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1 Introduction

In the general program of classifying rational conformal field theories (RCFTs) [1], sub-
stantial effort has been put into classifying the following proxies: modular tensor categories
(MTCs) [2, 3] and vector-valued modular functions (vvmfs) [4].1 The two are of course
intimately related: the modular S- and T-matrices of an MTC capture, in some appro-
priate sense, the PSL(2,Z) transformation properties of RCFT characters, which form a
vvmf.2 Each proxy has its limitations. For MTCs, it is a famous open problem whether
every MTC is realized by an RCFT, and even if so infinitely many RCFTs can realize
the same MTC. For vvmfs, having a set of candidate characters with consistent modular
transformations does not guarantee that an actual RCFT exists; for example, a famous
set of consistent characters/partition functions that are not known to correspond to fully
consistent theories is the series of extremal meromorphic CFTs conjectured by Witten [5].
As such, the classification of these proxies should be regarded only as an intermediate step
towards the classification of RCFTs.

The classification of MTCs has received a significant amount of attention, and has
been successfully carried out for MTCs with up to five modules [6, 7]. As for vvmfs, there
exist several methods to construct them (see [8] for a nice comparison). Among these is
the theory of vvmfs due to Bantay and Gannon, which describes the entire space of vvmfs
transforming under a given PSL(2,Z) representation in terms of a single characteristic
matrix [9, 10]. The explicit analytic construction of such a matrix, however, is technically
rather involved. A less sophisticated but more practical approach is the method of modular
differential equations (MDEs) [11], which stems from the observation that every component
χi(τ) of a rank-d vvmf satisfies an order-d MDE,[

D(d) +
d−1∑
k=0

φk(τ)D(k)
]
χi(τ) = 0 , (1.1)

where D(k) is the k-th order modular covariant derivative, to be defined below, and the
coefficients φk(τ) are meromorphic modular forms of weight 2(d− k). As will be explained
below, we will be able to restrict to meromorphic functions φk(τ) with certain types of
singularities, in which case the space of such modular forms becomes finite-dimensional.
This allows one to classify vvmfs by constructing and solving the most general MDE of a
given order, e.g. as a Fourier series in q := e2πiτ . This version of the classification problem
is sometimes known as the Mathur-Mukhi-Sen program [11, 12], and has been extensively
explored in e.g. [13–20]. Following [21], we will refer to this program as the “holomorphic
modular bootstrap”.

An important complication in the MDE approach to classifying vvmfs is that the
space of such differential equations can be difficult to navigate. Each MDE has many free

1The acronym vvmf more commonly means vector-valued modular “forms” that allow general weights,
but this paper only concerns the weight-zero case, i.e. vector-valued modular functions.

2More precisely, the modular S- and T-matrices of the MTC are generically reduced via an identification
of modules related by charge conjugation to give the PSL(2,Z) representation describing the modular
transformations of RCFT characters. See section 2.3.
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coefficients and a priori it is not clear what a good organizing principle is. As will be
reviewed below, a useful quantity in this respect is the Wronskian index `, which counts
the number of zeros in the Wronskian determinant of the solutions to the MDE (times
six) — see section 2.1 for details. A rough classification of MDEs can then be given in
terms of the pair (d, `). An even more useful classification principle is the monodromy of
the solutions of the MDE, which encodes the detailed modular properties of its solutions.
For instance, we may study the monodromy of the vvmf ~χ(q) around q = 0 as we traverse
a loop γ(s) = e2πisq from s = 0 to s = 1. This monodromy describes the action of the
modular T transformation on the characters:

~χ(q)→ T ~χ(q) , T = diag(e2πiα1 , · · · , e2πiαd) (1.2)

which is specified by a list of exponents αi := hi− c
24 determined by the parameters in the

MDE. These exponents encode the central charge c and weights hi of the putative RCFT.
As it turns out, the characters of any RCFT are solutions to an MDE with a finite

monodromy group. This was first observed empirically by Mathur and Sen in [22], who used
this fact to classify two-character theories, as well as a subset of three-character theories.
A concrete mathematical conjecture [23], sometimes known as the integrality conjecture,
was already available at the time to “explain” this observation. This conjecture states that
the integrality of Fourier coefficients of a vvmf (with rational exponents) implies that every
component is invariant under a principal congruence subgroup of PSL(2,Z), denoted by
Γ(n) for some n ∈ N. Hence, the vvmf transforms in a representation of PSL(2,Z)/Γ(n) '
PSL(2,Zn), and the corresponding MDE has finite monodromy as claimed. For general
vvmfs, this remains a conjecture, but for RCFT characters, it is a proven fact known as the
congruence property in the MTC literature [24] (see also [25–29]). As we will see, integrality
and its relation to the monodromy and congruence properties of characters will form the
cornerstone of our analysis.

The purpose of this paper is to further the progress on the classification of RCFTs
through the holomorphic modular bootstrap. We will see that the classification of expo-
nents {αi}, or equivalently of the central charge and weights (c, hi) of the putative RCFT,
reduces to a problem in PSL(2,Z) representation theory. In particular, the integrality
conjecture allows us to focus on only PSL(2,Z) representations ρ : PSL(2,Z) → GL(d,C)
whose kernels are congruence subgroups containing Γ(n), which enables us to study a re-
duced problem about the representation theory of PSL(2,Zn). We avoid the proliferation
of free parameters by focusing on a class of rigid MDEs with d ≤ 5, which are uniquely
specified by the exponents {αi}. The solutions of such MDEs yield the characters for all
theories with (d, `) = (2, 0), (2, 2), (3, 0), (4, 0), and (5, 0). Having imposed integrality,
physical requirements such as positivity and the existence of a vacuum will then be im-
posed by hand when appropriate. For ease of reference, here we summarize the tables in
which potential theories of type (d, `) are enumerated:

(d, `) = (2, 0) (d, `) = (2, 2) (d, `) = (3, 0) (d, `) = (4, 0) (d, `) = (5, 0)
table 4 table 4 table 5 table 6 table 7
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For non-rigid MDEs, PSL(2,Zn) representation theory still permits a classification of
allowed exponents for integral characters, and we carry this classification out. However, in
this case imposing physical constraints such as positivity and existence of a vacuum becomes
more difficult. This prevents us from obtaining a classification of physical characters. In
any case, our analysis allows us to obtain restrictions on the allowed values of the Wronskian
index, showing that ` ∈ 2Z for d = 2, 4, while ` ∈ 3Z for d = 3. For d = 5, there is no
constraint on `.

It should be noted that our classification of vvmfs up to dimension 5 can include
RCFTs with many more modules, e.g. 9 modules including the vacuum and 4 pairs of
charge-conjugates. Therefore, it is clear that our results are not contained in the current
classification of MTCs up to 5 modules [6, 7].

Outline. After a brief review of MDEs in section 2, we use PSL(2,Zn) representation
theory to constrain the possible exponents for rigid MDEs in section 3. In section 4, we use
these allowed exponents as an input for a computerized scan to identify the choices which
give physically-sensible RCFTs, i.e. those satisfying positivity, existence of a vacuum, and
other conditions described in section 2.3. In section 5 we give an alternative derivation of
our 3- and 4-character results by interpreting the finite monodromy groups as finite sub-
groups of GL(d,C). Though this is technically harder, it serves as a nontrivial verification
of our results, and also makes contact with previous work by Mathur and Sen [22]. Since
the final results are already presented in section 4, the busy reader may skip this section.

There are a number of appendices. In appendix A, we list the exponents giving rise to
integral characters, including those for non-rigid MDEs. This gives a complete classification
of exponents for quasicharacters. In appendix B, we give some additional information
about the allowed exponents. In appendix C, we review the finite subgroups of SL(3,C)
and SL(4,C), which are needed for the analysis in section 5. Finally, appendix D gives
details on the derivation of some exponents quoted in section 5.

2 Modular differential equation

The characters of an RCFT (or, more generally, the components of a vvmf) form solutions
to an ordinary linear differential equation with coefficient functions being modular forms.
This fact follows from the existence of null vectors in the vacuum module [30, 31], and
also from the meromorphy and automorphy of the characters [32]. While the two per-
spectives produce the same differential equation [33], the latter perspective, often dubbed
the Wronskian method, does not require knowing the specifics of the vertex operator alge-
bra (VOA), and hence provides an elegant classification framework for RCFTs, originally
proposed in [11, 12].

We briefly sketch the derivation of the modular differential equation (MDE) via the
Wronskian method. The d independent characters χi(τ) of an RCFT are meromorphic
in the upper half plane away from the cusps, and automorphic under PSL(2,Z) modular
transformations. Note that meromorphy forbids any singularities in the interior of the
upper half plane, and hence imposes a growth condition on the characters. Let E2k(τ)
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denote the holomorphic Eisenstein series, and define a covariant derivative

Dw := 1
2πi

d

dτ
− w

12E2(τ) (2.1)

acting on modular forms of weight w. The order-d derivative may be defined in terms of
this as

D(k) :=
k∏
s=1

D2s−2 . (2.2)

If f(τ) is any linear combination of the characters χi(τ), i = 1, . . . , d, then it is clear that

det



f(τ) χ1(τ) . . . χd(τ)

D(1)f(τ) D(1)χ1(τ) . . . D(1)χd(τ)
...

...
...

D(d)f(τ) D(d)χ1(τ) . . . D(d)χd(τ)


= 0 . (2.3)

Laplace expanding the above determinant gives the MDE

D(d)f(τ) +
d−1∑
k=0

φk(τ)D(k)f(τ) = 0 , (2.4)

where

φk(τ) = (−)n−kWk(τ)
W (τ) , Wk(τ) = det



χ1(τ) . . . χd(τ)

D(1)χ1(τ) . . . D(1)χd(τ)
...

...
...

D
(k−1)
τ χ1(τ) . . . D(k−1)

τ χd(τ)

D
(k+1)
τ χ1(τ) . . . D(k+1)

τ χd(τ)
...

...
...

D(d)χ1(τ) . . . D(d)χd(τ)



. (2.5)

In particular, W (τ) := Wd(τ) is called the Wronskian. Such differential equations easily
yield power series solutions in q = e2πiτ (i.e. Fourier series in τ),

χi(τ) = qαi(mi,0 +mi,1 q +mi,2 q
2 + · · · ) , (2.6)

where we have defined the set of exponents {αi}, which for vvmfs interpretable as character
vectors of RCFTs are given by

αi = hi −
c

24 , (2.7)

with c the central charge and hi the chiral dimensions of the characters.
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Although the coefficient functions φk(τ) are left undetermined from the derivation
above, we do know that they are meromorphic modular forms of weight 2(d − k), and
the space of meromorphic modular forms consists of all rational expressions in E4(τ) and
E6(τ). If certain restrictions are imposed on the singularities of φk(τ), then the restricted
subspace is in fact finite-dimensional. This finiteness is what makes the MDE classification
of RCFTs highly effective and constraining. Our next subject is a scheme to impose such
restrictions on the singularities.

2.1 Wronskian index and monicity

In organizing MDEs, it is useful to introduce the Wronskian index `, defined to be six times
the number of zeros of the Wronskian W (τ) in the fundamental domain F of PSL(2,Z). If
a zero is located at the boundary of F , then it is weighted by the conical fraction, namely
1
3 at the ST -invariant point ω = e

2πi
3 and 1

2 at the S-invariant point i,

` := 6

1
2ordi(W ) + 1

3ordω(W ) +
∑

p∈F/SL(2,Z)
p 6=i,ω

ordp(W )

 . (2.8)

Via (2.5), information about `, and hence about the zeros of W (τ), imposes constraints on
the allowed singularities of the coefficient functions φk(τ). For instance, consider the case
of (d, `) = (2, 2). In this case (2.8) implies that we have a single zero of W (τ) at τ = ω.
Recalling that E4(e2πi/3) = 0 and E6(i) = 0, the most general MDE with these labels is of
the form [

D(2) + µ1
E6
E4
D(1) + γE4

]
f(τ) = 0 . (2.9)

Likewise for (d, `) = (3, 3) the most general MDE is[
D(3)+ µ1

E2
4

E6
D(2) + γ1E4D

(1) + µ2
E3

4
E6

+ γ2E6

]
f(τ) = 0 . (2.10)

Note that for ` < 6, the denominators of the coefficient functions are always just powers of
E4(τ) or E6(τ).

Due to meromorphy, ` is also related to the pole order at the cusp, and hence to the
eigenvalues αi of T defined in (1.2). This follows from the valence formula, which for
meromorphic modular forms f(τ) of weight w reads [34]∑

p∈F/SL(2,Z)
ordp(f) = w

12 (2.11)

with ordp(f) counting the order of zeros/poles of f(τ) at τ = p (counted positively for
zeros and negatively for poles). This together with the fact that W (τ) has weight d(d− 1)
gives the following relation between ` and the αi,

`

6 = d(d− 1)
12 −

d∑
i=1

αi , αi = hi −
c

24 .
(2.12)
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In particular, we see that

` = d(d− 1)
2 − log detT

2πi mod 6 . (2.13)

In [11, 12], Mathur, Mukhi, and Sen proposed a classification scheme for RCFTs in
which one progresses not only in increasing d, but also increasing `. Let us provide some
intuition for why it is reasonable to focus on smaller values of `, or even restrict to ` = 0.
First, any set of characters can be multiplied by j(τ)m3 withm a natural number to produce
another set of characters, corresponding physically to taking the tensor product with m

copies of the (E8)1 WZW model. Because j(τ) has a simple zero at the ST -invariant point,
this extra factor increases ` by 2d. One may want to ignore such trivial tensor products
by stripping off overall factors of j(τ) 1

3 whenever possible to minimize `. For ` < 2d, one
always gets a set of characters without any removable j(τ)m3 factor.

An RCFT or its set of characters is said to be monic if the Wronskian index vanishes
` = 0. Equivalently, an MDE is called monic if all the coefficient functions are polynomial
in E4(τ) and E6(τ). Since E4(τ) and E6(τ) are holomorphic in the upper half-plane,
this means that the coefficient functions are regular. Monic MDEs have been a subject
of intensive studies for several reasons. First, many of the familiar classes of theories,
including all Virasoro minimal models and many WZW models, are monic; generally, since
the monic restriction makes the MDEs maximally constraining, the solutions are easier to
classify. Second, a non-monic MDE can sometimes be monicized by composing with an
additional modular differential operator, at the cost of increasing the order of the MDE
and introducing fictitious solutions. For instance, the unique character j(τ) 1

3 of the (E8)1
WZW model is non-monic (in particular ` = 2), but it also solves a second order monic
MDE. While it is generally unclear which non-monic MDEs are monicizable, what is clear
is that monic MDEs also allow for the discovery of non-monic RCFTs. Finally, there is an
interesting conjecture [35] that the Schur index of a four-dimensional N = 2 SCFT always
solves a monic MDE of a definite order.3

2.2 Rigid modular differential equations

Having introduced the most general MDE, we now restrict to a special class of MDEs
which we refer to as rigid. An MDE is said to be rigid if the coefficient functions cannot be
adjusted without changing the exponents αi = hi − c

24 or introducing extra singularities.
We will see that almost all rigid MDEs are monic, but not all monic MDEs are rigid.
Indeed, it is a simple combinatoric exercise to enumerate the free parameters of monic
MDEs of order d: since there is no (weakly) holomorphic modular form of weight 2, the
D(d−1) term must be absent, and this fixes the sum of exponents to be ∑i αi = d(d−1)

12 . Up
to d = 5, there is exactly one free parameter for each of the lower order derivatives, and
hence the exponents uniquely fix the monic MDE. By contrast, for d ≥ 6 there are extra
free parameters, and thus monic MDEs for d ≥ 6 are not rigid.

