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1 Motivation

The idea of time travel has captivated imaginations and inspired science fiction for several
centuries now: from the first fiction work portraying a time machine [1] to the myriad of
contemporary art inspired in wormholes [2] and time machines [3–5], the idea of time travel
has fascinated many generations of both scientists and non-scientists. From a rigorous
science point of view, it is well-known that general relativity allows for solutions that
have nontrivial topological or causal structures, such as Gödel’s rotating universe [6] or
wormhole spacetimes [7]. If a traversable wormhole exists, there are several ways it can be
transformed in a time machine [8], i.e. a spacetime with closed timelike curves in part of or
in the whole spacetime. In fact, it was shown that in the presence of surrounding matter, a
wormhole inevitably transforms into a time machine [9]. This relation between a wormhole
and a time machine was shown to be general and not specific to a particular solution of the
field equations [10]. It is also noteworthy that there have been theoretical proposals of self-
consistent classical systems that may allow us study properties of spacetimes containing
time machines [11–15], and also proposals for experimentally feasible analogue tabletop
settings resembling the properties of time-machine spacetimes [16–18].
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Due to the presence of closed timelike curves, these spacetimes generally exhibit Cauchy
horizons. The stability of a viable time machine is closely related to the stability of the
Cauchy horizons, which have been largely studied in the literature in the context of quan-
tum field theory (QFT) in curved spacetimes. More concretely, the stability is investigated
by analyzing divergences of the renormalized stress-energy tensor at the Cauchy horizon
due to vacuum fluctuations [10, 19, 19–21]. One of the main difficulties in such analyses
in the semiclassical regime concerns how one could define quantum field theory in these
background geometries, as they typically possess nontrivial topology and are not globally
hyperbolic. In previous studies the focus was on studying vacuum polarization effects
that, due to the presence of wormholes and time machines, result in divergences of the
renormalized stress-energy tensor (RSET), preventing then the “entrance” into the time
machine.

Quantum field theory in spacetimes with a wormhole and time machine was studied
in e.g. [9, 10]. The time-machine geometry is necessarily multiply connected, making the
quantization procedure highly nontrivial. The general construction of quantum field the-
ory on multiply-connected manifolds has been extensively studied using the framework of
automorphic fields [22–25]. The idea is to study the same quantum field on the corre-
sponding universal covering space, which has trivial topology, with certain automorphic
conditions applied to the field. A well-known example is furnished by a scalar field on the
Einstein cylinder, with topology R×S1, which in this construction is equivalent to the same
scalar field in Minkowski space (the universal covering of the cylinder) with (anti-)periodic
boundary conditions applied along the spatial direction.

It is known that quantization of a massless scalar field on a topologically closed space-
time and under certain boundary conditions can give rise to zero modes. A zero mode
naturally arises when a massless scalar field is subject to periodic or Neumann boundary
conditions, or when the background spacetime has toroidal topology in all spatial direc-
tions [26–30]. Zero modes are problematic because they do not admit a Fock representation,
thus the physical ground state of the zero mode, and hence the full theory, is a priori am-
biguous [26, 27]. For this reason zero modes are sometimes removed by hand [31–35], but
such procedure leads to unacceptable causality violations and other issues [27, 28]. Some
reasonable regularization of the unphysical ground state of the zero mode, using squeezed
vacuum of a quantum harmonic oscillator, has been proposed in [26–28] and how the
choice of regularization impacts the dynamics was studied. However, from a fundamental
perspective these regularizations are essentially ad hoc in nature.

The attempt to regularize the zero mode naturally raises the question whether there
exists a family of QFTs on curved spacetimes that can serve as the regulator. That is, we
want to find a family of QFTs that do not suffer from the zero-mode problem and at the
same time smoothly connect to the Einstein cylinder (e.g. as a one-parameter family). This
task is nontrivial for two reasons. First, twisted massless scalar fields on Einstein cylinder,
equivalent to scalar fields with anti-periodic boundary condition φ(t, x+L) = −φ(t, x), has
no zero mode. Second, it is not obvious whether untwisted scalar fields on other spacetimes
such as Misner spacetime [36], despite having the same global topology R×S1 as Einstein
cylinder, exhibits zero mode (see, e.g., [37] and more recently [38]). It turns out that the
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time-machine geometry studied in [9, 10] provides such a one-parameter family of scalar
field theories. The field theory on the Einstein cylinder is recovered in the limit of zero
local curvature.

In this paper, we study the quantization of a massless scalar field in a spacetime with a
time machine and analyze how a zero mode appears in the limit in which we remove the time
machine. We focus on (1+1)-dimensional settings where powerful conformal techniques
can be employed to obtain explicit expressions for the vacuum Wightman functions of
the field. In this particular model, the time-machine spacetime can be understood as
an AdS2 spacetime with suitable boundary conditions applied to the field. We obtain
two main results pertaining the zero mode. First, we show that while the background
Einstein cylinder is obtained as the limit when the time machine disappears, the underlying
quantum field theory does not smoothly approach the Einstein cylinder case because the
Hadamard function (vacuum expectation of the field’s anti-commutator) associated with
the zero mode diverges in this limit. The Pauli-Jordan function (vacuum expectation of
the field commutator), however, does possess a well-defined Einstein cylinder limit which
includes the zero mode contribution as required by relativistic causality [27]. Second, we
show that the regularization of the zero-mode state first proposed in [26] in terms of the
squeezed vacuum of the quantum harmonic oscillator can be understood in terms of the
warp parameter of the time machine. In this sense, the quantization on time-machine
background prescribes a regularization for the zero-mode state in the Einstein cylinder
quantization.

The paper is organized as follows. In section 2 we describe a model of spacetime
in (1+1) dimensions with a time machine, previously studied in [9, 10]. In section 3 we
consider quantum field theories in the Einstein cylinder (without a time machine) and in
the time-machine model. We first review the quantization of a massless scalar field in a
(1+1) Einstein cylinder spacetime and then develop the quantization in the corresponding
time-machine model. In section 4 we construct the vacuum Wightman two-point functions
of the massless scalar field on these background spacetimes, carefully analyzing the role of
the zero mode in appropriate limits. Finally, in section 5, we compute the renormalized
stress-energy tensor and track the zero-mode contribution as we take the Einstein cylinder
limit.

We adopt the convention that c = ~ = 1 and we denote by x a spacetime point
without specifying the coordinate system. The metric signature is chosen so that for a
timelike vector vµ we have vµvµ < 0.

2 Geometry of wormholes and time machines

In this section, we review the construction of a (1 + 1) wormhole and its conversion into
a time machine. In two-dimensional spacetimes, conformal techniques can be used to find
closed-form expressions for various observables of interest and provide clarity to the physics
at hand. Our goal is to provide enough geometrical and topological background to later
study quantum field theory on a spacetime with time machines and the properties of the
vacuum state of the field.
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The outline of the construction goes as follows. We will construct a (1+1)-dimensional
asymptotically flat spacetime with a wormhole, that can then be used to produce a time
machine. In two dimensions, this construction is straightforward: it amounts to topologi-
cally identifying the opposite ends of a strip that would correspond to the wormhole mouths
joined by a throat. This is equivalent to an Einstein cylinder from Minkowski space (see,
e.g., [26–28]). If the endpoints that are identified are at different times, the construction
would produce a time machine and the resulting spacetime is not isometric to the Einstein
cylinder.

Note that in higher dimensions, this procedure is developed in an analogous way by
starting from a (d + 1)-dimensional Minkowski spacetime and choosing two worldlines
along which the mouths of the wormhole move. For every point on the worldlines, we
can define a unique d-dimensional spacelike hypersurface orthogonal to the wordlines. We
then proceed to cut two balls (with the same radius) in the hypersurface centered at each
worldline and topologically identify the two regions where the two balls are carved out. This
would correspond to introducing two wormhole mouths connecting two (possibly distant)
spacetime regions, producing an orientable wormhole with (infinitesimally) short throat [8].
We remark that a wormhole can also be turned into a time machine by introducing relative
motion between the two mouths [7]. The generalization to include N wormholes follows by
introducing N pairs of wormhole mouths in a similar fashion [10]. In all these constructions,
let us note that due to the topological identification, a spacetime with a wormhole or a
time machine must be multiply connected, in contrast with the simply connected Minkowski
space. The multiply connectedness of the underlying spacetime is captured by topological
invariants such as homology classes and fundamental groups.

Before constructing the time-machine geometry (which will be multiply connected), let
us first consider the most general, globally static, simply connected (1+1)-dimensional aux-
iliary spacetime (M, g), where the line element associated with the metric tensor
g = gµνdxµ ⊗ dxν in adapted coordinates reads

ds2 = −α(x)2dt2 + dx2 , (2.1)

with t, x ∈ R. Here x represents the proper spatial distance and the scalar curvature is
R = −2α′′/α. From now on we will consider cases with R 6= 0 since the existence of time
machines requires nonzero curvature. Since α(x) is a nowhere-vanishing function, without
loss of generality we take α(x) > 0 and hence it will be convenient to write it in the
following form

α(x) = e−
∫ x

0 dy a(y) , (2.2)

for some function a(x). On M , ξ = ∂t is the unique (up to normalization) global timelike
hypersurface-orthogonal Killing vector field, i.e. it obeys the two conditions

ξ(µ;ν) = 0 , ξ[µ;νξλ] = 0 . (2.3)

The first condition states that ξ = ∂t is a Killing vector and the second states that it is
orthogonal to the hypersurfaces of constant t. The hypersurface-orthogonality condition
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guarantees that M admits a foliation M = R × Σ, where Σ is a Cauchy surface for M
orthogonal to ξµ. Note that hypersurface orthogonality is trivially satisfied for any vector
field in (1 + 1) dimensions since ξ[µ;νξλ] is a three-form in a two-dimensional manifold.

