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1 Introduction

Modular invariance of the torus partition function of two-dimensional theories has played an
important role in constraining the spectrum of operators at high energy [1]. More recently,
the program of modular bootstrap has been effective in obtaining other constraints on 2d
conformal field theories such as on the gap between the vacuum and the first excited state.
The modular property of the two-dimensional partition function on the torus T2 stems from
T2 having a non-trivial large diffeomorphism group.

It would be desirable to have a similar modular formula constraining the high energy
spectrum of conformal field theories in higher dimensions. Such a formula has been lacking
for a good reason. The spectrum of operators of a conformal field theory is captured by
the thermal partition function i.e. the partition function on Sd−1 × S1. For d 6= 2, this
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manifold does not have a non-trivial large diffeomorphism group. However, for some values
of d > 2, we can think of Sd−1 as a torus fibration. For d = 4, it is T2 fibration over
an interval and for d = 6, it is T3 fibration over a disc.1 In this paper, we will focus on
the case of d = 4 and briefly comment on the case of d = 6. To be concrete, throughout
the paper we will work with supersymmetric theories because supersymmetry allows an
exact computation of relevant partition functions. Our ideas, abstractly, seem applicable
to even non-supersymmetric theories although concrete realizations in this case would be
highly desirable.

In four dimensions, S3 × S1 is a T3 fibration over an interval. This means it can be
thought of as being obtained by gluing two solid three-tori T2 ×D2. A more general gluing
of the solid three-tori along the boundary T3 involves a choice of the large diffeomorphism of
the boundary T3. This group is SL(3,Z). If we pick the gluing element to be identity, we get
S2×T2. For a fancier choice of the gluing, we get lens spaces L(r, s)×S1. This set includes
S3 × S1. In the paper, we will obtain a relation between the partition function obtained on
the geometry obtained by gluing with g1g2 element with partition functions on geometries
obtained by gluing with g1 and g2 separately. For a special choice of the group elements,
this relation ends up being a modular property. For theories with global symmetry, we can
turn on background global symmetry holonomies as allowed by supersymmetry. In that
case, along with a choice of the large diffeomorphism, we also have to choose a large gauge
transformation while gluing the two solid tori. In that case, gi ∈ G where G is a group of
large transformations: large diffeomorphisms times large gauge transformations.

In [2], it was demonstrated how to preserve supersymmetry on a curved space by
coupling the theory to supergravity and turning on the appropriate background. In [3], the
geometries on which two supercharges of N = 1 supersymmetric theory can be preserved
were listed and studied. Happily, S2 × T2 and the lens spaces L(r, s) do belong to this list.
However, preserving supersymmetry on S2×T2 involves turning on one unit of R-symmetry
flux through S2. This, in turn, means that the R-charges need to be quantized as integers.
Moreover, to preserve supersymmetry on L(r, s), the R-charges need to be quantized in
units of 2/(s− 1). If we insist on preserving supersymmetry on all lens spaces then we must
require the R-charges to be even integers. If we require to preserve supersymmetry only
under gluings by a certain subgroup of G which does not give rise to lens spaces then we can
stick to R-charges only being integers. But note that the R-charges need to be quantized
at least as integers to preserve supersymmetry under gluing because this is required by
gluing with the identity element itself. It was also argued in [2] that the supersymmetric
partition functions on manifolds that admit them are invariant under the RG flow. Hence
the supersymmetric partition functions of a supersymmetric theory are, in fact, the partition
functions of the endpoint of the RG flow i.e. of the superconformal field theory.

The supersymmetric torus partition function in two dimensions is not completely
modular invariant. It is modular invariant only up to a certain phase factor. This
phase factor can not be removed by a local counterterm. It is the anomaly under large
diffeomorphisms. It is perhaps more apt to compare our setup with the supersymmetric

1S5 is an S1 fibration over CP2 and CP2 is a toric manifold so it is a T2 fibration over a disc.
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partition function on T2 i.e. with the elliptic genus of, say, a (2, 2) supersymmetric theory.
It is known to be a Jacobi form.2 The phase factor depends only on the central charge
and is known as the factor of automorphy. For a Jacobi form, the factor of automorphy is
characterized only by two numbers, the weight (which is zero for elliptic genus) and the
index (which is c/6 where c is the central charge). The problem of computing the solution
space of Jacobi forms with a given weight and index is a classic problem and is a subject of
an entire book [4].

In the same vein, the modular property that we find in four dimensions is also not
exact3 and does involve failure by phase factors coming from similar anomalies. The
problem of computing the solution space of partition functions in four dimensions given
the “factor of automorphy” is a physically important one. Because we expect that the
factor of automorphy depends only on the anomalies of the theory, this problem would
be tantamount to finding supersymmetric partition functions of theories with a given set
of anomalies. If the supersymmetric partition functions — remember they are invariant
under renormalization group flow — can be thought of as the proxy for the superconformal
theories themselves then this problem becomes a classification program for four-dimensional
superconformal theories.

There has been a hint of a connection between anomalies, SL(3,Z) and the superconfor-
mal index [5]. In this paper, we uncover this connection and make it completely transparent.

Outline. The rest of the paper is organized as follows. In section 2 we review modular
properties of the two-dimensional supersymmetric partition functions with an emphasis on
the group cohomological aspect. Then we move to the main part of the paper in section 3
and derive constraints on four-dimensional partition functions that follow from cutting
and gluing. In doing this we think of the partition function on the compact manifold as
the inner product of states on the torus boundaries of the two solid three-tori. After a
quick discussion of the large diffeomorphism group of T3, SL(3,Z), we will develop the
idea for the chiral multiplet with R-charge 0. While emphasizing the group cohomological
aspect, we will make a connection with the so-called “holomorphic block decomposition”.
In section 5 we will verify the modular properties for other theories. Examples consist of
chiral multiplet with general R-charge (quantized appropriately according to the earlier
discussion) and SQED with N flavors. In section 6 we explain the relation between group
cohomology and global gravitational and gauge anomalies. In section 7, we give some
applications of our modular formula. They include a bootstrap program for four dimensional
superconformal field theories and a Cardy formula. We also describe the generalization of
our four dimensional program to six dimensions. We end with some outlook. In the only
appendix we list useful properties of some special functions.

2If the target space of the 2d theory is not compact then there could be supersymmetric states that form
a continuum. In such cases, the elliptic genus has a more complicated modular property. It is known to be a
mock modular form.

3Pun intended.
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2 Two dimensions

Before we get into the modular properties of the four-dimensional partition functions, let us
review the modular properties of the T2 partition function of two-dimensional theories, i.e. of
the elliptic genus. For concreteness, let us consider theories with N = (2, 2) supersymmetry.
The superconformal index is defined as

Z(z, τ) = TrRR (−1)F e2πizJe2πiτL0 . (2.1)

Here J is the charge of operators under the left-moving R-symmetry and L0 is the left-
moving conformal dimension. We can turn on additional background holonomies for global
symmetries if they are present. For now, let us just assume that we have turned on holonomy
only for J . The trace is taken over the RR sector. From path integral point of view, this
index is the twisted partition function of the theory on a torus with periodic boundary
conditions along both cycles. This supersymmetric partition function enjoys invariance
under large diffeomorphisms SL(2,Z) as well as under large gauge transformations Z2. The
group of large symmetries forms the semi-direct product SL(2,Z) n Z2 ≡ G(2d). Its action
on the parameters (z, τ) is

g1 · (z, τ) =
(

z

cτ + d
,
aτ + b

cτ + d

)
, g1 =

(
a b

c d

)
∈ SL (2,Z) ,

g2 · (z, τ) = (z + n1 + n2τ, τ), g2 = (n1, n2) ∈ Z2. (2.2)

In case there are additional background holonomies for global symmetries, then each
will contribute Z2 to the group of large gauge transformations corresponding to shifts
by 1 and τ respectively. The group of large symmetries with r fugacities turned on is
SL(2,Z) n (Z2)r. We stick with r = 1. We assume that the target space of the theory is
compact. For such theories, the superconformal index is a meromorphic function of (z, τ).
For future convenience, let us denote the space of meromorphic functions by N. This space
is endowed with the action (2.2) of G(2d) on (z, τ) which makes N a module of G(2d). To
be concrete we define the module action as g · Ẑ(z, τ) ≡ Ẑ(g−1 · (z, τ)). The index is not
exactly invariant but is invariant only up to a phase that captures anomalies of the theory.

Z(z, τ) = eiφg(z,τ)Z(g−1 · (z, τ)), g ∈ G(2d). (2.3)

where φg(z, τ) is a phase that encodes the anomalies of theory under G(2d). As we are
dealing with meromorphic functions of (z, τ), it is convenient to think of eiφg(z,τ) as an
element of the space M of nowhere vanishing holomorphic functions. Just like N, the space M
is also a G(2d) module. The module action is g · φg′(z, τ) ≡ φg′(g−1 · (z, τ)). For consistency
of equation (2.3) φg(z, τ) has to obey the group 1-cocycle condition:

eiφg1·g2 (z,τ) = eiφg1 (z,τ) eiφg2 (g−1
1 ·(z,τ)). (2.4)

As a result the values of φg are completely fixed by its values on the group generators. We
have [6],

φS(z, τ) = 2πi c6
z2

τ
, φT (z, τ) = 0, φt1(z, τ) = 0. (2.5)
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Here c is the central charge (either left-moving or right-moving). Elements S and T are the
generators of the modular group SL(2,Z), S : (z, τ)→ (z/τ,−1/τ) and T : (z, τ)→ (z, τ+1)
and t1 corresponds to the large gauge transformation t1 : (z, τ) → (z + 1, τ). For future
reference, let us also define the other large gauge transformation tτ : (z, τ) → (z + τ, τ).
Using the cocycle condition (2.4), we get

φtτ (z, τ) = −2πi c6(2z + τ). (2.6)

As the phase φg(z, τ) encodes the anomalies under large transformations, it can not
be removed by a local counter term. This means there does not exist a redefinition of the
index Z(z, τ) which absorbs φg(z, τ) for all group elements g ∈ G(2d). One way to see this
is as follows. Consider gi = tmi1 tniτ for i = 1, 2. Even though equation (2.4) does hold,

iφg1g2(z, τ)− iφg1(z, τ)− iφg2(g−1
1 · (z, τ)) = 2πim1n2 6= 0. (2.7)

It is easy to see that the right hand side of equation (2.7) would have been identically zero
if we could absorb away all the phases into the partition function. This makes eiφg(z,τ), a
nontrivial class in H1(G(2d), M). The presence of the phase eiφg(z,τ) ∈ H1(G(2d), M) means
that the index is not a function of the parameters (z, τ) but rather a section of a non-trivial
bundle. It captures the anomaly of the theory under large diffeomorphisms and large
gauge transformations.

The modules N and M form a short exact sequence,

1→ M→ N→ N/M→ 1. (2.8)

It gives rise to the following long exact sequence for the cohomology groups,

. . .→ Hj(G(2d), M) i∗−→ Hj(G(2d), N) p∗−→ Hj(G(2d), N/M) δ∗−→ Hj+1(G(2d), M) i∗−→ . . . . (2.9)

Here δ∗ is the homomorphism defined by equation (2.3). It is then clear that if eiφg(z,τ) is
nontrivial in H1(G(2d), M) then Z(z, τ) is nontrivial in H0(G(2d), N/M). The object Z(z, τ)
satisfying equation (2.3) is also known in mathematics literature as the Jacobi form or more
generally as G(2d) automorphic form of degree 0 with “the factor of automorphy” being
φg(z, τ). Given the factor of automorphy eiφg(z,τ) ∈ M, the problem of finding the partition
function Z(z, τ) in N/M is an interesting one. As remarked earlier, this problem is the
subject of the book [4].