3The two-dimensional vertex operator algebra is not necessarily monic, but the MDE is conjectured to
be monicizable.
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To be more explicit, the relations between the exponents and the MDE parameters
for monic d = 2 and d = 3 are as follows. For d = 2, the most general monic MDE takes
the form [

D(2) + γE4(τ)
]
χi(τ) = 0 , (2.14)

as can be obtained from (2.9) by taking µ1 = 0. In this case the single coefficient is
determined in terms of the exponents by

γ = α1α2 . (2.15)

For d = 3, the most general monic MDE takes the form[
D(3) + γ1E4(τ)D(1) + γ2E6(τ)

]
χi(τ) = 0 , (2.16)

as can be obtained from (2.10) by taking µ1 = µ2 = 0. In this case the two undetermined
coefficients are related to the exponents by

γ1 = α1α2 + α2α3 + α3α1 −
1
18 , γ2 = −α1α2α3 . (2.17)

Similar results are easily obtained for monic d = 4, 5.
Finally, there is a single family of rigid MDEs which are non-monic — namely d = 2

MDEs with Wronskian index ` = 2. As was shown in (2.9), this MDE has two free
parameters, which can be fixed in terms of the two exponents.

The aim of this paper is to classify character solutions to rigid MDEs. As we will
see, modular representation theory will constrain the exponents αi := hi − c

24 to lie within
finite sets (modulo integer shifts), and since the exponents completely fix the MDE, we may
analyze all possible MDEs by scanning over a discrete lattice of possibilities. By contrast,
without rigidity, the space of MDEs and solutions involves parameters that are continuous
before one imposes the integrality of the Fourier coefficients.

2.3 Physical characters and quasicharacters

As is by now familiar, any d-dimensional vvmf solves an order-d MDE. Conversely, the
solutions to any MDE form a vvmf. However, not all MDEs give rise to vvmfs which are
interpretable as character vectors for some RCFT. Further requirements must be imposed
to obtain physical characters. We find the following constraints well-motivated:

1. Weak holomorphy: the solutions must be holomorphic (regular) away from the
cusps.

2. Integrality: the solutions to the MDE must admit a normalization in which all
Fourier coefficients are integers, to be interpreted as state degeneracies.

3. Vacuum: at least one solution χi(τ) under suitable normalization has unit lead-
ing Fourier coefficient and unit modular pairing coefficient, to be interpreted as the
vacuum. More details are given below.

– 8 –
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4. Positivity: the Fourier coefficients of the solutions should be purely positive. To
limit ourselves to a smaller number of solutions, we also require that c > 0 and hi ≥ 0
for at least one interpretation of the vacuum. These conditions would be required of
unitary theories, but we will also discover some non-unitary theories satisfying the
above criteria.4

We now provide more comments on some of these constraints. First, note that in the
modular bootstrap program, one of the most difficult consistency conditions to impose is
the integrality of Fourier coefficients. It is remarkable that in the rational world, the theory
of vvmfs draws direct connections between integrality and nontrivial physical statements, as
was recently explored in [36]. As already noted in the introduction, in the present work we
will guarantee integrality by requiring that the modular S- and T-matrices describing the
modular properties of the vvmf furnish a representation of PSL(2,Zn), à la the integrality
conjecture.

Vvmfs satisfying weak holomorphy and integrality, but not necessarily vacuum and
positivity are called quasicharacters [17, 18]. Depending on whether we choose to impose
the latter two conditions, our work can be taken to classify either quasicharacters or physical
characters. As we explain in section 3, for solutions to monic MDEs, weak holomorphy and
integrality are automatic once the consistent exponents are classified. On the other hand,
when appropriate we will check vacuum and positivity by explicitly solving the MDEs, as
we are not aware of any alternative.

Next, we give details on the vacuum condition. To identify whether a vvmf admits
a legitimate vacuum character, we must check that under suitable normalization, at least
one solution has unit leading Fourier coefficient. This is done as follows. One begins by
stripping off the greatest common factor of all Fourier coefficients of the vvmf, and then
solving modular invariance to compute a “bare” modular pairing matrix M ′ij = m′iδij , such
that the combination∑i,jM

′
ijχi(τ)χj(τ) is modular invariant. This modular pairing matrix

does not generically have integer entries. To make it integer, we may do the following. For
any i, if m′i is rational and takes the form m′i = mi(pi/qi)2 for integer mi, pi, qi with
(pi, qi) = 1, then we can renormalize χi(τ) → piχi(τ), χj(τ) → qiχj(τ) for j 6= i to
obtain a new M ′ij . Iterating over i, where we always choose the triplet (mi, pi, qi) that
minimizes qi, we eventually obtain a final modular pairing matrixMij = miδij with integral
degeneracies. It is then in this normalization that we look for a character with unit leading
Fourier coefficient.

We illustrate this procedure with the following example. Consider the solutions to a
third order monic MDE under exponents

(
−11

30 ,−
1
6 ,

31
30

)
χ1(τ) = q−

11
30 (1 + 253q + 4642q2 + 43824q3 +O(q4)) ,

χ2(τ) = q−
1
6 (11 + 2464q + 43614q2 + 393250q3 +O(q4)) ,

χ3(τ) = q
31
30
(
242 + 4092q + 35123q2 + 221464q3 +O(q4)

)
.

(2.18)

4There are of course other conditions we could impose if we were to strictly enforce unitarity, such as
c ≥ 1 except for minimal models, or requiring the modular S-matrix to satisfy S0i > 0 for all i.
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The character χ1(τ) may naively seem to give a legitimate vacuum character since it
has unit leading Fourier coefficient. However, this is not correct. Indeed, in the current
normalization the “bare” modular pairing matrix is found to be

M ′ =

 1
1
50

1

 , (2.19)

which is not integral. To make it integral, we note that 1
50 = 2

102 , i.e. (m2, p2, q2) = (2, 1, 10)
in our previous notation. We must then rescale the characters by factors of (10, 1, 10) to
obtain

χ1(τ) = 10q−
11
30 (1 + 253q + 4642q2 + 43824q3 +O(q4)) ,

χ2(τ) = q−
1
6 (11 + 2464q + 43614q2 + 393250q3 +O(q4)) , (2.20)

χ3(τ) = 10q
31
30
(
242 + 4092q + 35123q2 + 221464q3 +O(q4)

)
,

which has an integral modular pairing matrix

M =

 1
2

1

 . (2.21)

In this normalization, we see that there is no candidate vacuum character.
As a final comment, note that it is possible for multiple characters to be interpretable

as the vacuum. For example, consider the following pair of characters, which provide an
integral set of solutions to a second-order MDE with exponents

{
− 1

60 ,
11
60

}
,

χ1(q) = q−
1

60 (1 + q + q2 + q3 +O(q4)) ,

χ2(q) = q
11
60 (1 + q2 + q3 +O(q4)) . (2.22)

Since the bare pairing matrix is already integral M ′ = diag(1, 1), and both characters have
unit leading Fourier coefficient, we see that either one of them can be interpreted as the
vacuum character. Interpreting χ1(q) as the vacuum character leads to a tentative theory
with (c, h) =

(
2
5 ,

1
5

)
, while interpreting χ2(q) as the vacuum leads to a tentative theory

with (c, h) =
(
−22

5 ,−
1
5

)
. We recognize the latter as the M2,5 minimal model. Several

other concrete examples will be encountered in the following sections.

MTC structure? Above we listed four physical conditions which will be imposed on
characters of our tentative theories. One might be tempted to further impose that S-
and T-matrices describing the modular transformations of the vvmfs furnish the modular
data of an MTC. For instance once could require that S, when inserted in the Verlinde
formula [37],

Nijk =
∑
`

Si`Sj`S
∗
k`

S0`
, (2.23)
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yields positive integer fusion coefficients. However, this is incorrect. Indeed, the S- and
T-matrices of an MTC encode the modular properties of refined characters — those man-
ifesting not just q = exp(2πiτ), but also the chemical potentials for a set of commuting
conserved charges, such as the G quantum numbers for a Ĝk WZW model, or, more gener-
ally, commuting quantum KdV charges. The classification of RCFTs through vvmfs ignores
such extra chemical potentials,5 and the PSL(2,Z) transformation properties of the charac-
ters are instead captured by reduced S- and T-matrices that need not fit inside the structure
of an MTC.6 In particular, the Verlinde formula applied to reduced S-matrices generally
does not generate non-negative integral fusion coefficients.

As a concrete example, the ̂so(2r)1 WZW model has four modules with four distinct
refined characters

χω̂0
(τ, z) = 1

2
θr3(τ, z) + θr4(τ, z)

ηr(τ) , χω̂1
(τ, z) = 1

2
θr3(τ, z)− θr4(τ, z)

ηr(τ) ,

χω̂r−1
(τ, z) = 1

2
θr2(τ, z) + θr1(τ, z)

ηr(τ) , χω̂r(τ, z) = 1
2
θr2(τ, z)− θr1(τ, z)

ηr(τ) ,

(2.24)

where z is the chemical potential for the U(1) global symmetry that simultaneously rotates
the r pairs of complex fermions by a phase.7 For r = 3, the refined characters transform
according to the 4× 4 modular S- and T-matrices

S = 1
2


1 1 1 1
1 1 −1 −1
1 −1 i −i
1 −1 −i i

 , T =



e−
πi
4 0 0 0

0 e
3πi

4 0 0

0 0 e
πi
2 0

0 0 0 e
πi
2


, (2.25)

When the chemical potential is turned off, two of the refined characters become degenerate,
χω̂2

(τ, 0) = χω̂3
(τ, 0), and the unrefined characters transform according to 3× 3 reduced S-

and T-matrices

S = 1
2


1 1 1
1 1 −1
2 −2 0

 , T =


e−

πi
4 0 0

0 e
3πi

4 0

0 0 e
πi
2

 , (2.26)

Whereas the modular S-matrix (2.25) produces non-negative integral fusion coefficients
when applying the Verlinde formula, the reduced S-matrix (2.26) does not, and gives for
instance

ω̂0 × ω̂0 = 3
4 ω̂0 + 1

4 ω̂1 . (2.27)

5See however [38] for recent work on flavored MDEs.
6A method for lifting the reduced S- and T-matrices to the actual modular data of an MTC was proposed

in [12].
7One could turn on r chemical potentials zi for the r copies of U(1) rotations, but setting zi = z for all

i suffices to distinguish the four modules.
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The lesson here is that for generic RCFTs, it does not make sense to demand that the
unrefined characters transform under S- and T-matrices furnishing an MTC structure.

A restricted subset of RCFTs have the same number of modules as of distinct unrefined
characters. In this case, the unrefined characters do transform under modular S- and T-
matrices compatible with the structure of an MTC; in particular, the Verlinde formula
generates non-negative integer fusion coefficients. This version of the classification problem
has been extensively studied with particular focus on d = 2 [16, 39] and d = 3 [40]. However,
notice that the aforementioned ̂so(2r)1 WZW models, as well as numerous other RCFTs,
do not fall under its purview.

This paper adopts the more general approach of classifying characters through the
study of MDEs without necessarily demanding an MTC structure. In the rest of this
paper, the word “character” refers to unrefined ones, i.e. without extra fugacities, in which
case distinct modules of the vertex operator algebra may share identical characters.

3 Exponents from modular representation theory

The characters of an RCFT form a vvmf transforming in a representation ρ of PSL(2,Z). At
the heart of our approach is the so-called integrality conjecture in the theory of vvmfs [10], or
alternatively the congruence property in the modular tensor category (MTC) literature [24].
The basic statement is that integrality of the RCFT characters implies that the characters
are modular functions for a principal congruence subgroup Γ(n) < PSL(2,Z). Here n is
the order of T , or equivalently the least common denominator of the set of exponents{
hj − c

24
}
. It follows that ρ is a representation of PSL(2,Z)/Γ(n) ∼= PSL(2,Zn).

All representations of SL(2,Zn) were classified in [41–43], and it is this result which
provides the first step for our classification approach.8 In this section, we will discuss how
to extend the known representation theory of SL(2,Zn) to the representation theory of
PSL(2,Zn), and then use these results to make statements about the possible represen-
tations ρ for integral vvmfs. For example, suppose that we fix a particular n = n0 and
find that PSL(2,Zn0) admits irreducible representations of dimensions {d(n0)

i }. If a certain
dimension d = d0 were absent from this list, then we would conclude that no d0-character
theory admits a T-matrix of order n0. Conversely, fixing a specific dimension d = d0, we
can ask for the set of all {n(d0)

i } such that PSL(2,Z
n

(d0)
i

) does admit an irreducible rep-
resentation of dimension d0. This will constrain the possible orders of the T-matrix, and
hence the possible denominators for the exponents

{
hj − c

24
}
of RCFTs with d0 characters.

These constraints are obtained in section 3.1; for any d0, we will see that only a finite num-
ber of denominators are allowed. For example, we will find that for 5-character theories,
the only allowed denominators are {5, 10, 11, 15, 22, 30, 33, 66}.

Furthermore, thanks to the existence of computational tools such as GAP [44], one can
obtain not just the lists of possible denominators, but the lists of all possible exponents
themselves (mod 1). The basic idea here is a thorough examination of the character table for

8The original works [41, 42] are written in German; [43] offers a nice review in English. While SL(2,Zn)
representation theory has been key to the classification of MTCs, it does not appear to have been leveraged
fully in the study of MDEs.
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PSL(2,Zn), as will be described in section 3.3. In other words, for fixed d0 we will obtain
a finite list of exponents

{
hj − c

24
}
mod 1 which can be realized by any d0-dimensional

RCFT. Of course, at this stage we are imposing only integrality, so it is not clear which (if
any) of the elements of these lists actually correspond to positive characters with a vacuum.
However, once the finite list is in hand, it becomes possible to run an explicit computerized
scan to implement positivity and existence of a vacuum, and the results of such a scan is
given in section 4.

Depending on the specific context, one may or may not wish to restrict to irreducible
representations of PSL(2,Zn). For example, an indecomposable MTC can have either a re-
ducible or irreducible representation, so in the classification of MTCs one needs to consider
both. However, in the context of modular differential equations (MDE), it is reasonable to
restrict to irreducible representations because for solutions to an MDE transforming under
a reducible representation, there exist lower-order MDEs realizing these characters. In any
case, one may regard irreducibility as an assumption of the classification problem pursued
in this paper.

3.1 Representation theory of PSL(2,ZZZn)

As we have just described, the starting point for our classification is the classification of
irreducible linear representations of SL(2,Zn) [41–43]. To begin, note that if n = ∏

i p
λi
i is

the prime decomposition of n, then

SL(2,Zn) ∼=
∏
i

SL(2,Z
p
λi
i

) . (3.1)

Thus any irreducible representation of SL(2,Zn) for general n is a tensor product of ir-
reducible representations of SL(2,Zpλ) for λ ∈ N and p prime, and it suffices to classify
representations of the latter.

The center of SL(2,Zpλ) for pλ > 2 consists of elements ±I, and the quotient by the
center gives PSL(2,Zpλ). Schur’s lemma states that any element of the center of a group
acts as a scalar operator on an irreducible representation, so −I acts by a sign on each irre-
ducible representation of SL(2,Zpλ). Let us define the signature σ of an irreducible linear
representation of SL(2,Zpλ) to be σ = ± if −I acts by ±1, and the signature is multiplica-
tive under tensor product. Table 1 summarizes the dimensions and signatures of irreducible
representations SL(2,Zpλ) → GL(d,C) that are not pullbacks of the irreducible represen-
tations SL(2,Zpλ−1)→ GL(d,C) under the quotient map SL(2,Zpλ)→ SL(2,Zpλ−1).9 The
irreducible representations of PSL(2,Zn) are those of SL(2,Zn) with positive overall signa-
ture σ = +.

For example, consider the case of n = 15. The representations of SL(2,Z15) =
SL(2,Z3) × SL(2,Z5) are just tensor products of those of SL(2,Z3) and SL(2,Z5), and

9The quantity of interest is the minimal n such that Tn is the identity, i.e. the least common multi-
ple of the denominators of the exponents. If a representation SL(2,Zpλ) → GL(d,C) is the pullback of
SL(2,Zpλ−1 ) → GL(d,C) under the quotient map SL(2,Zpλ) → SL(2,Zpλ−1 ), then n has a prime factor-
ization involving pµ with µ strictly smaller than λ. In this sense, it is not meaningful to regard ρ as a
representation of SL(2,Zpλ). We thank Zhihao Duan for correcting an incorrect statement made in an
earlier version of the paper.