It will also be convenient to introduce a velocity vector field associated with Killing
observers whose four-velocity uµ is proportional to the timelike Killing field ξµ, i.e.

uµ := dxµ

dτ = ξµ√
−ξνξν

, (2.4)

which in coordinates (t, x) reads uµ = (α−1, 0). The velocity field uµ generates a flow
such that at every point there is exactly one integral curve whose tangent vector is uµ,
which we will call Killing trajectories. It is straightforward to check by direct calculation
that velocity vector uµ and the corresponding acceleration vector aµ := duµ/dτ obey the
following relations

−aµuν = uµ;ν , a[µ;ν] = 0 , (2.5)

together with the fact that aµ for Killing observers is a simple gradient, i.e.

aµ = 1
2∇µ log(−ξνξν) , (2.6)

which for metric (2.1) has coordinate representation aµ = (0,−a(x)). Hence a(x) that
appears in the exponent of eq. (2.2) takes the role of acceleration parameter of the Killing
observer. In fact, it can be seen that the conditions (2.3), which ensure that a vector field
is a hypersurface-orthogonal Killing vector, are equivalent to the conditions (2.5) on the
corresponding velocity field and acceleration of the Killing observers (see appendix A).

In order to construct a time-machine model, we consider a new spacetime M by iden-
tifying points in M in the following way. Given two positive constants A ≥ 1 and Q, we
establish the equivalence relation (t, x) ∼ (t′, x′) if and only if t′/t = A and x′ − x = Q in
M . Then the metric at these two points must also be identified, which implies

Aα(x+Q) = α(x) . (2.7)

In other words, the function a(x) = −α′(x)/α(x) must be a periodic function with period
Q, whose integral over a single period is equal to logA. Hence Q represents the proper
separation between wormhole mouths and the warp parameter A represents the time shift
that determines the “strength” of the time machine. When A > 1 the spacetime will
contain closed timelike curves (CTCs), as we will see shortly. This model corresponds to a
time machine that possesses both a future and a past Cauchy horizon, where the CTCs are
confined to the regions beyond the horizons1 (more on this later; see also [39]). When taking
A→ 1 there is no time shift and one recovers a wormhole model: in (1+1)-dimensional case
this is precisely the Einstein cylinder. Let us remark that this construction is essentially
different from the somewhat more conventional time machine where the identification is of

1When considering the creation of the time machine at t = 0 in previous literature, there exist only a
future Cauchy horizon beyond with CTCs appear.
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the form (t, x) ∼ (t + B, x + Q) for some constant B (that needs to be greater than the
distance between wormhole mouths and contains no Cauchy horizon), see e.g. [8] for such
an example.

This new spacetimeM = R×S1 is locally equivalent toM but is qualitatively different
as far as global features are concerned. Indeed, this spacetime is multiply connected and
the simply-connected spacetime M is its universal cover. Although M has a local Killing
vector ξ (the same asM) for each simply connected region U ⊂M , this local Killing vector
cannot be extended globally throughout M . In order to see this lack of globality, it suffices
to consider the norm eϕ =

√
−ξµξµ of the Killing vector ξ. Let us consider the point of

coordinates (t, x) that can also be equally described by coordinates (t′, x′) such that t′ = At

and x′ = x + Q. In both sets of coordinates, the metric has the same form given above.
If ξ were globally defined then both values at ϕ(t, x) and ϕ(t′, x′) should coincide because
ϕ is a scalar field. However eϕ(t,x) = α(x) and eϕ(t′,x′) = α(x′) = α(x)/A = eϕ(t,x)/A,
hence the norm agrees only when A = 1. Alternatively, we can also note that the local
Killing field ξ is defined such that its components in both coordinate charts (t, x) and
(t′, x′) are given by ξµ = ξ′µ = (1, 0). However, the tensor transformation law requires
ξ′µ = (∂x′µ′/∂xν)ξν = A(1, 0) = Aξµ, thus the components can only agree consistently
throughout M when A = 1. In other words, M is locally — but not globally — static.

In contrast, the vector fields uµ and aµ associated with Killing observers defined in
eq. (2.4) and (2.6) can be extended globally throughout M . The vector uµ has components
uµ = (α(x)−1, 0) in any coordinates adapted to the local staticity. In coordinates (t′, x′),
the vector u has components u′µ = (α(x′)−1, 0) = A(α(x)−1, 0) = Auµ and this is precisely
the appropriate transformation law for a globally defined vector field under these changes
of coordinates. The same applies straightforwardly to the acceleration aµ. Furthermore,
as we have already seen, they globally satisfy the conditions (2.4).

Note that the acceleration aµ is a closed form [see eq. (2.5)] but is no longer an exact
form, i.e. the second Killing observer condition in eq. (2.3) implies that it is locally a
gradient, but not globally. Indeed, the circulation of this vector in a closed path C is not
zero in general. In fact, since aµ = (0,−a(x)) such that x ∈ (0, Q), we find

I[C; a] =
∫
C
aµdxµ = ∓n

∫ Q

0
a(x)dx = ±nI[a] , (2.8)

where n ∈ Z (winding number) is the number of times that C wraps around the wormhole
and the sign depends on the orientation of the path. I[a] is defined as the circulation with
winding number 1 and we pick an orientation providing a negative sign for concreteness.
In this (1 + 1) time machine considered here, it follows that I[a] = − logA. Non-zero
I[a] implies that the gravitational field in a time machine is nonpotential. Physically,
it means that a particle going through a wormhole converted into a time machine can
extract nonzero work since the gravitational field is not conservative. More precisely, this
is because aµ is locally exact, i.e. aµ = ∂µϕ with ϕ = 1

2 log(−ξνξν); however, ϕ cannot be
extended to a global potential (hence a nonpotential). Indeed, ϕ has a branch cut in which
it is discontinuous. This circulation is characterized by the topology of the spacetime and
characterizes the strength of the time machine.
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In order to see explicitly how the circulation characterizes the strength of the time
machine, let us first note that the relation between the Killing time t (such that ξ = ∂t)
and the proper time τ (such that u = ∂τ ) is given by dτ = e−ϕ(t,x)dt = α(x)−1dt. Let us
consider two points p1 and p2 that lie in the same t = t0 = constant surface. Let x1 and
x2 be their spatial coordinates. Consider two more points q1 and q2 with the same spatial
coordinates as their cousins x1 and x2, both of them located in the t = t0 + δt = constant
surface. The nearby points p1 and q1 are separated by a proper time δτ1 = α(x1)−1δt and
likewise for the close points p2 and q2, i.e. δτ2 = α(x2)−1δt. Therefore the ratio between
them is just δτ2/δτ1 = α(x1)/α(x2). If the points p2, q2 are obtained by translating
p1 and q1 around the wormhole n times, i.e. x2 = x1 + nQ, then this ratio becomes
δτ2/δτ1 = α(x1)/α(x1 + nQ) = e−nI[a] = An.

We can construct a particularly simple representative example of the time-machine
geometry with warp parameter A by setting the acceleration parameter a(x) to be a real
constant, which we define to be a(x) = W := (logA)/L. We will call this representative
model the canonical time machine. Without loss of generality we consider W ≥ 0 so that
L > 0. The canonical time-machine geometry captures all the essential topological informa-
tion of the more general time-machine geometry. The only difference between the general
time machine described by an arbitrary a(x) of warp parameter A and proper wormhole
length Q and the canonical one is encoded in a smooth conformal factor, which of course
has no relevance in the causal structure or the topology of the time-machine spacetime.

More explicitly, any metric of the form (2.1) is conformal to that with constant a equal
to W = (logA)/L:

ds2 = Ω(y)2(−e−2Wydt2 + dy2) , (2.9)

with

Ω(y) = eWyα[x(y)] , (2.10)

where x(y) is the solution to the separable differential equation

dx
dy = eWyα(x), (2.11)

with the arbitrary convenient condition that the origin of x and y coordinates coincide.
To obtain the value of L in terms of the warp parameter A and the proper length Q of

the wormhole, we simply have to integrate the previous equation and impose the condition
that L = y (x = Q), i.e. that L is the length of the corresponding canonical time machine.
This straightforwardly gives the relation

L = logA
A− 1

∫ Q

0

dx
α(x) . (2.12)

From now on we will concentrate on the canonical time machine with parameters A and
L for which the metric in coordinates (t, y) in the universal covering space M is given by

ds2 = −e−2Wydt2 + dy2, W = logA
L

. (2.13)
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This geometry has constant negative curvature with Ricci scalar R = −2W2, hence it is
locally isometric to a two-dimensional Anti-de Sitter spacetime AdS2.

The canonical time-machine spacetime indeed contains CTCs as we see now and there-
fore so does any other conformally related to it. Indeed, consider the closed curve

y = y0 + 1
W log t

t0
, (2.14)

where (t0, y0) is identified with (At0, y0+L). Its tangent vector is given by vµ=(1,W−1t−1).
This curve is a CTC if vµ is timelike, i.e. if

vµvµ < 0 ⇐⇒ t20 >
1
W2 e

2Wx0 . (2.15)

Let us now make more explicit the connection with the Einstein cylinder. When A→ 1
which implies W → 0 (provided that L is kept unchanged), the background geometry of
the time-machine model approaches the Einstein cylinder since we have e−2Wy → 1 and
the metric becomes flat. Conversely, this implies that if W > 0, the metric is not flat,
i.e. a spacetime with a time machine is necessarily curved. This Einstein cylinder limit
is precisely what we need in order to investigate the zero-mode problem in quantum field
theory in the context of time-machine model.

