∗; z,γ, q−1), (2.16)

up to an overall normalization and the boundary contribution, where the shift (2.4) for

each I
Φri

Ri
d introduces background magnetic fluxes. Here the domain of d is determined

as (2.9) for a choice of the FI parameters. The domain of σ∗ = σ(γ) is determined as
well. Note that when ρ(d) > 0, the poles (2.8) for an r = 0 chiral multiplet Φ0

R are in the
“1-loop factor” IΦ0

R
1-loop for r = 0, whereas the poles (2.8) for an r = 2 chiral multiplet Φ2

R

are in the “vortex factor” IΦ2
R

d for r = 2 (one zeros from I
Φ2

R
1-loop and two poles from I

Φ2
R

d′
and

I
Φ2

R

d′′
in (2.12)).

Remark 2.2. By (A.2), the factors in (2.13) are rewritten as

I
Φr

R
1-loop(σ; γ, q) =

∏
ρ∈R

(−1)1−r (γσρ)−
1−r
2
(
γ−1σ−ρq1− r

2 ; q
)

r−1
,

I
Φr

R
d (σ; γ, q) =

∏
ρ∈R

(−1)ρ(d)q−
1
4ρ(d)(ρ(d)+1−r) (γσρ)−

1
2ρ(d)

(
γ−1σ−ρq

r
2 ; q
)
−ρ(d)

,
(2.17)

where σ−1 = (σ−1
1 , . . . , σ−1

rank(g)).
5The factorization into the “1-loop factor” and the “vortex factor” has ambiguities, and so it is desirable

to prescribe how to fix them. A decomposition of S2 ×q S1 into two D2 ×q S1 is known to lead to the
factorization [5], and the partition functions on D2×q S1 with appropriate boundary conditions are expected
to unambiguously provide the K-theoretic vortex partition functions [38–40].
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Remark 2.3. Similarly, we factorize the Chern-Simons factors in (2.5) as

Ẑg-g
d (U ;k) = Ig-g

d′
(σ; q,k) Ig-g

d′′
(σ; q−1,k),

Ẑg-f
d,2df (U ;γ,kg-f) = Ig-f

d′,df
(σ;γ, q,kg-f) Ig-f

d′′,df
(σ;γ, q−1,kg-f),

Ẑ f-f
2df (γ,kf-f) = I f-f

df
(q,kf-f) I f-f

df
(q−1,kf-f),

Ẑg-R(U ;kg-R) = Ig-R
1-loop(σ;kg-R) Ig-R

d′
(q,kg-R) Ig-R

d′′
(q−1,kg-R),

Ẑ f-R(γ,kf-R) = I f-R
1-loop(γ,kf-R) I f-R

df
(q,kf-R) I f-R

df
(q−1,kf-R),

(2.18)

where

Ig-R
1-loop(σ;kg-R) =

∏
a

σk
g-R
a
a , I f-R

1-loop(γ,kf-R) =
∏
i

γ
kf-R
i
i , (2.19)

are considered to be normalization (1-loop) factors which are irrelevant to da and df,i, and

Ig-g
d (σ; q,k) =

∏
a,b

(
σdba q

1
2dadb

)kab
, Ig-f

d,df
(σ;γ, q,kg-f) =

∏
i,a

(
γdai σ

df,i
a qdf,ida

)kg-f
ai
,

I f-f
df

(q,kf-f) =
∏
i,j

(
γ
df,j
i q

1
2df,idf,j

)kf-f
ij
,

Ig-R
d (q,kg-R) =

∏
a

q
1
2k

g-R
a da , I f-R

df
(q,kf-R) =

∏
i

q
1
2k

f-R
i df,i . (2.20)

Here the background magnetic fluxes are taken to be 2df for the factorizations of the mass
parameters γi as γi = q(df,i−df,i)/2γi following (2.7) with d′f = d′′f .

3 Knot-gauge theory

We construct 3D N = 2 abelian gauge theories labeled by knot diagrams, referred to as
knot-gauge theories, whose K-theoretic vortex partition functions give the colored Jones
polynomials of knots. For that purpose, we first recall how the colored Jones polynomials
are obtained for tangle diagrams of knots from elementary building blocks as R-matrix,
and, in section 3.2, construct corresponding constituents of knot-gauge theories for the
elementary building blocks. We then discuss the JK residue procedure in the knot-gauge
theories, and in particular show that, for a class of knot diagrams in Proposition 3.10, the
K-theoretic vortex partition functions actually give the colored Jones polynomials.

3.1 A brief summary of colored Jones polynomials from tangles

Let us recall the building blocks R, R−1, µ and µ−1, associated with the quantum group
Uq(sl2), which give the n-colored Jones polynomials of knots colored by symmetric repre-
sentations Sn [23] (see also [24]). The (n+ 1)2× (n+ 1)2 R-matrix R = R(q) for n-colored
Jones polynomial of a knot K, assigned to each positive crossing in a tangle diagram of K,

– 7 –
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is given by [41]

Rd12d31
d42d34

=
d 1

d 12

d 2 d 3

d 34

d 31

d 4

d 42

= (−1)d31−d42q
1
2 (d31−d42)(d31−d42−1)+d42d34− 1

2n(d31+d34)+ 1
4n

2

×
(q)n−d42

(q)d34

(q)d12
(q)n−d31

(q)d31−d42

, (3.1)

where (q)d = (q; q)d. Here, following [42], the variables di, i = 1, 2, 3, 4, are assigned to
regions around the crossing, dij = di − dj are assigned to arcs, and

d12, d31, d42, d34, d31 − d42 ∈ {0, 1, . . . , n}. (3.2)

For the variables di that do not satisfy the conditions (3.2), Rd12d31
d42d34

= 0 is defined. Note
that the arrows in (3.1) are promised to be in the downward directions (see (4.10) for local
deformations of tangle). The inverse R-matrix R−1 = R(q)−1, assigned to each negative
crossing, is similarly given by

(
R−1

)d12d31

d42d34
=

d 1

d 12

d 2 d 3

d 34

d 31

d 4

d 42

= R(q−1)d31d12
d34d42

= q−d12d31+ 1
2n(d31+d34)− 1

4n
2 (q)d42

(q)n−d34

(q)n−d12
(q)d31

(q)d12−d34

, (3.3)

where

d12, d31, d42, d34, d12 − d34 ∈ {0, 1, . . . , n}. (3.4)

To each local minimum and maximum in the tangle diagram

µd12 =
d 12 d 1

d 2

= qd12− 1
2n,

µ−1
d12

=
d 12

d 1

d 2
= q−d12+ 1

2n,

(3.5)

are assigned, respectively, where 0 ≤ d12 ≤ n. We also set

d 12 d 2

d 1

=
d 12

d 2

d 1
= 1. (3.6)
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Using the above building blocks, the n-colored Jones polynomial of a knot K is given by

J
K
n (q) =

∑
d

 ∏
i∈P (d)

q−
1
4n(n+2)Ri

 ∏
i∈N(d)

q
1
4n(n+2)R−1

i

 ∏
i∈min(d)

µi

 ∏
i∈max(d)

µ−1
i

 .
(3.7)

Here, for a (0, 0)-tangle (the closure of a (1, 1)-tangle) diagram of K, P (d), N(d), min(d)
and max(d) are the set of positive crossings, negative crossings, local minima and local
maxima with the variables d, respectively, and Ri, R−1

i , µi and µ−1
i denote the i-th R-

matrix, the i-th inverse R-matrix, the quantity assigned to the i-th local minimum and the
quantity assigned to the i-th local maximum, respectively. The domain of d is determined
for the given (0, 0)-tangle diagram of K by (3.2) and (3.4). The normalized colored Jones
polynomial is also introduced by

JKn (q) = J
K
n (q)
J

0
n(q)

, (3.8)

where

J
0
n(q) =

n∑
d=0

d =
n∑
d=0

µd = q
1
2 (n+1) − q−

1
2 (n+1)

q
1
2 − q−

1
2

= q−
1
2n

(
q2; q

)
n

(q; q)n
, (3.9)

is the (unnormalized) colored Jones polynomial of unknot. The normalized colored Jones
polynomial is shown to be given for the (1, 1)-tangle diagram of K [41, Lemma 3.9] (see
also [24, section 2.5]) with an incoming (outgoing) constant f ∈ {0, 1, . . . , n} assigned to
the external arcs as in figure 1, which specifies a basis of the vector space attached to the
tangle diagram,

JKn (q) =
∑
d

 ∏
i∈P (d,f)

q−
1
4n(n+2)Ri

 ∏
i∈N(d,f)

q
1
4n(n+2)R−1

i


×

 ∏
i∈min(d,f)

µi

 ∏
i∈max(d,f)

µ−1
i

 . (3.10)

Remark that the normalized colored Jones polynomial does not depend on the constant f .

3.2 Building blocks of knot-gauge theories

We recalled that the normalized colored Jones polynomials are obtained from the building
blocks R, R−1, µ and µ−1 by (3.10). Based on the formulation, we propose a construction
of 3D N = 2 abelian gauge theories labeled by (1, 1)-tangle diagrams.

Consider a (1,1)-tangle diagram of a knot K with the number of loops (regions) Nv

and an incoming (outgoing) constant f ∈ {0, 1, . . . , n} (see figure 1 for an example of
Nv = 3). We assign variables dI , I = 0, 1, . . . , Nv, to the bounded and unbounded regions,
and take d0 = 0 without loss of generality by a shift of variables. By associating a U(1)I
gauge symmetry to the region with the non-zero variable dI , we construct a U(1)Nv =
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f 

f 

d 2

d 1

d 30 0

d 31

d 32

f d 3 

f d 3 

f d 1 

f d 2 

f  

f  

U(1) 1

U(1) 2

U(1) 3

Figure 1. The left figure is a (1, 1)-tangle diagram of the trefoil knot 31, and the right figure,
which is obtained by the associations as in figure 2 for all the crossings, represents the associated
quiver-like diagram of U(1)3 gauge theory T [31] with 15 chiral fields (in table 3) and extra Chern-
Simons couplings. The variables d1, d2, d3 are assigned to the bounded regions, and an incoming
(outgoing) constant f ∈ {0, 1, . . . , n} is identified with the background magnetic flux for the global
symmetry U(1)ext.