Global gravitational anomalies for fermion theories in d-dimensions have been discussed
in a seminal paper by Witten [7]. These are classified by the so-called “eta-invariant” [8, 9]
on a d+ 1-dimensional manifolds. The case of the global gravitational anomaly for two-
dimensional theories, in particular, has been studied in [10]. Recently, global gravitational
anomalies were applied to classify symmetry protected topological phases [11]. In this
context, group cohomology replaces the eta invariant in classifying anomalies in global
transformations [12]. As exhibited by the above example, we find that group cohomology also
plays an important role in classifying supersymmetric partition functions in two dimensions
through anomalies. We will find this to be the case even in four dimensions.
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With the brief discussion of the group cohomology above and illustration of its usefulness
in classifying supersymmetric partition function in 2d, we can spoil the punchline of the
paper for the benefit of an eager and mathematically initiated reader: “The normalized
part of the supersymmetric index” of a four-dimensional N = 1 supersymmetric field theory
is a non-trivial class in H1(G, N/M). Here G is the group of large transformations i.e. large
diffeomorphisms and large gauge transformations of T3 with background global symmetry
holonomies. In the case of a theory with rank r global symmetry, G = SL(3,Z) n (Z3)r.
What we mean by “the normalized part of the supersymmetric index” will become clear in
due course.

3 Four dimensions

Now we turn to the case of four-dimensional N = 1 supersymmetric theory. We will assume
that the theory has a single abelian global symmetry. The supersymmetric index is defined
as [2]

I(z, τ, σ) = Tr (−1)F zJph1−R2 qh2−R2 , x = e2πiz, p = e2πiσ, q = e2πiτ . (3.1)

Here, J is the charge under the global symmetry, R is the U(1) R-charge and (h1, h2) are
the Cartan generators of SO(4) rotational symmetry. When the supersymmetric theory
also has conformal symmetry, the supersymmetric index (3.1) becomes the superconformal
index. However, it is evaluated with a “non-standard” choice of R-symmetry because the
R-symmetry with integer (or even-integer) charges will not, in general, coincide with the
superconformal R-symmetry. In order to compute the true superconformal index, the
integral R-symmetry needs to be shifted appropriately by abelian global symmetry so
that the Weyl anomaly coefficient a is maximized. This is achieved by a shift of global
symmetry holonomies.

From the path integral point of view, the index is the twisted partition function on
S3 × S1 with periodic boundary conditions for fermions along the S1. As remarked earlier,
this geometry does not have any interesting large diffeomorphisms. On the other hand it
is observed that the index of a chiral multiplet (with R-charge 0) is the elliptic gamma
function Γ(z, τ, σ). This function is defined and its properties listed in appendix A. In
particular, it has an interesting modular property,

Γ (z, τ, σ) Γ
(
z

σ
,
τ

σ
,

1
σ

)
Γ
(
z

τ
,

1
τ
,
σ

τ

)
= e−i

π
3Q(z,τ,σ). (3.2)

where Q(z, τ, σ) is a cubic polynomial in z given in equation (A.6). Where is this modular
property coming from? In [13], the mathematical significance of this relation is explained.
This property stems from Γ(z, τ, σ) being an automorphic form of degree 1 of SL(3,Z)nZ3.
To understand its physical origin, we have to think of the S3 × S1 geometry as being
obtained by gluing together two solid T3. We give the main idea below.
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Figure 1. Gluing of two solid three tori. We have shown the three cycles of each three-tori
independently. The geometry is the direct product of these pieces. The cycle with length σ that is
contractible is shaded.

3.1 Main idea

This gluing follows the more familiar construction of S3 by gluing two solid T2 where the
contractible cycle of one side is identified with the non-contractible cycle of the other side
and vice versa. The trasnverse S1 plays the role of a spectator.

We formalize the construction as follows. The supersymmetry preserving solid T3

geometry is parametrized by two complex parameters (τ, σ). There is also a complex
background holonomy zi for each Cartan generator of the global symmetry. Let the number
of zi’s be r. We will often denote the set of these parameters (zi, τ, σ) collectively as ~τ . The
background involves a partial topological twist on the contractible disc which effectively
renders the Hilbert space on the boundary T3 finite-dimensional. Let n be the dimension of
this Hilbert space. There are multiple choices for the basis vectors. For example, we can
take different types of supersymmetric surface operators inserted at the core of the solid
torus and the resulting states would span the effective Hilbert space or we can take the
Higgs branch vacua of the massive theory to span the effective Hilbert space. The latter
choice will turn out to be the most convenient. Let us label these states as |i;~τ〉, where i is
an enumeration label.

The boundary torus has the large diffeomorphism group SL(3,Z), it acts projectively
as a 3× 3 matrix on column vector (1σ τ)T . The large gauge transformation group is (Z3)r,
it is generated by the shift of zi, i = 1, . . . , r by 1, σ and τ . Together they generate the
semi-direct product G = SL(3,Z)n (Z3)r. Two solid three-tori can be glued by sandwiching
g ∈ G to produce a compact geometry and a gauge bundle that preserves supersymmetry.4

The gluing is schematically depicted in figure 1. When this group element is chosen to be
the S generator of SL(2,Z) ∈ SL(3,Z) acting on (σ τ)T , the resulting geometry is S3 × S1

and the partition function is the supersymmetric index. The partition function on the more
4The supersymmetry is preserved by making the anti-topological twist on the other half. This geometry

is similar to the one considered in [14]. Its three-dimensional variation was used in [15]. We will not discuss
this twist in detail.
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general background corresponding to gluing by g is obtained by taking the inner product

Zg(~τ) = 〈∅;~τ |∅; g−1 · ~τ〉. (3.3)

where |∅;~τ〉 is the vacuum state, corresponding to the solid three-torus with parameters
~τ that is empty. A more general observable for this background is the inner product
〈i;~τ |j; g−1 · ~τ〉. This corresponds to different choice of states for the two halves of the
geometry. Let us call this the partition function matrix Z ijg .

Z ijg (~τ) ≡ 〈i;~τ |j; g−1 · ~τ〉. (3.4)

We can make this object tractable using a complete orthonormal set of states |α〉 that
correspond to the exact supersymmetric ground states5 on T3. Let us define,

|α;~τ〉 ≡ |α〉〈α|∅;~τ〉 ≡ |α〉BαR (~τ), also, 〈∅;~τ |α〉 ≡ BαL (~τ). (3.5)

These states correspond to Higgs branch vacua of the massive theory and BR, BL are called
the holomorphic blocks [16–18]. The partition function matrix is diagonal in this basis,

Zαβg = δαβ BαL (~τ)BαR (g−1 · ~τ). (3.6)

Now we will obtain an equation relating the partition function matrices on different
backgrounds obtained by gluing solid tori by large diffeomorphisms.

Zαβg1g2(~τ) = 〈α;~τ |β; g−1
2 g−1

1 · ~τ〉

=
n∑
γ=1

n∑
δ=1
〈α;~τ |γ; g−1

1 · ~τ〉Mγδ〈δ; g−1
1 ~τ |β; g−1

2 g−1
1 · ~τ〉

=
n∑
γ=1

n∑
δ=1
Zαγg1 (~τ)MγδZδβg2 (g−1

1 ~τ). (3.7)

In the second line we have inserted the complete set of states

1 =
n∑
γ=1

n∑
δ=1
|γ; g−1

1 · ~τ〉Mγδ〈δ; g−1
1 ~τ |. (3.8)

The matrix M is fixed by taking the matrix element of the identity with 〈α|1|β〉.

Zαβ1 (g−1
1 · τ) = Zαγ1 (g−1

1 · τ)MγδZδβ1 (g−1
1 · τ)

⇒Mγδ = (Zγδ1 (g−1
1 · τ))−1. (3.9)

Define the partition function matrix with one upper and one lower index as

Ẑg(~τ) ≡ Ẑαg,β(~τ) ≡ Zαγg (~τ)(Zγβ1 (g−1 · ~τ))−1. (3.10)
5Of the supersymmetric quantum mechanics along the radial direction obtained after the topological

twist. See [15] for details in three dimensions.
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The equation (3.9) takes the form a matrix product,

Ẑg1g2(~τ) = Ẑg1(~τ) · Ẑg2(g−1
1 · ~τ). (3.11)

Because all the partition function matrices entering in the above discussion are diagonal in
|α;~τ〉 basis. This equation is valid for all the entries in the diagonal separately.

Ẑαg1g2(~τ) = Ẑαg1(~τ) · Ẑαg2(g−1
1 · ~τ), Ẑαg (~τ) ≡ Zααg (~τ)/Zαα1 (g−1 · ~τ). (3.12)

Alternatively, this equation can also be seen as a consequence of the factorization (3.6) as
this equation implies,

Ẑαg (~τ) = BαL (~τ)/BαL (g−1 · ~τ) (3.13)

and equation (3.12) follows. As we will see shortly, this viewpoint is misleading.
In deriving equation (3.12), we have assumed that the state |α, g · ~τ〉 depends on g

in a unique way. This assumption is not true if there is a non-trivial Berry connection
on the space of parameter ~τ . As a result, after doing a loop in the parameter space to
go to its g image |α, τ〉 → |α, g · ~τ〉, the state will get multiplied by a phase. Moreover,
this phase will depend on the path in the parameter space if the Berry connection has
curvature. In general, we should allow for such a possibility. This introduces a phase factor
in equation (3.12).

Ẑαg1g2(~τ) = eiφ
α
g1,g2 (~τ)Ẑαg1(~τ) · Ẑαg2(g−1

1 · ~τ). (3.14)

The first thing to note is that, thanks to equation (3.14), the phase satisfies the group
cocycle condition

eiφ
α
g1g2,g3 (~τ) = eiφ

α
g1,g2 (~τ)eiφ

α
g1,g2g3 (~τ)eiφ

α
g2,g3 (g−1

1 ·~τ). (3.15)

Moreover, if we multiply Ẑαg (~τ) by eifαg (~τ) then the phase in equation (3.14) changes as,

eiφ
α
g1,g2 (~τ) → eiφ

α
g1,g2 (~τ)ei(f

α
g1g2 (~τ)−fαg1 (~τ)−fαg2 (g−1

1 ·~τ)). (3.16)

If the Berry connection is curved then it is impossible to get rid of the phase in equation (3.14)
with a simple redefinition of the partition function i.e. with a local counter terms as the
Berry curvature is a sign of an anomaly. This means eiφ

α
g1,g2 (~τ) is a non-trivial element of

H2(G, M). This makes Ẑαg (~τ) a non-trivial element of H1(G, N/M). The object Ẑαg (~τ) is also
known as G automorphic form of degree 1 with the factor of automorphy being eiφ

α
g1,g2 (~τ)

(for all values of g1, g2). The equation (3.6) provides only a “local trivialization” of the this
cohomologically non-trivial element. Because (3.6) is not valid “globally”, we expect it to
fail for some generators of G. We will see this explicitly in section 4 and 5.