In order to develop a quantum field theory in next section, it is essential that M can
be viewed as the universal covering space for M . In fact, this universal covering technique
is a useful tool to work with multiply-connected spacetimes since in the universal covering
space the functions are simpler to evaluate and it is possible to define global Killing fields
(if the time machine is locally static). Note that in our simple case, in order to transform
results obtained in the covering space to the time-machine spacetime, we will only need to
consider the role of the factor A in such transformation.

For a slightly more formal review of the general machinery underlying this construction
see appendix B.

3 Quantum field theory

In this section, we will describe scalar QFT on a two-dimensional spacetime with a time
machine M . We will first review the simplest QFT living on spacetime with topology
R × S1 where the metric is flat, commonly known as the Einstein cylinder. We will then
study QFT on the topological cylinder describing a spacetime with a time machine that we
have constructed in the previous section. In our discussions we will track the contribution
that leads to the zero mode of the scalar field in the Einstein cylinder case. We will work
with massless scalar fields since massive fields do not exhibit zero modes.

Following section 2, we will use the “bar” notation for the quantities associated with the
field in the multiply-connected spacetimeM (Einstein cylinder and the time machine) while
the field quantities without the “bar” are associated to their simply connected universal
cover M .
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3.1 (1 + 1) Einstein cylinder

Let us start with a brief recollection of the quantization of a massless scalar field φ in a
(1+1)-dimensional Einstein cylinder, with geometry locally defined by the line element

ds2 = −dt2 + dy2 . (3.1)

The Einstein cylinder is obtained by a topological identification given by (t, y) ∼ (t, y+L),
where L is the circumference of the cylinder and t ∈ R. A massless scalar field φ on the
Einstein cylinder obeys the Klein-Gordon equation with periodic boundary condition

∂µ∂
µφ = 0 , φ(t, y) = φ(t, y + L) . (3.2)

The resulting massless quantum scalar field has Fourier mode decomposition given
by [26, 27]

φ(t, y) = Qzm(t) + φosc(t, y) , (3.3)

φosc(t, y) =
∑
n 6=0

1√
4π|n|

(
ane
−i|kn|t+ikny + h.c.

)
, (3.4)

where kn = 2πn/L and n ∈ Z \ {0}. We call φosc the oscillator modes and the spatially
constant piece Qzm(t) the zero mode because it corresponds to a zero-frequency oscillator.
The ladder operators an, a†n satisfy the canonical commutation relation [am, a†n] = δmn for
all n,m 6= 0.

It is well known that the ground state in this theory is nontrivial because of the
zero mode [26, 27]. We can define the Fock vacuum |0osc〉 for φosc as the state satisfying
an |0osc〉 = 0 for all n 6= 0. However, the zero mode has no Fock representation since it is
dynamically equivalent to a quantum-mechanical free particle of mass L. This can be seen
from the observation that the Hamiltonian is given by

Hzm = P
2
zm

2L . (3.5)

As such, the zero mode is naturally associated with position and momentum operators
Q

s
zm, P

s
zm respectively (the subscript “S” denotes the Schrödinger picture). These operators

satisfy equal-time canonical commutation relation [Qs
zm, P

s
zm] = i. We can then express

the zero mode Qzm(t) as

Qzm(t) = Q
s
zm + P

s
zmt

L
. (3.6)

Zero modes appear naturally in many situations, such as spacetimes with toroidal spatial
topology, or when we impose Neumann boundary conditions on the field (or a mixture
of Neumann and periodic boundary conditions) along all the transverse directions [27].
They also appear for massless scalar fields minimally coupled to curvature in de Sitter
background geometry [29].

A useful but nontrivial way of thinking about periodic boundary conditions imposed
on the scalar field φ is by considering a massless scalar field φ living on the universal cover
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of the Einstein cylinder (i.e. Minkowski space) where φ is subject to certain “automorphic
conditions”: the field φ is then called an automorphic field [23–25]. These automorphic con-
ditions are governed by the multiply-connected property of the Einstein cylinder, namely
the fundamental group of the cylinder π1(M) = Z. Thus the periodicity of φ comes nat-
urally from the fact that M is a quotient space of Minkowski space associated to π1(M).
This viewpoint will be very useful when we work with the time machine, as the scalar
field properties depend explicitly on how this automorphic field construction works (see
appendix B for an illustration and further details).

3.2 (1 + 1) time-machine model

In section 2 we saw that a generic (1+1) time machineM characterized by a warp parameter
A and proper wormhole length Q is conformally equivalent to a canonical time-machine
model characterized by the same warp parameter A and proper length L. The canonical
model differs from the generic case only in smooth local curvature contributions, since the
canonical geometry has constant curvature.

In what follows we will focus on the canonical time-machine model whose universal
covering spaceM is the Poincaré patch of AdS2 spacetime with line element given by (2.13),
where WL = logA, t ∈ R, and y ∈ R. The canonical time-machine model M is the
quotient space obtained by identification (t, y) ∼ (At, y + L) of the Poincaré patch, where
A ≥ 1 and L > 0 as we saw in section 2. The fact that the universal covering space
M corresponds to the well-studied Poincaré patch of anti-de Sitter geometry will be very
helpful in understanding various properties of the quantization in the quotient space M .

In order to study quantum fields on M , we will employ universal covering tech-
niques [10, 23–25]. These techniques allow us to generalize the quantization on the Einstein
cylinder, where it reduces to imposing periodic boundary conditions on the field, to more
general topological identifications. More concretely, the technique involves constructing the
automorphic field φ on the time-machine geometry from the corresponding field φ living
on the Poincaré patch of AdS2.

Starting from the metric (2.13), we consider the coordinate transformation from (t, y)
to the more standard Poincaré-patch coordinates (η, ξ) ∈ R× R+ given by

η = t , ξ = eWy/W . (3.7)

This transformation brings the metric into the form

ds2 = 1
W2ξ2

(
−dη2 + dξ2

)
, (3.8)

where the AdS2 length scale is given by W−1. In the following, it will be convenient to
introduce double null coordinates in the Poincaré patch, defined by

ζ± = ξ ± η . (3.9)

It may be illustrative to show the Penrose diagram of the maximal analytic extension
of the Poincaré patch. With this aim we introduce the new variables τ, ρ defined by the
following relations:

tan(ρ± τ) = 2Wζ±. (3.10)
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Figure 1. Conformal diagram for the Poincaré patch of AdS2. The Cauchy horizons of the Poincaré
patch are labelled H±. After topological identification, the region ζ+ζ− < 0 presents CTCs, thus
two new Cauchy horizons H′± appear in the conformal diagram. In the compactified coordinates
(τ, ρ), the Poincaré patch is covered by ρ > |τ − π/2| and ρ ∈ (0, π).

In these new coordinates the Poincaré patch covers the colored region ρ > |τ − π/2| of the
Penrose diagram of the maximal analytic extension defined by the range ρ ∈ (0, π), τ ∈ R
shown in figure 1. The conformal boundary I consists of two disconnected pieces, namely IL
at ρ = 0 and IR at ρ = π. The Poincaré patch also has two past and future Cauchy horizons
at ρ = |τ − π/2|, i.e. at ζ+ =∞ and ζ− = ∞, respectively, beyond which the spacetime
possesses CTCs. For the time machine model, topological identification introduces new
CTCs and Cauchy horizons H′±, and only the diamond-shaped region ζ± > 0 is free of
CTCs after the identification. Note that for our purposes, we apply the quantization via
the universal covering approach to the standard Poincaré patch and not on the diamond-
shaped patch, as the latter will turn out to not solve the zero mode ambiguity.

The region devoid of any CTCs after topological identification is given by ζ± > 0 (cf.
figure 1) as we have already mentioned, which is consistent with eq. (2.15). Furthermore,
recall that the standard Poincaré patch (ξ > 0) itself has no CTCs in the region ζ+ζ− < 0,
but the time-machine model introduces new CTCs in these regions after topological iden-
tification.

Let us concentrate from now on the Poincaré patch. The massless Klein-Gordon
equation is invariant under Weyl rescaling and reduces to the simple wave equation
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(−∂2
η + ∂2

ξ )φ = 0 with appropriate boundary conditions at the conformal boundary ξ = 0
as AdS2 is not globally hyperbolic. (See appendix C for the choice of boundary conditions
imposed on IR.)

Since we will restrict our attention to conformally coupled massless scalar fields, we are
free to choose the boundary conditions as null geodesics are able to reach the conformal
boundary. For the purpose of analyzing how the zero mode arises as we vary the warp
parameter A, it is sufficient to restrict our attention to Dirichlet boundary conditions, i.e.
φ|ξ=0 = 0. We will briefly comment on the other choices of boundary conditions at the end
of section 4.