– 13 –



J
H
E
P
1
2
(
2
0
2
1
)
1
5
1

p λ irrep dimensions signature

2 1 {1+, 2+}

2 {1−, 2−, 3±}
3 {2, 3, 4, 6} ±

4 {3, 6, 8, 12, 24} ±

5 {6, 12, 16, 24, 48} ±

> 5 {2λ−1} ∪ {3 · 2λ−i | i = 1, 2, 3, 4} ±

3 1 {1+, 2−, 3+}

≥ 5 1 1
2(p− 1) (−)

p+1
2

1
2(p+ 1) (−)

p−1
2

p− 1 ±
p +

p+ 1 ± but − for p = 5

≥ 3 ≥ 2 1
2(p2 − 1)pλ−2 ±

(p− 1)pλ−1 ±

(p+ 1)pλ−1 ±

Table 1. The dimensions and signatures of irreducible representations SL(2,Zpλ)→ GL(d,C) that
are not pullbacks of the irreducible representations SL(2,Zpλ−1) → GL(d,C) under the quotient
map SL(2,Zpλ)→ SL(2,Zpλ−1).

from table 1 we find

{1+, 2−, 3+} ⊗ {2−, 3+, 4±, 5+, 6−}
= {2−, 3+, 4±, 5+, 6−, 8±, 9+, 10−, 12±, 15+, 18−} .

(3.2)

Among them, the irreducible representations of PSL(2,Z15) are the ones with σ = +, so
the dimensions of the possible irreps of PSL(2,Z15) are given by

{3, 4, 5, 8, 9, 12, 15} . (3.3)

This means that only RCFTs with d belonging to this list can have exponents
{
hj − c

24
}

with least common denominator 15. For instance, there can be no two-character theory
with exponents

{
1
3 ,

1
5

}
mod 1.

3.2 Denominator-rank constraints

Our goal is now to obtain the set of all possible denominators for fixed number d ≥ 2 of
characters. Let us denote this set of denominators by den(d); in other words, this is the
set of n ∈ N such that PSL(2,Zn) has a d-dimensional irreducible representation (that is
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not the pullback of an irreducible representation SL(2,Zk)→ GL(d,C) under the quotient
map SL(2,Zn)→ SL(2,Zk) for any k|n).

To obtain this set, we begin by defining an intermediate set den0(d), which is the
set of pλ such that SL(2,Zpλ) has a d-dimensional irreducible representation (that is not
the pullback of an irreducible representation SL(2,Zpλ−1) → GL(d,C) under the quotient
map SL(2,Zpλ) → SL(2,Zpλ−1)). Moreover, den0(d) retains the information about the
signatures. Explicitly, we see that

den0(1) = {1+, 2+, 3+, 4−, 6+, 12−} ,
den0(2) = {2+, 3−, 4−, 5−, 8±} ,
den0(3) = {3+, 4±, 5+, 7+, 8±, 16±} ,
den0(4) = {5±, 7−, 8±, 9±} ,
den0(5) = {5+, 11+} ,

(3.4)

In terms of these we can then express den(d) as follows. First, define the set F of all
possible factorizations f of d into integers δ(f)

i ≥ 2 (not necessarily prime). For example,
for d = 4 we have F = {f1, f2} = {{4}, {2, 2}} and δ(1)

1 = 4, δ(2)
1 = δ

(2)
2 = 2. Then we may

write
den(d) = P+

⋃
f∈F

lcm
[
den0(1), den0(δ(f)

1 ), . . . , den0(δ(f)
|f | )

]
, (3.5)

where lcm denotes the least common multiple and P+ means that we project to those
representations with overall signature σ = +. We are then able to obtain the following
complete lists of acceptable denominators for RCFTs with d = 1, . . . , 5,

den(1) = {1, 2, 3, 6} ,
den(2) = {2, 4, 6, 8, 12, 20, 24, 60} ,
den(3) = {3, 4, 5, 6, 7, 8, 10, 12, 14, 15, 16, 21, 24, 30, 42, 48} ,
den(4) = {2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 28, 30, 36, 40, 60, 84, 120} ,
den(5) = {5, 10, 11, 15, 22, 30, 33, 66} .

(3.6)

Of course, there is no obstruction to proceeding to higher d. We reemphasize that den(d)
is a finite set for any given d.

3.3 Exponents from character tables

We have now seen how to restrict the set of possible denominators of the exponents{
hj − c

24
}
to a finite list. This immediately implies a finite list of exponents

{
hj − c

24
}

mod 1, obtained by simply listing all possible numerators less than each denominator.
However, we will now see that one can restrict the space of allowed exponents even further.

The key tool for us here is the character table of PSL(2,Zn). Let us begin with a
concrete example, namely n = 3. The character table of PSL(2,Z3) can be obtained by
means of a computer algebra program like GAP [44] or MAGMA [45], with the result
shown in table 2. Recall that each row of the character table corresponds to a different
irreducible representation, while each column corresponds to a different conjugacy class.
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1a 6a 6b 2a 3a 3b 4a
χ̃1 1 1 1 1 1 1 1
χ̃2 1 ω̄ ω 1 ω ω̄ 1
χ̃3 1 ω ω̄ 1 ω̄ ω 1
χ̃4 2 1 1 −2 −1 −1 0
χ̃5 2 ω ω̄ −2 −ω̄ −ω 0
χ̃6 2 ω̄ ω −2 −ω −ω̄ 0
χ̃7 3 0 0 3 0 0 −1

Table 2. Character table of SL(2,Z3). T is in conjugacy class 3b, while T 2 is in the conjugacy
class 3a.

For a row labelled by representation ρi and a column labelled by conjugacy class [g], the
corresponding entry in the table is χ̃i(g) = Trρi g.10 The first column, corresponding to
the conjugacy class of the identity [I], computes the dimension of each irrep. We see that
there are three one-dimensional irreps, three two-dimensional irreps, and a single three-
dimensional irrep. This matches the p = 3 row of table 1.

However, the character table clearly contains more information than this. Indeed, we
may use the character table to reconstruct the full set of possible T eigenvalues as follows.
The group PSL(2,Zn) contains S and T elements, and in any given representation ρi of
PSL(2,Zn) we must have that ρi(Tn) = 1. The first step in obtaining the eigenvalues of
T in a representation ρi is to identify the conjugacy classes of Tm for m = 0, 1, . . . , n− 1.
Having done so, one then reads off the corresponding characters χ̃i(Tm) from the character
table. Then with the characters in hand, one notes that the χ̃i(Tm) are related to the
eigenvalues {t(i)a } of ρi(T ) via a discrete Fourier transform,

χ̃i(Tm) =
d∑
a=1

(t(i)a )m =
n−1∑
`=0

ν
(i)
` e

2πi`m
n . (3.7)

Here ν(i)
m denotes the (possibly zero) degeneracy of e 2πim

k in the set of ρi(T ) eigenvalues
(for a d-dimensional representation ρi, clearly

∑n−1
`=0 ν

(i)
` = d). It is these ν(i)

m which encode
all of the data of the ρi(T ) eigenvalues. Performing the inverse discrete Fourier transform
allows us to extract them,

ν(i)
m = 1

n

n−1∑
p=0

χ̃i(T p) e−
2πimp
n , (3.8)

and in this way we obtain the full set of T eigenvalues — i.e. the set of allowed
{
hj − c

24
}
.

Returning to the simple example of n = 3, let us now illustrate the procedure by
identifying the exponents

{
hj − c

24
}
for the three-dimensional representation ρ7. We first

use GAP to find that T is in the conjugacy class 3b, while T 2 is in the conjugacy class 3a.
From the character table, we see that the corresponding characters are

χ̃7(1) = 3 , χ̃7(T ) = χ̃7(T 2) = 0 . (3.9)
10Here we are concerned with group characters χ̃, not to be confused with RCFT characters χ.
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Performing the inverse discrete Fourier transform then gives

ν
(7)
0 = ν

(7)
1 = ν

(7)
2 = 1 , (3.10)

and hence the ρi(T ) eigenvalues are {1, ω, ω̄} for ω = e
2πi

3 . In other words, the exponents{
hj − c

24
}
are

{
0, 1

3 ,
2
3

}
mod 1.

3.4 All allowed exponents and Wronskian indices

The strategy for obtaining the full set of allowed exponents at fixed number of characters
d is now clear — we simply repeat the procedure of section 3.3 for all n in the lists den(d)
given in section 3.1.11 We will summarize the final results of this procedure, organizing
our results by the values of the Wronskian index (2.13). More precisely, since we have thus
far only constrained the possible exponents mod 1, the values of the Wronskian index are
defined only mod 6.

Starting with two-dimensional vvmfs, we find that only even values of the Wronskian
index are possible. For both ` = 0, 2, there are nine classes of possible exponents mod 1,
given in table 3. For ` = 4 there are again nine classes, also given in table 3. Of course,
from what we have said thus far it does not follow that all of these exponents are realized by
legitimate two-character RCFTs. This question will be addressed in the following section
for the ` = 0, 2 cases, for which the exponents below completely fix the corresponding MDE.

For three-character vvmfs, the Wronskian index is found to always be a multiple of
three. For each of ` = 0, 3 mod 6 there are a total of 34 classes of allowed exponents, given
in table 12 of appendix A.

For four-character vvmfs, the Wronskian index is found to always be even. For each
of ` = 0, 2, 4 mod 6, there are 30 allowed exponents, given in table 13 of appendix A.

Finally, for five-character vvmfs the Wronskian index can take any value. For each
of choice of ` mod 6 there are only three allowed exponents mod 1, given in table 14 of
appendix A.

Wronskian index. As an obvious byproduct of the above results, we have succeeded in
rederiving the classic result that odd values of ` are disallowed for 2-character RCFTs [46].
We have also obtained a significant generalization — indeed, we have seen that a Wronskian
index ` can be realized for a particular d only if there exists a representation of PSL(2,Zn),
for some n in den(d), such that detT is given by (2.13). Above we have found that for
small d, the allowed values of ` are given in the following table:

d 2 3 4 5
` 2Z 3Z 2Z Z

Conversely, all values of ` mod 6 in the above table are realized by actual vvmfs. This is
because we can always multiply a vvmf by a factor of j(τ)x3 (1728 − j(τ))

y
2 for arbitrary

x, y ∈ Z≥0 to increase the Wronskian by a factor of (2x+3y)d without introducing spurious
poles. Since, as will be shown in the next section, monic ` = 0 solutions exist for all
d = 2, 3, 4, 5 the claim follows.

11In fact, it suffices to carry out the procedure on the least common multiple of the set of all n.
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n 2d ` = 0 exponents

6
{

1
3 ,

5
6

}
12

{
1
4 ,

11
12

}
,
{

3
4 ,

5
12

}
24

{
11
24 ,

17
24

}
,
{

5
24 ,

23
24

}
60

{
11
60 ,

59
60

}
,
{

17
60 ,

53
60

}
,
{

23
60 ,

47
60

}
,
{

29
60 ,

41
60

}
n 2d ` = 2 exponents

6
{

2
3 ,

1
6

}
12

{
1
4 ,

7
12

}
,
{

3
4 ,

1
12

}
24

{
1
24 ,

19
24

}
,
{

7
24 ,

13
24

}
60

{
1
60 ,

49
60

}
,
{

7
60 ,

43
60

}
,
{

19
60 ,

31
60

}
,
{

13
60 ,

37
60

}
n 2d ` = 4 exponents

2
{

0, 1
2

}
8

{
1
8 ,

3
8

}
,
{

5
8 ,

7
8

}
12

{
1
12 ,

5
12

}
,
{

7
12 ,

11
12

}
20

{
1
20 ,

9
20

}
,
{

3
20 ,

7
20

}
,
{

11
20 ,

19
20

}
,
{

13
20 ,

17
20

}
Table 3. Possible exponents mod 1 for two-character theories with ` = 0, 2, 4 mod 6.

4 Classification of solutions to rigid MDEs

In the previous section, we used the representation theory of PSL(2,Zn) to obtain all
possible exponents for RCFTs with characters d ≤ 5. Thus far, the only ingredient of RCFT
which we have used is the integrality of the characters, which ensured that the character
vector transformed in a vector of PSL(2,Zn). The results of the previous section then
amount to a classification of exponents of quasicharacters. Of course, not every integral
vvmf can be interpreted as actual characters for some RCFT. As discussed in section 2.3,
in addition to integrality the requirements of positivity and existence of a vacuum will
be imposed. To the best of our knowledge, there does not exist a purely representation-
theoretic way of imposing these additional constraints. As such, our approach to the
problem will instead be to explicitly solve the corresponding MDE order-by-order in q for
each choice of exponents, and then to explicitly check for positivity and existence of a
vacuum. For this to be a viable strategy, we should restrict ourselves to situations in which

– 18 –



J
H
E
P
1
2
(
2
0
2
1
)
1
5
1

the exponents obtained above completely fix the MDE, i.e. to rigid MDEs in the language
of section 2. As reviewed there, monic degree d ≤ 5 MDEs are all rigid, so in these cases
the order-by-order check can be carried out. The case of 2d ` = 2 is also rigid, and can be
addressed by similar means.

While solutions to monic MDEs of low order d = 2, 3 have been completely classified,
a systematic study of d ≥ 4 has been lacking. This section gives the complete classification
of potential ` = 0 theories with four and five characters.

4.1 Two characters

Beginning with the case of two characters, we find the results shown in table 4 for ` = 0, 2.
These results match with the well-known results obtained in [11, 13]. The tables are color-
coded as follows. Rows marked in green are theories which admit a positive integer Verlinde
formula, i.e. theories for which there are exactly two modules with distinct characters that
transform under S- and T-matrices furnishing an MTC structure. On the other hand,
rows marked in blue are theories with a negative integer Verlinde formula — these cases
should be thought of as intermediate VOAs, including for example the c = 38

5 entry,
which corresponds to the E7 1

2
intermediate VOA. Finally, rows marked in red admits

multiple vacuum interpretations; for example, the (c, h) =
(

2
5 ,

1
5

)
theory can alternatively

be interpreted as a theory with (c, h) =
(
−22

5 ,−
1
5

)
, which we recognize as the Lee-Yang

minimal modelM2,5. Note that for the choice of vacuum giving rise to (c, h) =
(

2
5 ,

1
5

)
, one

has negative integer Verlinde formula. However we do not mark this case in blue, since the
sign of Verlinde is a vacuum dependent statement. Indeed, for the rest of this paper we do
not bother with the sign of Verlinde for characters with multiple vacuum interpretations,
since it is vacuum dependent.

All of the theories in the ` = 0 table are known. We have already discussed the first
and last entries above — the remaining seven entries are the (A1)1, (A2)1, (G2)1, (D4)1,
(F4)1, (E6)1, and (E7)1 WZW models, respectively. As for the ` = 2 entries, these are
also well-known. The actual theories realizing these characters are cosets of meromorphic
c = 24 theories by the ` = 0 theories [14].