Thanks to the diagonal nature of the partition function matrix in the |α;~τ〉 basis, we
could obtain the equation (3.14) for individual entries on the diagonal. The supersymmetric
partition function is the trace of this matrix. In this sense, we think of each of the diagonal
entry Zααg (~τ) of the partition function matrix as “a part of the supersymmetric partition
function”. The partition function part that is appropriately normalized is then Ẑαg (~τ).
This clarifies the phase “a normalized part of the superconformal index” used at the end
of section 2.
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The phase eiφ
α
g1,g2 (~τ) appearing in the equation (3.14) is a type of global gravitational

anomaly. It is more general than the type of gravitational anomaly discussed by Witten
in [7]. It measures the obstruction to the consistency under cutting and gluing manifolds.
It belongs to a class of anomalies that are sometimes called Dai-Freed anomalies. Such
anomalies have appeared in the context of classifying symmetry protected topological
phases in [11]. As remarked in [12], group cohomology classifies the anomalies for global
transformations for bosonic phases the way eta invariant classifies global anomalies for
fermionic phases. Although our analysis has allowed this phase to depend on the state |α〉,
we conjecture that it is independent of it. This is because we do not expect anomalies to
depend on the state.

Just like the classification problem for the supersymmetric torus partition function
in two dimensions, we envision a classification problem for four-dimensional (normalized)
supersymmetric partition functions Ẑg(~τ) given the factors of automorphy φg1,g2(~τ). To our
knowledge, unlike in the two-dimensional case, a systematic treatment of this problem is
lacking. We believe it is very much wanting. We conjecture that the factors of automorphy
depend only on the ’t Hooft anomaly polynomial and give an explicit expression for it for a
choice of the pair (g1, g2).

Now to make connection with the modular property of the elliptic Gamma function, we
observe the following. Evaluating the equation (3.14) on the group relation Y 3 = 1, where
Y ∈ SL(3,Z) is an element which cyclically permutes (1σ τ), gives

ẐαY (~τ)ẐαY (Y −1 · ~τ)ẐαY (Y −2 · ~τ) = 1 (mod M),
≡ e−i

π
3 P (~τ). (3.17)

As Ẑαg are elements of cohomology that are defined only modulo M, the second equality
is meaningful only if this multiplicative freedom is fixed. For an abelian gauge theory,
we will show that ẐαY = ZαP (mod M) in cohomology where ZαP is the perturbative part
(defined in section 5) of the supersymmetric index ZS23 . We expect this fact to be true for
general gauge theories. For models involving only chiral multiplets, ZαP = ZS23 . Then the
representative that appears in equation (3.17) is taken to be ẐαY = ZαP in cohomology. This
fixes the (mod M) freedom and makes the second equality in equation (3.17) meaningful. In
this way, the formula directly connects to a more physical observable. We conjecture that
the function P (~τ) is essentially the ’t-Hooft anomaly polynomial of the theory. Concretely,

P

(
ξi
ω1
,
ω2
ω1
,
ω3
ω1

)
= 1
ω1ω2ω3

(
kijkξiξjξk+3kijRΩξiξj+3kiRRΩ2ξi

+kRRRΩ3−ki Ω̃ξi−kRΩΩ̃
)
; Ω≡ 1

2
∑

j=1,2,3
ωj , Ω̃≡ 1

4
∑

j=1,2,3
ω2
j . (3.18)

Here we have used homogeneous coordinates (ξi, ω1, ω2, ω3) introduced shortly instead of
the affine ones (zi, σ, τ). The symbols kijk = Tr(FiFjFk), kijR = Tr(FiFjR) and so on and
ki = Tr(Fi), kR = Tr(R) are ’t Hooft anomalies. We will offer substantial evidence in
support of this conjecture. Equations (3.17), (3.18) summarize our proposal for the modular
property of the four-dimensional supersymmetric partition functions.
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For a chiral multiplet, the supersymmetric Hilbert space on T3 is one-dimensional and
~τ = (z σ τ). For the chiral multiplet with R-charge 0, this equation precisely implies the
modular property of the elliptic Gamma function (3.2). This is detailed in section 4. The
above equations generalize this property to partition functions of general supersymmetric
theories. Relatedly, an SL(2,Z) modular property of the “Schur-limit” of the N = 2
superconformal index has been discovered in [19], see also [20]. It is also shown there that
for a free Hypermultiplet, this property descends from the SL(3,Z) modular property (3.2)
of the elliptic gamma function. As equation (3.17) is the generalization of equation (3.2)
for interacting theories, we expect the SL(2,Z) modular property of the Schur index of
interacting theories to follow from equation (3.17) in the Schur limit. It would be interesting
to solidify this connection.

Before moving to the demonstration of equation (3.14) for free and interacting theories,
we recall certain basic facts about and set up the notation for SL(3,Z) n Z3.

3.2 SL(3,Z) n Z3

In this section, we describe the group of large diffeomorphisms and large gauge transfor-
mations for a theory with a single background holonomy turned on. Generalization to the
case of multiple background holonomies is straightforward. The group of large symmetries
of T3 with a single background holonomy is G1 = SL(3,Z) n Z3. It is convenient to think
of its action on a rectangular T3. Let the lengths of the three cycles be (ω1 ω2 ω3). We
will think of this as a column vector on which elements of SL(3,Z) act as 3 × 3 matrix.
Because we are only interested in projective representation of SL(3,Z), physical observables
only depend on ω2/ω1 ≡ σ, ω3/ω1 ≡ τ . Using projective invariance we can scale ω1 = 1
and think of (ω1 ω2 ω3) ' (1 σ τ). We will use projective coordinates (ω1 ω2 ω3) and affine
coordinates (1 σ τ) interchangeably. Remember that this T3 is actually the boundary of
a solid three-torus. We take the contractible cycle to be the one with length ω2 ' σ. Let
z = ξ/ω1 be the background holonomy.

It is convenient to identify and label the generators of G1. The standard choice of
SL(3,Z) generators consist of the three matrices Tij , 1 ≤ i 6= j ≤ 3 which have 1 on the
diagonal and at the ij-th place and 0 everywhere else. For example,

T12 =

 1 1 0
0 1 0
0 0 1

 , T23 =

 1 0 0
0 1 1
0 0 1

 , etc. (3.19)

In this presentation, SL(3,Z) is generated by Tij ’s subjected to relations.

TijTkl = TklTij (i 6= k, j 6= l), TijTjk = TikTjkTij , (T13T
−1
31 T13)4 = 1. (3.20)

For our purposes, it would be useful to choose a different set of generators to make
contact with the various SL(2,Z) subgroups. We define Sij , 0 ≤ i < j ≤ 3 to be the modular
S-matrix for the SL(2,Z) subgroup acting on the space (ij). Explicitly,

S12 =

 0 1 0
−1 0 0
0 0 1

 , S23 =

 1 0 0
0 0 1
0 −1 0

 , S13 =

 0 0 1
0 1 0
−1 0 0

 . (3.21)
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Then SL(3,Z) is generated by {S23, S13, T23}. It is easy to construct all the Tij ’s with
these elements. First note that S12 = S23S13S

−1
23 . Now all the other Tij ’s are constructed

by conjugating T23 with all the Sij ’s. For example, S13T23S
−1
13 = T21 etc. Once we have

Tij ’s we can generate the entire group thanks to the standard presentation (3.20). What
are the relations? For each of the SL(2,Z) subgroup, the S and T generators obey the
usual relations,

S4
ij = 1, (SijTij)3 = 1 (3.22)

In addition to these there is a relation that connects all the three subgroups. For this
purpose we construct the element Y ≡ S−1

23 S13. It permutes all the entries cyclically. It
obeys the relation,

Y 3 = 1. (3.23)

This is the group element that appears in the modular equation (3.17).
The large gauge transformation subgroup Z3 is generated by shift operators ti, i = 1, 2, 3

which act on the holonomy z as z → z + 1, z → z + σ and z → z + τ respectively. After
SL(3,Z) is generated SL(3,Z) n Z3 is generated by adding a one of the ti to the list of
SL(3,Z) generators, say t3. The other generators of Z3, t1, t2, can be generated from t3 by
conjugating with Sij ’s. In conclusion, SL(3,Z) n Z3 is generated by {S23, S13, T23, t3}.

We have described in detail the group of large symmetries G of T3 = ∂(T2×D2). There
exists a special subgroup H of transformations which can be extended into the bulk i.e. the
subgroup of large symmetries of the solid three-torus T2 ×D2. We expect the wavefunction
to be invariant under these large symmetries. Of course, this invariance is only up to a
phase that captures the standard Witten type gravitational anomaly. It is easy to identify
this subgroup. As this geometry consists of T2 spanned by cycles of length (1 τ), we expect
invariance under SL(2,Z) acting on (1 τ)T subspace. We also expect invariance under the
large gauge transformations t1, t3. Together this group is SL(2,Z)nZ2. In addition to these
large symmetries, diffeomorphisms corresponding to σ → σ + 1 and σ → σ + τ can also be
extended in the bulk. These are the transformations T21 and T23 respectively. Together
they generate another factor of Z2 which is acted upon by SL(2,Z). All in all, the subgroup
H of large symmetries that can be extended into the bulk is SL(2,Z) n (Z2)2. The SL(2,Z)
is generated by {S13, T13} in the standard way and the two Z2s are generated by {t1, t3}
and {T21, T23} respectively.

Because, the wavefunction is unchanged (modulo M) under the action of h ∈ H, we expect

Ẑαh (~τ) = 1 (mod M), for h ∈ H (3.24)

Thanks to the equation (3.14), in order to compute Ẑαg for all g ∈ G, we need to compute
it only on the generators. Given Ẑαh (~τ) = 1, we only need to compute it on S23. In order
to get this “normalized” partition functions, we need to compute the physical partition
function Zααg (~τ) on g ∈ {1, S23}. Recall ZS23 is the partition function on S3 × S1 i.e. the
superconformal index I and Z1 is the partition function on S2 × T2.

The fact that we need partition functions ZS23 and Z1 to compute partition functions
over all lens spaces, has an interesting physical significance. The partition function ZS23 of
gauge theories depends only on the Lie algebra of the group and is insensitive to its global
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properties. On the other hand, the partition function on any other lens space, thanks to its
non-trivial fundamental group, is sensitive to the global structure of the gauge group [21].
In our formalism, this sensitivity comes from the partition function on S2 × T2 i.e. Z1.

4 A chiral multiplet in 4d

For an N = 1 chiral multiplet with R-charge 0, the effective Hilbert space if one-dimensional.
Hence we will drop the superscript α on Z and Ẑ. The required partition functions are,

Z1(z, σ, τ) = 1
θ(z, τ) , ZS23(z, σ, τ) = Γ(z, σ, τ). (4.1)

For Z1 we have borrowed the results from [22]. From these physical partition functions, we
construct the normalized one,

ẐS23(z, σ, τ) = Γ(z + τ, σ, τ). (4.2)

From (4.1), along with (3.24), we can compute the partition function on any background
obtained by gluing two copies of solid T3 by an element g ∈ G. But before that let us first
verify that these partition functions are consistent with some of the group relations (3.22).

S4
23 = 1 ⇒ Γ(z+τ,σ, τ)Γ(z+σ,−τ,σ)Γ(z−τ,−σ,−τ)Γ(z−σ,τ,−σ) = 1(mod M),
S4

13 = 1 ⇒ 1 ·1 ·1 ·1 = 1 (mod M),
(S23T23)3 = 1 ⇒ Γ(z+τ,σ, τ)Γ(z+σ,−σ−τ,σ)Γ(z, τ,σ+τ) = 1 (mod M). (4.3)

In the second equation we have used ẐS13 = 1 because S13 ∈ H. That the elliptic gamma
function satisfies the above conditions can be checked easily from the properties listed in
appendix A.2. In order to verify that the partition function respects the most non-trivial
relation Y 3 = 1, we need to compute ẐY .