F1 F2

F5

F3 F4

U(1) 1

U(1) 2 U(1) 3

U(1) 4

d 1

d 12

d 2 d 3

d 34

d 31

d 4

d 42

Figure 2. For the R-matrix, the quiver-like diagram on the right is associated, where the circles
represent the U(1)i gauge nodes and the squares denote five chiral fields given in table 1. The same
applies to the inverse R-matrix in section 3.2.2.

U(1)1 × · · · × U(1)Nv gauge theory T [K], where the variables dI are identified with the
magnetic fluxes. Here the number of crossings is also Nv, and a matter content for the R-
or inverse R-matrix assigned at each crossing is constructed in the following, where each
matter content provides a building block of the 3D N = 2 U(1)Nv gauge theory T [K],
that we call the knot-gauge theory. We will see that the knot-gauge theory has a global
symmetry U(1)2Nv

F , and the color n and the constant f are, respectively, identified with
the background magnetic fluxes for global symmetries U(1)c and U(1)ext in U(1)2Nv

F :

U(1)c, U(1)ext ⊂ U(1)2Nv
F . (3.11)

In the following, we construct the building blocks of T [K]. Once they are constructed, it
is straightforward to construct the gauge theory T [K] from them.

3.2.1 R-matrix

We focus on a crossing, with an assigned R-matrix, for a (1,1)-tangle diagram with Nv

crossings. Let U(1)i, i = 1, 2, 3, 4, be gauge symmetries with associated complex scalars σi
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Field U(1)1 U(1)2 U(1)3 U(1)4 U(1)c U(1)ext mass U(1)R

Φ1 1 −1 0 0 0 1 γ1 0
Φ2 1 0 −1 0 1 −1 γ2 0
Φ3 0 −1 0 1 −1 1 γ−1

2 2
Φ4 0 0 −1 1 0 −1 γ−1

1 2
Φ5 −1 1 1 −1 0 0 1 0

Table 1. Matter content for the R-matrix Rd12d31
d42d34

in (3.1) which is denoted by T [Rd12d31
d42d34

(γ)]
including extra Chern-Simons couplings (3.16), where U(1)R denotes the U(1)R charge.

and magnetic fluxes di, and associate the quiver-like diagram of figure 2 with the five chiral
fields (multiplets) in table 1. Here, note that the gauge symmetries act, in general, on not
only the chiral fields at the crossing but also the chiral fields at other crossings which share
the same regions in the tangle diagram. The chiral fields interact through a superpotential
W = Φ1Φ4Φ5 + Φ2Φ3Φ5 (see also Remark 3.1), and two mass parameters γ = (γ1, γ2),
associated with a global symmetry U(1)2

F , are introduced. Overall, 2Nv mass parameters,
associated with a global symmetry U(1)2Nv

F , are introduced for the tangle diagram, and the
global symmetries U(1)c and U(1)ext, which associates non-negative background magnetic
fluxes 2n and 2f , are two of U(1)2Nv

F as (3.11). Note that the 3Nv U(1) symmetries
associated with the 5Nv chiral multiplets with the superpotential are generated by U(1)Nv
gauge symmetries and U(1)2Nv

F flavor symmetries. We now construct the R-matrix (3.1)
as a building block of K-theoretic vortex partition functions.

From (2.13) and (2.17), the five chiral fields lead to a 1-loop building block

IR1-loop(σ;γ) =
(
σ1σ4
σ2σ3

) 1
2

(
1− γ2

σ2
σ4

) (
1− γ1

σ3
σ4

)
(
1− γ1

σ1
σ2

) (
1− γ2

σ1
σ3

) (
1− σ2σ3

σ1σ4

) , (3.12)

and a building block of K-theoretic vortex partition functions

IRd,n,f (σ;γ, q) = (−1)d23+n q
1
4 (d12−d34)(3d1−d2−d3−d4+2n+1) (γ1γ2)

1
2 (d12−d34)

×
(
σ3

1σ4
σ2

2σ
2
3

) 1
2d1 (

σ2σ3
σ2

1

) 1
2 (d2+d3) (σ1

σ4

) 1
2d4 (σ1σ4

σ2σ3

) 1
2n

×

(
qγ2

σ2
σ4

; q
)
n−d42−f

(
qγ1

σ3
σ4

; q
)
d34+f(

qγ1
σ1
σ2

; q
)
d12+f

(
qγ2

σ1
σ3

; q
)
n−d31−f

(
q σ2σ3
σ1σ4

; q
)
d31−d42

, (3.13)

where σ = (σ1, σ2, σ3, σ4), dij = di−dj , and the background magnetic fluxes n and f for the
global symmetries U(1)c and U(1)ext are introduced by the shift (2.4). In addition to the
matter content in table 1 we also introduce Chern-Simons couplings by (2.19) and (2.20) as

ICS
1-loop(σ) =

(
σ1σ4
σ2σ3

) 1
2
, (3.14)
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and

ICS
d,n,f (σ; q) = q−

1
4 (d2

1−d
2
2−d

2
3+d2

4)+ 1
2 (d1d4−d2d3+nd23)+ 1

4 (d12−d34)− 1
2n+f2−d23f−nf

×
(
σ4
σ1

) 1
2d14 (σ2

σ3

) 1
2d23+ 1

2n−f
, (3.15)

for non-zero Chern-Simons couplings

k11= k44 = k23 = k32 = −1
2 , k22 = k33 = k14 = k41 = 1

2 ,

kg-f
2c = 1

2 , kg-f
3c = −1

2 , kg-f
2f = −1, kg-f

3f = 1,

kg-R
1 = kg-R

4 = 1
2 , kg-R

2 = kg-R
3 = −1

2 , kf-R
c = −1, kf-f

cf = kf-f
fc = −1, kf-f

ff = 2,

(3.16)

where the subscripts i, c and f denote the indices for the gauge symmetries U(1)i, the global
symmetries U(1)c and U(1)ext, respectively, and the mass parameters for U(1)c and U(1)ext
are abbreviated. By combining the block (3.13) with the Chern-Simons factor (3.15), we
define a building block for the R-matrix:

I
T [Rd12d31

d42d34
(γ)]

n,f (σ; q) := (−1)n ICS
d,n,f (σ; q) IRd,n,f (σ;γ, q), (3.17)

where the label T [Rd12d31
d42d34

(γ)] is introduced.6 If the complex scalars are specialized as

σ1, σ2, σ3, σ4 → 1, (3.18)

then under massless limit

γ1, γ2 → 1, (3.19)

the building block (3.17) yields the R-matrix (3.1) with the constant shift f :

(−1)d14 I
T [Rd12d31

d42d34
(γ)]

n,f (σ; q) → q−
1
4n(n+2)Rd12+f d31+f

d42+f d34+f . (3.20)

Here the prefactor (−1)d14 on the left side is introduced by specializing the complexified FI
parameters, and the prefactor q−n(n+2)/4 on the right side corresponds to a normalization
factor appeared in (3.10). The conditions (3.2) for the magnetic fluxes and the specializa-
tions (3.18) of the complex scalars should be obtained by means of the JK residue in (2.3)
for a choice of the FI parameters. In section 3.3 we will discuss the justification of these.

6The building block

ICS
1-loop(σ) IR1-loop(σ;γ)

(
ICS

d′,n,f (σ; q) IRd′,n,f (σ;γ, q)
)(

ICS
d′′,n,f (σ; q−1) IRd′′,n,f (σ;γ, q−1)

)
of twisted partition functions, or table 1 with the Chern-Simons couplings (3.16), shows the absence of the
parity anomalies except for the U(1)1-U(1)c and U(1)4-U(1)c parity anomalies. These parity anomalies just
exist for each crossing, and one can show that they are canceled out for each loop in (1,1)-tangle diagrams
and actually absent. Here, in general, the U(1)a-U(1)b parity anomalies are absent when kab + N/2 is
integer-valued, where kab is the U(1)a-U(1)b Chern-Simons coupling and N is the number of chirals charged
under both U(1)a and U(1)b.
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=

F1

F2F3

F4

F5

Figure 3. Geometric interpretation of the R-matrix by D. Thurston [43]. An octahedron is
associated for the R-matrix and decomposed into five tetrahedra which correspond to the five
chiral fields in table 1.

The non-trivial degenerate R-matrices

R 0 d32
d42d34

= (−1)d34q
1
2d34(d32+d42−1)− 1

2n(d32+d34)+ 1
4n

2 (q)n−d42

(q)n−d32

, (3.21)

Rd12d31
0 d32

= (−1)d31q
1
2d31(d31−1)− 1

2n(d31+d32)+ 1
4n

2 (q)n (q)d32

(q)d12
(q)n−d31

(q)d31

, (3.22)

Rd12 0
0 d12

= R 0 d12
d12 0 = q−

1
2nd12+ 1

4n
2
, (3.23)

can be also constructed by identifying some U(1) gauge symmetries, by identifying U(1)1
with U(1)2 for (3.21) and by identifying U(1)4 with U(1)3 for (3.22). Here, by identifying
U(1)1 with U(1)2, the U(1)1 × U(1)2 charges (a1, a2) of a chiral field are changed to the
U(1)2 charge a1 + a2. For the degenerate R-matrix (3.23), which is used in section 4, we
will construct it just as a Chern-Simons factor as (4.2).

Remark 3.1. Following D. Thurston, to each crossing, with an assigned R-matrix, an
octahedron, which can be decomposed into five tetrahedra, is attached (see figure 3) [43].
This provides a geometric interpretation of the R-matrix and is utilized to prove the volume
conjecture [44, 45] for some specific hyperbolic knots in [46, 47]. In our gauge theory
construction, each decomposed tetrahedron corresponds to a chiral field in table 1 or 2
(see [16] for a similar gauge theory construction of the octahedron by Dimofte, Gaiotto
and Gukov).