Using the conformal invariance for a conformally coupled massless scalar field, the
Klein-Gordon equation becomes (in ζ± coordinates)

∂+∂−φ = 0 . (3.11)

This has general solution φ(ζ+, ζ−) = F+(ζ+) + F−(ζ−), where F− and F+ are left- and
right-moving fields. On the Poincaré patch, a well-posed Cauchy value problem requires
boundary conditions specified at the timelike boundary ξ = 0 as we have discussed above.
For Dirichlet boundary condition we have φ|ξ=0 = φ|ζ−=−ζ+ = 0, hence the most general
solution satisfying this boundary condition has the form

φ(ζ+, ζ−) = F (ζ+)− F (−ζ−), (3.12)

for some arbitrary function F . The Klein-Gordon product for any two solutions φ1 and φ2
can be written as

〈φ1, φ2〉 = −i
∫ ∞

0
dξ
(
φ1∂ηφ

∗
2 − φ∗2∂ηφ1

)
. (3.13)

This inner product is independent of the choice of spacelike hypersurface η = constant.
We can obtain a set of positive frequency modes with respect to the Killing vector ∂η

by choosing F (z) = 1√
4πωe

−iωz. That is, the positive-frequency eigenfunctions

uω(ζ+, ζ−) = 1√
4πω

(e−iωζ+ − eiωζ−) , (3.14)

are orthonormal with respect to the Klein-Gordon inner product (3.13) in the sense that
〈uω, uω′〉 = δ(ω − ω′). Therefore any solution can be written as

φ(ζ+, ζ−) =
∫ ∞

0
dω
[
a(ω)uω(ζ+, ζ−) + a(ω)∗u∗ω(ζ+, ζ−)

]
. (3.15)

Promoting a(ω) and a∗(ω) to annihilation and creation operators acting on the Fock space
defined in terms of the positive frequency modes above, together with commutation relation
[a(ω), a(ω′)†] = iδ(ω − ω′), provides a canonical quantization of the field φ.

Once we have the quantum field theory defined in the covering space M , we would like
to obtain the corresponding quantum field theory defined on the time-machine spacetime
M . We have seen in previous section the description of this spacetime, given by the periodic
identification of a shifted time with parameter A. In terms of Poincaré coordinates, the
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time-machine geometry is obtained from the metric given by eq. (3.8) with the identification
(η, ξ) ∼ A(η, ξ). We consider a fundamental domain given by Wξ ∈ (1, A) and η ∈ R
and construct φ(ζ+, ζ−) defined in this fundamental domain from φ(ζ+, ζ−) living on the
universal cover.

In the double null coordinates, the topological identification is given by
(ζ+, ζ−)∼A(ζ+, ζ−), thus the values of the (untwisted) scalar field that we are considering
will have to coincide in both identified points, i.e. φ(Aζ+, Aζ−) = φ(ζ+, ζ−). Mathemat-
ically, the field φ has to be automorphic under the action of the fundamental group (see
appendix B for general definition). This automorphic requirement, which generalizes peri-
odic functions in Fourier theory, means that the “annihilation variable” a(ω) must satisfy

a(ω) =
√
A a(Aω) . (3.16)

This requirement can be satisfied by a(ω) if it takes the following form

a(ω) = ω−1/2
∞∑

n=−∞
cn(ω/W)−2πinβ , β = 1

logA , (3.17)

where cn are arbitrary constants. In order to see this, we first express eq. (3.16) in terms of
the function f(w) := ew/2 a(ew), where w = log(ω/W). In this language, condition (3.16)
is simply that f(w) must be periodic with period β−1. Therefore, f(w) can be expanded
as a Fourier series

f(w) =
∞∑

n=−∞
cne
−2πinβw , (3.18)

showing that the condition is satisfied.
This gives us the decomposition of the automorphic solutions φ(ζ+, ζ−) as the infi-

nite sum

φ(ζ+, ζ−) =
∞∑

n=−∞
[cnun(ζ+, ζ−) + c∗nu

∗
n(ζ+, ζ−)] , (3.19)

where cn are arbitrary constants and

un(ζ+, ζ−) = bn

∫ ∞
0

dω
ω

(ω/W)−2πniβ(e−iωζ+ − eiωζ−) , (3.20)

where bn are suitable normalization constants that will be determined below. The induced
Klein-Gordon inner product in M evaluated on the η = 0 hypersurface is simply the
restriction of the Klein-Gordon product in M to a fundamental domain:

(φ1, φ2) = −i
∫ W−1A

W−1
dξ
(
φ1∂ηφ

∗
2 − φ

∗
2∂ηφ1

)∣∣
η=0 , (3.21)

where φ1, φ2 are any solutions onM . Using this inner product (3.21) to normalize un (hence
fixing bn) and integrating over ω, we obtain explicit forms for the normalized modes un:

u0(ζ+, ζ−) = −
(
β

4π

) 1
2
(

ln |ζ+|
|ζ−|

+ iπ2 (s+ + s−)
)
, (3.22)

un 6=0(ζ+, ζ−) = [8πn sinh(2π2βn)]−
1
2×
(
e−π

2βns+ |Wζ+|2πiβn − eπ2βns− |Wζ−|2πiβn) ,
(3.23)
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where s± = sign(ζ±). Therefore, the positive frequency modes un (3.22) and (3.23) form an
orthonormal basis of the positive frequency one-particle Hilbert space, i.e. (un, un′) = δnn′ .

We close this section by making a few remarks regarding the range of ζ± that we
will consider in the subsequent calculations. Due to the identification (η, ξ) ∼ A(η, ξ),
we will only perform calculations in the region where there is no CTC after topological
identification, as done in [10]. This corresponds to the proper subset of the Poincaré patch
given by the diamond-shaped region ζ± > 0. Note that the field φ itself is quantized
in the full Poincaré patch before topological identification even though the calculations
of observables (such as the two-point functions or stress-energy tensor) are restricted to
the diamond-shaped region without CTCs. This is the key to extract the zero mode
regularization we propose in this work.

Another way to see this is to consider what happens if instead we try to quantize
φ only in the diamond-shaped proper subset of the universal covering space. For this
diamond-shaped region, there is an adapted coordinate system given by

η = 1
Weχ tan σ , ξ = 1

Weχ secσ , (3.24)

in terms of which the metric becoems

ds2 = 1
W2 (−dσ2 + cos2 σdχ2), (3.25)

with |σ| < π/2 and χ ∈ R. In these coordinates, the topological identification now reads
(σ, χ) ∼ (σ, χ+ logA). Notice that this is precisely the same identification as the Einstein
cylinder, thus the vacuum state associated with the conformal Killing time σ would seem
to possess the same zero mode ambiguity as the Einstein cylinder. Consequently, our task
cannot be achieved by canonical quantization in the diamond-shaped region.

On the other hand, in these χ, σ coordinates, valid only inside the diamond, one can
easily see that

ζ+
ζ−

= 1 + sin σ
1− sin σ , (3.26)

so the mode u0, given in (3.22), of the quantization in the full Poincaré patch, when
restricted to the diamond-shaped region depends only on the timelike coordinate σ. We
note that in this sense, even though u0 is not a zero mode in our quantization, when
restricted to the diamond ζ± > 0 it looks like the zero mode of the quantization restricted
to the diamond.

In summary, according to the automorphic prescription we obtain φ(ζ+, ζ−) for the
time-machine geometry M by restricting φ(ζ+, ζ−) to take values on the fundamental do-
main M , i.e. η ∈ R and ξ ∈ (1, A). The corresponding canonical quantization is carried
out by promoting the constants cn and c∗n to annihilation and creation operators acting
on the Fock space defined in terms of the positive frequency modes un, with canonical
commutation relations [cn, c

†
n′ ] = iδnn′ .
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4 Vacuum two-point functions

In this section, we will analyze several vacuum two-point functions and understand the lim-
iting behaviour from the time machine to the Einstein cylinder in terms of these functions.
These two-point functions are very useful for many purposes, such as detector responses
upon interacting with the field within the Unruh-DeWitt model [26], relativistic causal-
ity [27] and communication [40, 41], or computing the renormalized stress-energy tensor of
the field [42].

In our model, the universal-covering approach described earlier will enable us to com-
pute the vacuum two-point functions in terms of the orthonormal basis un in M . In par-
ticular, by computing the commutator and anti-commutator vacuum expectation values,
we will obtain the vacuum Wightman two-point functions for the time-machine geometry.

The relevant vacuum correlators, namely the Wightman function W (x, x′), the Hada-
mard function (anti-commutator vacuum expectation value) C+(x, x′), and the Pauli-
Jordan function (commutator vacuum expectation value) C−(x, x′), are given by

W (x, x′) := 〈0|φ(x)φ(x′)|0〉 , (4.1a)
C+(x, x′) := 〈0|{φ(x), φ(x′)}|0〉 , (4.1b)
C−(x, x′) := 〈0|[φ(x), φ(x′)]|0〉 , (4.1c)

where x is the shorthand for the spacetime points in any coordinates. They are related by

C±(x, x′) = W (x, x′)±W (x′, x) . (4.2)

In the following, we will first review the two-point functions for the Einstein cylinder,
focusing on the presence of a zero mode contribution. Then we will proceed to calculate
those for the canonical time machine and determine the behavior in the limiting case where
the Einstein cylinder is recovered.

4.1 Einstein cylinder

We have already analyzed the mode decomposition of the field in oscillatory modes and
the zero mode. In terms of it, let us denote the oscillator and the zero mode vacuum two-
point functions of the Einstein cylinder by C±osc(x, x′),Wosc(x, x′) and C±zm(x, x′),Wzm(x, x′)
respectively. The vacuum on the Einstein cylinder can be written as the product state
|0〉 = |0zm〉 ⊗ |0osc〉. By construction we consider x = (t, y) where t ∈ R and y ∈ [0, L].