ẐY (z, σ, τ) = ẐS−1
23 S13

(z, σ, τ) = ẐS−1
23

(z, σ, τ) (mod M). (4.4)

Again we have used ẐS13 = 1. The partition function ẐS−1
23

is computed by using the
relation S−1

23 S23 = 1. It turns out,

ẐY (z, σ, τ) = ẐS−1
23

(z, σ, τ) = Γ(z, σ, τ) = ZS23(z, σ, τ) (mod M). (4.5)

Taking ẐY (z, σ, τ) = ZS23(z, σ, τ), equation (3.17) implies,

Γ(z, τ, σ)Γ( z
σ
,
τ

σ
,

1
σ

)Γ(z
τ
,

1
τ
,
σ

τ
) = e−i

π
3Q(z,σ,τ). (4.6)

This explains the mysterious modular property of the elliptic gamma function (3.2). The
polynomial Q(z, σ, τ) is given in equation (A.6). It is precisely the anomaly polynomial
P (z, σ, τ) for the chiral multiplet with R-charge 0. This is shown explicitly near equa-
tion (5.8).
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We can compute partition functions on general manifolds obtained by gluing two solid
tori by large diffeomorphism and large gauge transformation such as lens spaces. Let us
see a simple example first. The element t2 can be expressed as t2 = S23 t3 S

−1
23 . From here,

using equation (3.14), we can compute the partition function Zt2 .

Ẑt2(z, τ, σ)ẐS23(t−1
2 · (z, τ, σ)) = ẐS23(z, τ, σ)Ẑt3(S−1

23 (z, τ, σ))
Ẑt2(z, τ, σ) = Γ(z + τ, τ, σ)/Γ(z + τ − σ, τ, σ)

= θ(z + τ − σ, τ) = θ(z − σ, τ) (mod M)
Zt2(z, τ, σ) = 1. (4.7)

In the second line we have used Ẑt3 = 1. Is the conclusion Zt2(z, τ, σ) = 1 correct? To
answer this we first need to understand the effect of the large gauge transformation t2 in
gluing. As the SL(3,Z) part of the gluing is trivial, the geometry is S2 × T2. The large
gauge transformation t2 used for gluing produces one unit of magnetic flux through S2

because this is precisely how one constructs the nontrivial U(1) bundle over S2, namely,
gluing the locally trivial bundles on the two discs by large gauge transformation. Comparing
with the result in [22] for the chiral multiplet partition function on S2 × T2 with a single
unit of magnetic flux, we see that our conclusion indeed agrees with it.

4.1 Lens space index

Now that we have verified that the normalized partition functions for group generators indeed
satisfy (some of) the group relations, we will now go ahead and construct partition functions
on other geometries obtained by g-gluing using equation (3.14). All these computations
will be valid modulo multiplication by a phase i.e. mod M.

The superconformal index on L(r, 1) × S1 has been studied in [21, 23–25]. In this
subsection, we will focus our attention to these geometries. The lens space L(r, 1) is obtained
by gluing two solid 2-tori with the element gr = ST−rS of SL(2,Z). This SL(2,Z) can
be thought of as the SL(3,Z) subgroup that is either acting on (1 σ)T subspace of (σ τ)T

subspace. We will take it to be the latter i.e. gr = S23T
−r
23 S23.

ẐS23T
−r
23 S23

(z, σ, τ) = ẐS23(z, σ, τ)ẐT−r23
(S−1

23 · (z, τ, σ))ẐS23(T r23S
−1
23 · (z, σ, τ)).

= ẐS23(z, σ, τ)ẐS23(T r23S
−1
23 · (z, σ, τ)).

ZS23T
−r
23 S23

(z, σ, τ)
Z1(S−1

23 T
r
23S
−1
23 · (z, σ, τ))

= ẐS23(z, σ, τ)ZS23(T r23S
−1
23 · (z, σ, τ))

Z1(S−1
23 T

r
23S
−1
23 · (z, σ, τ))

ZS23T
−r
23 S23

(z, σ, τ) = ẐS23(z, σ, τ)ZS23(T r23S
−1
23 · (z, σ, τ))

= Γ(z + τ, σ, τ)Γ(z, rσ − τ, σ). (4.8)

In the second line we have used ẐT23(z, τ, σ) = 1 mod M and in the third line we have changed
from normalized partition function to the physical partition function. Lens space index
for the chiral multiplet has been first computed in [23]. In order to match our expression
with the expression there, we need to substitute, (σ, τ) = (σ̃ + τ̃ , rτ̃). Under this change
of variables,

Zgr(z, σ, τ) = Γ(z + rτ̃ , σ̃ + τ̃ , rτ̃)Γ(z, σ̃ + τ̃ , rσ̃). (4.9)
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The Lens space index with h units of background magnetic flux is also constructed
straighforwardly by computing Zgr,h(z, σ, τ) where, gr,h = th2 S23T

−r
23 S23.

Ẑgr,h(z, σ, τ) = Ẑth2 (z, σ, τ)ẐS(t−h2 · (z, σ, τ))ẐS(T rS−1t−h2 · (z, σ, τ)),

Zgr,h(z, σ, τ) = Ẑth2 (z, σ, τ)ẐS(t−h2 · (z, σ, τ))ZS(T rS−1t−h2 · (z, σ, τ)),

Zgr,h(z, σ, τ) = Γ(z + τ − hσ, σ, τ)Γ(z − hσ, rσ − τ, σ)
h∏
j=1

θ(z − jσ, τ),

= Γ(z + τ, σ, τ)Γ(z − hσ, rσ − τ, σ) (mod M). (4.10)

Here we have used Ẑth2 (z, σ, τ ) = ∏h
j=1 θ(z − jσ, τ) which follows directly from equation (4.2).

In order to get the expression quoted in [21], we need to change z = z̃ + hτ̃ ,

Zgr,h(z, σ, τ) = Γ(z̃ + (r + h)τ̃ , σ̃ + τ̃ , rτ̃)Γ(z̃ − hσ̃, σ̃ + τ̃ , rσ̃) (mod M). (4.11)

As emphasised earlier, all the expressions obtained are modulo phases. This is a serious
drawback if the phase factors depend on the holonomy of the gauge symmetry. Because, we
are thinking of our modular constraints as constraints on the partition functions and not
as constraints on the “integrand” of the gauge holonomy integral, gauge holonomies never
appears in our partition functions.

4.2 Holomorphic block factorization

We have discussed the presentation of the supersymmetric partition function on background
corresponding to the gluing by element g as the inner product,

Zαβg (z, σ, τ) = δαβ〈α, (z, σ, τ)|α, g−1 · (z, σ, τ)〉 = δαβ BαL (z, σ, τ)BαR (g−1 · (z, σ, τ)).

Ẑαg (z, σ, τ) =
Zααg (z, σ, τ)

Zαα1 (g−1 · (z, σ, τ)) = BαL (z, σ, τ)
BαL (g−1 · (z, σ, τ)) . (4.12)

However, due to the curvature of the Berry connection this equation must be valid only
locally i.e. only for some group elements g. If this equation were valid globally, then
this would make Ẑαg (z, σ, τ) a trivial element of H1(G, N/M) and hence eiφg1,g2 appearing
in equation (3.14) a trivial element of H2(G, M). The Berry curvature is precisely the
obstruction to that.

In what follows, we will study the validity of this expression for all the generators
of G. The holomorphic blocks in four dimensions have been computed in [16, 18, 26].
The right blocks BαR are related to the left ones BαL by orientation reversal. Concretely,
BR
α(z, σ, τ) = BL

α(z,−σ, τ). For free chiral it is known that,

BL (z, σ, τ) = Γ
(
z

τ
,
σ

τ
,−1

τ

)
(mod M). (4.13)

From here we compute,

Z1(z, σ, τ) = BL(z, σ, τ)BR(z, σ, τ) = 1/θ(z, τ),
Zt2(z, σ, τ) = BL(z, σ, τ)BR(t−1

2 · (z, σ, τ)) = 1,
ZS23(z, σ, τ) = BL(z, σ, τ)BR(S−1

23 · (z, σ, τ)) = Γ(z, σ, τ). (4.14)
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Happily, these expressions agree with the explicit localization computations given in equa-
tion (4.1). However, the situation is different for some h ∈ H. Recall that we expect Ẑh = 1.
If we use the formula (4.12), it is straightforward to see that we get

ẐT13 = ẐT23 = Ẑt3 = 1, (4.15)

but for the other generators of H,

ẐS13 =
Γ( zτ ,

σ
τ ,−

1
τ )

Γ(z, σ, τ) 6= 1, ẐT21 =
Γ( zτ ,

σ
τ ,−

1
τ )

Γ( zτ ,
σ−1
τ ,− 1

τ )
6= 1, Ẑt1 =

Γ( zτ ,
σ
τ ,−

1
τ )

Γ( z−1
τ , στ ,−

1
τ )
6= 1.

(4.16)
From this it is clear that the factorization formula (4.12) does not work for S13, T21, t1.
As remarked earlier, this is to be expected. If the factorization formula worked for all
elements of G, Ẑg would be trivial in cohomology which is not the case. We explicitly see
here how (4.12) is local trivialization of something that is non-trivial in cohomology. We
find it striking that the issues having to do with Berry curvature end up making such a
drastic impact on the partition functions.

Because the holomorphic block decomposition works for all elements of G except possibly
for the ones involving {S13, T21, t1}, in hindsight, all the relations in (3.22) had to work. The
relation that remains nontrivial is Y 3 = 1. This is because Ẑg is admits a local trivialization
for all the generators of G involved in the relations except for S13 (which is needed to
construct Y ). The fact that the relation Y 3 = 1 is also respected by the partition functions
is the statement that Ẑg is a non-trivial element of the cohomology.

5 Examples

In this section, we will study the partition function for interacting supersymmetric theories.
First, we will look at the chiral multiplet with R-charge R and then at supersymmetric
U(1) gauge theory. We will be mainly interested in the constraint imposed on the par-
tition functions by the group relation Y 3 = 1. For this purpose, we will need ẐY . As
discussed in equation (4.4), ẐY = ẐS−1

23
. We compute this normalized partition function

from the supersymmetric index using holomorphic block decomposition with the help of
equation (4.12).

5.1 Chiral multiplet with R-charge

In what follows it is convenient to use homogeneous coordinates (ω1 ω2 ω3) in addition to
the affine coordinates (1σ τ) that we have been so far using. The simplest interacting
N = 1 supersymmetric conformal field theory is that of chiral multiplets interacting through
a superpotential. The effect of superpotential is to impart non-trivial R-charge to the
chiral multiplet.