3.2.2 Inverse R-matrix

For the inverse R-matrix (3.3), we consider the mater content in table 2 with mass pa-
rameters γ = (γ1, γ2) associated with a global symmetry U(1)2

F . The chiral fields interact
through a superpotential W = Φ′1Φ′4Φ′5 + Φ′2Φ′3Φ′5. The associated building blocks of the
1-loop factors and the K-theoretic vortex partition functions are, respectively, given by

IR1-loop(σ;γ) =
(
σ2σ3
σ1σ4

) 1
2

(
1− γ2

σ4
σ2

) (
1− γ1

σ4
σ3

)
(
1− γ1

σ2
σ1

) (
1− γ2

σ3
σ1

) (
1− σ1σ4

σ2σ3

) , (3.24)
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Field U(1)1 U(1)2 U(1)3 U(1)4 U(1)c U(1)ext mass U(1)R

Φ′1 −1 1 0 0 1 −1 γ1 0
Φ′2 −1 0 1 0 0 1 γ2 0
Φ′3 0 1 0 −1 0 −1 γ−1

2 2
Φ′4 0 0 1 −1 −1 1 γ−1

1 2
Φ′5 1 −1 −1 1 0 0 1 0

Table 2. Matter content for the inverse R-matrix
(
R−1)d12d31

d42d34
in (3.3) which is denoted by

T [Rd12d31
d42d34

(γ)] including extra Chern-Simons couplings (3.28).

and

IRd,n,f (σ;γ, q) = (−1)d23+n q
1
4 (d12−d34)(3d1−d2−d3−d4−2n−1) (γ1γ2)−

1
2 (d12−d34)

×
(
σ3

1σ4
σ2

2σ
2
3

) 1
2d1 (

σ2σ3
σ2

1

) 1
2 (d2+d3) (σ1

σ4

) 1
2d4 (σ2σ3

σ1σ4

) 1
2n

×

(
qγ2

σ4
σ2

; q
)
d42+f

(
qγ1

σ4
σ3

; q
)
n−d34−f(

qγ1
σ2
σ1

; q
)
n−d12−f

(
qγ2

σ3
σ1

; q
)
d31+f

(
q σ1σ4
σ2σ3

; q
)
d12−d34

. (3.25)

By combining this block with Chern-Simons factors

ICS
1-loop(σ) =

(
σ1σ4
σ2σ3

) 1
2
, (3.26)

and

ICS
d,n,f (σ; q) = q

1
4 (d2

1−d
2
2−d

2
3+d2

4)− 1
2 (d1d4−d2d3+nd23)+ 1

4 (d12−d34)+ 1
2n−f

2+d23f+nf

×
(
σ1
σ4

) 1
2d14 (σ3

σ2

) 1
2d23+ 1

2n−f
, (3.27)

for non-zero Chern-Simons couplings

k11= k44 = k23 = k32 = 1
2 , k22 = k33 = k14 = k41 = −1

2 ,

kg-f
2c = −1

2 , kg-f
3c = 1

2 , kg-f
2f = 1, kg-f

3f = −1,

kg-R
1 = kg-R

4 = 1
2 , kg-R

2 = kg-R
3 = −1

2 , kf-R
c = 1, kf-f

cf = kf-f
fc = 1, kf-f

ff = −2,

(3.28)

a building block for the inverse R-matrix is introduced by

I
T [Rd12d31

d42d34
(γ)]

n,f (σ; q) := (−1)n ICS
d,n,f (σ; q) IRd,n,f (σ;γ, q), (3.29)

and labeled by T [Rd12d31
d42d34(γ)]. By the specializations (3.18), the building block (3.29), in

the massless limit as (3.19), yields the inverse R-matrix (3.3) with a normalization factor
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in (3.10):

(−1)d23 I
T [Rd12d31

d42d34
(γ)]

n,f (σ; q) → q
1
4n(n+2)

(
R−1

)d12+f d31+f

d42+f d34+f
, (3.30)

where the prefactor (−1)d23 is introduced by the complexified FI parameters.
From above, the non-trivial degenerate inverse R-matrices

(
R−1

)d32 0

d42d34
= q

1
2nd34− 1

4n
2 (q)n−d34

(q)n−d32

, (3.31)

(
R−1

)d12d31

d32 0
= q−d12d31+ 1

2nd31− 1
4n

2 (q)d32
(q)n

(q)n−d12
(q)d12

(q)d31

, (3.32)(
R−1

)d12 0

0 d12
=
(
R−1

) 0 d12

d12 0
= q

1
2nd12− 1

4n
2
, (3.33)

are also constructed by identifying some U(1) gauge symmetries, by identifying U(1)1 with
U(1)3 for (3.31) and by identifying U(1)4 with U(1)3 for (3.32). The degenerate inverse
R-matrix (3.33) is constructed in (4.3) just as a Chern-Simons factor.

3.2.3 Local minimum and maximum

The quantities µd12 and µ−1
d12

for local minimum and maximum in (3.5) are constructed, by
introducing gauge/flavor-R Chern-Simons couplings kg-R

1 = ±2, kg-R
2 = ∓2, kf-R

c = ∓1 and
kf-R
f = ±2 from (2.20) as

I
T [µd12 ]
n,f (q) = qd12+f− 1

2n = µd12+f , I
T [µd12 ]
n,f (q) = q−d12−f+ 1

2n = µ−1
d12+f , (3.34)

where d1 and d2 are the associated magnetic fluxes for a U(1)1 × U(1)2 gauge symmetry,
and they are labeled by T [µd12 ] and T [µd12 ].

3.3 K-theoretic vortex partitions in the knot-gauge theories

3.3.1 Summary

Because this section contains some technical details for the JK residue procedure and flux
conditions, we first summarize what will be discussed.

From the building blocks in section 3.2, we can construct a U(1)Nv knot-gauge theory
T [K] labeled by a (1,1)-tangle diagram, with Nv crossings, of knot K, and obtain the
K-theoretic vortex partition7

I
T [K]
vortex(σ; z,γ, q) =

∑
d

(
Nv∏
I=1

zdII

)∏
i

ITin,f (σ; q), (3.35)

where σ = (σ1, . . . , σNv), z = (z1, . . . , zNv) are the exponentiated FI parameters associated
with the U(1)Nv gauge symmetry, and γ = (γ1, . . . , γ2Nv) are mass parameters. Here i runs
over all the building blocks labeled by Ti in (3.17), (3.29) and (3.34). By construction, if

7By the Reidemeister moves I, II and III for a tangle diagram of knot K, infinitely many knot-gauge
theories for K are constructed, and they are expected to be related to one another by some 3D dualities.
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the conditions (3.2) and (3.4) for the magnetic fluxes d are satisfied, the K-theoretic vortex
partition yields the normalized colored Jones polynomial JKn (q) of K under σI → σ∗I = 1,
γi → γ∗i = 1, and zI → z∗I = +1 or −1 depending on the sign factors in (3.20) and (3.30):

I
T [K]
vortex(σ∗; z∗,γ∗, q) = JKn (q). (3.36)

Therefore, for the relation (3.36), we need to choose the stability parameters so that
the JK residue in (2.3) is taken at the locus σI = σ∗I = 1 and the domain of the magnetic
fluxes d is restricted by the conditions (3.2) and (3.4). In this paper, we consider a cone
in (3.37) as a rough choice, where not only any choices of stability parameters inside
the cone give the locus σI = σ∗I = 1, but also, in general, some choices inside the cone
may also give other loci (see Proposition 3.4 and (3.47) for an example). Therefore, for
establishing the relation (3.36) we have to show that such other loci do not contribute
to the twisted partition functions in the massless limit γi → γ∗i = 1. In section 3.3.3,
we discuss conditions for the magnetic fluxes d which give non-zero contributions to the
twisted partition functions in the massless limit. We first show Proposition 3.5 which
implies the conditions (3.2) and (3.4) for the JK residue at the locus σI = σ∗I = 1, and
then discuss the contributions coming from the other loci. For our rough choice of the
stability parameters, in Proposition 3.10 we find a class of knot diagrams such that the
other loci do not contribute to the twisted partition functions in the massless limit and
the relation (3.36) is established. We expect that, by carefully choosing the stability
parameters, the relation (3.36) is, in general, established for any knot diagram.

Remark 3.2. In the context of knots-quivers correspondence [48, 49], the K-theoretic
vortex partitions of abelian Chern-Simons-matter theories T [QK ] associated with quivers
QK , which provide generating functions of Sn-colored HOMFLY-PT polynomials of knots
K, and a class of 3D N = 2 dualities associated with quivers, are discussed in [20, 50–
53] (see also [54] for a different proposal of the relation between the K-theoretic vortex
partitions and the HOMFLY-PT polynomials of torus knots). The 3D N = 2 gauge
theories T [QK ] seem to be quite different from the knot-gauge theories T [K] in this paper,
and it would be interesting to clarify the relation between them.

3.3.2 JK residue procedure

Consider a (1,1)-tangle diagram with Nv crossings. As we constructed in the previous
section, the matter content at the I-th crossing is composed of five chiral fields Φ(I)

1 , Φ(I)
2 ,

Φ(I)
3 , Φ(I)

4 and Φ(I)
5 with the superpotential W (I) = Φ(I)

1 Φ(I)
4 Φ(I)

5 + Φ(I)
2 Φ(I)

3 Φ(I)
5 , where

we assume that Φ(I)
1 , Φ(I)

2 , Φ(I)
3 and Φ(I)

4 have generic masses γ(I)
1 , γ(I)

2 , (γ(I)
2 )−1 and

(γ(I)
1 )−1, respectively, whereas Φ(I)

5 is massless. Let Q(I)
i be the U(1)Nv gauge charge

vectors of Φ(I)
i and Φ(I)

i , where Q(I)
5 , I = 1, . . . , Nv, form a basis in RNv , and have relations

−Q(I)
5 = Q

(I)
1 +Q(I)

4 = Q
(I)
2 +Q(I)

3 . Here we take the gauge charge vectors to be zero for the
incoming and outgoing chiral fields of the (1, 1)-tangle diagram. For the JK residue [27,
Theorem 2.6] (see also [28]), we choose the stability parameters (identified, in this paper,
with the FI parameters) ξ = (ξ1, . . . , ξNv) inside Cone(Q5) which is the cone spanned by
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Q5 =
{
Q

(I)
5
}
I=1,...,Nv , i.e.,

ξ =
Nv∑
I=1

cI Q
(I)
5 ∈ Cone(Q5), cI > 0. (3.37)

We now need to consider the sets of the charge vectors for the poles, of the integrand in
the twisted partition function, whose cones contain the vector (3.37) inside.