Using the mode decomposition for φosc in eq. (3.4), the normalized positive-frequency
modes on the Einstein cylinder read

un(x) = 1√
4πn

e−i|kn|t+ikny , (4.3)

with kn = 2πn/L. It follows that the Wightman function is given by

Wosc(x, x′) =
∑
n 6=0

un(x)u∗n(x′)

= − 1
4π

[
log

(
1− e

2πi∆z−
L

)
+ log

(
1− e−

2πi∆z+
L

)]
, (4.4)
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where z− = y− t, z+ = y+ t are the null coordinates and ∆z− = z−− z′−, ∆z+ = z+− z′+.
We have dropped the iε term for simplicity since it can be interpreted as prescribing the
branch cuts for different distributions. Consequently, the Hadamard and Pauli-Jordan
functions can be readily obtained from this expression using eq. (4.2) read [28]

C±osc(x, x′) = ∓ 1
4π

[
log

(
1− e−

2πi∆z−
L

)
+ log

(
1− e

2πi∆z+
L

)]
− 1

4π

[
log

(
1− e

2πi∆z−
L

)
+ log

(
1− e−

2πi∆z+
L

)]
, (4.5)

where as before, we have removed the iε for simplicity.
For the zero mode, there is no a priori good ground state because the energy eigenstate

of the Hamiltonian with zero eigenvalue is not normalizable: we know that the momentum
eigenstate |p〉 has Dirac delta normalization 〈p|p′〉 = δ(p− p′). A natural (but nonetheless
ad hoc) alternative would be to assume that a physical ground state for the zero mode
can be taken to be the ground state of a quantum harmonic oscillator described by the
following first and second moments [26]

〈Qs〉 = 〈Ps〉 = 〈{Qs, Ps}〉 = 0 , (4.6)

〈Q2
s〉 = 1

2γ , 〈P 2
s 〉 = γ

2 , (4.7)

where γ =
√
mω is a dimensionless frequency parameter associated to the mass and natural

frequency of the oscillator. This choice is natural because it includes the free-particle
momentum eigenstate as a (singular) limit γ → 0 and the usual property of a ground
state of being a Gaussian state. Thus, one can think of the momentum eigenstate as the
limiting case of highly squeezed vacuum state of a harmonic oscillator along the momentum
direction in phase space.

The Wightman function for the zero mode is computed using the Heisenberg operator
defined in eq. (3.6), together with the first and second moments (4.6)–(4.7). We can then
show that [27, 28]

C+
zm(t, t′) = 1

γ
+ γ

tt′

L2 , (4.8)

C−zm(t, t′) = − i∆t
L

, (4.9)

Wzm(t, t′) = 1
2γ + γ

tt′

2L2 −
i∆t
2L , (4.10)

where ∆t = t − t′. The zero-mode Wightman function is translation invariant along the
spatial direction but not time-translation invariant, as the second term contains the product
tt′/L2. Furthermore, we see that the limit γ → 0 of Wzm(t, t′) is divergent, which is
equivalent to the statement that the momentum eigenstate of P̂s is not a valid physical
state of the zero mode.
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4.2 Time machine-model

We will now explicitly carry the calculation of the various vacuum two-point functions for
the canonical time-machine model. First note that the Wightman two-point function can
be expressed in terms of sums of the mode functions un given in eqs. (3.22) and (3.23):

W (x, x′) =
∞∑

n=−∞
un(x)u∗n(x′) . (4.11)

By using the relation among the two-point functions, we write the Wightman function
in terms of the Hadamard function (anti-commutator) C+ and the Pauli-Jordan function
(commutator) C−

W (x, x′) = 1
2
[
C+(x, x′) + C−(x, x′)

]
, (4.12)

C+(x, x′) = 〈0|{φ(x), φ(x′)}|0〉

=
∑
n

[
un(x)u∗n(x′) + u∗n(x)un(x′)

]
, (4.13)

C−(x, x′) = 〈0|[φ(x), φ(x′)]|0〉

=
∑
n

[
un(x)u∗n(x′)− u∗n(x)un(x′)

]
. (4.14)

We derive now the expressions of the Hadamard and Pauli-Jordan functions that will
determine the Wightman function. Let us first consider the Hadamard function. Using the
mode sum formulation for it, the Hadamard function reads

C+(x, x′) = C+
0 (x, x′) + C+

1 (x, x′) + C+
2 (x, x′) , (4.15)

where term C+
0 is given by the mode functions u0 of eq. (3.22) and C+

1 and C+
2 from the

contributions of the two different terms of the mode functions un in eq. (3.23). By comput-
ing the different terms, the exponential functions will give rise to different trigonometric
contributions in β. After some tedious but straightforward algebraic manipulations, we get

C+
0 (x, x′) = β

2π

[
log

∣∣∣∣∣ζ ′+ζ ′−
∣∣∣∣∣ log

∣∣∣∣ζ+
ζ−

∣∣∣∣+ π2

4 (s+ + s−)(s′+ + s′−)
]
, (4.16)

C+
1 (x, x′) = 1

2π

∞∑
n=1

1
n sinh(2π2βn) ×

[
cosh

(
π2βn(s+ + s′+)

)
cos

(
2πβn log

∣∣∣∣∣ζ ′+ζ+

∣∣∣∣∣
)

+ cosh
(
π2βn(s− + s′−)

)
cos

(
2πβn log

∣∣∣∣∣ζ ′−ζ−
∣∣∣∣∣
)]

, (4.17)

C+
2 (x, x′) = − 1

2π

∞∑
n=1

1
n sinh(2π2βn) ×

[
cosh

(
π2βn(s′− − s+)

)
cos

(
2πβn log

∣∣∣∣∣ζ ′+ζ−
∣∣∣∣∣
)

+ cosh
(
π2βn(s− − s′+)

)
cos

(
2πβn log

∣∣∣∣∣ζ ′−ζ+

∣∣∣∣∣
)]

. (4.18)
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As before we have dropped the iε term for simplicity since it can be interpreted as pre-
scribing the branch cuts for different distributions.

For the quantization in the whole patch, we are now interested in calculating the two
point functions just inside the diamond, where ζ± > 0 (i.e. s± = 1) and there are no CTCs.
This restriction allow us to directly compare it to the Einstein cylinder and use it to select
a state for the zero mode. In this particular region, we can express C+(x, x′) in terms of
Jacobi theta functions instead of series [43]. The Hadamard function would then read [10]

C+(x, x′) = β

2π

(
log

ζ ′+
ζ ′−

log ζ+
ζ−

)
− 1

2π log
(
θ1(βπ log(ζ ′+/ζ+))θ1(βπ log(ζ ′−/ζ−))
θ4(βπ log(ζ ′+/ζ−))θ4(βπ log(ζ ′−/ζ+))

)
.

(4.19)

In this form, the shorthand θj(z) ≡ θj(z, e−2π2β) is used.2

We are now ready to analyze the behavior of the two-point functions as A → 1. It is
convenient to write A = 1 + δ where 0 < δ � 1, which corresponds to weak warp limit.
Also note that in this limit, ∆ζ± −→ ∆z±.

For the Hadamard function (anti-commutator vacuum expectation value), the limit is
more transparent in the series form, so we will use eqs. (4.18). For C+

1 and C+
2 the series

expansions are somewhat tedious, but we can see what happens when we take the limit
term-wise, since distributionally the series are convergent. Taking the limit term-wise, we
see that limδ→0C

+
2 (x, x′) = 0. This follows from the fact that δ → 0 implies that each term

in C+
2 is exponentially suppressed by (sinh 2π2βn)−1 ∼ 2e−n/δ.
For C+

1 , the term-wise limit δ → 0 gives

lim
δ→0

C+
1 (x, x′) =

∞∑
n=1

1
2πn

[
cos

(
−2πn∆z−

L

)
+ cos

(2πn∆z+
L

)]

= − 1
4π

[
log

(
1− e−

2iπ∆z−
L

)
+ log

(
1− e

2iπ∆z+
L

)]
− 1

4π

[
log

(
1− e

2iπ∆z−
L

)
+ log

(
1− e−

2iπ∆z+
L

)]
= C+

osc(x, x′) , (4.20)

where z± are the flat space null coordinates. Note that the last equality is precisely the
oscillator part of the Hadamard function in the Einstein cylinder calculated in eq. (4.5).

Finally, since log(1 + δ) ≈ δ for δ � 1, note that for small W ≈ δ/L, we have

ζ+
ζ−
≈ 1 + Wz+

1−Wz−
≈ 1 + 2δ

L
t+O(δ2) . (4.21)

2Note that our expression here has an extra factor of π in the argument of the Jacobi theta function
θj(z), which is the standard notation in many handbooks (e.g. [43, 44]) and symbolic computation software
such as Mathematica (written as EllipticTheta [45]). The convention for θj(z) in [10] without π is in fact
ϑj(z) from McKean and Moll’s notation, where ϑj(z) := θj(πz) [46], see section 20.1 of [47].
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Therefore we have the asymptotic expansion

C+
0 (x, x′) ≈ 1

2πδ

[(2δ
L
t′
)(2δ

L
t

)
+ π2

]

≈ π

2δ + 2δ2

πL2 tt
′ . (4.22)

It is clear that C+
0 diverges in the limit δ → 0. If we set

γ := 2δ/π , (4.23)

we obtain for small δ

C+
0 (x, x′) ≈ 1

γ
+ γ

2L2 tt
′ , (4.24)

which is precisely the Hadamard function of the zero mode in the Einstein cylinder with
frequency parameter γ in eq. (4.8). Therefore, the divergence of C+

0 as δ → 0 is equivalent
to the statement that momentum eigenstate of free particle is completely delocalized in
space and has infinite variance (∆Q = 〈Q2〉 − 〈Q〉2 →∞).

Let us note that C+
0 can be also written in terms of (σ, χ) coordinates. Using eq. (3.24),

for ζ± > 0 we directly see that, because of eq. (3.26), C+
0 will be just a function of timelike

σ. In the weak warp limit δ → 0, it can be directly seen that σ ≈ (δ/L)t for small δ, and
C+

0 in the adapted coordinates takes the simple expression

C+
0 (x, x′) ≈ 1

2πδ
(
4σσ′ + π2

)
, (4.25)

showing that, when restricted to the diamond patch the contribution of u0 to the expecta-
tion of the anti-commutator is exactly the same as the contribution of the Einstein-cylinder
zero mode.