Consider a chiral multiplet Φ interacting with the superpotential Φn. This implies its
R-charge is R = 2/n. The theory also has a global symmetry Zn. Allowing for a fugacity
for this global symmetry, we get the superconformal index of this theory to be

ZS23 (σ, τ) = Γ
(
R

2 + R

2 (σ + τ) , σ, τ
)

= Γ
(
R

2
ω1 + ω2 + ω3

ω1
,
ω2
ω1
,
ω3
ω1

)
. (5.1)
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This is same as the index of the chiral multiplet with R-charge 0 with the background U(1)
holonomy ξ → RΩ, where we have defined Ω = ∑3

1ωi/2. In more complicated theories, the
chiral multiplet with non-trivial R-charge could also be charged under another background
U(1) global symmetry. In that case, the contribution of such a chiral multiplet to the
superconformal index is

ZS23 (z, σ, τ) = Γ
(
z + R

2 + R

2 (σ + τ) , σ, τ
)

= Γ
(
ξ

ω1
+ RΩ

ω1
,
ω2
ω1
,
ω3
ω1

)
. (5.2)

In other words, having nontrivial R-charge R effectively shifts the global symmetry holonomy
by ξ → ξ +RΩ. The shift of ξ by Rω1/2 in addition to the standard shift by (ω2 + ω3)R/2
can also be achieved by working with the so-called modified index [27]. It entails replacing
(−1)F in the supersymmetric index (3.1) by eiπR. Because the supercharge has R-charge 1,
the robustness properties of the Witten index are unaffected.

The holomorphic block is

BL (z, σ, τ) = Γ
(
z + R

2 (σ + τ + 1)
τ

,
σ

τ
,−1

τ

)
(mod M) (5.3)

From here it is not difficult to see that

ẐS−1
23

(z, σ, τ) = BL (z, σ, τ)
BL (S23 · (z, σ, τ))

= Γ
(
z + R

2 (σ + τ + 1)
τ

,
σ

τ
,−1

τ

)
Γ
(
z + R

2 (−σ + τ + 1)
σ

,
τ

σ
,− 1

σ

)
= ẐY (z, σ, τ) . (5.4)

Due to R dependent terms the equation (3.17) implied by the group relation Y 3 = 1 is not
obeyed by above ẐY for general values of R. But this is not surprizing. This is because,
as pointed out in [3], in order to preserve supersymmetry on S2 × T2 R-charges must be
quantized to be integers. In fact, the theory needs to preserve supersymmetry on all lens
spaces L(r, s), for this the R-charges need to be quantized as even-integers. If we stick to
gluing by a subgroup of SL(3,Z) that does not produce lens spaces, then it suffices for the
R-charges to be integers. As the SL(3,Z) element Y can not to produce lens spaces under
gluing, the relation Y 3 = 1 requires the R-charges to be only integers and not necessarily
even-integers. This is what we will assume.

For integer R-charge,

Γ
(
z + R

2 (−σ + τ + 1)
σ

,
τ

σ
,− 1

σ

)
= Γ

(
z + R

2 (σ + τ + 1)
σ

,
τ

σ
,− 1

σ

)
. (5.5)

This means

ẐY (z, σ, τ) = Γ
(
z + R

2 (1 + σ + τ) , σ, τ
)

= Γ
(
ξ +RΩ
ω1

,
ω2
ω1
,
ω3
ω1

)
= ZS23 (z, σ, τ) (mod M) . (5.6)
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Again, taking ẐY (z, σ, τ) = ZS23(z, σ, τ) we see that it indeed obeys the equation (3.17).
This is because the shift in the holonomy z is symmetric under Y . The function P (z, σ, τ)
is given by

PχR (z,σ, τ) =Q

(
z+R

2 (1+σ+τ), σ, τ
)

(5.7)

= 1∏
iωi

(
ξ3 +3ξ2Ω(R−1)+3ξΩ2(R−1)2 +Ω3(R−1)3−ξΩ̃−ΩΩ̃(R−1)

)
.

Recall the definitions Ω = ∑
iωi/2 and Ω̃ = ∑

iω
2
i /4. Identifying (R− 1)i = TrRi and using

global symmetry charge F = 1, we see that P (z, σ, τ) is precisely the anomaly polynomial
for the chiral multiplet with R-charge R.

PχR(z, σ, τ) = 1∏
i ωi

(
ξ3 kFFF + 3ξ2Ω kFFR + 3ξΩ2 kFRR + Ω3 kRRR − ξΩ̃ kF − ΩΩ̃ kR

)
.

(5.8)

5.2 SQED in 4d

As in the previous section, we will compute ẐY by computing the holomorphic blocks
which in turn are computed using the index ZS23 and then factorizing it. Factorization of
the supersymmetric index has been studied in [16–18]. One important difference from the
case of only chiral multiplets is that the supersymmetric gauge theory has multiple Higgs
branch vacua. Partition function in each vacuum can be dealt with separately because
the equation (3.14) is diagonal. As before, the group relation Y 3 = 1 yields non-trivial
constraints that must be satisfied by ẐαY ’s.

The index of a U(1) gauge theory with N flavors is given by the integral

ZS23

(
~α, ~β, σ, τ

)
= (σ, σ) (τ, τ)

∮
dξ

N∏
j=1

Γ
(
R (σ + τ)

2 + ξ + αj , σ, τ

)

× Γ
(
R(σ + τ)

2 + βj − ξ, σ, τ
)
. (5.9)

Here R is the U(1)R charge of the chiral multiplet. For anomaly cancellation we need
R = 1. The variables α, β are SU(N) holonomies and hence obey Σiαi = Σiβi = 0. The
function (z, τ) is called the Pochhammer symbol defined as (z, τ) ≡ ∏∞n=1(1− xqi) where
x = exp(2πiz), q = exp(2πiτ). The flavor symmetry F = SU(N) that acts only on chirals
with gauge charge +1 (or chirals with gauge charge −1) has an non-zero FFG anomaly with
the gauge symmetry G = U(1). We will only turn on background holonomies that do have
an anomaly with the gauge symmetry. The global symmetry that does not have anomaly
with the gauge symmetry is the diagonal combinations of the two SU(N) symmetries. In
order to turn on holonomies only for this symmetry we must set βi = αi. The abelian
symmetry F ′ that acts on all the chiral multiplets also has an anomaly with the gauge
symmetry. This anomaly is a more standard F ′GG type ABJ anomaly. We do not turn on
background holonomy for this abelian global symmetry.
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This integral is evaluated by summing over all the poles inside the unit circle, it can be
written in a sum over Higgs branch vacua where summand is a factorized product. Picking
the poles coming form negatively charged chiral multiplets,

ZS23 =
N∑
j=1

∏
i

Γ(σ + τ + βi + βj , σ, τ)
∏
i 6=j

Γ(βi − βj , σ, τ)Z(j)
V (~β;σ, τ)Z(j)

V (~β; τ, σ),

ZS23 = 1
Γ(0, σ, τ)

N∑
j=1

∏
i

Γ(βi − βj , σ, τ)
Γ(−βi − βj , σ, τ)Z

(j)
V (~β;σ, τ)Z(j)

V (~β; τ, σ),

ZjjS23
= 1

Γ(0, σ, τ)
∏
i

Γ(βi − βj , σ, τ)
Γ(−βi − βj , σ, τ)Z

(j)
V (~β;σ, τ)Z(j)

V (~β; τ, σ),

≡ Z(j)
P (~β;σ, τ)Z(j)

V (~β;σ, τ)Z(j)
V (~β; τ, σ) (5.10)

In the second line we have used Γ(z) = 1/Γ(σ + τ − z), we have formally included i = j

term in the second set of product which is infinity and have divided by Γ(0) to get rid
of it. We have done it because it is then uniform for all is. We have defined the “vortex
partition function”,

Z
(j)
V (~β;σ, τ) :=

∞∑
s=0

∏
i

Θ(σ + βi + βj ;σ; τ)s
Θ(σ + βj − βi;σ; τ)s

, (5.11)

where Θ(z;σ; τ)n is the theta factorial defined in equation (A.9). A quick glance at
equation (A.8) indicates that the vortex partition function is in fact an elliptic hypergeo-
metric series.

Z
(j)
V (~β;σ, τ) = NEN−1(σ + ~β + βj , σ + βj − ~β;σ; τ ; 1). (5.12)

Interestingly, this elliptic hypergeometric series is invariant under transformation S13. This
can be checked explicitly by making a modular transformation for each of the theta function
involved in the elliptic hypergeometric series. The arguments of the theta functions involved
in the product are such that all the phases coming from the modular transformation cancel
rendering each term of the sum separately modular invariant. It is worth noting that the
vortex partition function ZV can be obtained from the perturbative part ZP with the action
of a simple difference operator.

ZV
(
~β, σ, τ

)
= 1
ZP

(
~β, σ, τ

) ( 1
1− tβj2

ZP (~β, σ, τ)
)
. (5.13)

The j-th holomorphic block modulo M is

B(j)
(
~β;σ, τ

)
= Z

(j)
P

(
~β

τ
; σ
τ
,−1

τ

)
× Z(j)

V

(
~β;σ, τ

)
(mod M) . (5.14)

Here we have used the fact that Z(j)
P is a product of elliptic gamma functions and we have

factored it by factoring each elliptic gamma function as,

Γ (z, τ, σ) = Γ
(
z

τ
,
σ

τ
,−1

τ

)
Γ
(
z

σ
,
τ

σ
,− 1

σ

)
(mod M) . (5.15)
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It is convenient to think of the holomorphic block as the perturbative part Z(j)
P consisting

of product of elliptic gamma function and the vortex part Z(j)
V consisting of the elliptic

hypergeometric series.
Finally, we write down the normalized partition function ẐY using equation (3.6),

Ẑ(j)
Y (~β;σ,τ) = Ẑ(j)

S−1
23

(~β;σ,τ) = B(j)(~β;σ,τ)
B(j)(~β;τ,−σ)

=Z
(j)
P (~β;σ,τ) Z

(j)
V (~β;σ,τ)

Z
(j)
V (S23 ·(~β;σ,τ))

(mod M),

=Z
(j)
P (~β;σ,τ) Z

(j)
V (~β;σ,τ)

Z
(j)
V (Y −1 ·(~β;σ,τ))

(mod M). (5.16)

Here also we have used the S13 invariance of the vortex partition function Z(j)
V . From the

final form it is clear that the vortex contribution to ẐY is cohomologically trivial.
Defining ẐY with equation (5.16) and dropping (mod) M, we evaluate the equa-

tion (3.17).

Ẑ(j)
Y (~β;σ, τ)Ẑ(j)

Y (Y −1 · (~β;σ, τ))Ẑ(j)
Y (Y −2 · (~β;σ, τ)) = e−i

π
3 PSQED(~β;σ,τ),

⇒ Z
(j)
P (~β;σ, τ)Z(j)

P (Y −1 · (~β;σ, τ))Z(j)
P (Y −2 · (~β;σ, τ)) = e−i

π
3 PSQED(~β;σ,τ). (5.17)

Note that the vortex partition function part ZV is totally cancelled from this equation.
This is because its contribution is cohomologically trivial. The constraint is only on the
perturbative part ZP which is product of elliptic gamma functions. The phase PSQED(~β, σ, τ )
is computed by summing all the phases induced by individual elliptic gamma functions.