From IR1-loop in (3.12) or IR1-loop in (3.24), once the residue at the (referred to as massless)
pole “σ1σ4 = σ2σ3” relevant to Q(I)

5 is taken, the (referred to as massive) poles relevant
to Q(I)

i , i = 1, 2, 3, 4, are moved away for generic masses. The charge vectors Q5 form
a basis of RNv , and the residues relevant to them boil down to the specializations σ1 =
σ2 = . . . = σNv = 1 (i.e. (3.18)) of the complex scalars. Furthermore, as a corollary of
Proposition 3.5 in section 3.3.3, when the residues at the poles relevant to Q5 are taken,
the flux conditions (3.2) and (3.4) are also satisfied in the massless limit (3.19), where note
that the poles relevant to Q5 imply the non-negativity of the magnetic fluxes for Φ(I)

5 at
the crossings. As a result, if the other contributions in the JK residue are absent, the
K-theoretic vortex partition function yields, in the massless limit, the normalized colored
Jones polynomial as (3.36).

Therefore, the remaining problem is, for the choice of the stability parameters (3.37),
whether other poles contribute to the twisted partition function in the massless limit.

Let Φ(I)
i (resp. Φ(I)

i ) be an incoming (resp. outgoing) chiral field with U(1)R charge
r = 0 (resp. r = 2) assigned to the I-th crossing, where i = 1 or 2 (resp. 3 or 4). The chiral
fields associated with an arc between the over I-th crossing and the over J-th crossing (or
the under I-th crossing and the under J-th crossing) as

F
(J)

F
(J)

F
(I)

F
(I)

i i

j j

, (3.38)

have opposite U(1) gauge charges, i.e. Q(I)
i = −Q(J)

j , where i = 3 or 4 and j = 1 or 2. On
the other hand, the chiral fields associated with an arc between the over I-th crossing and
the under J-th crossing (or the under I-th crossing and the over J-th crossing) as

F
(J)

F
(J)

F
(I)

i i

j j

F
(I)

, (3.39)

have same U(1) gauge charges, i.e. Q(I)
i = Q

(J)
j , where i = 3 or 4 and j = 1 or 2. Therefore,

by the relations −Q(I)
5 = Q

(I)
1 + Q

(I)
4 = Q

(I)
2 + Q

(I)
3 , the charge vector Q(I)

5 is expressed
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as Q(I)
5 = −Q(I)

i + Q
(J)
j = Q

(I)
k − Q

(J)
` for (3.38) or Q(I)

5 = −Q(I)
i − Q

(J)
j = −Q(I)

k − Q
(J)
`

for (3.39), where i, j = 1 or 2 and k, ` = 3 or 4.
For the over (resp. under) I-th crossing, let P (I)

+ (resp. P (I)
− ), P (I)

+ (resp. P (I)
− ), and

Q
(I)
+ (resp. Q(I)

− ) be the charge vectors of Φ(I)
1 or Φ(I)

2 , Φ(I)
3 or Φ(I)

4 , and Φ(I)
5 , respectively,

where P (I)
± = Q

(I)
i for i = 1 or 2, P (I)

± = Q
(I)
i for i = 3 or 4, and Q(I)

± = Q
(I)
5 . We now have

Q
(I)
± = −P (I)

± + P
(J)
± = P

(I)
± − P

(J)
± for (3.38) and Q

(I)
± = −P (I)

± − P (J)
∓ = −P (I)

± − P
(J)
∓

for (3.39). The charge vectors P (I)
± are then expressed as

P
(I)
+ = −

∑
J≥I

Q
(J)
+ +

∑
K≥I

Q
(K)
− , P

(I)
− = −

∑
J≥I

Q
(J)
− +

∑
K≥I

Q
(K)
+ , (3.40)

in terms of the basis Q5 =
{
Q

(I)
5
}
I=1,...,Nv , where the sum means that starting from the

over (resp. under) I-th crossing, the over (resp. under) J-th crossings and the under (resp.
over) K-th crossings pass through along the (1,1)-tangle diagram, and end at the last
crossing with the bounded outgoing arc. Similarly, the charge vectors P (I)

± are expressed as

P
(I)
+ = −

∑
J≤I

Q
(J)
+ +

∑
K≤I

Q
(K)
− , P

(I)
− = −

∑
J≤I

Q
(J)
− +

∑
K≤I

Q
(K)
+ , (3.41)

where the sum means that starting from the over (resp. under) I-th crossing, the over
(resp. under) J-th crossings and the under (resp. over) K-th crossings pass through,
along the (1,1)-tangle diagram, backward, and end at the first crossing with the bounded
incoming arc.

We now describe the (1,1)-tangle diagram by an ordered sequence of the charge vectors
Q

(I)
± by aligning them from the first crossing with the bounded incoming arc to the last

crossing with the bounded outgoing arc along the tangle diagram. For convenience, we
refer to the sequence as original sequence. For example, the (1, 1)-tangle diagram of the
trefoil knot 31 in figure 1 is described by a sequence

Q
(1)
+ , Q

(2)
− , Q

(3)
+ , Q

(1)
− , Q

(2)
+ , Q

(3)
− . (3.42)

The following proposition is then proved.

Proposition 3.3. For the stability parameters (3.37), if, in the original sequence, there
exists a cyclic sequence {Q(I1)

+ , Q
(I2)
− }, {Q

(I2)
+ , Q

(I3)
− }, . . ., {Q

(IM−1)
+ , Q

(IM )
− }, {Q(IM )

+ , Q
(I1)
− }

consisted of adjacent pairs {Q(I)
+ , Q

(J)
− }, the residue at a massless pole relevant to one of

the charge vectors Q(Ik)
5 , k = 1, . . . ,M , should be taken.8

Proof. Consider the cyclic sequence in the assertion. By (3.40) and (3.41), all the charge
vectors Q(I)

5 , P (I)
± , P (I)

± (i.e. Q(I)
i ) other than Q(Ik)

5 satisfy
∑M
k=1Q

(Ik)
5 = −1 or 0 in terms

of the basis Q5. This means that any cones consist of the charge vectors Q(I)
i without Q(Ik)

5
do not contain the vector (3.37) inside, and the residues at a massless pole relevant to one
of the charge vectors Q(Ik)

5 should be taken.
8The order of the adjacent charge vectors Q

(I)
+ and Q

(J)
− is not assumed.
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Following Proposition 3.3 we should take the residue at the massless pole relevant to
a charge vector Q(I)

5 in each cyclic sequence, and then the massive pole around the I-th
crossing is moved away. Therefore, for discussing cones which contain the vector (3.37)
inside, it is enough to consider the subsequences (referred to as reduced sequences) extracted
by removing the charge vectors Q(I)

5 from the original sequence.9 For example, for the
original sequence (3.42) of 31 a reduced sequence

Q
(1)
+ , Q

(3)
+ , Q

(1)
− , Q

(3)
− , (3.43)

is found by removing Q(2)
5 . When no reduced sequences are found, it is clear that, for the

stability parameters (3.37), there are no cones, other than Cone(Q5), which contain the
vector (3.37) inside. If such cones, other than Cone(Q5), exist, some reduced sequences
should be found, and the following proposition is proved.

Proposition 3.4. If there exist cones, other than Cone(Q5), which contain the vec-
tor (3.37) inside, the spans of the cones should contain both some P (I)

± and some P (J)
± .

Proof. To show the assertion, consider a cone consisted of R = {RI}I=1,...,Nv =
{P (I`)
± }`=1,...,L ∪ Q5\{Q

(I`)
5 }`=1,...,L or R = {RI}I=1,...,Nv = {P (I`)

± }`=1,...,L ∪
Q5\{Q

(I`)
5 }`=1,...,L.

For the cone spanned by R, starting from the first incoming arc, along the tangle in
order, consider a part of the ordered sequence of charge vectors in {Q(I`)

5 }`=1,...,L,

. . . , Q
(J)
+ , Q

(J1)
− , Q

(J2)
− , . . . , Q

(JN )
− , . . . ,

or . . . , Q
(J)
− , Q

(J1)
+ , Q

(J2)
+ , . . . , Q

(JN )
+ , . . . ,

(3.44)

which is referred to as a forward subsequence. Similarly, for the cone spanned byR, consider

. . . , Q
(J1)
− , Q

(J2)
− , . . . , Q

(JN )
− , Q

(J)
+ , . . . ,

or . . . , Q
(J1)
+ , Q

(J2)
+ , . . . , Q

(JN )
+ , Q

(J)
− , . . . ,

(3.45)

which is referred to as a backward subsequence. The number of forward and backward
subsequences is finite, and for all such subsequences as (3.44) and (3.45) we consider pairs
{Q(J)

+ , Q
(J`)
− } or {Q(J`)

+ , Q
(J)
− }, ` = 1, . . . , N . The tangle passes through each crossing

twice, and we then find at least one unbounded sequence of pairs as {Q(K2)
+ , Q

(K1)
− },

{Q(K3)
+ , Q

(K2)
− }, {Q(K4)

+ , Q
(K3)
− }, . . . or {Q(K1)

+ , Q
(K2)
− }, {Q(K2)

+ , Q
(K3)
− }, {Q(K3)

+ , Q
(K4)
− },

. . ..10 Furthermore, since this sequence is finite, as a subsequence of it, a cyclic sequence
{Q(I1)

+ , Q
(I2)
− }, {Q

(I2)
+ , Q

(I3)
− }, . . ., {Q

(IM−1)
+ , Q

(IM )
− }, {Q(IM )

+ , Q
(I1)
− } should be obtained. Be-

cause any charge vectors P (I)
± in the set R (resp. P (I)

± in the set R),

P
(I)
± (resp. P (I)

± ) =
M∑
`=1

(
α

(I)
±,`Q

(I`)
+ + β

(I)
±,`Q

(I`)
−

)
+ · · · =

M∑
`=1

(
α

(I)
±,` + β

(I)
±,`

)
Q

(I`)
5 + · · · ,

(3.46)
9By definition, the reduced sequences do not contain cyclic sequences in Proposition 3.3.