4.2 Three characters

We now proceed to the case of three characters. In this case we observe something which
is unlike any of the other cases studied in this paper: namely, an infinite set of legitimate
theories. This set of theories decomposes into the infinite series Spin(n)1 for n 6= 0 mod 8,
with central charge and chiral dimensions given by12

Spin(n)1 : (c, h1, h2) =
(
n

2 ,
1
2 ,

n

16

)
, (4.1)

and a finite number of remaining theories. The remaining theories are given in table 5; for
a closely related table, see [40]. Some of these theories are familiar, including the (A1)2,

12Note that we do not obtain the cases of Spin(8n)1, since those cases are reducible. For example, the
Spin(8)1 case is just the (D4)1 WZW model, which is really a two-character theory.
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J
H
E
P
1
2
(
2
0
2
1
)
1
5
1

c h nJ
2
5

1
5 1

1 1
4 3

2 1
3 8

14
5

2
5 14

4 1
2 28

26
5

3
5 52

6 2
3 78

7 3
4 133

38
5

4
5 190

c h nJ
82
5

6
5 410

17 5
4 323

18 4
3 234

94
5

7
5 188

20 3
2 140

106
5

8
5 106

22 5
3 88

23 7
4 69

118
5

9
5 59

Table 4. Potential (d, `) = (2, 0) (left) and (d, `) = (2, 2) (right) theories. Rows colored red
denote theories which admit multiple vacuum interpretations. Here we have chosen a single possible
interpretation, and nJ gives the number of spin-1 currents in that interpretation. Rows colored green
(blue) denote cases with a positive (negative) integer Verlinde formula.

(A3)1, (A4)1, (E8)2, (A2)⊗2
1 , (G2)⊗2

1 , (F4)⊗2
1 , and

(
E7 1

2

)⊗2

1
theories with respective data

(c, h1, h2) =
(

45
2 ,

29
16 ,

3
2

)
,
(
21, 13

8 ,
3
2

)
,
(
4, 2

5 ,
3
5

)
,
(

31
2 ,

15
16 ,

3
2

)
,
(
4, 1

3 ,
2
3

)
,
(

28
5 ,

2
5 ,

4
5

)
,
(

52
5 ,

3
5 ,

6
5

)
,

and
(

76
5 ,

4
5 ,

8
5

)
.13

In table 5 we observe two entries which allow for multiple vacuum interpretations. In
both cases, there exists an interpretation in which the theory has no spin-1 currents. In
particular, the c =

(
4
7 ,

1
7 ,

3
7

)
entry admits an alternative interpretation as a (c, h1, h2) =(

−68
7 ,−

2
7 ,−

3
7

)
theory, which is the non-unitary minimal model M2,7. Likewise the

(c, h1, h2) =
(

4
5 ,

1
5 ,

2
5

)
entry admits an interpretation as a (c, h1, h2) =

(
−44

5 ,−
2
5 ,−

1
5

)
theory, which is (M2,5)⊗2.

Including theories with a single vacuum interpretation, we find a total of 6 theories
without Kac-Moody. Five of them are in table 5, and one of them is the Ising model,
i.e. Spin(1)1. We have already given an interpretation to three of these theories. The
theory with (c, h1, h2) =

(
47
2 ,

31
16 ,

3
2

)
can also be given an interpretation, namely as the

Baby Monster CFT. Just as the Ising and Baby Monster characters are “dual” in the sense
that the inner product of their characters gives the j-function, so too are the c = 236

7 , 164
5

theories dual to M2,7 and (M2,5)⊗2. This spectrum of six theories without Kac-Moody
was previously identified in [15].

In total, we observe 23 cases with positive integral Verlinde formula.

4.3 Four characters

We now proceed to the case of four characters, where the results are entirely new. The
list of possible four-character ` = 0 theories satisfying positivity and existence of a vacuum

13We thank the referee for pointing out some of these identifications.
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J
H
E
P
1
2
(
2
0
2
1
)
1
5
1

c hi nJ

4 1
3 ,

2
3 16

4 2
5 ,

3
5 24

12 1
3 ,

5
3 318

12 2
3 ,

4
3 156

12 3
5 ,

7
5 222

13 5
8 ,

3
2 273

14 3
4 ,

3
2 266

15 7
8 ,

3
2 255

17 9
8 ,

3
2 221

18 5
4 ,

3
2 198

19 11
8 , 3

2 171
20 1

3 ,
8
3 728

20 2
3 ,

7
3 890

20 4
3 ,

5
3 80

20 7
5 ,

8
5 120

21 13
8 , 3

2 105
22 7

4 ,
3
2 66

22 3
4 ,

5
2 1298

23 15
8 , 3

2 23
23 7

8 ,
5
2 2323

28 2
3 ,

10
3 1948

36 2
3 ,

13
3 3384

c hi nJ
25
2

9
16 ,

3
2 275

27
2

11
16 ,

3
2 270

29
2

13
16 ,

3
2 261

31
2

15
16 ,

3
2 248

33
2

17
16 ,

3
2 231

35
2

19
16 ,

3
2 210

37
2

21
16 ,

3
2 185

39
2

23
16 ,

3
2 156

41
2

25
16 ,

3
2 123

43
2

27
16 ,

3
2 86

45
2

29
16 ,

3
2 45

47
2

31
16 ,

3
2 0

c hi nJ
4
5

1
5 ,

2
5 2

12
5

1
5 ,

3
5 3

28
5

2
5 ,

4
5 28

36
5

3
5 ,

4
5 144

44
5

2
5 ,

6
5 220

52
5

3
5 ,

6
5 104

68
5

4
5 ,

7
5 136

76
5

3
5 ,

9
5 437

76
5

4
5 ,

8
5 380

84
5

6
5 ,

7
5 336

92
5

6
5 ,

8
5 92

108
5

4
5 ,

12
5 1404

108
5

7
5 ,

9
5 27

116
5

8
5 ,

9
5 58

164
5

11
5 , 12

5 0

c hi nJ
4
7

1
7 ,

3
7 1

12
7

2
7 ,

3
7 6

44
7

4
7 ,

5
7 88

52
7

4
7 ,

6
7 156

60
7

3
7 ,

8
7 210

68
7

3
7 ,

9
7 221

100
7

4
7 ,

12
7 380

100
7

5
7 ,

11
7 325

108
7

6
7 ,

11
7 378

108
7

4
7 ,

13
7 456

116
7

8
7 ,

10
7 348

124
7

9
7 ,

10
7 248

156
7

11
7 , 12

7 78
156
7

5
7 ,

18
7 1248

164
7

11
7 , 13

7 41
236
7

16
7 , 17

7 0

Table 5. List of all potential (d, `) = (3, 0) theories, not including the infinite series of theories
Spin(n)1. Rows colored red denote theories which admit multiple vacuum interpretations. Here
we have chosen a single possible interpretation, and nJ gives the number of spin-1 currents in that
interpretation. Rows colored green (blue) denote cases with a positive (negative) integer Verlinde
formula.

is given in table 6. Many elements of the list can be recognized as familiar theories —
this includes the (A1)3, (A2)2, (A2)6, (C3)1, (A5)1, (G2)2, and (F4)6 WZW models, which
correspond respectively to the theories with central charges c = 9

5 ,
16
5 ,

16
3 ,

21
5 , 5,

14
3 and 104

5 .
We also identify some product theories, including the (A1)1 × (C5)3 WZW model with
(c, nJ) =

(
58
3 , 58

)
.

We find six cases which admit multiple vacuum interpretations, given in red, and in all
cases there is a choice of vacuum with no Kac-Moody. In particular, the c = 3

5 ,
4
5 ,

6
5 ,

6
7 ,

2
3 ,

and 4
3 entries could be interpreted as c = −3

5 ,
4
5 ,−

66
5 ,−

144
7 ,−46

3 , and −
44
3 theories with no

Kac-Moody. In fact, the c = −3
5 and −46

3 theories obtained in this way are respectively the
non-unitary M3,5 and M2,9 minimal models, while c = 4

5 is the three-state Potts model.

– 21 –



J
H
E
P
1
2
(
2
0
2
1
)
1
5
1

c hi nJ

1 1
12 ,

1
3 ,

3
4 1

2 1
6 ,

1
2 ,

2
3 2

3 1
4 ,

1
2 ,

3
4 9

5 5
12 ,

2
3 ,

3
4 35

6 3
7 ,

5
7 ,

6
7 48

18 8
7 ,

9
7 ,

11
7 144

19 5
4 ,

4
3 ,

19
12 133

21 3
4 ,

3
2 ,

9
4 399

21 5
4 ,

3
2 ,

7
4 63

22 4
3 ,

3
2 ,

11
6 22

23 11
12 ,

5
3 ,

9
4 575

23 5
4 ,

5
3 ,

23
12 23

c hi nJ
2
3

1
9 ,

1
3 ,

2
3 1

4
3

2
9 ,

1
3 ,

2
3 4

8
3

1
3 ,

4
9 ,

2
3 12

10
3

1
3 ,

5
9 ,

2
3 15

14
3

1
3 ,

2
3 ,

7
9 14

16
3

1
3 ,

2
3 ,

8
9 8

56
3

10
9 ,

4
3 ,

5
3 28

56
3

2
3 ,

4
3 ,

19
9 420

58
3

11
9 ,

4
3 ,

5
3 58

58
3

2
3 ,

4
3 ,

20
9 638

62
3

4
3 ,

13
9 ,

5
3 93

64
3

4
3 ,

14
9 ,

5
3 96

68
3

2
3 ,

4
3 ,

25
9 2278

68
3

4
3 ,

5
3 ,

16
9 68

70
3

2
3 ,

4
3 ,

26
9 2730

70
3

4
3 ,

5
3 ,

17
9 35

c hi nJ
3
5

1
20 ,

1
4 ,

4
5 1

4
5

1
15 ,

2
5 ,

2
3 0

6
5

1
10 ,

1
2 ,

3
5 0

6
5

1
5 ,

2
5 ,

3
5 3

8
5

2
15 ,

1
3 ,

4
5 4

9
5

3
20 ,

2
5 ,

3
4 3

12
5

1
5 ,

2
5 ,

4
5 8

16
5

4
15 ,

3
5 ,

2
3 8

18
5

3
10 ,

1
2 ,

4
5 18

21
5

7
20 ,

3
5 ,

3
4 21

24
5

2
5 ,

3
5 ,

4
5 36

28
5

7
15 ,

2
3 ,

4
5 56

33
5

11
20 ,

3
4 ,

4
5 99

42
5

2
5 ,

4
5 ,

6
5 42

78
5

3
5 ,

6
5 ,

9
5 156

78
5

4
5 ,

6
5 ,

8
5 78

87
5

6
5 ,

5
4 ,

29
20 261

92
5

6
5 ,

4
3 ,

23
15 184

c hi nJ
96
5

3
5 ,

7
5 ,

11
5 276

96
5

6
5 ,

7
5 ,

8
5 144

99
5

5
4 ,

7
5 ,

33
20 99

102
5

6
5 ,

3
2 ,

17
10 102

104
5

4
3 ,

7
5 ,

26
15 52

108
5

4
5 ,

8
5 ,

11
5 204

108
5

6
5 ,

8
5 ,

9
5 72

111
5

5
4 ,

8
5 ,

37
20 37

112
5

13
15 ,

5
3 ,

11
5 210

112
5

6
5 ,

5
3 ,

28
15 56

114
5

4
5 ,

8
5 ,

12
5 570

114
5

9
10 ,

3
2 ,

12
5 1938

114
5

7
5 ,

3
2 ,

19
10 0

114
5

7
5 ,

8
5 ,

9
5 57

116
5

14
15 ,

8
5 ,

7
3 1566

116
5

4
3 ,

8
5 ,

29
15 0

117
5

19
20 ,

7
4 ,

11
5 325

117
5

6
5 ,

7
4 ,

39
20 39

123
5

5
4 ,

9
5 ,

41
20 0

c hi nJ
6
7

1
7 ,

2
7 ,

5
7 2

18
7

1
7 ,

3
7 ,

6
7 3

30
7

3
7 ,

4
7 ,

5
7 30

138
7

9
7 ,

10
7 ,

11
7 138

150
7

6
7 ,

11
7 ,

15
7 300

150
7

8
7 ,

11
7 ,

13
7 25

162
7

9
7 ,

12
7 ,

13
7 54

Table 6. List of all potential (d, `) = (4, 0) theories. Rows colored red denote theories which admit
multiple vacuum interpretations. Here we have chosen a single possible interpretation, and nJ gives
the number of spin-1 currents in that interpretation. Rows colored green (blue) denote cases with
a positive (negative) integer Verlinde formula.

Including cases with only a single vacuum interpretation, we see that there are in total ten
possible cases with no Kac-Moody. Among them, the (c, nJ) =

(
116
5 , 0

)
case matches with

the theory denoted V F \24 in [47, 48]. This theory is associated with the 3.F i′24 subgroup
of the monster group, and the inner product of the three-state Potts and V F \24 characters
gives the Monster CFT.

In two cases, namely those with c = 8
5 and 6

7 , the vacuum characters reveal the existence
of nJ = 4 and nJ = 2 spin-one conserved currents, for which the minimal Sugawara central
charge is 2, exceeding both c = 8

5 and c = 6
7 [49]. For c = 6

7 this issue can be circumvented
by changing the vacuum interpretation, which gives either a theory with c = −18

7 and
nJ = 1 or the c = −114

7 theory with no Kac-Moody mentioned above. However, in the
case of c = 8

5 there is no alternative vacuum interpretation. This case should be thought
of as a non-unitary theory arising from an intermediate VOA, and can be identified with
the theory discussed in e.g. section 2.4 of [50].

Among the theories identified, seven have a Verlinde formula that gives non-negative
integral fusion coefficients, given in green in table 6.

4.4 Five characters

Finally we proceed to the case of five characters. The list of possible five-character ` = 0
theories satisfying positivity and existence of a vacuum are given in table 7. Three theories
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J
H
E
P
1
2
(
2
0
2
1
)
1
5
1

c hi nJ
8
5

1
5 ,

2
5 ,

3
5 ,

4
5 4

32
5

1
5 ,

3
5 ,

4
5 ,

7
5 82

32
5

2
5 ,

3
5 ,

4
5 ,

6
5 80

56
5

2
5 ,

4
5 ,

6
5 ,

8
5 56

56
5

3
5 ,

4
5 ,

6
5 ,

7
5 28

104
5

3
5 ,

6
5 ,

9
5 ,

12
5 208

104
5

4
5 ,

7
5 ,

8
5 ,

11
5 520

104
5

6
5 ,

7
5 ,

8
5 ,

9
5 0

128
5

4
5 ,

7
5 ,

11
5 ,

13
5 28

152
5

4
5 ,

8
5 ,

12
5 ,

16
5 760

c hi nJ
8
11

1
11 ,

3
11 ,

6
11 ,

10
11 1

32
11

1
11 ,

4
11 ,

7
11 ,

13
11 10

32
11

2
11 ,

4
11 ,

7
11 ,

12
11 8

56
11

4
11 ,

7
11 ,

9
11 ,

10
11 28

80
11

5
11 ,

8
11 ,

10
11 ,

12
11 120

104
11

6
11 ,

9
11 ,

12
11 ,

13
11 52

128
11

5
11 ,

8
11

15
11 , ,

17
11 248

128
11

6
11 ,

8
11 ,

15
11 ,

16
11 224

224
11

5
11 ,

14
11 ,

18
11 ,

28
11 528

224
11

14
11 ,

16
11 ,

17
11 ,

18
11 112

248
11

10
11 ,

16
11 ,

20
11 ,

24
11 248

248
11

13
11 ,

16
11 ,

20
11 ,

21
11 0

344
11

10
11 ,

19
11 ,

27
11 ,

34
11 946

Table 7. List of all potential (d, `) = (5, 0) theories. Rows colored red denote theories which admit
multiple vacuum interpretations. Here we have chosen a single possible interpretation, and nJ gives
the number of spin-1 currents in that interpretation. Rows colored green (blue) denote cases with
a positive (negative) integer Verlinde formula.

on this list admit a positive integral Verlinde formula, which include the (F4)2 and (E8)3
WZW models with respective central charges c = 104

11 and c = 248
11 . We also recognize the

(c, nJ) =
(

56
5 , 28

)
theory as (D4)4.

We observe two cases which admit multiple vacuum interpretations, and in both cases
there is a choice in which there is no Kac-Moody. Indeed, the c = 8

5 and 8
11 cases can be

respectively interpreted as c = −88
5 and −232

11 theories with no Kac-Moody. The latter in
particular is the M2,11 non-unitary minimal model. Including theories with only a single
vacuum interpretation, we find a total of four potential theories without Kac-Moody.