PSQED(~β, σ, τ) = −Q(0, σ, τ) +
∑
i

(
Q(βi − βj , σ, τ)−Q(−βi − βj , σ, τ)

)
,

= 2
∑
i

β3
i + Ω3 − ΩΩ̃. (5.18)

This is indeed the ’t-Hooft anomaly polynomial (3.18). Anomalies of the theory can be
read off easily from the field content: fundamental and anti-fundamental chiral multiplets
with R-charge 1 and a vector multiplet (it has a gaugino with R-charge 2). This yields

kFFF = 2, kFFR = 0, kFFR = 0, kRRR = 1, kF = 0, kR = 1. (5.19)

Here F stands for the SU(N) global symmetry.
To end this section, we would like to point out some properties of the partition functions

that we expect to be true for any N = 1 supersymmetric gauge theory. The supersymmetric
index for any gauge theory is given as an integral over gauge holonomies of a product of
elliptic gamma function. After evaluating the integral by summing the residues of all the
poles, the partition function schematically takes the form,

ZS23(zi;σ, τ) =
∑
α

ZαP (zi;σ, τ)ZαV (zi;σ, τ)ZαV (zi; τ, σ) (5.20)

Here zi stand for all the global symmetry holonomies, ZP is the perturbative part that
is product of elliptic gamma functions and ZV is an elliptic hypergeometric series that is
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exactly modular invariant i.e. invariant under S13. Moreover, thanks to the integrality of
R-charges, ẐY also has the same form as in equation (5.16) i.e.

ẐαY (zi;σ, τ) = ZαP (zi;σ, τ) ZαV (zi;σ, τ)
ZαV (Y −1 · (zi;σ, τ)) (mod M). (5.21)

Equation (3.17) is evaluated by defining ẐαY to be the right hand side of the above equation
with (mod M) dropped. We will use these properties of the gauge theory partition functions
to formulate a bootstrap program in section 7.1.

For N = 2 supersymmetric gauge theories, holomorphic blocks on one side trivialize
in the Schur limit of the superconformal index. This observation may be important in
establishing a connection with the SL(2,Z) modular property of the Schur index discovered
in [19].

6 Group cohomology

In this section, we will give a quick review of group cohomology. We will follow the short
but excellent introduction to the topic given in [28]. To understand group cohomology,
it is useful to introduce the notion of classifying space. The classifying space BG is the
base space of the principal G bundle EG, the so-called universal bundle. Any G bundle
on manifold W is classified by the so-called “classifying map” γ : W → BG. The topology
of the bundle E is completely determined by the homotopy of the classifying map. In
general, the classifying space of a compact group is an infinite-dimensional space. The group
cohomology of G is nothing but the cohomology of the classifying space BG. Although it
is the cohomology of the classifying space, the group cohomology valued in the G module
M is usually denoted as H∗(G,M). We will stick to this convention as the cohomology of
the group itself, as a topological space, will not play an important role for us.6 Given an
element of the group cohomology, its pullback under the classifying map yields an element
of H∗(W,M) which only depends on the G bundle E.

For discrete groups, the group cohomology has an algebraic description. A 1-simplex
in BG is labeled by a single group elements, a 2-simplex in BG is labeled by two group
elements and so on. Naturally, the group cochain Ck(G,M) is a map α : Gk →M . It turns
out that the coboundary operator given by

(δα)(g1, . . . , gk+1) = α(g1, . . . , gk) [(g1 · α(g2, . . . , gk+1))

×
k∏
i=1

α(g1, . . . , gigi+1, . . . , gk+1)(−1)i ](−1)k+1
. (6.1)

The formula becomes more transparent if we use a reference “point” g0 as the 0-simplex.
Then a 1-simplex is given by the two vertices g0 and g1, a 2-simplex is given by the
three vertices {g0, g1, g2} and so on. With this notation, the group cochain Ck(G,M) is
a “homogeneous” map ν : Gk+1 →M i.e. g · ν(g0, . . . , gk) = ν(gg0, . . . , ggk). The function

6The groups that interest us are discrete.
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g1 g0 g0g1

g1 g0 g0g1

g0g1g2

g2g�1
2 g�1

1

g1 g0 g0g1

g1 g0 g0g1

g0g1g2

g2g�1
2 g�1

1

Figure 2. We have shown a 1-simplex and a 2-simplex in BG. In the first column, the simplices
are denoted as α(g1) and α(g1, g2) respectively while in the second column they are denoted as
ν(g0, g0g1) and ν(g0, g0g1, g0g1g2) respectively.

α(g1, . . . , gk) = ν(1, g̃1, . . . , g̃k), g̃i = g1 . . . gi. The coboundary operator is

(δν)(g0, . . . , gk+1) =
k+1∏
i=0

ν(g0, . . . , ĝi, . . . , gk+1)(−1)i+k+1
. (6.2)

As usual, argument with the hat means that it is omitted. The group cohomology is
Hk(G,M) = Zk(G,M)/Bk(G,M) where Zk(G,M) are the cocycles i.e. δαk = 0 and
Bk(G,M) are the coboundaries i.e. αk = δ(. . .). In figure 2 we have shown a 1-simplex and
a 2-simplex in BG.

Group cohomology has been applied to classify Chern-Simons theories with a general
compact gauge group G in [28]. A group that is not connected or simply connected can
admit non-trivial principal bundle and for such bundles, the conventional definition of
the theory in terms of Chern-Simons functional is not applicable as the gauge connection
can not be thought of as a Lie-algebra valued one form. In such cases, group cohomology
H3(G,U(1)) serves to classify Chern-Simons theories. Thanks to the short exact sequence,

0→ Z→ R→ U(1)→ 0, (6.3)

We have group cohomology isomorphism H3(G,U(1)) ' H4(G,Z).
The application of group cohomology is most striking for when G is a discrete group.

Chern-Simons theory on a three-manifold W is defined by assigning an action eiS[A] to
a G-bundle. This is because once the action for a single connection in a given G-bundle
is given, it can be computed using a standard method [28] for other connections in that
bundle. Principal G-bundles for a discrete group is specified by the unique flat connection
that it admits. It is given by the map λ : π1(W )→ G. This also specifies the classifying
map. The U(1) valued action functional with required physical properties is then specified
by H3(G,U(1)).

Recently group cohomology has also been applied in classifying symmetry protected
topological phases [11]. This application is closer in spirit to the application of the group
cohomology that we have in this paper. In [11], the authors find that the topological phase
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` `

` ` ` `

g2g1

g1g2

L

L L

Figure 3. A cobordism between the disjoint sum of Mg1 , Mg2 and Mg2g1 is shown. It can be
thought of as a T3 bundle on a 2-disc. In the limit the indicated segments of length L become
vanishingly small, the base space resembles the two-simplex of figure 2. The segments L become
the vertices.

protected by symmetry G in d + 1 dimensions is classified by7 Hd+1(G,U(1)). The case
with d = 1 is closest to our setup. A topological theory in 1 + 1 dimension has dynamical
degrees of freedom living only on the edges. As one moves in the parameter space, the state
at living at the edge gets a Berry phase even as we come back to the same point in the
parameter space after doing a monodromy associated to the G action. The Berry connection,
in general, could have a curvature which is measured by H2(G,Z) ' H1(G,U(1)) [11].
It classifies the G-protected topological phases. The group cohomology class H2(G,Z)
also classifies topological θ-terms in two dimensions. The cocycles φg1,g2 are computed by
evaluating these θ-terms on G-bundle on a disc corresponding to the classifying map given
by the image of the 2-simplex in BG as specified in figure 2.

In the case of supersymmetric partition functions in four dimensions that we have been
working with, it may seem that the relevant cohomology is H4(G, N/M) as we are working
with a four-dimensional theory (the way it was H3(G,U(1)) for Chern-Simons theory) but
our problem is really one-dimensional. We are thinking of the four-dimensional manifold
as a fibration of T3 on an interval. Hence the relevant G bundle is in fact on this interval.
That’s why the partition functions are classified by H1(G, N/M) ' H2(G, M). We expect that
H2(G, M) classifies Chern-Simons terms in five dimensions (five manifold is thought of as a
T3 fibration). This is precisely the Chern-Simons anomaly polynomial. Then the 2-cocycles
φg1,g2 appearing in equation (3.14) are computed by evaluating the Chern-Simons terms on
the associated T3 bundle on a disc. As before this bundle corresponds to the classifying
map given by the image of the 2-simplex in BG as specified in figure 2. Geometrically, this
is five manifold is a cobordism that takes the disjoint sum of four manifolds Mg1 andMg2

toMg2g1 as displayed in figure 3. Here, byMg, we mean the four manifold obtained by
gluing the solid three-tori by g ∈ G. It would be extremely interesting to compute these

7We assume that G does not contain time-reversal symmetry. In case it does, the G-module U(1) with
trivial G action changes to U(1)T . Here U(1)T is the G-module in which time-reversal symmetry T acts
by inversion.
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1 g 1 g

Ẑ(~⌧) ei�g(~⌧)Ẑ(g�1~⌧)= ⇥

Figure 4. In two dimensions, the manifolds of interest are T2 fibration over a point i.e. just T2. In
this figure, we have made the connection of the modular property of the T2 partition function with
the group cohomology using a graphical notation. The partition function comes from the 0-simplex
while the phases come from the 1-simplex as indicated. The group element g stand for the group of
large symmetries which contain the large diffeomorphism group SL(2,Z) of T2 along with the large
gauge transformations.

1 g1g2 g11

1

g1g2

g1

g1g2

Ẑg1g2(~⌧) Ẑg1(~⌧) Ẑg2(g
�1
1 ~⌧) ei�g1,g2

(~⌧)
= ⇥

Figure 5. In four dimensions, the manifolds of interest are T3 fibration over an interval. In this
figure, we have made the connection of the modular property of the four dimensional partition
function (3.14) with the group cohomology using a graphical notation. The partition function comes
from the 1-simplex while the phases come from the 2-simplex as indicated. The group elements gi

stand for the group of large symmetries which contain the large diffeomorphism group SL(3,Z) of
T3 along with the large gauge transformations.

2-cocycles explicitly. We will leave this problem for the future. We should point out that for
the case of chiral multiplet of R-charge 0, the 2-cocycles φg1,g2(z, σ, τ) are explicitly given
in [13]. It would be nice to match the result obtained from Chern-Simons with this.

Figure 4 and 5 give a graphical way of understanding the 0-cocycle and 1-cocycle
condition that is satisfied by the two-dimensional partition function (2.3) and the four-
dimensional partition functions (3.14) respectively. Figure 4 describes a fibration of T2 on
a point by specifying the classifying map i.e. the image of the base into BG2d while figure 5
describes a fibration of T3 on an interval by specifying the image of the base into BG. We
have used ν notation (rather than α notation) to denote these cocycles graphically. These
figures suggest a generalization of the modular properties of the two dimensional and four
dimensional supersymmetric partition functions to supersymmetric partition functions of six
dimensional theories on T4 fibrations over a disc. This tempting conjecture is summarized in
figure 6. We will discuss more about this generalization and its consequences in section 7.3.

An interesting thing to note is that in the applications of group cohomology in [28]
and [11], the coefficient system is a trivial G-module, however, in the problem at hand, the
cohomology is valued in non-trivial G-modules N and M. This makes the problem richer by
making the explicit computation of cohomology rather non-trivial.
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1 g1

g1g2

1 g1

g1g2

1 g1

g1g2

g3

g3

Ẑg1,g2(~⌧) Ẑg1,g
�1
1 g3

(~⌧)

Ẑg3,g
�1
3 g1g2

(~⌧)

Ẑg2,(g1g2)�1g3(g
�1
1 · ~⌧)

ei�g1,g2,(g1g2)�1g3
(~⌧)

= ⇥�1

�1

�1

Figure 6. In six dimensions, the manifolds of interest are T4 fibration over a disc. In this figure, we
have made the connection of the modular property of the four dimensional partition function (3.14)
with the group cohomology using a graphical notation. The partition function comes from the
2-simplex while the phases come from the 3-simplex as indicated. The group elements gi stand for
the group of large symmetries which contain the large diffeomorphism group SL(4,Z) of T4 along
with the large gauge transformations. The powers ±1 of cocycles Ẑ come from if the even/odd
number of arrows need to be flipped to get to the defining arrow configuration.