10As an example, if the ordered sequence starts as Q
(J1)
+ , Q

(J2)
+ , Q

(J3)
− , . . ., the charge vectors except

Q
(J1)
± can have pairs. In this case, by taking a first pair {Q(J2)

+ , Q
(J3)
− }, it is possible subsequently to find

unbounded sequence of pairs as {Q(J2)
+ , Q

(J3)
− }, {Q(Jm)

+ , Q
(J2)
− }, {Q(Jn)

+ , Q
(Jm)
− }, . . ., m, n 6= 1.
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are expressed as (3.40) (resp. (3.41)) in terms of the basis Q5, we see that
∑M
`=1

(
α

(I)
±,` +

β
(I)
±,`
)

= −1 if P (I)
± (resp. P (I)

± ) is in between a pair in the cyclic sequence or
∑M
`=1

(
α

(I)
±,` +

β
(I)
±,`
)

= 0 if otherwise, where · · · does not contain Q(I`)
5 , ` = 1, . . . ,M . Therefore, the cones

spanned by R and R do not contain the vector (3.37) inside, and our assertion follows.

The forward and backward subsequences in reduced sequences can be used to find cones
other than Cone(Q5). As an example, for the reduced sequence (3.43) of 31 we find a cyclic
sequence {Q(3)

+ , Q
(3)
− } from a forward subsequence and a cyclic sequence {Q(1)

+ , Q
(1)
− } from

a backward subsequence. Then, from the proof of Proposition 3.4, by considering P
(1)
−

for {Q(3)
+ , Q

(3)
− } and P

(3)
+ for {Q(1)

+ , Q
(1)
− }, we find a cone, which contains the vector (3.37)

inside, consisted of

P
(1)
− = Q

(3)
5 −Q

(2)
5 , P

(3)
+ = Q

(1)
5 −Q

(2)
5 , Q

(2)
5 , (3.47)

for the original sequence (3.42) of 31. Therefore, we need to exclude this type of possibility

1) by showing that the contributions like (3.47) coming from cones other than Cone(Q5)
vanish, or;

2) if they do not vanish, by refining the choice of the stability parameters (3.37).

In the next subsection, we discuss flux conditions for the non-zero contributions to the
twisted partition function, and then consider the first option. Actually, we will see that
the cone (3.47) for 31 does not contribute in the massless limit (see Proposition 3.10).

3.3.3 Flux conditions

For flux conditions, the following proposition is proved.

Proposition 3.5. When the magnetic fluxes for Φ(I)
5 at all the crossings are non-negative,

the flux conditions (3.2) and (3.4) are satisfied in the massless limit.

Proof. Assume that the magnetic fluxes for Φ(I)
5 at all the crossings are non-negative. When

the magnetic flux at the I-th crossing is non-negative, i.e. the chiral field Φ(I)
5 gives a pole,

at least, either Φ(I)
1 or Φ(I)

4 and either Φ(I)
2 or Φ(I)

3 give zeros as implied by the relations
−Q(I)

5 = Q
(I)
1 + Q

(I)
4 = Q

(I)
2 + Q

(I)
3 (the charges for U(1)c and U(1)ext also satisfy the

same relations). Therefore, under the non-negative flux assumption, the number of zeros
Z satisfies Z ≥ 2Nv and the number of poles P satisfies P ≤ 3Nv, where Nv = (Z + P )/5
is the number of crossings. Because we take the residues at Nv poles, the contributions
to the twisted partition function vanish, in the massless limit, if Z > 2Nv (P < 3Nv), i.e.
there exists a crossing such that both Φ(I)

1 and Φ(I)
4 or both Φ(I)

2 and Φ(I)
3 give zeros.

Let din and dout be the magnetic fluxes for an incoming r = 0 chiral field Φ and an
outgoing r = 2 chiral field Φ for an (inverse) R-matrix assigned to a crossing, respectively.
The non-negative flux assumption implies that the magnetic fluxes din and dout for the
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chiral fields along an under (resp. over) crossing arc satisfy din ≤ dout (resp. dout ≤ din):

FF

FF d out

d out

d out

d in

d in

d in

% d ind out %
, . (3.48)

For the under (I-th) crossing, if Φ(I) gives a zero and Φ(I) gives a pole, i.e. d(I)
in ≤ d

(I)
out < 0,

then d
(I+1)
in (= d

(I)
out) < 0 at the next ((I + 1)-th) crossing which results in d

(I+1)
out < 0 for

the non-zero contributions to the twisted partition function in the massless limit. Since
the last outgoing magnetic flux at the last crossing is given by a background magnetic flux
f ∈ {0, 1, . . . , n} for the global symmetry U(1)ext (e.g. see figure 1), the gluing procedure
excludes the case d(I)

in ≤ d
(I)
out < 0 for the under crossing arc. Similarly, the case n < dout ≤

din for an over crossing arc is also excluded. As a result, the magnetic fluxes are constrained
by the conditions

0 ≤ din ≤ dout (under crossing), dout ≤ din ≤ n (over crossing), (3.49)

which mean all Φ(I) give poles and all Φ(I) give zeros.
Starting from a crossing with the magnetic fluxes din and dout with the condi-

tions (3.49), in the sequel of gluing procedure along the tangle in order, if the outgo-
ing under (resp. over) crossing arc is glued with an over (resp. under) crossing in-
coming arc first at the K-th crossing we find 0 ≤ din ≤ dout ≤ . . . ≤ dK ≤ n (resp.
0 ≤ dK ≤ . . . ≤ dout ≤ din ≤ n), where dK is the magnetic flux for the incoming chiral field
assigned to the K-th crossing. Even if the outgoing under (resp. over) crossing arcs are
only glued with under (resp. over) crossing incoming arcs, because the gluing procedure
ends up with the background magnetic flux f ∈ {0, 1, . . . , n}, we find 0 ≤ din, dout ≤ n

anyway. This gives the desired conditions in (3.2) and (3.4).

Proposition 3.4 and 3.5 imply the following corollary.

Corollary 3.6. For the stability parameters (3.37), the cones other than Cone(Q5) do not
contribute to the twisted partition function in the massless limit when the magnetic fluxes
for Φ(I)

5 at all the crossings are non-negative.

Next, we consider the cases with negative fluxes for some Φ(I)
5 . Let Ev be the number

of negative fluxes for Φ(I)
5 , and then the number of non-negative fluxes for Φ(I)

5 is Nv −Ev,
where Nv is the number of crossings. As the proof of Proposition 3.5, we see that the
number of zeros Z satisfies Z ≥ 2(Nv −Ev) +Ev = 2Nv −Ev. Therefore, for the condition
Z > 2Nv of the vanishing contributions to the twisted partition function in the massless
limit, it needs, at least, Ev+1 extra zeros in addition to the minimal number of zeros. From
a reduced sequence, let us extract the subsequence composed of all of the Ev charge vectors
with negative fluxes for Φ(I)

5 , and, in what follows, we refer to it as negative sequence:

original sequence ⊃ reduced sequence ⊃ negative sequence. (3.50)

For negative sequences, the following proposition is proved.
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Proposition 3.7. For a negative sequence, in addition to the minimal number of zeros
2Nv − Ev, there is at least one extra zero

(1) after the last charge vector Q(I)
+ or Q(I)

− in the negative sequence;

(2) between adjacent charge vectors Q(I)
+ and Q(J)

+ or Q(I)
− and Q(J)

− in the negative se-
quence;

(3) for each cyclic sequence {Q(I1)
+ , Q

(I2)
− }, {Q

(I2)
+ , Q

(I3)
− }, . . . , {Q(IM−1)

+ , Q
(IM )
− },

{Q(IM )
+ , Q

(I1)
− } consisted of adjacent pairs {Q(I)

+ , Q
(J)
− } in the negative sequence, when

the stability parameters (3.37) are assumed.

Proof. (1) Consider the last charge vector Q(I)
+ (resp. Q

(I)
− ) in a negative sequence. If

the r = 2 chiral field with the charge vector P (I)
+ (resp. P

(I)
− ) gives a pole, the relevant

flux dout satisfies dout > n (resp. dout < 0). Since the last outgoing r = 2 chiral field has
a background magnetic flux f ∈ {0, 1, . . . , n}, by (3.48), there should be a charge vector
Q

(K)
+ (resp. Q(K)

− ) with non-negative flux in the original sequence after Q(I)
+ (resp. Q(I)

− ),
and both r = 0 chiral field with the charge vector P (K)

+ (resp. P (K)
− ) and r = 2 chiral field

with the charge vector P (K)
+ (resp. P (K)

− ) give zeros. This shows the assertion (1).
(2) Assume that there are adjacent charge vectors Q(I)

+ and Q(J)
+ in a negative sequence.

If both r = 2 chiral field with the charge vector P (I)
+ and r = 0 chiral field with the charge

vector P (J)
+ give pole, the former relevant flux dout satisfies dout > n whereas the latter

relevant flux din satisfies din < n. Therefore, similarly to the proof of the assertion (1),
there should be at least one extra zero between Q(I)

+ and Q(J)
+ . Similarly, the assertion for

adjacent charge vectors Q(I)
− and Q(J)

− is proved.
(3) Assume that there is the cyclic sequence in the assertion. To have a cone which con-

tains the vector (3.37) inside, by considering
∑M
k=1Q

(Ik)
5 (cf. the proof of Proposition 3.3),

we see that there should be a charge vector Q(K)
+ (resp. Q(K)

− ) with non-negative flux in
the original sequence between

(i) a pair of adjacent charge vectors in the negative sequence ordered as Q(Ik)
+ , Q(Ik+1)

− ,
where the r = 0 (resp. r = 2) chiral field with the charge vector P (K)

+ (resp. P (K)
− )

gives a pole, or;

(ii) a pair of adjacent charge vectors in the negative sequence ordered as Q(Ik+1)
− , Q(Ik)

+ ,
where the r = 2 (resp. r = 0) chiral field with the charge vector P (K)

+ (resp. P (K)
− )

gives a pole.