5 The Mathur-Sen approach

Thus far we have made crucial use of the fact that integral characters transform in rep-
resentations of finite subgroups of PSL(2,Zn). However, there is an alternative approach,
initiated by Mathur and Sen in [22], based on the observation that known RCFT characters
arise from MDEs with finite monodromy group.

To understand this, let us begin by introducing the notion of a monodromy group
associated to an MDE. The class of rigid MDEs that we consider only have singularities
at the points τ = i∞, i, and ω := e2πi/3 in the fundamental domain. Upon the change of
variables x = j(τ)/1728, these get mapped to x =∞, 1, 0. The domain D := P1/{1, 0,∞}
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of x has a fundamental group generated by three loops γi surrounding the singular points,

π1(D) = 〈γ0, γ1, γ∞ | γ0γ1γ∞ = 1〉 . (5.1)

For instance, γ∞ surrounding the point at infinity can be taken as the small loop γ∞ :
x−1(s) = εe2πis, s ∈ [0, 1]. We introduce a d-dimensional linear representation of the
fundamental group

M : π1(D)→ GL(d,C) , (5.2)

where the matrices Mi := M(γi) can be obtained by considering the transformation of
the solutions of the MDE when traversing each loop. For instance, let us choose basis of
solutions of the MDE as a series expansion around x =∞,14

χi(x) = x−αi(ci,0 + ci,1 x
−1 + ci,2 x

−2 + · · · ) , (5.4)

Upon traversing γ∞ we have 
χ1(x)

...
χd(x)

 −→M∞


χ1(x)

...
χd(x)

 , (5.5)

withM∞ = diag(e2πiα1 , · · · , e2πiαd). M0 andM1 are similarly defined, although generically
they will not be diagonal in this basis. The monodromy group M of the MDE is then
defined to be the group of complex d× d matrices generated by

M = 〈M0,M1,M∞ ∈ GL(d,C) | M0M1M∞ = 1〉 . (5.6)

Using the inverse change of variables one can show that traversing the loop γ∞ sends
τ → τ + 1, and γ1 takes τ → −1/τ . On the upper half plane, γ1 and γ0 traverse a half
circle and a third of a circle, respectively. Because characters are holomorphic and hence
single-valued at τ = i and ω, traversing a full circle is trivial, so M2

1 = 1 and M3
0 = 1.

The monodromy matrices of the MDE may then be identified with the modular S- and
T-transformations of the characters as follows,

M∞ = T , M1 = S , M0 = (ST )−1 . (5.7)

In general, these S- and T-matrices do not represent PSL(2,Z) faithfully. For instance, due
to the rationality of the exponents αi, T has finite order n (i.e. Tn = 1). So the monodromy
trivializes the action of the congruence subgroup Γ(n). This provides the connection to the
finite groups PSL(2,Zn) = PSL(2,Z)/Γ(n) studied in the previous section.

14Using the familiar Fourier expansion of j(τ) = 1728x,

j(τ) = 1
q

+ 744 + 196884q + · · · (5.3)

the series solution (5.4) yields the familiar Fourier series in eq. (2.6).
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The monodromy group of a d-character RCFT must be a finite quotient of PSL(2,Z)
with a faithful d-dimensional representation, which in turn yields a representation of a
finite subgroup of GL(d,C). By studying representations of finite subgroups of GL(2,C)
and GL(3,C), Mathur and Sen found that, apart from an infinite family, there are only a
finite number of possibilities for theories with d = 2 and d = 3. From these possibilities they
constrained the possible common denominators of

{
hi − c

24
}
, since a common denominator

n implies that there exists an element of order n in the monodromy group. For instance,
they proved that for d = 3, the central charge must be c ∈ Z

70 . The result was a complete
classification of d = 2 theories and a partial classification of d = 3 theories.

In this section we complete the d = 3 analysis, as well as carry out the d = 4 anal-
ysis. The results match precisely with those obtained in the previous sections, yielding a
convincing check. Note that the finite subgroups of GL(d,C) are more complicated than
PSL(2,Zn), which makes this approach less manageable at higher d. We catalogue the
finite subgroups of SL(3,C) and SL(4,C) in appendices C.1 and C.2, from which the finite
subgroups of GL(3,C) and GL(4,C) can be obtained by appropriate extension.

5.1 Three characters

We begin with the analysis of the three-character case. A key feature which we will utilize
is the fact that all three-character ` = 0 MDEs can be recast into hypergeometric form
under the variable transformation x = j(τ)

1728 [12, 46, 51]. The monodromy of the general-
ized hypergeometric functions nFn−1 is a classic subject studied by many famous math-
ematicians including Schwarz, Klein, Gordan, Fuchs, and Jordan. Such efforts spanning
two centuries culminated in the famous Beukers-Heckman classification [52].15 Using the
Beukers-Heckman result, Franc and Mason [40] classified some three-dimensional RCFTs
— namely those with exactly three modules (the Mathur-Mukhi-Sen classification) and
which solve d = 3 MDEs with irreducible monodromy. In this section, we give the full
classification.

Hypergeometric equation. Begin by considering the generic order-3 hypergeometric
equation,

x
3∏
i=1

(
x
d

dx
+ ai

)
f =

3∏
i=1

(
x
d

dx
+ bi − 1

)
f (5.8)

for parameters ai, bi ∈ C. Since this equation has three singular points, the monodromy
group is generated by M0,M1,M∞, with corresponding eigenvalues

M0 : e2πi(1−b1), e2πi(1−b2), e2πi(1−b3)

M1 : 1, 1, e2πi(b1+b2+b3−a1−a2−a3)

M∞ : e2πia1 , e2πia2 , e2πia3 (5.9)

and the monodromy group is given by

M(ai, bi) = 〈M0,M1,M∞ | M0M1M∞ = 1〉 ⊆ GL(3,C) , (5.10)

cf. (5.6).
15Their classification made key use of the classification of finite irreducible reflection groups by [53].
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We will be interested in hypergeometric equations which admit a basis of algebraic
solutions, since it is these which will give rise to integral characters. It is known that a
differential equation admits such a basis if and only if the monodromy group is finite [54],
which occurs only for certain values of (ai, bi). We are thus led to consider finite subgroups
of GL(3,C).

The finite subgroups of GL(3,C) can be obtained by first identifying the subgroups
of SL(3,C). These in turn are usefully organized in terms of transitivity and primitivity.
Since these concepts will reappear throughout this section, we begin with a quick review
of them. Consider a vector space V of dimension d and a group G ⊂ GL(d,C). The group
G is called intransitive if there is a direct sum decomposition V = V1 ⊕ V2 ⊕ · · · ⊕ Vn with
dim Vj ≥ 1 and n ≥ 2 such that G leaves the spaces Vj invariant. If no such decomposition
exists, the group G is called transitive. A transitive group G is called imprimitive if there
is a direct sum decomposition V = V1⊕V2⊕ · · · ⊕Vn with dim Vj ≥ 1 and n ≥ 2 such that
G permutes the spaces Vj . If such a decomposition does not exist, G is called primitive.
These concepts can be illustrated schematically as follows,

Intransitive :


× 0 0
0 × 0
0 0 ×

 ,

× 0 0
0 × ×
0 × ×



Imprimitive :


0 0 ×
× × 0
× × 0

 ,


0 × ×
0 × ×
× 0 0



Primitive :

× × ×× × ×
× × ×

 . (5.11)

Intransitive subgroups are decomposable, and this means that the tentative three-character
theory actually reduces to a product of one- and two-character theories. We thus neglect
intransitive subgroups in what follows.

The transitive imprimitive and transitive primitive finite subgroups of SL(3,C) were
described by Blichfeldt, Dickson, and Miller in [55], and independently in the physics liter-
ature by Fairbairn, Fulton, and Klink [56]. The original lists have some minor omissions,
with the corrected lists given in [57, 58]. These results are reviewed in appendix C.1: to
summarize, there are eight transitive primitive subgroups (the analogs of the three finite ex-
ceptional subgroups of SL(2,C)) and two infinite series of transitive imprimitive subgroups
(the analogs of the dihedral series of SL(2,C)). We denote them as follows,

Transitive primitive: G
(3)
I , . . . , G

(3)
VIII

Transitive imprimitive: G(3)(a, b), G(3)(a, b, a′, b′) (5.12)

with all definitions given in appendix C.1. Notable cases include G(3)
II , a group of order 216

known as the Hesse group; G(3)
IV , which is isomorphic to the icosahedral group A5; G(3)

VI , a
group of order 168 known as the Klein group; and G(3)

VII , a group of order 1080 known as
the Valentiner group.
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group order center

W (H3) Z2 ./ G
(3)
IV 120 2

W (J3(4)) Z2 ./ G
(3)
VI 336 2

W (L3) G
(3)
I 648 3

W (M3) Z2 ./ G
(3)
I 1296 6

W (J3(5)) Z2 ./ G
(3)
VIII 2160 6

Table 8. Three-dimensional complex reflection groups.

Each of the above finite subgroups gives a subgroup in GL(3,C) upon appropriate ex-
tension. Fortunately, we will not have to concern ourselves with the analysis of these exten-
sions. Instead, we may make use of the work of Beukers and Heckman [52]. In the current
context, the results of Beukers and Heckman states that if the monodromy groupM(ai, bi)
of a hypergeometric equation is primitive, then either M(ai, bi), M

(
ai + 1

3 , bi + 1
3

)
, or

M
(
ai + 2

3 , bi + 2
3

)
is a complex reflection group.16 Hence for the primitive cases it suffices

to classify three-dimensional complex reflection groups. In fact, the set of such groups is
known and is quite limited, as shown in table 8. This makes the classification program
for primitives much simpler than may have otherwise been expected. For imprimitive
subgroups, we will simply work projectively.

Before applying these results to degree-3 MDEs, let us briefly summarize the contents
of table 8. First, we see that the product of the icosahedral group G

(3)
IV with a group of

order 2 gives a complex reflection group of order 120. Likewise, the product of the Klein
group G

(3)
VI with a group of order 2 gives a complex reflection group of order 336. The

triple cover of the Hesse group G
(3)
II , namely G(3)

I , is a complex reflection group of order
648. The product of this group with a group of order two gives rise to another reflection
group of order 1296. Finally, the product of the Valentiner group G

(3)
VIII with a group of

order 2 gives a complex reflection group of order 2160.

Third-order MDE. We now apply the results of the previous subsection to the study
of three-character RCFTs. We begin by making the change of variables x = 1728−1j(τ).
A tedious but conceptually straightforward computation gives[

D(3)+
(
µ1

E2
4

E6
+µ2

E6
E4

)
D(2)+

(
1
2µ1

E4
4

E2
6

+µ3
E2

6
E2

4
+γ1E4

)
D(1)+µ4

E3
6

E3
4

+γ2E6
]
χ = 0 , (5.13)

where the parameters are identified as follows,

µ1 = σ1(b)− σ1(a)− 3
2 ,

µ2 = 2− σ1(b) ,
16Technically the statement of [52] is that if the reflection subgroup Mr(ai, bi) ofM(ai, bi) is primitive,

thenM(ai+δ, bi+δ) is isomorphic toMr(ai, bi) for some δ ∈ Q. In our case we consider only δ ∈
{

0, 1
3 ,

2
3

}
since otherwise (5.16) will be violated. This technicality will not be relevant for our purposes.
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1a 2a 2b 2c 3a 5a 5b 6a 10a 10b
χ̃1 1 1 1 1 1 1 1 1 1 1
χ̃2 1 −1 1 −1 1 1 1 −1 −1 −1
χ̃3 3 −3 −1 1 0 φ+ φ− 0 −φ+ −φ−
χ̃4 3 3 −1 −1 0 φ− φ+ 0 φ− φ+
χ̃5 3 3 −1 −1 0 φ+ φ− 0 φ+ φ−
χ̃6 3 −3 −1 1 0 φ− φ+ 0 −φ− −φ+
χ̃7 4 4 0 0 1 −1 −1 1 −1 −1
χ̃8 4 −4 0 0 1 −1 −1 −1 1 1
χ̃9 5 5 1 1 −1 0 0 −1 0 0
χ̃10 5 −5 1 −1 −1 0 0 1 0 0

Table 9. Character table of W (H3). We define φ± = 1
2 (1±

√
5).

µ3 = 1
9 (19− 15σ1(b) + 9σ2(b)) ,

µ4 = −σ3(b− 1) ,

γ1 = 1
6 (2σ1(a)− 6σ2(a)− 5σ1(b) + 6σ2(b) + 4) ,

γ2 = σ3(b− 1)− σ3(a) . (5.14)

Here we denote by σp the degree-p symmetric function in three variables, e.g. σ1(a) =
a1 + a2 + a3. One set of solutions is given by

χ1(τ) = j(τ)−a1 3F2
(
da1,b1 , da1,b2 , da1,b3 ; da1,a2 , da1,a3 ; 1728j(τ)−1

)
,

χ2(τ) = j(τ)−a2 3F2
(
da2,b1 , da2,b2 , da2,b3 ; da2,a1 , da2,a3 ; 1728j(τ)−1

)
,

χ3(τ) = j(τ)−a3 3F2
(
da3,b1 , da3,b2 , da3,b3 ; da3,a1 , da3,a2 ; 1728j(τ)−1

)
, (5.15)

where dx,y := 1 + x− y. In the ` = 0 case, which will be the situation of most interest to
us here, we require that µ1 = µ2 = µ3 = 0, which in turn requires

{b1, b2, b3} =
{

1, 1
3 ,

2
3

}
mod 1 , a1 + a2 + a3 = 1

2 . (5.16)

By (5.16) and (5.9), we require that for ` = 0 we have

detS = −1 , TrS = 1 , detST = 1 , TrST = 0 . (5.17)

These facts, together with the facts that S must be an element of order 2 and ST and
element of order 3, will be enough to fix all allowed combinations of c, h1, and h2.

Classification.

Primitive monodromy: consider the complex reflection groupW (H3), which has character
table shown in table 9. We see that there are four three-dimensional representations of this
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group, with corresponding group characters χ̃3, . . . , χ̃6. Only the two faithful representa-
tions χ̃3 and χ̃6 have an order 2 conjugacy class with trace 1 which can play the role of S.
In both cases S must be located in the class 2c and ST in the class 3a. This means that
T must be in one of the classes appearing in the product (without multiplicities),17

2c⊗ 3a = 2c⊕ 6a⊕ 10a⊕ 10b . (5.19)

Then using det(T ) = det(S)det(ST ) = −1 and the values of TrT given in the character
table, we are able to conclude that the eigenvalues of T are of the form e2πiai where the
exponents {a1, a2, a3} take the following values,

6a :
{1

6 ,
1
2 ,

5
6

}
mod 1 ,

10a, b :
{ 1

10 ,
1
2 ,

9
10

}
,

{ 3
10 ,

1
2 ,

7
10

}
mod 1 . (5.20)

cf. table 12. This then gives us all possible values of (c, h1, h2). For example considering
the class

{
1
10 ,

1
2 ,

9
10

}
, we have the following possibilities: for m,n ∈ 1

3Z,

I. − c

24 = 1
10 +m, h1 −

c

24 = 1
2 + n, h2 −

c

24 = 9
10 −m− n− 1

II. − c

24 = 1
2 +m, h1 −

c

24 = 1
10 + n, h2 −

c

24 = 9
10 −m− n− 1

III. − c

24 = 9
10 +m, h1 −

c

24 = 1
10 + n, h2 −

c

24 = 1
2 −m− n− 1 .

Note that we are allowing for shifts in Z/3 since by Beukers-Heckman, any one ofM(ai, bi),
M
(
ai + 1

3 , bi + 1
3

)
, orM

(
ai + 2

3 , bi + 2
3

)
can be identified with W (H3).