Let us now compute the Pauli-Jordan function. Using the mode sum formulation for
C−osc(x, x′), we get

C−(x, x′) = iβ
4

[
(s+ + s−) log

∣∣∣∣∣ζ ′+ζ ′−
∣∣∣∣∣− (s′+ + s′−) log

∣∣∣∣ζ+
ζ−

∣∣∣∣
]

+ i
2π

∞∑
n=1

1
n sinh(2π2βn)

×
[
sinh

(
π2βn(s+ + s′+)

)
sin
(

2πβn log
∣∣∣∣∣ζ ′+ζ+

∣∣∣∣∣
)

− sinh
(
π2βn(s− + s′−)

)
sin
(

2πβn log
∣∣∣∣∣ζ ′−ζ−

∣∣∣∣∣
)

+ sinh
(
π2βn(s′− − s+)

)
sin
(

2πβn log
∣∣∣∣∣ζ ′−ζ+

∣∣∣∣∣
)

+ sinh
(
π2βn(s− − s′+)

)
sin
(

2πβn log
∣∣∣∣∣ζ ′+ζ−

∣∣∣∣∣
)]

. (4.26)
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For our purposes again we restrict the analysis to the region without CTCs, by setting
s+ = s− = 1 (ζ± > 0), because of our aim of selecting the zero-mode state by obtaining
the limit to the Einstein cylinder. The sum can be done analytically, which reads

C−(x, x′) = iβ
2

(
log

ζ ′+
ζ ′−
− log ζ+

ζ−

)
+ 1

4π

log

1−
(
ζ ′−
ζ−

)2iπβ
− log

1−
(
ζ ′−
ζ−

)−2iπβ


+ log

1−
(
ζ ′+
ζ+

)−2iπβ
− log

1−
(
ζ ′+
ζ+

)2iπβ
 . (4.27)

Following the same procedure as before, note that the first line is the zeroth mode
contribution which, when restricted to the diamond and using adapted coordinates, is only
a function of σ. Using the previous small-W identification σ ≈ (δ/L)t, we get

C−0 ≈
i
δ

(−∆σ) +O(δ2) = − i
L

∆t+O(δ2) , (4.28)

where ∆σ = σ − σ′ and ∆t = t− t′. Thus in adapted coordinates and in the small δ limit
the connection between C−0 in the time machine geometry and the zero mode commutator
in the Einstein cylinder is manifest: we see explicitly what we already discussed before,
i.e., (when restricted to the diamond patch) for all intents and purposes u0 ‘becomes’ the
Einstein cylinder zero mode in the δ → 0 limit.

For small δ, we have W ≈ δ/L and if we use the identity e = limδ→0+(1+ δ)1/δ, we can
show that the limit as δ → 0 (corresponding to the absence of a time machine) is given by
the full commutator in the Einstein cylinder with periodicity length L

lim
δ→0

C−(x, x′) = − i∆t
L

+ 1
4π

[
log

(
1− e−

2iπ∆z−
L

)
+ log

(
1− e

2iπ∆z+
L

)]
− 1

4π

[
log

(
1− e

2iπ∆z−
L

)
+ log

(
1− e−

2iπ∆z+
L

)]
= C−zm(t, t′) + C−osc(x, x′) , (4.29)

where C−zm(t, t′) = −i∆t/L and C−osc(x, x′) are the remaining terms of the commutator in
the Einstein cylinder. The last equality agrees with the commutators computed in [27].

Having analyzed in detail both Hadamard and commutator functions, we have deter-
mined the behavior of Wightman function. There are few subtleties related to the presence
of the zero mode in the limiting case. The fact that in the limit δ → 0 we recover the
zero-mode commutator implies that the zero-mode contribution to the Wightman function
is essential for the consistency of the underlying QFT. We cannot simply drop or neglect
terms of order O(δ−1) that appear in the Hadamard function C+ by hand, as they are
related to the Hadamard function of the zero mode C+

zm in the limit δ → 0. Since one also
has to remove the C−zm to neglect the zero mode, this would imply causality violation of
the underlying QFT [27]. A more conservative attitude would be to restrict attention to
only field observables that do not see the zero mode, e.g. shift-invariant operators [29] or
field derivatives [48], instead of removing the zero mode from the equations.
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Finally, let us comment on other choices of boundary conditions. In [27] it was shown
that zero mode also appears when one imposes Neumann boundary condition on two-
dimensional massless wave equation. We also saw earlier that the zero-mode contributions
to the two-point functions C±zm for the Einstein cylinder strictly comes from the “zeroth
mode” of the time-machine case u0 as A → 1. It can be checked that taking A → 1
limit also leads to divergences in the Hadamard function C+

0 (x, x′) when other boundary
conditions such as Neumann (λ = −π/2) or mixed (λ = −π/4) are chosen.

5 Renormalized stress-energy tensor for time-machine model

In view of the connection of the limit of the time-machine model with the zero mode of
the Einstein cylinder, we might wonder how the zero-mode contribution to the renormal-
ized stress-energy tensor (RSET) in Einstein cylinder arises from the time machine-model
RSET. Since we have the Hadamard function for the time-machine model, the RSET can
be computed using various methods such as point splitting [42], in addition to using the
simplifications that arise from working with the universal covering space [10]. In order to
make this comparison, we recall that in the Einstein cylinder, the Fock vacuum expectation
of the renormalized stress-energy tensor has two contributions coming from the zero mode
and the oscillator modes.

Let us use the null coordinates z± on the Einstein cylinder. The oscillator mode
contribution 〈oscTµν〉 reads [42]

〈oscT
(z)
−−〉 = 〈oscT

(z)
++〉 = − π

12L2 , (5.1)

〈oscT
(z)
−+〉 = 〈oscT

(z)
+−〉 = 0 , (5.2)

where the superscript (z) refers to the use of the coordinates z±. The zero mode contribu-
tion is computed in [26] giving the result

〈zmT
(z)
−−〉 = 〈zmT

(z)
++〉 = 〈0zm|P̂ 2

s |0zm〉
4L2 , (5.3)

〈zmT
(z)
−+〉 = 〈zmT

(z)
+−〉 = 0 . (5.4)

Note that while the nonvanishing oscillator components are negative i.e. 〈oscTµν〉 < 0,
the zero-mode contribution is manifestly positive for any choice of “candidate” zero-mode
vacuum state |0zm〉.

For the canonical time machine, the RSET in the region of interest in null ζ± > 0
coordinates [10] is given by

〈T (ζ)
±±〉 = −F (β)

ζ2
±

, 〈T (ζ)
+−〉 = 1

6π(ζ+ + ζ−)2 , (5.5)

F (β) = 1
48π −

β

4π + β2π

12 − 2πβ2
∞∑
n=1

ne−4π2βn

1− e−4π2βn
. (5.6)
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These results, are consistent with the appearance of the conformal trace anomaly in this
spacetime, and, when applied to the Cauchy horizon, have been used to argue for its
possible quantum instability [10, 21, 49].

Our aim is to track the zero-mode contribution to the RSET, so we will trail the small-δ
expansion more carefully. The weak warp limit corresponds to WL ≈ δ � 1, hence

ζ− = eWy/W− t ≈W−1 + z− , (5.7)
ζ+ = eWy/W + t ≈W−1 + z+ . (5.8)

Consequently, we have that the non-diagonal element of the RSET yields

〈T (z)
−+〉 = ∂ζ−

∂z−

∂ζ+
∂z+
〈T (ζ)
−+〉

≈ 1
6π(ζ+ + ζ−)2 = δ2

24πL2 , (5.9)

which in the limit δ → 0 gives a vanishing contribution 〈T (z)
−+〉 = 0.

Now we focus on calculating the small-δ limit of the diagonal element of the RSET.
They are given by

〈T (z)
−−〉 = ∂ζ−

∂z−

∂ζ−
∂z−
〈T (ζ)
−−〉

≈ − δ
2

L2

( 1
48π −

1
4πδ + π

12δ2

)
= δ

4πL2 −
π

12L2 +O(δ2) , (5.10)

〈T (z)
++〉 = 〈T (z)

−−〉

≈ δ

4πL2 −
π

12L2 +O(δ2) . (5.11)

Next, using β ≈ δ−1(1 + δ/2), we obtain

F (β) ≈ − 1
4πδ + π

12δ2 +O(δ0) . (5.12)

An important step here is that we cannot keep only the O(δ−2) term (as done in [10]), as
we will see that the relationship with the zero mode of the Einstein cylinder is of order O(δ)
in the RSET. This corresponds to keeping the O(δ−1) term in the asymptotic expansion
for F (β). We also keep the O(δ0) term in F (β) for clarity in what follows.