In the case (i), if the r = 2 chiral field with the charge vector P (Ik)
+ gives a pole, the

relevant flux dout satisfies dout > n whereas the flux din relevant to P
(K)
+ (resp. P

(K)
− )

satisfies din < n (resp. din < 0). Therefore, at least one extra zero between Q(Ik)
+ and Q(K)

+
(resp. Q(K)

− ) should be found. Similarly, in the case (ii), at least one extra zero between
Q

(Ik+1)
− and Q(K)

+ (resp. Q(K)
− ) should be found.
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1N 1N 11  

1N 1 1N 2

2

 1N  2N 

Figure 4. A (1, 1)-tangle diagram of a 2-bridge knot (rational knot) with (N1, N2) twists, where
N1 ≥ N2 ≥ 0.

When Ev = 1, the ordered negative sequences are (Q(1)
± , Q

(1)
∓ ), and Proposition 3.7

implies, at least, two extra zeros in addition to 2Nv − 1 zeros. When Ev = 2, the ordered
negative sequences are

(Q(1)
± , Q

(2)
± , Q

(1)
∓ , Q

(2)
∓ ), (Q(1)

± , Q
(1)
∓ , Q

(2)
± , Q

(2)
∓ ),

(Q(1)
± , Q

(2)
∓ , Q

(2)
± , Q

(1)
∓ ), (Q(1)

± , Q
(2)
∓ , Q

(1)
∓ , Q

(2)
± ), (3.51)

which imply, at least, three extra zeros in addition to 2Nv − 2 zeros, and

(Q(1)
± , Q

(2)
± , Q

(2)
∓ , Q

(1)
∓ ), (Q(1)

± , Q
(1)
∓ , Q

(2)
∓ , Q

(2)
± ), (3.52)

which imply, at least, four extra zeros in addition to 2Nv− 2 zeros. Therefore, we have the
following corollary.

Corollary 3.8. For the stability parameters (3.37), the cones other than Cone(Q5) do
not contribute to the twisted partition function in the massless limit when the number of
negative fluxes for Φ(I)

5 is up to Ev = 2.

From the negative sequences (3.51) and (3.52) with Ev = 2, we make negative sequences
with Ev = E1 + E2 by replacements

Q
(1)
± → Q

(1,J±1 )
± , Q

(1,J±2 )
± , . . . , Q

(1,J±E1
)

± , Q
(2)
± → Q

(2,K±1 )
± , Q

(2,K±2 )
± , . . . , Q

(2,K±E2
)

± ,

(3.53)

where {J±1 , J
±
2 , . . . , J

±
E1
} = {1, 2, . . . , E1} and {K±1 ,K

±
2 , . . . ,K

±
E2
} = {1, 2, . . . , E2}. We

see that Proposition 3.7 also implies the following corollary.

Corollary 3.9. For the stability parameters (3.37), the cones other than Cone(Q5) do not
contribute to the twisted partition function in the massless limit when the negative sequences
take the above forms by the replacements (3.53).

Let us consider a (1, 1)-tangle diagram of a 2-bridge knot (rational knot) with (N1, N2)
twists (N1 ≥ N2 ≥ 0) in figure 4 whose original sequence is one of the following forms:(

Q
(1)
+ , Q

(2)
− , . . . , Q

(N1)
− ; Q(N1+N2)

+ , Q
(N1+N2−1)
− , . . . , Q

(N1+1)
− ;

Q
(N1)
+ , Q

(N1−1)
− , . . . , Q

(1)
− ; Q(N1+1)

+ , Q
(N1+2)
− , . . . , Q

(N1+N2)
−

)
,
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(
Q

(1)
+ , Q

(2)
− , . . . , Q

(N1)
+ ; Q(N1+1)

− , Q
(N1+2)
+ , . . . , Q

(N1+N2)
+ ;

Q
(N1)
− , Q

(N1−1)
+ , . . . , Q

(1)
− ; Q(N1+1)

+ , Q
(N1+2)
− , . . . , Q

(N1+N2)
−

)
,(

Q
(1)
+ , Q

(2)
− , . . . , Q

(N1)
− ; Q(N1+N2)

+ , Q
(N1+N2−1)
− , . . . , Q

(N1+1)
+ ;

Q
(1)
− , Q

(2)
+ , . . . , Q

(N1)
+ ; Q(N1+1)

− , Q
(N1+2)
+ , . . . , Q

(N1+N2)
−

)
, (3.54)

where the first, second, and third cases correspond to the cases with (N1, N2) =
(even, even), (N1, N2) = (odd, even), and (N1, N2) = (even, odd), respectively. In par-
ticular, they include twist knots e.g. as

(N1, N2) = (2, 1) : 31, (N1, N2) = (2, 2) : 41, (N1, N2) = (3, 2) : 52,

(N1, N2) = (4, 2) : 61, (N1, N2) = (5, 2) : 72, (N1, N2) = (6, 2) : 81, etc.,
(3.55)

in the Rolfsen table. For the original sequences in (3.54), because the reduced sequences
take the forms constructed by the replacements (3.53), any negative sequences for them also
take the forms constructed by the replacements (3.53). Then, as a result of Corollary 3.9,
we find the following proposition.

Proposition 3.10. For the stability parameters (3.37), the factorization of the twisted
partition function on S2 ×q S1 for the (1, 1)-tangle diagram of the 2-bridge knot in figure 4
gives the K-theoretic vortex partition function which agrees, in the massless limit and the
exponentiated FI parameters zI → +1 or −1 limit depending on the prefactors in (3.20)
and (3.30), with the normalized colored Jones polynomial of the 2-bridge knot.

In the next subsection, we describe an explicit computation for the trefoil knot 31 as
the simplest example of Proposition 3.10.
Remark 3.11. When we consider more general tangle diagrams, for a choice of the stability
parameters in (3.37), some cones other than Cone(Q5) may contribute to the twisted
partition function in the massless limit. For such cases, the second option described at the
end of section 3.3.2 (i.e. more appropriate choices of the stability parameters) should be
considered. We leave them for future research.

3.4 Examples

3.4.1 Trefoil knot 31

As the simplest non-trivial example, consider a (1, 1)-tangle diagram of the trefoil knot 31
in figure 5 (figure 1). The associated U(1)3 knot-gauge theory T [31] has the chiral fields
in table 3 and Chern-Simons couplings

k11 = k22 = kg-R
1 = kg-R

2 = 1, k33 = −3
2 , k12 = k21 = −1

2 , kg-R
3 = 1

2 ,

kg-f
3c = 3

2 , kg-f
3f = −3, kf-R

c = 2, kf-f
cf = kf-f

fc = 3, kf-f
ff = −6, kf-R

f = 2, (3.56)

and is considered to be a coupled system of the theories labeled by

T1 = T [R 0 d3
d1d31(γ1,1, γ1,2)], T2 = T [Rd1d31

d2d32(γ2,1, γ2,2)],

T3 = T [Rd2d32
0 d3 (γ3,1, γ3,2)], T4 = T [µd3 ],

(3.57)
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f 

f 

d 2

d 1

d 30 0

d 31

d 32

f d 3 

f d 3 

f d 1 

f d 2 

f  

f  

Figure 5. (1, 1)-tangle diagram of the trefoil knot 31, where f ∈ {0, 1, . . . , n} is fixed.

Field U(1)1 U(1)2 U(1)3 U(1)c U(1)ext mass U(1)R

Φ(1)
1 0 0 0 1 −1 γ1,1 0

Φ(1)
2 0 0 1 0 1 γ1,2 0

Φ(1)
3 −1 0 0 0 −1 γ−1

1,2 2
Φ(1)

4 −1 0 1 −1 1 γ−1
1,1 2

Φ(1)
5 1 0 −1 0 0 1 0

Φ(2)
1 −1 0 0 1 −1 γ2,1 0

Φ(2)
2 −1 0 1 0 1 γ2,2 0

Φ(2)
3 0 −1 0 0 −1 γ−1

2,2 2
Φ(2)

4 0 −1 1 −1 1 γ−1
2,1 2

Φ(2)
5 1 1 −1 0 0 1 0

Φ(3)
1 0 −1 0 1 −1 γ3,1 0

Φ(3)
2 0 −1 1 0 1 γ3,2 0

Φ(3)
3 0 0 0 0 −1 γ−1

3,2 2
Φ(3)

4 0 0 1 −1 1 γ−1
3,1 2

Φ(3)
5 0 1 −1 0 0 1 0

Table 3. Matter content for the (1, 1)-tangle diagram of the trefoil knot 31 in figure 5 corresponding
to the inverse R-matrices for (3.57), where U(1)ext and U(1)c are global symmetries.

where dij = di − dj , and γ = (γ1,1, γ1,2, γ2,1, γ2,2, γ3,1, γ3,2) are mass parameters. The
K-theoretic vortex partition function is given by

I
T [31]
vortex(σ; z,γ, q) =

∑
d1,d2,d3

zd1
1 zd2

2 zd3
3

4∏
i=1

ITin,f (σ; q), (3.58)

where σ = (σ1, σ2, σ3), and z = (z1, z2, z3) are the exponentiated FI parameters associated
with the U(1)1×U(1)2×U(1)3 gauge symmetry. For the FI parameters ξI = −Re(log zI),
I = 1, 2, 3, inside Cone(Q1, Q2, Q3), only the JK residue at σ = σ∗ = (1, 1, 1) finally
contributes, where Q1 = (1, 0,−1), Q2 = (1, 1,−1), and Q3 = (0, 1,−1) are, respectively,
the charge vectors of Φ(1)

5 , Φ(2)
5 , and Φ(3)

5 for the U(1)1 × U(1)2 × U(1)3 gauge symmetry.
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0 0

d f  

d f  

Figure 6. (1, 1)-tangle diagram of the unknot.