Now what remains is to check which such choices of (c, h1, h2) give rise to characters
with a vacuum and completely positive Fourier coefficients. As usual we simply turn to
an explicit computerized search, which has already been carried out above. The results as
shown in the first two columns of table 10. This completes the classification of theories
with monodromy descending from W (H3). The steps outlined above may be repeated for
the remaining primitive monodromy groups, with the results given in table 10. We see that
besides W (H3), only W (J3(4)) gives rise to physically sensible characters.

Comparing to table 5, we see that we have reproduced all cases involving denominators
5 and 7. This allows us to not only check this portion of our results, but also to identify
the precise monodromy groups acting on these characters. The remaining entries of table 5
must have imprimitive monodromy group.

17Note that these fusion rules can be read off entirely from the character table, using an analog of the
usual Verlinde formula. In the current case, we need (a subset of) the Verlinde formula for Rep(Z[G]), the
representation category of the Drinfeld center of the fusion category defined by G,

Nc
ab = |G|

|CG(a)||CG(b)|
∑

i∈irreps

χ̃i(a)χ̃i(b)χ̃i(c)
χ̃i(1)

, (5.18)

where |G| is the order of the group and |CG(a)| is the number of elements in the conjugacy class a. This
gives the multiplicity in the fusion channel a⊗ b→ c.
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W (H3)
c hi nJ

4 2
5 ,

3
5 24

12 3
5 ,

7
5 222

20 7
5 ,

8
5 120

W (H3)
c hi nJ
4
5

1
5 ,

2
5 2

12
5

1
5 ,

3
5 3

28
5

2
5 ,

4
5 28

36
5

3
5 ,

4
5 144

44
5

2
5 ,

6
5 220

52
5

3
5 ,

6
5 104

68
5

4
5 ,

7
5 136

76
5

3
5 ,

9
5 437

76
5

4
5 ,

8
5 380

84
5

6
5 ,

7
5 336

92
5

6
5 ,

8
5 92

108
5

4
5 ,

12
5 1404

108
5

7
5 ,

9
5 27

116
5

8
5 ,

9
5 58

164
5

11
5 , 12

5 0

W (J3(4))
c hi nJ
4
7

1
7 ,

3
7 1

12
7

2
7 ,

3
7 6

44
7

4
7 ,

5
7 88

52
7

4
7 ,

6
7 156

60
7

3
7 ,

8
7 210

68
7

3
7 ,

9
7 221

100
7

4
7 ,

12
7 380

100
7

5
7 ,

11
7 325

108
7

6
7 ,

11
7 378

108
7

4
7 ,

13
7 456

116
7

8
7 ,

10
7 348

124
7

9
7 ,

10
7 248

156
7

11
7 , 12

7 78
156
7

5
7 ,

18
7 1248

164
7

11
7 , 13

7 41
236
7

16
7 , 17

7 0

Table 10. Possible three-character ` = 0 theories with primitive monodromy group. Compare with
table 5.

Imprimitive monodromy. We now move on to a classification of theories with imprimitive
monodromy. This portion of the classification has already been studied in [22], so we will be
brief. Recall that in SL(3,C), there were two infinite families of imprimitive finite groups
G(3)(a, b) and G(3)(a, b, a′, b′), which are explicitly

G(3)(a, b) := 〈A,B〉 , A :=


a 0 0
0 b 0
0 0 1

ab

 , B :=

0 1 0
0 0 1
1 0 0

 ,

G(3)(a, b, a′, b′) := 〈A,B,C〉 , C :=


0 a′ 0
b′ 0 0
0 0 − 1

a′b′

 . (5.21)

By the analysis of [22], it can be shown that the allowed set of (c, h1, h2) in theories with
these monodromies are

G(3)(a, b) : (c, h1, h2) =
(

4 + 8(m+ n), 1
3 +m,

2
3 + n

)
, m, n ∈ Z ,

G(3)(a, b, a′, b′) : (c, h1, h2) =
(

2h1 + k, h1, h1 + 2k + 1
2

)
, h1 ∈ Q, k ∈ Z ,
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where m,n appearing here are related to a, b in some appropriate way (the details of which
are unimportant for us), and likewise for k and a, b, a′, b′. One can now simply scan over all
values to identify which cases have positive characters with a vacuum. Alternatively, one
could identify the legitimate cases by simply comparing to table 5. We find that all cases
with a 3 denominator in table 5 have monodromy group of the type G(3)(a, b), while the
remaining cases, including the infinite family of Spin(n)1 theories which are not included
in table 5, all have monodromy group of the type G(3)(a, b, a′, b′).

5.2 Four characters

Fourth-order MDE. We now provide a similar analysis for the four-character case. The
main qualitative difference between the three- and four-character cases is the fact that the
relevant MDE in the latter case cannot be expressed in terms of a hypergeometric equation.
Indeed, the degree-four monic MDE is given by[

D(4) + µ1E4D
(2) + µ2E6D

(1) + µ3E
2
4

]
χ = 0 (5.22)

and upon making the usual change of variables x = 1728−1j(τ) we obtain the following
differential equation,[(

x
d

dx

)4
− x+ 2

1− x

(
x
d

dx

)3
+ (36µ1 + 11)x2 − 4(9µ1 + 7)x+ 44

36(x− 1)2

(
x
d

dx

)2

−x
2(−6µ1 + 36µ2 − 1)− 4x(3µ1 + 9µ2 + 1) + 8

36(x− 1)2 x
d

dx
+ µ3x

2

(x− 1)2

]
f(x) = 0

(5.23)
which is not of hypergeometric type. Nevertheless, this differential equation again has
three singular points at x = 0, 1, ∞, which are the images of τ = ω, i, i∞. As such, the
monodromy group is again of the form (5.6).

In the three-character case, the monodromy group was a priori a generic finite sub-
group of GL(3,C). However, thanks to the results of Beukers-Heckman we were able to
reduce the analysis to three-dimensional complex reflection groups, of which there were
few. We might again hope to leverage these results to avoid a classification of generic finite
subgroups of GL(4,C), but unfortunately the results of Beukers and Heckman are only
applicable to the case of hypergeometric equations, and thus there is no such reduction to
complex reflection groups in the current case.

It would thus seem that in order to understand all possible monodromy groups of the
monic degree-4 MDE, we would have to consider all finite subgroups of GL(4,C). The
situation is slightly better than that though, and in fact we will only have to consider finite
subgroups of SL(4,C). To see why, begin by denoting the exponents at x = 0, 1, and ∞
by {b1, . . . , b4}, {c1, . . . , c4}, and {a1, . . . , a4}.18 Then by solving the indicial equation at
x = 0, 1, we find solutions

{b1, b2, b3, b4} =
{

0, 1
3 ,

2
3 , 1

}
mod 1 , (5.24)

18By this we mean that around x = ∞ the four solutions admit a series expansion of the form fi(x) ∼
x−ai + . . . , and likewise for the other points.
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and
{c1, c2, c3, c4} =

{
0, 1

2 , 1, 3
2

}
mod 1 , (5.25)

insensitive to the coefficients µ1, µ2, µ3. Therefore, the monodromy matrices S and ST

satisfy

TrS = 0 , detS = 1 , TrST = 1 , detST = 1 . (5.26)

These are the degree-four analogs of (5.17). Crucially however, in the current case we see
that both S and ST — and hence every matrix in the group that they generate — is of
determinant one. For this reason the monodromy group is a subgroup of SL(4,C).

The classification of finite subgroups of SL(4,C) was initiated by Blichfeldt [59] and
later completed by Hanany and He [60]. For completeness, we summarize the results
of [60] in appendix C.2. As in the three-character case, the classification may be split
into transitive primitive and transitive imprimitive cases. There are now thirty transitive
primitive subgroups (the analogs of the three exceptional subgroups of SL(2,C)) and five
infinite series of transitive imprimitive subgroups (the analogs of the dihedral series of
SL(2,C)). We denote them as follows,

Transitive primitive: G
(4)
I , . . . , G

(4)
XXX

Transitive imprimitive: G
(4)
1 (n), . . . , G(4)

4 (n), G(4)(n; a, b, c, d, e, f) (5.27)

with all definitions given in appendix C.2.

Classification. Having introduced the relevant candidate monodromy groups, we may
now apply the techniques developed in the three-character case. As usual we divide the
discussion into primitive and imprimitive monodromy.

Primitive monodromy. We begin with the monodromy group G(4)
I , which is isomorphic

to a double cover of SL(2, 5). The character table of this group is given in table 11. We
see that the monodromy S matrix must belong to class 2b, and ST must belong to class
3a. Together they should generate one of the two faithful four-dimensional irreducible
representations. The possible conjugacy classes for T are constrained by the class fusion
(ignoring multiplicity),

2b⊗ 3a = 12a⊕ 20a⊕ 20b⊕ 20c⊕ 12b⊕ 20d⊕ 2b . (5.28)

According to the character table, the order and trace of T , from which the possible sets of
exponents can be deduced, fall into the following cases:

• T 12 = 1 , TrT = ±i :

{a1, . . . , a4} = ±
{

0, 1
12 ,

5
12 ,

1
2

}
, ±

{1
4 ,

1
4 ,

7
12 ,

11
2

}
mod 1 . (5.29)

• T 20 = 1 , TrT = ±i :

{a1, . . . , a4} = ±
{ 3

20 ,
7
20 ,

11
20 ,

19
20

}
mod 1 . (5.30)

• T 2 = 1 , TrT = 0 :
{a1, . . . , a4} =

{
0, 0, 1

2 ,
1
2

}
mod 1 . (5.31)
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1a 6a 5a 5b 10a 10b 3a 2a 4a 4b 12a 20a 20b 20 12b 20d 4 2b
χ̃1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ̃2 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1
χ̃3 2 1 −φ+ −φ− φ+ φ− −1 −2 0 −2i i −iφ+ −iφ− iφ− −i iφ+ 2i 0
χ̃4 2 1 −φ− −φ+ φ− φ+ −1 −2 0 −2i i −iφ− −iφ+ iφ+ −i iφ− 2i 0
χ̃5 2 1 −φ+ −φ− φ+ φ− −1 −2 0 2i −i iφ+ iφ− −iφ− i −iφ+ −2i 0
χ̃6 2 1 −φ− −φ+ φ− φ+ −1 −2 0 2i −i iφ− iφ+ −iφ+ i −iφ− −2i 0
χ̃7 3 0 φ− φ+ φ− φ+ 0 3 −1 3 0 φ− φ+ φ+ 0 φ− 3 −1
χ̃8 3 0 φ+ φ− φ+ φ− 0 3 −1 3 0 φ+ φ− φ− 0 φ+ 3 −1
χ̃9 3 0 φ− φ+ φ− φ+ 0 3 −1 −3 0 −φ− −φ+ −φ+ 0 −φ− −3 1
χ̃10 3 0 φ+ φ− φ+ φ− 0 3 −1 −3 0 −φ+ −φ− −φ− 0 −φ+ −3 1
χ̃11 4 1 −1 −1 −1 −1 1 4 0 4 1 −1 −1 −1 1 −1 4 0
χ̃12 4 1 −1 −1 −1 −1 1 4 0 −4 −1 1 1 1 −1 1 −4 0
χ̃13 4 −1 −1 −1 1 1 1 −4 0 −4i −i −i −i i i i 4i 0
χ̃14 4 −1 −1 −1 1 1 1 −4 0 4i i i i −i −i −i −4i 0
χ̃15 5 −1 0 0 0 0 −1 5 1 5 −1 0 0 0 −1 0 5 1
χ̃16 5 −1 0 0 0 0 −1 5 1 −5 1 0 0 0 1 0 −5 −1
χ̃17 6 0 1 1 −1 −1 0 −6 0 −6i 0 i i −i 0 −i 6i 0
χ̃18 6 0 1 1 −1 −1 0 −6 0 6i 0 −i −i i 0 i −6i 0

Table 11. The character table of a primitive finite subgroup G
(4)
I of SL(4,C). We define φ± =

1
2 (1±

√
5).

Repeating the above analysis for all primitive subgroups of SL(4,C), we obtain the full set
of possible sets of exponents mod 1. As usual, one may then check which of these cases
gives rise to a unique vacuum and positive Fourier coefficients. Repeating this exercise for
all primitive finite subgroups reproduces the first four columns of table 6. The final column
must then correspond to cases with imprimitive monodromy.

Imprimitive monodromy. We begin the classification of theories with imprimitive
monodromy by starting with G(4)(n; a, b, c, d, e, f). For convenience we recall the definition
of this group here,

G(4)(n; a, b, c, d, e, f) = 〈A,B1, . . . , Bn〉 , (5.32)

where we have

A :=



a b 0 0
c 1+bc

a 0 0

0 0 d e

0 0 f 1+ef
d


, Bi :=


0 0 1 0
0 0 0 1
ξin 0 0 0

0 ξ−in 0 0

 . (5.33)

Each element of G(4)(n; a, b, c, d, e, f) is in one of the following classes: [A] (block diagonal
matrices with SL(2,C) blocks), [Bi], or [ABi] (off-diagonal matrices

( 0 M
N 0

)
, again with

SL(2,C) blocks). The second case is just a special case of the third.
We begin by noting that [Bi] and [ABi] have even order, so ST must be an element

of [A]. Demanding that (ST )3 = 1 and TrST = 1 then gives constraints on the particular
matrix. If S is also in [A] then both of the generators are block diagonal, and we get
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an intransitive group. Hence we instead consider S in [Bi] or [ABi]. Demanding that
S2 = 1 and TrS = 0 again gives constraints on the particular matrix. Finally, evaluating
T = S(ST ) subject to the above constraints then allows us to read off the eigenvalues of
T . We find a unique possibility (up to integer shifts):

{
1
6 ,

5
6 ,

1
3 ,

2
3

}
.