7 Applications and discussion

In this section we will discuss two applications of the constraints (3.14) satisfied by the
supersymmetric partition functions and also a generalization of our results to supersymmetric
theories in six dimensions. We will end with some outlook.

7.1 A bootstrap program

Apart from normalized supersymmetric partition functions Ẑαg , equation (3.14) also contains
the 2-cocycles φg1,g2 . As we have discussed in section 6, one should be able to determine these
functions explicitly by evaluating anomaly Chern-Simons form on the suitable cobordism
such as the one given in figure 3. Equation (3.14) when evaluated on group relations,
yields constraints on Ẑαg of theories with a given ’t-Hooft anomaly polynomial. The
analogous problem in two dimensions is the problem of classifying elliptic genera of a (0, 2)
supersymmetric theory with given ’t-Hooft anomaly polynomial using equation (2.3). This
anomaly polynomial fixes the 1-cocycle appearing equation (2.3).8 In the case of (2, 2)
supersymmetric theories, with only the holonomy for R-symmetry turned on, this problem
reduces to the classic problem of classifying Jacobi forms of a given index (and zero weight).
This index is exactly the anomaly in R-symmetry.

We believe that non-trivial constraints on four-dimensional Ẑαg are obtained only due
to the group relation Y 3 = 1. Restricting ourselves to only this constraint, the bootstrap
program is given by the equation (3.17). For SQED, we have shown that in equation (3.17),
ẐαY can be replaced by the perturbative part of the supersymmetric index ZαP . We have

8By evaluating the anomaly Chern-Simons 3-form on a mapping cylinder.
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asserted that this is true for general gauge theories. This yields,

ZαP (zi, σ, τ)ZαP
(
zi
σ
,

1
σ
,
τ

σ

)
ZαP

(
zi
τ
,
σ

τ
,

1
τ

)
= e−i

π
3 P (zi,σ,τ), (7.1)

where the phase appearing on the right hand side P (zi, σ, τ) is the anomaly polynomial
in equation (3.18). We would like to think of this equation in the same way as we think
of the equation (2.3) for the elliptic genus. For two-dimensional theories, equation (2.3)
classifies the elliptic genera of the theories with given the anomaly polynomial. The above
equation lets us do the same for supersymmetric index in four dimension. Because the
supersymmetric index is RG flow invariant, we think of this as a modular bootstrap equation
for four-dimensional superconformal theories.

Among all the solutions of equation (7.1), gauge theory solutions can be obtained by
assuming that ZP is a product of elliptic gamma functions. With this assumption, we expect
that the solution space of equation (7.1) is tractable. As remarked earlier, equation (7.1)
does not let us fix the vortex part ZV . As ZV contribution is cohomologically trivial,
cohomological considerations will not help us fix it. Once we know ZP that solves the
above modular bootstrap equation (7.1), we expect difference operators such as the one in
equation (5.13) should let us fix ZV too. As is clear from the discussion, this tantalizing
bootstrap program needs much more exploration. We plan to do so in the future.

7.2 A Cardy formula

We can study the “high temperature” behavior of the supersymmetric index of gauge
theories using equation (7.1). This is done by taking the limit σ, τ → 0+i i.e. σ and τ

approach 0 along positive imaginary axis. In this limit, the first term of the product is the
high temperature limit of the perturbative partition function. The limit for the second and
third term of the product is slightly subtle. Let’s look at it bit closely for the case of chiral
multiplet with R-charge R. In this case,

ZP (z, σ, τ) = Γ(z + R

2 (1 + σ + τ), σ, τ). (7.2)

Note that this function is periodic under z → z + 1. We will compute its high temperature
behavior in a suitable z window of width 1. The behavior at other points in z is fixed due
to the above periodicity.

In the limit σ, τ → 0+i, the second term of the product becomes

Γ
(
z+ R

2 (σ+τ+1)
σ

,
1
σ
,
τ

σ

)
= 1

Γ
(
z−1+R

2 (σ+τ+1)
σ ,− 1

σ ,
τ
σ

) (7.3)

= exp

− ∞∑
n=1

en2πi
z−1+R

2 (σ+τ+1)
σ −en2πi

τ−z−R2 (σ+τ+1)
σ(

1−e−n2πi/σ) (1−en2πiτ/σ)


σ,τ→0+i
−−−−−→ exp

− ∞∑
n=1

en2πi
z−1+R

2
σ −en2πi

−z−R2
σ(

1−en2πiτ/σ)
 (7.4)
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Similarly, the third term simplifies to,

Γ
(
z + R

2 (σ + τ + 1)
τ

,
σ

τ
,

1
τ

)
σ,τ→0+i
−−−−−→ exp

− ∞∑
n=1

en2πi
z−1+R

2
τ − en2πi

−z−R2
τ(

1− en2πiσ/τ )
 (7.5)

It is convenient to pick the window z+R/2 ∈ (0, 1). For this case, both these terms become
1 and the high temperature limit of ZP (z, σ, τ) is given by the right hand side.

Γ
(
z + R

2 (1 + σ + τ) , σ, τ
)

σ,τ→0+i
−−−−−→ e−i

π
3 PχR (z,σ,τ)

σ,τ→0+i
−−−−−→ e

−i π24

(
(kRRR−kR) 1

στ
+(3kRRR−kR)( 1

σ
+ 1
τ )
)

+O(1)
. (7.6)

Here PχR(z, σ, τ ) is the polynomial given in equation (5.7). In taking the high temperature
limit of P we have kept the anomaly terms only involving the R-symmetry. This reproduces
the result about the high temperature limit of the elliptic gamma function given in [29]. In
order to see the match, we set x→ (z +R/2) ∈ (0, 1) in equation (2.11) of [29]. Amusingly,
it is observed in [30], that in addition to taking σ, τ → 0+i if we take z → 0+i, the modular
property of the elliptic gamma function reduces to an equation that expresses the index
of the chiral multiplet in terms of the 3d partition function of the dimensionally reduced
theory with all its Kaluza-Klein modes.9 It would be interesting to investigate this further.

For gauge theories, the high temperature limit of the partition function also involves
the high temperature limit of the vortex part ZV (zi, σ, τ). As ZV can be written explicitly
in terms of theta functions of the type θ(zi + nσ, τ), its high temperature limit is obtained
by taking high temperature limit of the theta function. We note that ZV (zi, σ, τ) is also
invariant under zi → zi+ 1. Using this property, we restrict ourselves to computing the high
temperature behavior in a suitable window of zi of width 1. Using S13 invariance of ZV ,

ZV (zi, σ, τ) = ZV

(
zi
τ
,
σ

τ
,−1

τ

)
(7.7)

θ

(
zi + nσ

τ
,−1

τ

)
= exp

 ∞∑
n=1

−en2πi zi+nσ
τ − en2πi−1−zi−nσ

τ(
1− e−n2πi/τ )


τ→0+i
−−−−→ exp

(
−en2πi zi

τ − en2πi−1−zi
τ

)
.

It is best to pick the window zi ∈ (−1, 0). In this case, all the theta functions involved
and hence the entire vortex partition function ZV simply goes to 1. Due to periodic
symmetry zi → zi + 1, ZV becomes 1 for all values of zi. The high temperature limit of the
supersymmetric index is then obtained by the high-temperature limit of the perturbative
part ZP .

As we remarked early in the paper, we require the R-charges of all the fields to be
integers to preserve supersymmetry. The correct superconformal R-symmetry R′ is obtained
from this integral R-symmetry R by shifting it with an abelian global symmetry R′ = R+εF .

9We thank Shlomo Razamat for pointing this out to us.
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The coefficients of kRRR and kR terms in P (zi, σ, τ ) are unaffected by these shifts. That is,
the coefficient of kR′R′R′ is the same as the coefficient of kRRR and the coefficient of kR′ is
the same as the coefficient of kR. Albeit, the coefficients of all other anomaly terms such as
kRRF , kRFF and kF will be affected by this shift. If we are interested anomalies involving
only the R-symmetry, we can simply replace kRRR and kR by kR′R′R′ and kR′ and express
them in terms of central charges a and c.

a = 9kR′R′R′ − 3kR′ , c = 9kR′R′R′ − 5kR′ . (7.8)

In this way, the high temperature limit of equation (7.1) reduces to the Cardy formula
for the modified superconformal index given in [27, 31]. Keeping the anomaly terms only
involving the R-symmetry,

ZααS23 (zi, σ, τ) σ,τ→0+i
−−−−−→ e−i

π
3 P (zi,σ,τ)

ZS23 (zi, σ, τ) =
∑
α

ZααS23 (zi, σ, τ) σ,τ→0+i
−−−−−→ e

−i π24

(
(kR′R′R′−kR′ )

1
στ

+(3kR′R′R′−kR′ )( 1
σ

+ 1
τ )
)

+O(1)

= e
−i π24

(
3c−2a

9
1
στ

+a
3 ( 1
σ

+ 1
τ

)
)

+O(1)
. (7.9)

As the high-temperature behavior of ZααS23 is independent of α and the index set α is finite,
we can substitute ZααS23 by the superconformal index ZS23 as we have done in the second
line. This formula has played a crucial role in computing the entropy of supersymmetric
black holes [27, 31]. Of course, the equation (7.1) being detailed modular formula, may tell
us more about the high energy states than just the density of states. It would be interesting
to dig deeper.

7.3 Six dimensions

In this subsection we will give a set of conjectures about supersymmetric partition functions
in six dimensions. The index of the (1, 0) supersymmetric chiral multiplet in six dimensions
is known to be the double elliptic gamma function Γ2(z;σ, τ, ζ) [32] (see appendix A.4 for
definition). The double elliptic gamma function is third in the hierarchy of multiple gamma
functions. The first two being,

Γ0(z, σ) = 1/θ(z, σ), Γ1(z, σ, τ) = Γ(z, σ, τ) (7.10)

Interestingly, Γ0,Γ1 and Γ2 are the supersymmetric indices of the chiral multiplets in
dimension 2, 4 and 6 dimensions respectively. The multiple gamma functions Γi enjoy
interesting modular properties. They were discovered in [33]. See appendix A.4 for the
modular property of Γ2. In this subsection, we will concern ourselves with the modular
properties of Γ2 and its physical origin.

Although to our knowledge, this has not been established or even conjectured in any
mathematics literature, we believe Γi defines a nontrivial class in Hi(Gi, N/M) ' Hi+1(Gi, M)
where Gi ≡ SL(i + 2,Z) n Zi+2 and that the modular property discovered in [33] is a
consequence of the group relation Y i+2 = (−1)i+1 where, for odd i, Y is the element
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1 Y

Y 2

1 Y

Y 2

Y �1

ẐY,Y (~⌧) ẐY,Y (Y · ~⌧)

ẐY,Y (Y
�2 · ~⌧)

ẐY,Y (Y
�1 · ~⌧)

=
�1

�1

�1

mod M

Figure 7. We have specialized the equation given in figure 6 to (g1, g2) = (Y, Y ). The six-manifold
corresponding to the above fibration of T4 i.e. given by the 2-simplex (1, Y, Y 2) is precisely S5 × S1.
The equation obeyed by ẐY,Y (z, σ, τ, ζ) is the same as the one obeyed by Γ2(z, σ, τ, ζ).

of SL(i + 2,Z) that permutes the elements cyclically and for even i, Y is the element
of SL(i + 2,Z) that permutes the elements cyclically with one element getting a minus
sign. This claim, in suitable language, is well-known for i = 0 (in this case Y is the
S-transformation of SL(2,Z)) and has been established in [13] for i = 1.