Field U(1) U(1)c U(1)ext mass U(1)R

Φ1 −1 0 1 γ1 0
Φ2 0 1 −1 γ2 0
Φ3 −1 −1 1 γ−1

2 2
Φ4 0 0 −1 γ−1

1 2
Φ5 1 0 0 1 0

Table 4. Matter content for the tangle diagram in figure 6 corresponding to the R-matrix Rf−d f
f−d f ,

where U(1)ext and U(1)c are global symmetries.

Then, under z → z∗ = (1, 1,−1) following (3.30) and γ → γ∗ with γ∗k,` = 1, the K-theoretic
vortex partition function (3.58) yields the normalized colored Jones polynomial of 31:

I
T [31]
vortex(σ∗; z∗,γ∗, q)

= q
3
4n(n+2) ∑

0≤d13,d23≤f
−d13−d23≤d3≤n−f

(
R−1

)f d3+f

d1+f d31+f

×
(
R−1

)d1+f d31+f

d2+f d32+f

(
R−1

)d2+f d32+f

f d3+f
µd3+f

= J31
n (q)

=
∑

0≤d13,d23≤f
−d13−d23≤d3≤n−f

qd
2
13+d2

23+(d13+d23−3f+1)d3+(d3−d13−d23+3f+1)n−3f2+f (3.59)

×
(q)d13+d3+f (q)n−f+d13

(q)d23+d3+f (q)n−f+d23
(q)f (q)n−f−d3

(q)f−d13
(q)d13

(q)n−f−d13−d3
(q)f−d23

(q)d23
(q)n−f−d23−d3

(q)d13+d23+d3
(q)d3+f (q)n−f

,

where note that (q)−1
d = 0 for d ∈ Z<0, and we can check that the result does not depend

on the constant f ∈ {0, 1, . . . , n}.

3.4.2 Unknot and Reidemeister move I

Consider a (1, 1)-tangle diagram of the unknot in figure 6. Then, the U(1) knot-gauge
theory T [0] with chiral fields in table 4 and Chern-Simons couplings

k = 1
2 , kg-f

c = 1
2 , kg-f

f = −1, kg-R = 3
2 , kf-f

cf = kf-f
fc = −1, kf-f

ff = 2, kf-R
f = −2,

(3.60)
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which is considered to be a coupled system of two theories labeled by

T1 = T [R−d 0
−d 0(γ)], T2 = T [µ−d], (3.61)

is associated, where γ = (γ1, γ2) are mass parameters. The K-theoretic vortex partition
function is given by

I
T [0]
vortex(σ; z,γ, q) =

∑
d

zd IT1
n,f (σ; q) IT2

n,f (q). (3.62)

Here the exponentiated FI parameter z associated with the U(1) gauge symmetry is taken
as −Re(log z) > 0, and then the residue at σ = σ∗ = 1 relevant to Φ5 is taken. As a
result, the K-theoretic vortex partition function yields, by z → z∗ = 1 following (3.20) and
γ → γ∗ = (1, 1), the normalized colored Jones polynomial of unknot:

I
T [0]
vortex(σ∗; z∗,γ∗, q) = q−

1
4n(n+2) ∑

0≤d≤f
Rf−d ff−d f µ

−1
f−d = J0

n (q)

=
∑

0≤d≤f
(−1)d q

1
2d(d+1)−fd−f(n−f+1) (q)n−f+d (q)f

(q)f−d (q)n−f (q)d

= 1. (3.63)

Here the last equality is obvious for f = 0 and, in general, follows from the fact that it
equals to the one by n→ n− 1 and f → f − 1, i.e.,

∑
0≤d≤f−1

(−1)d q
1
2d(d+1)−(f−1)d−(f−1)(n−f+1) (q)n−f+d (q)f−1

(q)f−d−1 (q)n−f (q)d
,

which can be shown by the following q-Pascal relation

(q)m+n
(q)m (q)n

=
(q)m+n−1

(q)m−1 (q)n
+ qm

(q)m+n−1
(q)m (q)n−1

, (3.64)

with m = f − d and n = d. The result (3.63) is understood by the Reidemeister move I.

4 Reduced knot-gauge theory

In this section, we consider (1, 1)-tangle diagrams with the external incoming (outgoing)
constant f = 0 such that the first incoming arc is over crossing and the last outgoing arc
is under crossing. On this basis, the (inverse) R-matrices assigned to the first and last
crossings are extremely degenerated, and the corresponding gauge theories are simplified.
As the examples, we describe the trefoil knot 31, the figure-eight knot 41 and the 3-twist
knot 52.

4.1 Setup

We assume the following setup for a (1, 1)-tangle diagram of a knot K [42, 46] (see figure 7, 8
and 9 for examples):
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1. The tangle starts from an over crossing arc and ends with an under crossing arc.

2. Trivial external incoming (outgoing) constant f = 0 is assigned at the end points of
the tangle diagram.

By the last conditions in (3.2) and (3.4), this setup implies that the R-matrices assigned to
the first and last crossings have degenerated forms (3.23) or (3.33). Instead of introducing
chiral fields in section 3.2, we construct them with normalization factors in (3.10) just
as Chern-Simons factors in (2.20), with non-zero Chern-Simons couplings kg-f

1c = ∓1/2,
kg-f

2c = ±1/2 and kf-R
c = ∓1:

I
CS+
d12,n

(σ; q) =
(
σ1
σ2

)− 1
2n

q−
1
2nd12− 1

2n, I
CS−
d12,n

(σ; q) =
(
σ1
σ2

) 1
2n

q
1
2nd12+ 1

2n, (4.1)

as

I
T [Rd12 0

0 d12
]

n (q) = I
T [R 0 d12

d12 0 ]
n (q) = I

CS+
d12,n

(σ; q)

= q−
1
4n(n+2)Rd12 0

0 d12
= q−

1
4n(n+2)R 0 d12

d12 0 , (4.2)

I
T [Rd12 0

0 d12
]

n (q) = I
T [R 0 d12

d12 0 ]
n (q) = I

CS−
d12,n

(σ; q)

= q
1
4n(n+2)

(
R−1

)d12 0

0 d12
= q

1
4n(n+2)

(
R−1

) 0 d12

d12 0
, (4.3)

where σ = (σ1, σ2) are the complex scalars for a gauge symmetry U(1)1 ×U(1)2. Here, as
in footnote 6, the U(1)1-U(1)c and U(1)2-U(1)c parity anomalies are shown to be absent
for each loop.

In the following, we will represent the arcs with the trivial constant 0, like the first and
last ones, by dashed lines. If the second crossing after the first over crossing is also over
crossing, the second arc is also represented by the dashed line, and the same applies to the
subsequent and last crossings. Let nv be the number of loops in the tangle diagram after
removing the dashed lines. Then a U(1)nv gauge theory T red[K] is constructed similarly
as section 3, and Proposition 3.10 is also established because the charge vectors like Q(1)

+
and Q

(N1+N2)
− are just removed from the original sequences in (3.54). The gauge theory

T red[K] is simpler than the knot-gauge theories T [K] in section 3, and we refer to it as the
reduced knot-gauge theory.

4.2 Examples

4.2.1 Trefoil knot 31

Consider the reduced U(1) knot-gauge theory T red[31] for a (1, 1)-tangle diagram of the
trefoil knot 31 in figure 7 (see section 3.4.1 for the U(1)3 knot-gauge theory T [31]). The
associated chiral fields are in table 5 and the associated Chern-Simons couplings are

k = −1
2 , kg-f

c = 3
2 , kg-R = 5

2 , kf-R
c = 2. (4.4)
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Figure 7. (1, 1)-tangle diagram of the trefoil knot 31, where 0 ≤ d ≤ n.

Field U(1) U(1)c mass U(1)R

Φ(1)
1 −1 1 γ1 0

Φ(1)
2 0 0 γ2 0

Φ(1)
3 −1 0 γ−1

2 2
Φ(1)

4 0 −1 γ−1
1 2

Φ(1)
5 1 0 1 0

Table 5. Matter content for the tangle diagram in figure 7, which corresponds to the R-
matrix

(
R−1)d 0

d 0.

The gauge theory is considered to be a coupled system of the theories labeled by

T1 = T [R0 d
d 0], T2 = T [Rd 0

d 0(γ)], T3 = T [Rd 0
0 d], T4 = T [µd], (4.5)

where the building block theory T2 has mass parameters γ = (γ1, γ2) which are taken to
be γ1, γ2 → 1 at the end. The K-theoretic vortex partition function is given by11

I
T red[31]
vortex (σ; z,γ, q) =

∑
d

zd IT1
n (q) IT2

n (σ; q) IT3
n (q) IT4

n (q). (4.6)

Here z is the exponentiated FI parameter for the U(1) gauge symmetry that we take as
ξ = −Re(log z) > 0, and the JK residue at σ = σ∗ = 1 relevant to Φ(1)

5 is taken. Then,
the K-theoretic vortex partition function (4.6) yields, by z → z∗ = −1 following (3.30) and
γ → γ∗ = (1, 1), the normalized colored Jones polynomial of 31:

I
T red[31]
vortex (σ∗; z∗,γ∗, q) = q

3
4n(n+2) ∑

0≤d≤n

(
R−1

)0 d

d 0

(
R−1

)d 0

d 0

(
R−1

)d 0

0 d
µd = J31

n (q)

=
∑

0≤d≤n
q(n+1)d+n (q)n

(q)n−d
. (4.7)

It is easy to see that this result agrees with (3.59) with f = 0.

11In this section, for simplicity we use a notation ITi
n (σ; q) = ITi

n,f=0(σ; q).
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Figure 8. (1, 1)-tangle diagram of the figure-eight knot 41, where 0 ≤ d2 ≤ d1 ≤ n.