Observe that 〈T (z)
−−〉 and 〈T

(z)
++〉 contain two contributions, one giving the expected

Casimir contribution from the oscillator modes of the Einstein cylinder in eq. (5.1), and
another term that is linear in δ. Recall from previous section that for small δ we identified
δ with the frequency parameter γ = 2δ/π. With this identification, we can now write

〈T (z)
−−〉 ≈

1
4L2

γ

2 + 〈oscT
(z)
−−〉 . (5.13)
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However, if the zero mode vacuum |0zm〉 is to be identified with the ground state of quantum
harmonic oscillator with frequency parameter γ, we recall that the second moment of Ps
is given by 〈P 2

s 〉 = γ/2. Using this, it is now clear that for very small δ the RSET can be
written as

〈T (z)
−−〉 ≈ 〈zmT

(z)
−−〉+ 〈oscT

(z)
−−〉 . (5.14)

The fact that 〈zmT
(z)
−−〉 is O(δ) shows that indeed as δ → 0, the zero mode of the time

machine picks out the eigenstate of P of quantum mechanical free particle with zero
momentum eigenvalue (i.e. γ = 0). This is consistent with the performed computation
〈zmT

(z)
−−〉 ∝ 〈0zm|P 2

S |0zm〉 which vanishes when |0zm〉 is taken to be the eigenstate of P with
zero eigenvalue. Notice that if we were to only keep O(δ−2) term for the asymptotic ex-
pansion of F (β), we would only recover the contribution from the oscillator modes in the
Einstein cylinder and we would not see how the zero-mode contribution appears in the
RSET (which happens to vanish for γ = 0).

The calculations in this section show, on one hand, that the zero mode of a massless
scalar field in the Einstein cylinder is connected with the mode u0 in the automorphic
solution [eq. (3.22)] of the field obtained via the universal covering construction. This
connection is not manifest when we only keep the term that grows as δ−2 in F (β) and take
the δ → 0 limit. On the other hand, since all the modes of the time-machine model have a
Fock representation, we can think of the time-machine model at small δ as being a small
deformation from the geometry of the Einstein cylinder that does not have a zero mode.
These results provide then a natural way to remove the zero mode ambiguity, by fixing the
quantization in the Einstein cylinder from its deformations.

Another possibility we might have considered is the creation of a time machine at t = 0,
instead of having an eternal time machine. In this case one begins (at t = −∞) by having
an Einstein cylinder spacetime that matches the time-machine metric at t = 0. Then the
Poincaré patch is defined as in our case but restricting it to the domain of η > 0. Note
that in this case the spacetime possesses only a bifurcate future Cauchy horizon, given by
H+ and H′+ in the conformal diagram in figure 1.

6 Conclusion

Inspired by the study of time machines, we propose a way to solve the inherent ambiguity
of the zero-mode quantization in QFT living in spacetimes with spatial periodicity (such
as the Einstein cylinder). The appearance of zero modes in QFT has traditionally been
ignored in many QFT calculations (see e.g. [31–35, 42]), but it has been recently shown to
be necessary in order to conserve the relativistic aspects of the measurable predictions of
the theory [27]. The main problem with the zero mode in a spatially periodic spacetime is
that there is no good reason to select a state and declare it the vacuum since the zero mode
does not admit a Fock quantization as it is dynamically equivalent to quantum mechanical
free particle (see, e.g., [26–28]).

Concretely, we have studied the quantization of a scalar field in a spacetime with time
machines. In particular we have considered a time-machine model, that corresponds to the
(1 + 1)-dimensional locally static multiply-connected spacetime first studied in [10]. To
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get a rough idea about this spacetime, one can think of an Einstein cylinder (a spacetime
with a spatial periodicity in a particular time foliation, akin to imposing periodic boundary
conditions) in which the points that are topologically identified by the periodicity are in
different time slices. Because of that, this spacetime can contain closed timelike curves in
some region. The analysis in the subregion without CTCs shows that in the limit that there
is no time shift between the topologically identified points one recovers the quantization
on the Einstein cylinder, including the zero-mode contribution.

We have compared the quantization of a massless scalar field in this time-machine
spacetime with the quantization in an Einstein cylinder (which, we recall, corresponds to
a spacetime with periodic boundary conditions). Classically, the Einstein cylinder is ob-
tained from the limit where there is no time machine in the locally static model spacetime.
However, when we consider a quantum field in the time-machine model spacetime, there is
no zero-mode ambiguity. Crucially, we find that quantization of a massless scalar field in a
time-machine spacetime induces a unique quantization of a massless scalar field with peri-
odic boundary conditions, with the zero mode of the Einstein cylinder appearing naturally
in the weak warp limit. We obtain the zero mode by explicitly tracking the appearance
of a time-warp parameter A ≥ 1 that performs the time identification t ∼ At in the field
modes in the time-machine model.

From our results, we can construct the following prescription for a zero-mode quan-
tization in spatially periodic spacetimes. 1) Introduce a deformation parameter in the
Einstein cylinder by adding some small time shift in addition to the spatial periodicity of
the spacetime, i.e. consider the one-parameter family of time-machine spacetime with warp
parameter A ≥ 1; 2) perform a quantization of the field in the universal covering spacetime
of this one-parameter family of geometries, which removes zero modes and all its ambi-
guities; 3) take the limit of the warp parameter A → 1 where the spacetime becomes the
Einstein cylinder again. The zero mode emerges from the limit and a state is selected.
This construction supports the choice made for simplicity (i.e. as a squeezed state) in e.g.
in [26, 27] for state for the zero mode to evaluate its impact on particle detector dynamics.
Thus, we propose that there is a unique way of selecting the state of the zero mode in a
periodic spacetime that is compatible with the quantization in the universal covering.

Furthermore, we argue that the vacuum of the scalar field in the time-machine space-
time proposed in [10] yields a divergent Hadamard function for the emergent zero mode of
the Einstein cylinder when we consider the no-time-machine limit. This shows that while
the classical background metric for the time machine has a smooth limit to the Einstein
cylinder, the quantum field theory on the time-machine model does not smoothly reduce
to the Einstein cylinder limit due to divergence in the zero-mode component of the two-
point Wightman functions. The emergent zero-mode state is akin to an (unnormalizable)
eigenstate of a momentum operator. This is easily solvable by regularizing that state as
a squeezed state, and we propose to do this following on previous results in [26, 28], or
equivalently by regularizing the Einstein cylinder quantization using small warp parameter
(very weak time-machine geometry).

Finally, we have analyzed the stress-energy tensor both in the time-machine spacetime
and in the Einstein cylinder with this regularized zero-mode state, showing that the behav-
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ior is regular as expected. These results shed light on quantum field theory in the presence
of time machines, and can be used to resolve zero-mode ambiguities in QFT in spacetimes
with periodic boundary conditions.
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A Four-acceleration and four-velocity of Killing observers

In this appendix we show that the condition that there exists a hypersurface-orthogonal
Killing field ξµ, i.e. that satisfies

∇(µξν) = 0, ξ[λ∇µξν] = 0 (A.1)

is equivalent to the existence of a timelike vector field uµ and a spacelike vector field aµ

such that

uµuµ = −1, ∇νuµ = −aµuν , ∇[µaν] = 0. (A.2)

Let us first show that eq. (A.2) implies eq. (A.1).
From ∇[µaν] = 0 we conclude that there exists some ϕ such that

aµ = ∇µϕ. (A.3)

Let us check that the vector field ξµ = eϕuµ satisfies eq. (A.1). Indeed, using eq. (A.2) and
eq. (A.3), we see that

∇(µξν) = eϕ∇(µuν) + eϕ∇(µϕuν)

= −eϕa(νuµ) + eϕa(µuν) = 0 . (A.4)

On the other hand,

ξ[λ∇νξµ] = eϕu[λ∇νeϕuµ] + e2ϕu[λ∇νuµ]. (A.5)

The first term trivially vanishes. The second one vanishes as well because ∇νuµ = −aµuν .
Let us now prove that eq. (A.1) implies eq. (A.2). Given ξµ satisfying eq. (A.1), let us

define uµ = e−ϕξµ with ϕ = log |ξ|. The field u obviously satisfies u2 = −1. If we define
aµ = uν∇νuµ, then it is straightforward to see that

aµ = e−2ϕξν∇νξµ − e−2ϕξµξ
ν∇νϕ. (A.6)
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Using ∇(µξν) = 0 it is easy to see that the first term is

−e−2ϕξν∇µξν = −1
2e
−2ϕ∇µ|ξ|2 = ∇µϕ , (A.7)

where in the last equality we have used |ξ|2 = −e2ϕ. Furthermore, the second term of
eq. (A.6) is proportional to

e−2ϕξν∇νϕ = −ξν∇ν(ξρξρ) = −2ξνξρ∇νξρ = 0, (A.8)

where we have used the fact that ∇(µξν) = 0 (hence ∇νξρ is antisymmetric). Therefore,
we conclude that aµ = ∇µϕ and consequently ∇[µaν] = 0.

Finally, let us check that the following quantity vanishes:

∇µuν + aνuµ = e−3ϕ(ξρξν∇µξρ + ξρξµ∇ρξν) + e−ϕ∇µξν + e−5ϕξµξ
λξρ∇λξρξν . (A.9)

Using eq. (A.1) we see, on one hand, that the first term cancels the second one. On the
other hand, the last term also vanishes because ∇λξρ is antisymmetric.

B Multiply-connected spacetimes and automorphic functions

Here we outline the basic idea of automorphic forms in the context of quantum field theory
in multiply-connected spacetimes. We will use the notation consistent with the main text:
we denote by M the multiply-connected space and M its universal covering space that is
simply connected. In particular, in this paper we have M = R2 and M = R× S1.

We say that a manifold is simply connected if it is path-connected (i.e. any two points
can be connected by a continuous curve) and any closed loop can be continuously deformed
to a single point. Otherwise we say that it is multiply connected. For example, the unit
circle S1 is not simply connected while higher-dimensional spheres Sn (n ≥ 2) are simply
connected.