For i = 2, we conjecture that the physical origin of this claim comes from thinking of
S5 × S1 to be a T4 fibration over a disc, or more generally by considering the partition
functions on all supersymmetry preserving six manifolds that are T4 fibration over a disc.
We have conjectured a relation obeyed by the six dimensional partition functions on such
manifolds in figure 6. Restricting to a special choice of group elements gi, we get the equation
in figure 7. Remarkably ẐY,Y (z, σ, τ, ζ) obeys the same modular equation that is obeyed
by Γ2(z, σ, τ, ζ). Moreover the six-manifold corresponding to the fibration of T4 given by
the 2-simplex (1, Y, Y 2) in figure 7 is precisely S5 × S1. This strengthens our conjecture
that supersymmetric partition functions on T4 fibrations over disc indeed form a non-trivial
class in the cohomology H2(G6d, N/M) where G6d consists of the large diffeomorphism group
SL(4,Z) of T4 and large gauge transformations. On the other hand, it also provides support
for the claim that Γ2 defines a nontrivial class in H2(SL(4,Z) n Z4, N/M).

In [32], a decomposition similar to the holomorphic block decomposition has been
proposed for supersymmetric partition functions on S5 × S1. It involves constructing in the
index by gluing three “holomorphic blocks” (as opposed to two in four dimensions). These
blocks are related to each other by SL(3,Z) transformations (in four dimensions the two
blocks are related to each other by SL(2,Z) transformations). However, in the same way,
that SL(3,Z) (and not SL(2,Z)) plays a fundamental cohomological role in constraining
supersymmetric partition functions in four dimensions on manifolds that are T3 fibrations
over an interval, we expect SL(4,Z) (and not SL(3,Z)) to play a similar fundamental
cohomological role in constraining supersymmetric partition functions on in six dimensions
on manifolds that are T4 fibrations over the disc.

We plan to investigate the properties of supersymmetric partition functions in dimen-
sions other than four in detail in the future.
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Outlook. In this paper, we have considered four dimensional supersymmetric theories
on T3 fibrations on an interval. One can also consider them on T2 fibrations on a disc.
Our discussion of group cohomology leads us to suspect that such partition functions
should form a nontrivial class in H2(SL(2,Z) n G, N/M) where G is the group of large
gauge transformations. Similar guesses can be made for other types of fibrations, for
example, supersymmetric partition functions on T5 fibrations on an interval seem to
form a nontrivial class in H1(SL(5,Z) n G, N/M). Again, G is the group of large gauge
transformations. This class of proposals certainly require further investigations, in particular,
of the question whether supersymmetry can be preserved on such fibrations. It makes for
an interesting study.

This takes us to another point. All the claims and conjectures in this paper have
been made for partition functions of supersymmetric theories. But, because these
claims/conjectures follow simply from large diffeomorphism and large gauge transfor-
mation symmetries we expect that the versions of our statements to hold even for non-
supersymmetric theories. For example, we believe the equation analogous to (3.14) and (3.17)
should hold even for non-supersymmetric theories but with some crucial distinctions. For
non-supersymmetric case, the Hilbert space on T3 is infinite dimensional in contrast to
the effectively finite dimensional Hilbert space for supersymmetric theories. The partition
function Zαα, for supersymmetric theories, has the meaning of partition function evaluated
in a given Higgs branch vacuum and it can be computed explicitly using Higgs branch
localization. This is presumably not true for non-supersymmetric theories. Also, for non-
supersymmetric theories, the partition function is non-holomorphic in parameters. Having
said all this, it would be nice to exhibit the modular properties for a non-supersymmetric
theory concretely. To start with, it would be interesting to do this for a free theory. It
would also be interesting to make contact with the work of [34] where a formula has been
conjectured that relates the partition function of a conformal field theory on S3 at high tem-
perature to Casimir energy on a highly lensed S3. A useful application of equations (3.14)
and (3.17) for non-supersymmetric theories will open a new window into the universal
properties of high energy states of higher dimensional conformal field theories.
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A Special functions

A.1 q-theta function

The q-theta function is a variant of the more famous Jacobi theta function. It is defined as

θ (z, τ) = exp
( ∞∑
n=1

1
n

−xn − qn/xn

1− qn

)
where (x, q) = e2πi(z,τ). (A.1)

It is defined for all values except |q| = 1. For |q| < 1, it can be written as an infinite
product,

θ(z, τ) =
∞∏
i=1

(1− xqi)(1− qi+1/x). (A.2)

We will list some of its useful properties below.

• θ(z + 1, τ) = θ(z, τ + 1) = θ(z, τ)

• θ(τ − z, τ) = θ(z, τ)

• θ(−z, τ) = θ(z + τ) = −e2πizθ(z, τ)

• θ(z,−τ) = −e2πiz/θ(z, τ)

Most important of all, the q-theta function has an interesting modular property,

θ

(
z

τ
,−1

τ

)
= eiπB(z,τ)θ (z, τ)

B (z, τ) = z2

τ
+ z

(1
τ
− 1

)
+ 1

6

(
τ + 1

τ

)
− 1

2 . (A.3)

A.2 Elliptic gamma function

The elliptic gamma function and its properties have been discussed in great detail in [13]
and references therein. It is defined as

Γ (z, σ, τ) = exp
( ∞∑
n=1

1
n

xn − pnqn

xn

(1− pn)(1− qn)

)
, where (x, p, q) = e2πi(z,σ,τ). (A.4)

It is defined for all values of (x, p, q) except for |p| = 1 or |q| = 1 or x = 1. For |p|, |q| < 1
and x 6= 1, it can be written as a double infinite product,

Γ(z, σ, τ) =
∞∏

i,j=0

1− pi+1qj+1/x

1− x piqj . (A.5)

We will list some of its useful properties below.

• Γ(z, σ, τ) = Γ(z, τ, σ)

• Γ(z + 1, σ, τ) = Γ(z, σ + 1, τ) = Γ(z, σ, τ + 1) = Γ(z, σ, τ)

• Γ(z + σ, σ, τ) = θ(z, τ)Γ(z, σ, τ)
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• Γ(z + τ, σ, τ) = θ(z, σ)Γ(z, σ, τ)

• Γ(z,−σ, τ) = Γ(τ − z, σ, τ) = 1/Γ(z + σ, σ, τ)

• Γ(z, σ,−τ) = Γ(σ − z, σ, τ) = 1/Γ(z + τ, σ, τ)

Most important of all, the elliptic gamma function has an interesting modular property,

Γ(z, τ,σ)Γ
(
z

τ
,
σ

τ
,
1
τ

)
Γ
(
z

σ
,

1
σ
,
τ

σ

)
= e−i

π
3Q(z,τ,σ)

Q (z, τ,σ) = z3

στ
− 3

2
τ+σ+1
στ

z2 + τ2 +σ2 +3τσ+3τ+3σ+1
2τσ z

− 1
4 (τ+σ+1)

(1
τ

+ 1
σ

+1
)
. (A.6)

In order to make the cyclic symmetry between (1, σ, τ) transparent, it is better to use the
homogeneous coordinates (ω1, ω2, ω3) using z → ξ/ω1, σ → ω2/ω1, τ → ω3/ω1. Then,

Γ
(
ξ

ω1
,
ω2
ω1
,
ω3
ω1

)
Γ
(
ξ

ω2
,
ω3
ω2
,
ω1
ω2

)
Γ
(
ξ

ω3
,
ω1
ω3
,
ω2
ω3

)
= e
−iπ3Q( ξ

ω1
,
ω2
ω1
,
ω3
ω1

) (A.7)

ω1ω2ω3Q

(
ξ

ω1
,
ω2
ω1
,
ω3
ω1

)
= ξ3− 3

2ξ
2∑

i

ωi+
ξ

2

∑
i

ω2
i +3

∑
i<j

ωiωj


− 1

4

(∑
i

ωi

)∑
i<j

ωiωj

=B3,3 (ξ;ωi) ,

= ξ3−3Ωξ2 +
(
3Ω2− Ω̃

)
ξ+ΩΩ̃−Ω3.

The polynomial B3,3 (ξ;ωi) is known as the Bernoulli polynomial of the third order. For
convenience, we have defined Ω =

∑
i

ωi/2 and Ω̃ =
∑
i

ω2
i /4.

A.3 Elliptic hypergeometric series

The elliptic hypergeometric series is the elliptic generalization of the usual hypergeometric
series.

NEN−1
(
~z, ~ζ;σ; τ ;u

)
=
∑
n≥0

N∏
i=1

Θ(zi;σ; τ)n
Θ(ζi;σ; τ)n

un, (A.8)

where the theta factorial Θ(z;σ; τ)n for n > 0 is defined as

Θ(z;σ; τ)n =
n−1∏
j=0

θ(z + jσ, τ). (A.9)

More generally,

Θ(z;σ; τ)n = Γ(z + nσ;σ, τ)
Γ(z, σ, τ) . (A.10)
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Alternatively, we can define the elliptic hypergeometric series using a shift operator
t
(z)
2 : z → z + σ.

Θ (z;σ; τ)n = 1
Γ (z, σ, τ) t

n
2 Γ (z, σ, τ)

NEN−1
(
~z, ~ζ;σ; τ ;u

)
=

N∏
i=1

Γ (ζi, σ, τ)
Γ (zi, σ, τ)

(
1

1− u∏N
i=1 t

(zi)
2 t

(ζi)
2

)
N∏
i=1

Γ (zi, σ, τ)
Γ(ζi, σ, τ) . (A.11)

A.4 Double elliptic gamma function

Multiple elliptic gamma functions have been defined in [35]. The double elliptic gamma
function is,

Γ2 (z,σ, τ, ζ) = exp
( ∞∑
n=1

1
n

xn+ pnqnrn

xn

(1−pn)(1−qn)

)
, where (x,p, q, r) = e2πi(z,σ,τ,ζ). (A.12)

It is defined for all values of (x, p, q, r) except for |p| = 1 or |q| = 1 or |r| = 1 or x = 1. For
|p|, |q|, |r| < 1 and x 6= 1, it can be written as a double infinite product,

Γ2(z, σ, τ, ζ) =
∞∏

i,j,k=0

1
(1− x piqjrk)(1− pi+1qj+1rk+1/x) . (A.13)

Modular properties of multiple elliptic gamma functions have been discovered in [33]. This
property of the double elliptic gamma function is,

Γ2 (z, σ, τ, ζ) Γ2

(
z

σ
,

1
σ
,
τ

σ
,
ζ

σ

)
Γ2

(
z

τ
,
σ

τ
,

1
τ
,
ζ

τ

)
Γ2

(
z

ζ
,
σ

ζ
,
τ

ζ
,

1
ζ

)
= e−i

π
12B4,4(ξ,ωi). (A.14)

where B4,4(ξ, ωi), i = 1, . . . , 4 is the Bernoulli polynomial of the fourth order and (ξ, ωi) are
the homogeneous variables i.e. (z, σ, τ, ζ) = (ξ/ω1, ω2/ω1, ω3/ω1, ω4/ω1).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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