A similar analysis can be carried out for the imprimitive subgroups of type G(4)
i (n) for

i = 1, . . . , 4, though it is significantly more tedious and hence we relegate the details to
appendix D. The full set of possible exponents for these cases are given by{

p

n
, − p

3n,
2
3 −

p

3n,
1
3 −

p

3n

}
p ∈ [−2n, 2n] . (5.34)

Searching for positive theories with a vacuum reproduces the right column of table 6.
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A Lists of allowed exponents

In this appendix we catalogue all allowed exponents for (quasi)characters with d ≤ 5 and
any allowed ` (besides the ones which were already introduced in the main text).

n 3d ` = 0 exponents

4
{

1
4 ,

1
2 ,

3
4

}
6

{
1
6 ,

1
2 ,

5
6

}
8

{
1
8 ,

5
8 ,

3
4

}
,
{

1
4 ,

3
8 ,

7
8

}
10

{
1
10 ,

1
2 ,

9
10

}
,
{

3
10 ,

1
2 ,

7
10

}
12

{
1
12 ,

7
12 ,

5
6

}
,
{

1
6 ,

5
12 ,

11
12

}
14

{
1
14 ,

9
14 ,

11
14

}
,
{

3
14 ,

5
14 ,

13
14

}
16

{
1
16 ,

9
16 ,

7
8

}
,
{

5
16 ,

3
8 ,

13
16

}
,
{

3
16 ,

5
8 ,

11
16

}
,
{

1
8 ,

7
16 ,

15
16

}
24

{
1
24 ,

13
24 ,

11
12

}
,
{

1
12 ,

11
24 ,

23
24

}
,
{

5
24 ,

7
12 ,

17
24

}
,
{

7
24 ,

5
12 ,

19
24

}
30

{
1
30 ,

19
30 ,

5
6

}
,
{

7
30 ,

13
30 ,

5
6

}
,
{

1
6 ,

11
30 ,

29
30

}
,
{

1
6 ,

17
30 ,

23
30

}
42

{
1
42 ,

25
42 ,

37
42

}
,
{

5
42 ,

17
42 ,

41
42

}
,
{

11
42 ,

23
42 ,

29
42

}
,
{

13
42 ,

19
42 ,

31
42

}
48

{
1
48 ,

25
48 ,

23
24

}
,
{

5
48 ,

29
48 ,

19
24

}
,
{

1
24 ,

23
48 ,

47
48

}
,
{

5
24 ,

19
48 ,

43
48

}
,{

11
48 ,

13
24 ,

35
48

}
,
{

7
48 ,

31
48 ,

17
24

}
,
{

7
24 ,

17
48 ,

41
48

}
,
{

13
48 ,

11
24 ,

37
48

}

n 3d ` = 3 exponents

3
{

0, 1
3 ,

2
3

}
4

{
0, 1

4 ,
3
4

}
5

{
0, 1

5 ,
4
5

}
,
{

0, 2
5 ,

3
5

}
7

{
1
7 ,

2
7 ,

4
7

}
,
{

3
7 ,

5
7 ,

6
7

}
8

{
1
8 ,

1
4 ,

5
8

}
,
{

3
8 ,

3
4 ,

7
8

}
12

{
1
12 ,

1
3 ,

7
12

}
,
{

5
12 ,

2
3 ,

11
12

}
15

{
2
15 ,

1
3 ,

8
15

}
,
{

1
3 ,

11
15 ,

14
15

}
,
{

7
15 ,

2
3 ,

13
15

}
,
{

1
15 ,

4
15 ,

2
3

}
16

{
1
16 ,

3
8 ,

9
16

}
,
{

1
8 ,

3
16 ,

11
16

}
,
{

5
16 ,

13
16 ,

7
8

}
,
{

7
16 ,

5
8 ,

15
16

}
21

{
1
21 ,

4
21 ,

16
21

}
,
{

2
21 ,

8
21 ,

11
21

}
,
{

5
21 ,

17
21 ,

20
21

}
,
{

10
21 ,

13
21 ,

19
21

}
24

{
1
24 ,

5
12 ,

13
24

}
,
{

1
12 ,

5
24 ,

17
24

}
,
{

7
24 ,

19
24 ,

11
12

}
,
{

11
24 ,

7
12 ,

23
24

}
48

{
1
48 ,

11
24 ,

25
48

}
,
{

1
24 ,

11
48 ,

35
48

}
,
{

19
48 ,

17
24 ,

43
48

}
,
{

23
48 ,

13
24 ,

47
48

}
,{

7
48 ,

5
24 ,

31
48

}
,
{

17
48 ,

19
24 ,

41
48

}
,
{

5
48 ,

7
24 ,

29
48

}
,
{

13
48 ,

37
48 ,

23
24

}
Table 12. Possible exponents mod 1 for three-character theories, disallowing duplications.
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n 4d ` = 0 exponents

5
{

1
5 ,

2
5 ,

3
5 ,

4
5

}
8

{
1
8 ,

3
8 ,

5
8 ,

7
8

}
9

{
1
9 ,

4
9 ,

2
3 ,

7
9

}
,
{

2
9 ,

1
3 ,

5
9 ,

8
9

}
10

{
1
10 ,

3
10 ,

7
10 ,

9
10

}
12

{
1
12 ,

5
12 ,

7
12 ,

11
12

}
15

{
2
15 ,

7
15 ,

8
15 ,

13
15

}
,
{

1
15 ,

4
15 ,

11
15 ,

14
15

}
18

{
1
6 ,

5
18 ,

11
18 ,

17
18

}
,
{

1
18 ,

7
18 ,

13
18 ,

5
6

}
20

{
1
20 ,

9
20 ,

13
20 ,

17
20

}
,
{

3
20 ,

7
20 ,

11
20 ,

19
20

}
,
{

1
20 ,

9
20 ,

11
20 ,

19
20

}
,
{

3
20 ,

7
20 ,

13
20 ,

17
20

}
24

{
5
24 ,

11
24 ,

13
24 ,

19
24

}
,
{

1
24 ,

7
24 ,

17
24 ,

23
24

}
28

{
5
28 ,

13
28 ,

17
28 ,

3
4

}
,
{

1
28 ,

9
28 ,

3
4 ,

25
28

}
,
{

3
28 ,

1
4 ,

19
28 ,

27
28

}
,
{

1
4 ,

11
28 ,

15
28 ,

23
28

}
30

{
1
30 ,

11
30 ,

19
30 ,

29
30

}
,
{

7
30 ,

13
30 ,

17
30 ,

23
30

}
36

{
1
36 ,

13
36 ,

25
36 ,

11
12

}
,
{

7
36 ,

5
12 ,

19
36 ,

31
36

}
,
{

5
36 ,

17
36 ,

7
12 ,

29
36

}
,
{

1
12 ,

11
36 ,

23
36 ,

35
36

}
40

{
3
40 ,

13
40 ,

27
40 ,

37
40

}
,
{

7
40 ,

17
40 ,

23
40 ,

33
40

}
,
{

11
40 ,

19
40 ,

21
40 ,

29
40

}
,
{

1
40 ,

9
40 ,

31
40 ,

39
40

}
n 4d ` = 2 exponents

9
{

0, 2
9 ,

5
9 ,

8
9

}
,
{

1
9 ,

1
3 ,

4
9 ,

7
9

}
12

{
1
12 ,

1
4 ,

7
12 ,

3
4

}
15

{
1
15 ,

4
15 ,

7
15 ,

13
15

}
,
{

2
15 ,

1
5 ,

8
15 ,

4
5

}
,
{

2
5 ,

3
5 ,

11
15 ,

14
15

}
18

{
5
18 ,

11
18 ,

5
6 ,

17
18

}
,
{

1
18 ,

7
18 ,

1
2 ,

13
18

}
24

{
1
24 ,

7
24 ,

13
24 ,

19
24

}
,
{

1
8 ,

5
24 ,

11
24 ,

7
8

}
,
{

3
8 ,

5
8 ,

17
24 ,

23
24

}
30

{
11
30 ,

17
30 ,

23
30 ,

29
30

}
,
{

1
30 ,

3
10 ,

19
30 ,

7
10

}
,
{

1
10 ,

7
30 ,

13
30 ,

9
10

}
36

{
1
36 ,

13
36 ,

7
12 ,

25
36

}
,
{

1
12 ,

7
36 ,

19
36 ,

31
36

}
,
{

5
36 ,

1
4 ,

17
36 ,

29
36

}
,
{

11
36 ,

23
36 ,

3
4 ,

35
36

}
60

{
7
60 ,

19
60 ,

31
60 ,

43
60

}
,
{

1
60 ,

13
60 ,

37
60 ,

49
60

}
,
{

7
60 ,

13
60 ,

37
60 ,

43
60

}
,
{

1
60 ,

19
60 ,

31
60 ,

49
60

}
84

{
11
84 ,

23
84 ,

5
12 ,

71
84

}
,
{

5
12 ,

47
84 ,

59
84 ,

83
84

}
,
{

29
84 ,

53
84 ,

65
84 ,

11
12

}
,
{

5
84 ,

17
84 ,

41
84 ,

11
12

}
120

{
41
120 ,

71
120 ,

89
120 ,

119
120

}
,
{

11
120 ,

29
120 ,

59
120 ,

101
120

}
,
{

17
120 ,

23
120 ,

47
120 ,

113
120

}
,
{

53
120 ,

77
120 ,

83
120 ,

107
120

}
n 4d ` = 4 exponents

9
{

0, 1
9 ,

4
9 ,

7
9

}
,
{

2
9 ,

5
9 ,

2
3 ,

8
9

}
12

{
1
4 ,

5
12 ,

3
4 ,

11
12

}
15

{
1
15 ,

4
15 ,

2
5 ,

3
5

}
,
{

2
15 ,

8
15 ,

11
15 ,

14
15

}
,
{

1
5 ,

7
15 ,

4
5 ,

13
15

}
18

{
1
18 ,

1
6 ,

7
18 ,

13
18

}
,
{

5
18 ,

1
2 ,

11
18 ,

17
18

}
24

{
1
8 ,

13
24 ,

19
24 ,

7
8

}
,
{

1
24 ,

7
24 ,

3
8 ,

5
8

}
,
{

5
24 ,

11
24 ,

17
24 ,

23
24

}
30

{
1
30 ,

7
30 ,

13
30 ,

19
30

}
,
{

3
10 ,

11
30 ,

7
10 ,

29
30

}
,
{

1
10 ,

17
30 ,

23
30 ,

9
10

}
36

{
5
36 ,

17
36 ,

29
36 ,

11
12

}
,
{

11
36 ,

5
12 ,

23
36 ,

35
36

}
,
{

1
36 ,

1
4 ,

13
36 ,

25
36

}
,
{

7
36 ,

19
36 ,

3
4 ,

31
36

}
60

{
11
60 ,

23
60 ,

47
60 ,

59
60

}
,
{

17
60 ,

29
60 ,

41
60 ,

53
60

}
,
{

17
60 ,

23
60 ,

47
60 ,

53
60

}
,
{

11
60 ,

29
60 ,

41
60 ,

59
60

}
84

{
1
12 ,

43
84 ,

67
84 ,

79
84

}
,
{

1
12 ,

19
84 ,

31
84 ,

55
84

}
,
{

1
84 ,

25
84 ,

37
84 ,

7
12

}
,
{

13
84 ,

7
12 ,

61
84 ,

73
84

}
120

{
1

120 ,
31
120 ,

49
120 ,

79
120

}
,
{

19
120 ,

61
120 ,

91
120 ,

109
120

}
,
{

7
120 ,

73
120 ,

97
120 ,

103
120

}
,
{

13
120 ,

37
120 ,

43
120 ,

67
120

}

Table 13. Possible exponents mod 1 for four-character theories, disallowing duplications.
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n 5d ` = 0 exponents

15
{

1
3 ,

2
15 ,

8
15 ,

11
15 ,

14
15

}
33

{
2
33 ,

8
33 ,

17
33 ,

29
33 ,

32
33

}
,
{

5
33 ,

14
33 ,

20
33 ,

23
33 ,

26
33

}
n 5d ` = 1 exponents

10
{

1
10 ,

3
10 ,

1
2 ,

7
10 ,

9
10

}
22

{
1
22 ,

3
22 ,

5
22 ,

9
22 ,

15
22

}
,
{

7
22 ,

13
22 ,

17
22 ,

19
22 ,

21
22

}
n 5d ` = 2 exponents

15
{

1
15 ,

4
15 ,

7
15 ,

2
3 ,

13
15

}
33

{
7
33 ,

10
33 ,

13
33 ,

19
33 ,

28
33

}
,
{

1
33 ,

4
33 ,

16
33 ,

25
33 ,

31
33

}
n 5d ` = 3 exponents

30
{

1
30 ,

7
30 ,

13
30 ,

19
30 ,

5
6

}
66

{
1
66 ,

25
66 ,

31
66 ,

37
66 ,

49
66

}
,
{

7
66 ,

13
66 ,

19
66 ,

43
66 ,

61
66

}
n 5d ` = 4 exponents

5
{

0, 1
5 ,

2
5 ,

3
5 ,

4
5

}
11

{
2
11 ,

6
11 ,

7
11 ,

8
11 ,

10
11

}
,
{

1
11 ,

3
11 ,

4
11 ,

5
11 ,

9
11

}
n 5d ` = 5 exponents

30
{

1
6 ,

11
30 ,

17
30 ,

23
30 ,

29
30

}
66

{
5
66 ,

23
66 ,

47
66 ,

53
66 ,

59
66

}
,
{

17
66 ,

29
66 ,

35
66 ,

41
66 ,

65
66

}
Table 14. Possible exponents mod 1 for five-character theories, disallowing duplications.

B Further denominator-rank constraints

B.1 Possible projective denominators for given rank

Define the projective denominator N to be the least common denominator of the weights
{hi} instead of the exponents

{
hi − c

24
}
. Like n, a denominator-rank constraint for N

can be deduced. First, by simply ignoring factors of one-dimensional representations, the
possible values of N given the rank d must belong to the set

Den′(d) =
⋃
f∈F

lcm
[
den0(δ(f)

1 ), . . . , den0(δ(f)
|f | )

]
, (B.1)

where den0 and F were both defined near (3.4). Explicitly, we find

Den′(1) = {1} ,
Den′(2) = {2, 3, 4, 5, 8} ,
Den′(3) = {3, 4, 5, 7, 8, 16} ,
Den′(4) = {2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 24, 40} ,
Den′(5) = {5, 11} .

(B.2)

However, some of the above denominators can be further eliminated. If every order
N element acts trivially on every d-dimensional irreducible projective representation of
PSL(2,ZN ), then the actual projective denominator is a proper factor of N . In practice,
we consider the Schur cover of PSL(2,ZN ), look at every d-dimensional linear represen-
tation, and compute the projective kernel (the set of conjugacy classes whose characters
are related to the trivial character by roots of unity). We then quotient by the projective
kernel, and examine whether the quotient group has any order N element. If none of the d-
dimensional representations gives a quotient group that has an order N element, then this
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N is not possible for this particular d. This eliminates N = 8 from d = 2, and N = 2, 3, 8
from d = 4. We find19

Den(1) = {1} ,
Den(2) = {2, 3, 4, 5} ,
Den(3) = {3, 4, 5, 7, 8, 16} ,
Den(4) = {4, 5, 6, 7, 9, 10, 12, 15, 20, 24, 40} ,
Den(5) = {5, 11} .

(B.3)

B.2 Lower bound on rank for given denominator

It is clear that a lower bound on the rank realizing a certain denominator n (of exponents{
hi − c

24
}
) can be inferred from table 1. For instance, a lower bound on the rank for

n = 11 is given by 1
2(11 − 1) = 5, and a lower bound on the rank for n = 13 is given by

1
2(13 + 1) = 7.20 It is clear that the lower bound is trivial for any n ∈ {1, 2, 3, 6}.

If we are given N instead of n, we can also derive a lower bound. Suppose N is odd,
then a Schur cover of PSL(2,ZN ) is given by SL(2,ZN ). Let N = ∏np

i=1 p
λi
i be the prime

factor decomposition of N , which involves np distinct primes. The linear representation
ρ : SL(2,ZN ) → GL(d,C) is the tensor product of linear representations ⊗i ρi, where
ρi : SL(2, pλii )→ GL(d,C) is such that ker p◦ρi does not contain all the order pλii conjugacy
classes (equivalently, SL(2, pλii )/ ker p◦ρi has an order N element). Clearly, each ρi cannot
be one-dimensional, so we automatically obtain a lower bound of rank ≥ 2np . Taking table 1
into account, we find (the max is just to take care of the special case of p = 3, λ = 1)

rank ≥
np∏
i=1

max
(
pi − 1

2 , 2
)
× b(pi + 1)pλi−2

i c . (B.4)

For instance, if N = 3× 5× 7 = 105, then

rank ≥ 2× 2× 3 = 12 . (B.5)

C Finite subgroups of SL(3,CCC) and SL(4,CCC)

In this appendix we summarize the finite subgroups of SL(3,C) and SL(4,C). In both cases,
the finite subgroups can be split into three classes: the intransitive subgroups (analogs of
cyclics groups of SL(2,C)), the transitive imprimitive subgroups (analogs of the dihedral
subgroups of SL(2,C), and the transitive primitive subgroups (analogs of the exceptional
finite subgroups of SL(2,C)). Here we discuss only the transitive subgroups.

C.1 Finite subgroups of SL(3,CCC)

We begin with the finite subgroups of SL(3,C). We consider the cases of transitive primitive
and transitive imprimitive subgroups separately.

19Note that N = 24, 40 for Den(4) may be potentially ruled out, but the GAP [44] computations did not
complete in a reasonable amount of time. We thus leave them in as possible denominators.