Field U(1)1 U(1)2 U(1)c mass U(1)R

Φ(1)
1 0 0 0 γ1,1 0

Φ(1)
2 −1 0 1 γ1,2 0

Φ(1)
3 0 1 −1 γ−1

1,2 2
Φ(1)

4 −1 1 0 γ−1
1,1 2

Φ(1)
5 1 −1 0 1 0

Φ(2)
1 0 −1 1 γ2,1 0

Φ(2)
2 1 −1 0 γ2,2 0

Φ(2)
3 −1 0 0 γ−1

2,2 2
Φ(2)

4 0 0 −1 γ−1
2,1 2

Φ(2)
5 0 1 0 1 0

Table 6. Matter content for the tangle diagram in figure 8, where the first (resp. second) table
gives the R-matrix R0 d1

d2d12
(resp.

(
R−1)d2d12

d1 0 ).

4.2.2 Figure-eight knot 41

Consider a (1, 1)-tangle diagram of the figure-eight knot 41 in figure 8. The reduced U(1)2

knot-gauge theory T red[41] has the chiral fields in table 6 and Chern-Simons couplings

k11 = 1
2 , k12 = k21 = −1

2 , kg-f
1c = 1

2 , kg-f
2c = −1, kg-R

1 = 3
2 , kg-R

2 = −3, (4.8)

and described as a coupled system of the theories labeled by

T1 = T [Rd20
0 d2

], T2 = T [R0 d1
d2d12

(γ1,1, γ1,2)], T3 = T [Rd2d12
d1 0 (γ2,1, γ2,2)],

T4 = T [Rd120
0 d12 ], T5 = T [µd12 ], T6 = T [µd2 ]. (4.9)
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Here d12 = d1 − d2, and we note local deformations of tangle as

1

1
= =

i

1 mi

l

j k

k j

l

ml

i

, , (4.10)

for the positive crossings and also for the negative crossings as well. Here mass parameters
γ = (γ1,1, γ1,2, γ2,1, γ2,2) are introduced for the building block theories T2 and T3. The
K-theoretic vortex partition function is given by

I
T red[41]
vortex (σ; z,γ, q) =

∑
d1,d2

zd1
1 zd2

2

6∏
i=1

ITin (σ; q), (4.11)

where σ = (σ1, σ2). Here z = (z1, z2) are the exponentiated FI parameters associated
with the U(1)1 × U(1)2 gauge symmetry, and for ξi = −Re(log zi) we take (ξ1, ξ2) inside
Cone(Q1, Q2) which results in the JK residue at σ = σ∗ = (1, 1), where Q1 = (1,−1) and
Q2 = (0, 1) are charge vectors of Φ(1)

5 and Φ(2)
5 , respectively. As a result, by z → z∗ =

(−1,−1) following (3.20) and (3.30), and γ → γ∗ with γ∗1,1 = γ∗1,2 = γ∗2,1 = γ∗2,2 = 1, the
K-theoretic vortex partition function (4.11) yields the normalized colored Jones polynomial
of 41:

I
T red[41]
vortex (σ∗; z∗,γ∗, q)

=
∑

0≤d2≤d1≤n
Rd20

0 d2
R0 d1
d2d12

(
R−1

)d2d12

d1 0

(
R−1

)d120

0 d12
µd12µ

−1
d2

= J41
n (q)

=
∑

0≤d2≤d1≤n
(−1)d1+d2q

1
2d2(d2−2d1−2n−3)+ 1

2d1(d1+1) (q)d1
(q)n

(q)d2
(q)d12

(q)n−d1

. (4.12)

Remark 4.1. By a formula [45, Lemma A.1]∑
0≤d≤k

(−1)dq
1
2d(d+`) (q)k

(q)d (q)k−d
=
(
q

1
2 (`+1); q

)
k

= (−1)kq
1
2k(k+`)

(
q

1
2 (1−`−2k); q

)
k
, (4.13)

which follows from the q-Pascal relation (3.64), the colored Jones polynomial (4.12) is
written by a single sum as [55–57]

J41
n (q) =

∑
0≤d1≤n

q−(n+1)d1
(
qn+2; q

)
d1

(
qn−d1+1; q

)
d1
. (4.14)

4.2.3 3-twist knot 52

Consider the reduced U(1)3 knot-gauge theory T red[52] associated with a (1, 1)-tangle di-
agram of the 3-twist knot 52 in figure 9. The chiral fields are in table 7, and by noting the
local deformations (4.10) the non-zero Chern-Simons couplings are given by

k11 = k12 = k21 = −1
2 , k22 = 1, k33 = k13 = k31 = 1

2 , k23 = k32 = −1,

kg-f
1c = 3

2 , kg-f
2c = 1, kg-f

3c = −3
2 , kg-R

1 = 3
2 , kg-R

2 = 1, kg-R
3 = −7

2 , kf-R
c = 4.

(4.15)

– 31 –



J
H
E
P
1
2
(
2
0
2
1
)
1
9
7

0

0

0

0

0

d 2

d 3

d 3

d 3

d 3

d 2d 2

d 1 d 1

d 12

d 13
d 13

d 23

d 23

q  

m

R 
1 

R 
1 

R 
1 

R 
1 

Figure 9. (1, 1)-tangle diagram of the 3-twist knot 52, where 0 ≤ d12 ≤ d3 ≤ d2 ≤ n.

Field U(1)1 U(1)2 U(1)3 U(1)c mass U(1)R

Φ(1)
1 0 −1 0 1 γ1,1 0

Φ(1)
2 0 0 0 0 γ1,2 0

Φ(1)
3 0 0 −1 0 γ−1

1,2 2
Φ(1)

4 0 1 −1 −1 γ−1
1,1 2

Φ(1)
5 0 0 1 0 1 0

Φ(2)
1 0 0 −1 1 γ2,1 0

Φ(2)
2 1 0 −1 0 γ2,2 0

Φ(2)
3 0 −1 0 0 γ−1

2,2 2
Φ(2)

4 1 −1 0 −1 γ−1
2,1 2

Φ(2)
5 −1 1 1 0 1 0

Φ(3)
1 0 −1 1 1 γ3,1 0

Φ(3)
2 1 −1 0 0 γ3,2 0

Φ(3)
3 −1 0 1 0 γ−1

3,2 2
Φ(3)

4 0 0 0 −1 γ−1
3,1 2

Φ(3)
5 0 1 −1 0 1 0

Table 7. Matter content for the tangle diagram in figure 9, where the first, second and third tables
correspond to the inverse R-matrices

(
R−1)d20

d3d23
,
(
R−1)d3d13

d2d12
and

(
R−1)d23d12

d130 , respectively.

The gauge theory is a coupled system of the theories labeled by

T1 = T [R0 d23
d230 ], T2 = T [Rd20

d3d23(γ1,1, γ1,2)], T3 = T [Rd3d13
d2d12(γ2,1, γ2,2)],

T4 = T [Rd23d12
d130 (γ3,1, γ3,2)], T5 = T [Rd130

0 d13 ],
T6 = T [µd13 ], T7 = T [µd23 ], T8 = T [µd2 ], (4.16)
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where dij = di− dj , and mass parameters γ = (γ1,1, γ1,2, γ2,1, γ2,2, γ3,1, γ3,2) are introduced
in the building block theories T2, T3 and T4. The K-theoretic vortex partition function is
given by

I
T red[52]
vortex (σ; z,γ, q) =

∑
d1,d2,d3

zd1
1 zd2

2 zd3
3

8∏
i=1

ITin (σ; q), (4.17)

where σ = (σ1, σ2, σ3). Here z = (z1, z2, z3) are the exponentiated FI parameters for the
U(1)1 ×U(1)2 ×U(1)3 gauge symmetry, and for ξi = −Re(log zi) we take (ξ1, ξ2, ξ3) inside
Cone(Q1, Q2, Q3) so that only the JK residue at σ = σ∗ = (1, 1, 1) finally contributes,
where Q1 = (0, 0, 1), Q2 = (−1, 1, 1), and Q3 = (0, 1,−1) are the charge vectors of Φ(1)

5 ,
Φ(2)

5 , and Φ(3)
5 , respectively. The K-theoretic vortex partition function (4.17) then yields,

by z → z∗ = (1,−1,−1) following (3.30) and γ → γ∗ with γ∗k,` = 1, the normalized colored
Jones polynomial of 52:

I
T red[52]
vortex (σ∗; z∗,γ∗, q) = q

5
4n(n+2) ∑

0≤d12≤d3≤d2≤n
q−d3

(
R−1

)0 d23

d230

(
R−1

)d20

d3d23

×
(
R−1

)d3d13

d2d12

(
R−1

)d23d12

d130

(
R−1

)d130

0 d13
µd13

= J52
n (q)

=
∑

0≤d12≤d3≤d2≤n
q−d12d2−d3d23+2n(d12+d23)+d12+d2−2d3+2n

×
(q)d2

(q)n−d12
(q)n

(q)n−d2
(q)n−d3

(q)d3−d12
(q)d23

(q)d12

. (4.18)
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A q-Pochhammer symbol

The q-Pochhammer symbol is defined by

(x; q)d = (x; q)∞
(xqd; q)∞

=



∏d−1
k=0

(
1− xqk

)
if d ∈ Z>0,

1 if d = 0,∏−1
k=d

(
1− xqk

)−1
if d ∈ Z<0.

(A.1)

The q-Pochhammer symbol has the following properties:

(x; q)d =
(
qd−1x; q−1

)
d

= (−x)dq
1
2d(d−1)

(
x−1; q−1

)
d

= (−x)dq
1
2d(d−1)

(
q−d+1x−1; q

)
d

=
(
qdx; q

)−1

−d
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=
(
q−1x; q−1

)−1

−d
= (−x)dq

1
2d(d−1)

(
qx−1; q

)−1

−d
, (A.2)

(x; q)d1+d2
= (x; q)d1

(
qd1x; q

)
d2

=
(x; q)d1

(qd1+d2x; q)−d2

=

(
qd2x; q

)
d1

(qd2x; q)−d2

, (A.3)

for any d, d1, d2 ∈ Z and a generic x ∈ C. We also use a notation (q)d = (q; q)d when x = q.
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