The fundamental group π1(M) of a multiply-connected manifold M characterizes the
different possible closed loops on the manifold up to continuous deformation. For simply
connected manifolds, there is essentially only one closed loop — equivalent to a single point
— since we can always “shrink” them continuously. Therefore the fundamental group of a
simply connected M consists of only a single element, the identity e, i.e. π1(M) = {e}. In
contrast, S1 is not simply connected because we cannot continuously shrink any loop to a
point, and loops that go through the circle different number of times are not equivalent.
Hence we write π1(S1) ∼= Z. Note that if M can be written as a product M ∼= Y ×Z where
Y is simply connected and Z is multiply connected, then π1(M) is isomorphic to π1(Z).

The universal covering space M of a multiply-connected manifold M is obtained by
“unwrapping” M . The universal covering space of M is essentially unique and is simply
connected. In general, the multiply-connected space M is always related to its universal
covering by the (discrete) group action of the fundamental group. In the language of group
theory, points in the quotient space M are equivalence classes of points in M given by the
equivalence relation x ∼ g · x where g ∈ π1(M), often denoted by [x] ∈M . In other words,
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every point [x] ∈ M is the orbit [x] = {g · x : g ∈ π1(M)} and M is the set of orbits of
the fundamental-group action, which we write as π1(M) ·M (as a quotient space this is
sometimes written as π1(M)\M .)

A fundamental domain of the fundamental-group action π1(M)·M is a connected open
subset U of M with the property that the collection X = {g · U : g ∈ π1(M)} is disjoint
and the closure X covers M . Thus for every fundamental domain U , the set g ·U (for fixed
g and U) contains exactly one point from each orbit [x] for every x ∈ U . The fact that
[x] is an orbit means that in practice one can identify the multiply-connected manifold M
itself with a fundamental domain.

A function f : M → R is a global automorphic form on M with respect to a symmetry
group Γ (in our case Γ = π1(M)) if for x ∈M , g ∈ Γ, we have

f(g · x) = a(g)f(x) , (B.1)

where a(g) is a constant called automorphic factor. The automorphic factor has the prop-
erty that a(g) = 1 if and only if g = e (the identity element of Γ) and a(g1g2) = a(g1)a(g2).

Let us now proceed with the analysis of real scalar fields φ on M and φ on M , whose
dynamics is given by the following Lagrangian density

L[φ(x)] := −1
2∇µφ∇

µφ− 1
2m

2φ2 − 1
2ξRφ

2 . (B.2)

Since the Lagrangian density is defined locally, the same expression applies for φ. On M ,
we do not need φ to have any additional symmetry. However, if we are to study scalar
field theory on M by going into its universal cover M , the relationship between φ and φ
implies that the Lagrangian density L[φ] should obey additional symmetry requirements
imposed by Γ. The requirement that the Lagrangian is the same for both fields means that
φ respects the action of Γ. In other words, φ should be an automorphic form,

φ(g · x) = a(g)φ(x) . (B.3)

Furthermore, since φ depends only on orbits [x], the action of Γ on M should be regarded
as a symmetry operation and hence the Lagrangian should be invariant under Γ, i.e.

g · L[φ(x)] := L[φ(g · x)] = L[φ(x)] . (B.4)

Since the Lagrangian L[φ] is quadratic and that ∇µφ(g · x) = a(g)∇µφ(x), it means that
the automorphic factor satisfies a(g)2 = 1, and for real-valued φ it means that a(g) = ±1.

The scalar field φ can now be obtained from φ via the following averaging procedure

φ([x]) = 1
|Γ|

∑
g∈Γ

a(g−1)φ(g · x) , (B.5)

where strictly speaking the averaging should be considered carefully since in our case
Γ = π1(M) ∼= Z and hence |Γ| = ∞ [22–24]. The requirement that φ is an automorphic
form can be expressed as

φ([x]) = 1
|Γ|

∑
γ∈Γ

a(g−1)a(g)φ(x) = φ(x) . (B.6)
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In other words, φ is automorphic if and only if φ(x) = φ([x]). This seemingly “trivial”
result says that at the level of physical calculations, we do not need to distinguish φ from φ

apart from the recognition that φ is a function of orbits [x] ∈M . In other words, the fields
on M are essentially the same as the fields on M but with “generalized periodic boundary
conditions” on φ.

A useful result from this construction is that we can relate the Wightman two-point
functions in M and M for scalar fields. In particular, we have [24]

WM (x, x′) =
∑
g∈Γ

WM (x, g · x′)a(g) . (B.7)

This expression is very convenient because it does not involve averaging even if the cardi-
nality of Γ is infinite.

Quantum field theory on the universal covering space is typically straightforward,
since objects like global timelike Killing vector fields are often available for the definition of
positive- and negative-frequency solutions. If Σ is a Cauchy surface onM which is invariant
under the action of Γ, then we can define the Klein-Gordon inner product as usual

〈φ1, φ2〉 = −i
∫

Σ
dΣµ [φ1∂µφ

∗
2 − φ∗2∂µφ1] . (B.8)

The fact that the automorphic condition imposes φ = φ means that if we take Σ = Σ∩M ,
then the corresponding induced Klein-Gordon inner product on M reads

(φ1, φ2) = −i
∫

Σ
dΣµ [φ1∂µφ

∗
2 − φ

∗
2∂µφ1] , (B.9)

which is just the inner product under the restriction of Σ to the fundamental domain M
and φ necessarily automorphic.

C Boundary conditions

In order to better understand the possible boundary conditions that are compatible on the
Poincaré patch, it is instructive to first consider φ to be a real, massive scalar field with an
arbitrarily coupling to curvature, whose equation of motion reads(

−∂2
η + ∂2

ξ −
m2

W2ξ2

)
φ(η, ξ) = 0 , (C.1)

where m2 = m2
0 + κR is the effective mass that depends on the field’s bare mass m0 and

Ricci scalar R, with κ being an arbitrary constant. The field φ can be written in terms of
its Fourier transform

φ(η, ξ) =
∫

dω e−iωηΦω(ξ) , (C.2)

where the modes Φω(ξ) satisfy the second-order ordinary differential equation

ξ2 d2Φω

dξ2 +
(
ω2ξ2 − m2

W2

)
Φω = 0 . (C.3)
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The general solution of this equation is given by linear superposition of two linearly inde-
pendent solutions, namely

Φω(ξ) = c+(ω)Φ+
ω (ξ) + c−(ω)Φ−ω (ξ) . (C.4)

Here c±(ω) are constants and the two fundamental solutions Φ±ω (ξ) are given by3

Φ±ω (ξ) =
√
WξJ±ν(ωξ) , (C.5)

where J±ν are Bessel functions of the first kind [43] and ν = 1
2

√
1 + 4m2W−2. We will

consider m2W−2 ≥ −1
4 so that ν ∈ [0,∞). This lower bound on m2 is known as the

Breitenlohner-Freedman bound [50]. This bound is analogous to demanding that a quartic
oscillator with anharmonic potential gx4 should have g ≥ 0 for a stable ground state to
exist.

The most general boundary conditions on φ(η, ξ) at ξ = 0 can be summarized as a
one-parameter family of Robin boundary conditions [51]:

cos(λ)φ(η, ξ)
∣∣∣
ξ=0

+ sin(λ) 1
W

d
dξ φ(η, ξ)

∣∣∣
ξ=0

= 0 , (C.6)

with λ ∈ [−π/2, 0], or equivalently the one-parameter family of boundary conditions on
the Fourier transform modes Φω(ξ):

BCω(ξ) := (cosλ)Φω(ξ) + W−1(sin λ)Φ′ω(ξ) = 0. (C.7)

The Dirichlet boundary condition (λ = 0) was chosen in [10] based on the argument that
any regular solutions (solutions that do not diverge anywhere) of massive Klein-Gordon
equation for arbitrarily low mass on this patch must vanish on the timelike asymptotic
boundary ξ = 0.

In order to see how the Dirichlet boundary was chosen, we need to study the behavior
of the Bessel functions for small arguments. Substituting eq. (C.4) into eq. (C.7), we obtain
the following behavior close to the conformal boundary ξ = 0:

BCω(ξ) = c+(ω)BC+
ω (ξ) + c−(ω)BC−ω (ξ),

BC±ω (ξ) ∼ (Wξ)
1
2±ν cosλ+ (Wξ)−

1
2±ν(1/2± ν) sin λ, (C.8)

up to some irrelevant constant prefactor. Therefore, the situation splits into three cases:

(i) m2/W2 > 0 (ν > 1/2): near ξ = 0, we have BC+
ω ∼ 0. However, BC−ω ∼

A(Wξ)
1
2−ν cosλ + B(Wξ)−

1
2−ν sin λ which diverges for any λ unless c−(ω) = 0. In

other words, the field only has contribution from Φ+
ω and hence vanishes at ξ = 0,

equivalent to taking Dirichlet boundary condition. One heuristic reason why the
m2 > 0 case is only consistent with Dirichlet boundary condition for Φω to be regu-
lar near the conformal boundary ξ = 0 is that timelike geodesics cannot reach ξ = 0
due to refocusing properties of AdS2 [36].

3J±ν are linearly independent so long as ν 6∈ Z. When ν ∈ Z, we take Φ+
ω =

√
WξJν(ωξ) and Φ−ω =√

WξYν(ωξ), where Yν(ωξ) is the Bessel function of the second kind.
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(ii) −1/4 < m2/W2 < 0 (ν < 1/2): both BC±ω (ξ) diverge unless λ = 0. Therefore, the
only nontrivial boundary condition that we can impose is the Dirichlet boundary
condition.

(iii) m2/W2 = 0 (ν = 1/2): in this case, BC+
ω (ξ) ∼ sin λ and BC−ω (ξ) ∼ cosλ. Conse-

quently, all possible boundary conditions — Dirichlet, Neumann, and Robin — can
be imposed by suitably fixing c±(ω).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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