20For n = 13, notice that 1
2 (13− 1) = 6 is not allowed because σ = −.
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Transitive primitive subgroups. There are a total of eight transitive primitive sub-
groups, given as follows. First, defining

S =


1 0 0
0 ω 0
0 0 ω2

 , T =

0 1 0
0 0 1
1 0 0

 ,

U =


ξ2

9 0 0

0 ξ2
9 0

0 0 ξ2
9 ω

 , V = 1
i
√

3


1 1 1
1 ω ω2

1 ω2 ω

 , (C.1)

where ξn := e2πi/n and ω := ξ3. Then we have the following three groups

G
(3)
I := 〈S, T, V, U〉 , |G(3)

I | = 648

G
(3)
II := 〈S, T, V, UV U−1〉 , |G(3)

II | = 216

G
(3)
III := 〈S, T, V 〉 , |G(3)

III | = 108 . (C.2)

The group G(3)
II is known as the Hesse group, and the group G(3)

I is a triple cover of it.
Next there is a group of order 60,

G
(3)
IV := <


1 0 0
0 ξ4

5 0
0 0 ξ5

 ,

−1 0 0
0 0 −1
0 −1 0

 , 1√
5

1 1 1
2 s t
2 t s

> , |G(3)
IV | = 60 (C.3)

where s = ξ2
5 + ξ3

5 and t = ξ5 + ξ4
5 . This group is isomorphic to the icosahedral group A5.

There is also a trivial Z3 extension of this group,

G
(3)
V := G

(3)
IV × Z3 , |G(3)

V | = 180 . (C.4)

Next one has the group

G
(3)
VI := <


ξ7 0 0
0 ξ2

7 0

0 0 ξ4
7

 ,
0 1 0

0 0 1
1 0 0

 , i√
7

r u vu v r

v r u

> , |G(3)
VI | = 168 (C.5)

where r = ξ4
7 − ξ3

7 , u = ξ2
7 − ξ5

7 , and v = ξ7 − ξ6
7 . This groups is known as the Klein group,

and is isomorphic to G(3)
VI
∼= PSL(2, 7) ∼= GL(3, 2). There is also a trivial Z3 extension of

this group,

G
(3)
VII := G

(3)
VI × Z3 , |G(3)

VII | = 504 . (C.6)

Finally, there is an extension of G(3)
IV by an additional non-trivial generator,

G
(3)
VIII := <G(3)

IV ,
1√
5


1 λ λ

2λ s t

2λ t s

> , |G(3)
VIII | = 1080 (C.7)
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where λ := 1
4(−1 + i

√
15). This group is known as the Valentiner group, and is a perfect

triple cover of A6.

Transitive imprimitive subgroups. We now turn to transitive imprimitive finite sub-
groups. These are analogous to the dihedral series for SL(2,C), and give two infinite
families of monodromy groups. First, there are groups of the type

G(3)(a, b) := <

a 0 0
0 b 0
0 0 1

ab

 ,
0 1 0

0 0 1
1 0 0

> . (C.8)

for arbitrary a, b ∈ C. Second, there are groups obtained by adding an additional generator,

G(3)(a, b, a′, b′) := <

a 0 0
0 b 0
0 0 1

ab

 ,
0 1 0

0 0 1
1 0 0

 ,


0 a′ 0
b′ 0 0
0 0 − 1

a′b′

> . (C.9)

for arbitrary a, b, a′, b′ ∈ C.

C.2 Finite subgroups of SL(4,CCC)

The finite subgroups of SL(4,C) have been catalogued in [58]. Here we summarize those
results, and correct several typographic errors as well. As before, the classification can be
divided into two parts: transitive primitive and transitive imprimitive. The former are the
analogs of the exceptional series of SL(2,C); there are 30 such cases. The latter are analogs
of the dihedral series of SL(2,C); here there are 5 infinite families to be considered.

Transitive primitive subgroups. We begin by presenting the following matrix gener-
ators:

F1 =


1 0 0 0
0 1 0 0
0 0 ω 0
0 0 0 ω2

 F2 = 1√
3


1 0 0

√
2

0 −1
√

2 0
0
√

2 1 0
√

2 0 0 −1


F3 =



√
3

2
1
2 0 0

1
2 −

√
3

2 0 0

0 0 0 1
0 0 1 0



F1 = 1
3


3 0 0 0
0 −1 2 2
0 2 −1 2
0 2 2 −1

 F ′3 = 1
4


−1
√

15 0 0
√

15 1 0 0
0 0 0 4
0 0 4 0

 F4 =


0 1 0 0
1 0 0 0
0 0 0 −1
0 0 −1 0



S =


1 0 0 0
0 ξ7 0 0
0 0 ξ4

7 0

0 0 0 ξ2
7

 T =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 W = 1
i
√

7


p2 1 1 1
1 −q −p −p
1 −p −q −p
1 −p −p −q
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R = 1√
7


1 1 1 1
2 s t u

2 t u s

2 u s t

 D =


ω 0 0 0
0 ω 0 0
0 0 ω 0
0 0 0 1

 V = 1
i
√

3


i
√

3 0 0 0
0 1 1 1
0 1 ω ω2

0 1 ω2 ω



F =


0 0 −1 0
0 1 0 0
−1 0 0 0
0 0 0 −1

 F ′ = 1 + i√
2


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 F ′′ =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


where ξn := e2πi/n and ω = ξ3, p = ξ7 + ξ2

7 + ξ4
7 , q = ξ3

7 + ξ5
7 + ξ6

7 , s = ξ2
7 + ξ5

7 , t = ξ3
7 + ξ4

7 ,
and u = ξ7 + ξ6

7 . In terms of these we may define the following groups,

G
(4)
I = 〈F1, F2, F3〉 , |G(4)

I | = 240

G
(4)
II = 〈F1, F

′
2, F

′
3〉 , |G(4)

II | = 60

G
(4)
III = 〈F1, F2, F3, F4〉 , |G(4)

III | = 1440

G
(4)
IV = 〈S, T,W 〉 , |G(4)

IV | = 5040

G
(4)
V = 〈S, T,R〉 , |G(4)

V | = 672

G
(4)
VI = 〈F1, T,D, V, F 〉 , |G(4)

VI | = 51840

G
(4)
VII = 〈G(4)

I , F ′′〉 , |G(4)
VII | = 480

G
(4)
VIII = 〈G(4)

II , F
′〉 , |G(4)

VIII | = 480

G
(4)
IX = 〈G(4)

III , F
′′〉 , |G(4)

IX | = 2880 . (C.10)

Let us remark on some of these. The group G(4)
I is isomorphic to a double cover of SL(2, 5).

The group G(4)
II is a four-dimensional representation of A5. The group G(4)

III is an extension
of A6 by the Abelian center of SU(4), while the group G

(4)
IV is an extension of A7 by a

Z2 subgroup of the center. The group G
(4)
V is the four-dimensional analog of the Klein

group. Finally, the groups G(4)
VII , G

(4)
VIII , and G

(4)
IX are central extensions of S5, S5, and S6

respectively.
We next introduce the following 2× 2 matrices,

SSU(2) = 1
2

(
−1 + i −1 + i

1 + i −1− i

)
USU(2) = 1√

2

(
1 + i 0

0 1− i

)

VSU(2) =

 i
2

1−
√

5
4 − i1+

√
5

4

−1−
√

5
4 − i1+

√
5

4 − i
2


x1 = 1√

2

(
1 1
i −i

)
x2 = 1√

2

(
i i

−1 1

)
x3 = 1√

2

(
−1 −1
−1 1

)

x4 = 1√
2

(
i 1
1 i

)
x5 = 1√

2

(
1 −1
−i −i

)
x6 = 1√

2

(
i −i
1 1

)
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in terms of which we may define the following finite subgroups

G
(4)
X = 〈SSU(2), U

2
SU(2)〉 ⊗ 〈SSU(2), U

2
SU(2)〉 , |G(4)

X | = 288

G
(4)
XI = 〈x1 ⊗ x2, x1 ⊗ xT2 , x3 ⊗ x4, x5 ⊗ x6〉 , |G(4)

XI | = 576

G
(4)
XII = 〈SSU(2), U

2
SU(2)〉 ⊗ 〈SSU(2), USU(2)〉 , |G(4)

XII | = 576

G
(4)
XIII = 〈SSU(2), U

2
SU(2)〉 ⊗ 〈SSU(2), VSU(2), U

2
SU(2)〉 , |G(4)

XIII | = 1440

G
(4)
XIV = 〈SSU(2), USU(2)〉 ⊗ 〈SSU(2), USU(2)〉 , |G(4)

XIV | = 1152

G
(4)
XV = 〈SSU(2), USU(2)〉 ⊗ 〈SSU(2), VSU(2), U

2
SU(2)〉 , |G(4)

XV | = 2880

G
(4)
XVI = 〈SSU(2), VSU(2), U

2
SU(2)〉 ⊗ 〈SSU(2), VSU(2), U

2
SU(2)〉 , |G(4)

XVI | = 7200 . (C.11)

Note that we have the normal sequence G(4)
X < G

(4)
XI < G

(4)
XIV . We may combine some of

the above groups with the following generators

T1 = 1 + i√
2


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 T2 =


1 0 0 0
0 0 1 0
0 i 0 0
0 0 0 i

 (C.12)

to form the following five additional subgroups,

G
(4)
XVII = 〈G(4)

XI , T1〉 , |G(4)
XVII | = 2304

G
(4)
XVIII = 〈G(4)

XI , T2〉 , |G(4)
XVIII | = 2304

G
(4)
XIX = 〈G(4)

X , T1〉 , |G(4)
XIX | = 1152

G
(4)
XX = 〈G(4)

XVI , T1〉 , |G(4)
XX | = 28800

G
(4)
XXI = 〈G(4)

XIV , T1〉 , |G(4)
XXI | = 4608 . (C.13)

Finally, defining the following generators,

A = 1 + i√
2


1 0 0 0
0 i 0 0
0 0 i 0
0 0 0 1

 B = 1 + i√
2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



S′ = 1 + i√
2


i 0 0 0
0 i 0 0
0 0 1 0
0 0 0 1

 T ′ = 1 + i

2


−i 0 0 i

0 1 1 0
1 0 0 1
0 −i i 0

 R′ = 1√
2


1 i 0 0
i 1 0 0
0 0 i 1
0 0 −1 −i


as well as the following group of order 32,

K = <


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 ,


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

 ,


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

>
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we may define the last set of primitive subgroups,

G
(4)
XXII = 〈K,T ′〉 , |G(4)

XXII | = 320

G
(4)
XXIII = 〈K,T ′, (R′)2〉 , |G(4)

XXIII | = 640

G
(4)
XXIV = 〈K,T ′, R′〉 , |G(4)

XXIV | = 1280

G
(4)
XXV = 〈K,T ′, S′B〉 , |G(4)

XXV | = 3840

G
(4)
XXVI = 〈K,T ′, BR′〉 , |G(4)

XXVI | = 3840

G
(4)
XXVII = 〈K,T ′, A〉 , |G(4)

XXVII | = 7680

G
(4)
XXVIII = 〈K,T ′, B〉 , |G(4)

XXVIII | = 7680

G
(4)
XXIX = 〈K,T ′, AB〉 , |G(4)

XXIX | = 23040

G
(4)
XXX = 〈K,T ′, S′〉 , |G(4)

XXX | = 46080 . (C.14)

Transitive imprimitive subgroups. We next present the five infinite families of im-
primitive subgroups. The first four can be constructed using the Abelian group

∆n = <


ξin 0 0 0

0 ξjn 0 0

0 0 ξkn 0

0 0 0 ξ
−(i+j+k)
n



∣∣∣∣∣∣∣∣∣∣∣∣∣
i, j, k = 1, . . . , n> n ∈ N (C.15)

of order n3, as well as the four groups A4, S4, Q8 (the dihedral group of 8 elements), and
Z2 × Z2. We have

G
(4)
1 (n) = 〈∆n, A4〉 , |G(4)

1 (n)| = 12n3

G
(4)
2 (n) = 〈∆n, S4〉 , |G(4)

2 (n)| = 24n3

G
(4)
3 (n) = 〈∆n, Q8〉 , |G(4)

3 (n)| = 8n3

G
(4)
4 (n) = 〈∆n,Z2 × Z2〉 , |G(4)

4 (n)| = 4n3 . (C.16)

Finally, there is a remaining infinite family of the form

G(4)(n; a, b, c, d, e, f) = <


a b 0 0
c 1+bc

a 0 0

0 0 d e

0 0 f 1+ef
d


,


0 0 1 0
0 0 0 1
ξin 0 0 0

0 ξ−in 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣
i = 1, . . . n> (C.17)

where n ∈ N and a, b, c, d, e, f ∈ C.

D Exponents for imprimitive subgroups of SL(4,CCC)

In this appendix we derive the set of allowed exponents (5.34) quoted for imprimitive
subgroups of typeG(4)

i (n) for i = 1, . . . , 4. Since all of these groups are subgroups of G(4)
2 (n),
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we can restrict ourselves to that case. Recall that G(4)
2 (n) is given by G(4)

2 (n) = 〈∆n, S4〉,
with ∆n as defined in (C.15).

The group S4 has 24 elements, with 5 conjugacy classes. Two of these classes con-
tain 2-cycles, while one class contains 3-cycles. Of the two classes of 2-cycles, only one
has trace 0 and is fit for identifying with S — namely, the conjugacy class consisting of
{(12)(34), (13)(24), (14)(23)}). On the other hand, all of the 3-cycles (there are 8 of them)
have trace 1 and can be identified with ST . If we take both S and ST to be elements of
S4, there are then 24 possible choices, and hence 24 possible choices for T . For example,
we can identify S with (12)(34) and ST with (123), which as 4× 4 matrices looks like

S =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ST =


0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

 . (D.1)

From this we conclude that

T =


1 0 0 0
0 0 1 0
0 0 0 1
0 1 0 0

 (D.2)

which has eigenvalues
{

1, 1, e 2πi
3 , e

4πi
3
}
, and thus we read off the possible exponents{

0, 0, 1
3 ,

2
3

}
mod 1. In fact, it is easy to show that all 24 choices give rise to this same

set of exponents.
Next we consider S or ST taking values in ∆n, or alternatively being a product of ∆n

and an element of S4. There are then 7 remaining cases,

1. S = [S4], ST = [∆]

2. S = [S4], ST = [∆.S4]

3. S = [∆], ST = [S4]

4. S = [∆], ST = [∆.S4]

5. S = [∆.S4], ST = [S4]

6. S = [∆.S4], ST = [∆]

7. S = [∆.S4], ST = [∆.S4]

Note that we have not included S = ST = [∆], since in that case both S and ST are
diagonal, and thus the resulting group is intransitive.

One must now analyze each of the above seven cases. In case 1, S again takes one of
the 3 values in S4, but ST is now identified with an element of ∆n labelled by (n, i, j, k).
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Demanding that (ST )3 = 1 and TrST = 1 restricts n to be a multiple of 3, and restricts
(i, j, k) to be one of three combinations:

(i, j, k) =
(
n,
n

3 ,
2n
3

)
,

(
n, n,

n

3

)
,

(
n, n,

2n
3

)
. (D.3)

For a given n, there are then three possible choices for ST . Thus for any n ∈ 3Z there
are a total of 3 × 3 = 9 possible choices for T , and one finds by explicit computation
that the possible exponents are always either

{
0, 0, 1

2 ,
1
2

}
or
{

1
3 ,

2
3 ,

1
6 ,

5
6

}
. These either have

duplications or have been already obtained in the primitive case, so we do not consider
them further here.

Moving on to the second case, ST is taken to be a product of an element of ∆n and
one of the 8 3-cycles. Depending on which of the 8 3-cycles we choose, imposing (ST )3 = 1
and TrST = 1 gives different conditions on i, j, k (though in all cases n is unconstrained).
When the dust settles, one finds 12 possible classes of ST , each of which contain n2 elements
labelled by (p, q) such that p, q = 1, . . . , n. Computing all 3× 12 = 36 possible T matrices,
we find that the resulting exponents are of the form{

p

n
, − p

3n,
2
3 −

p

3n,
1
3 −

p

3n

}
(D.4)

where p = 1, . . . , n or p = −2n, . . . ,−2. In this way one proceeds for the remaining five
cases. The final result is that the possible new exponents are all of the above form, where
now p can take values anywhere in the range [−2n, 2n].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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