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1 Introduction

Superconformal field theories (SCFTs) occupy a distinguished position among quantum field
theories and provide us with a coarse classification by mapping quantum field theories to
their fixed points under RG flow. Six dimensional SCFTs are of particular interest as this is
the highest dimension in which such theories can occur [1]. Via compactification, 6D SCFTs
give rise to many SCFTs in lower dimensions. This approach was initiated in [2] and has
seen substantial recent progress particularly for four- and five-dimensional theories [3–21].

SCFTs in six dimensions are necessarily strongly coupled and contain tensionless strings
in their spectrum, which makes them particularly hard to tackle via conventional field theory
means. String theory has played key role to construct [22, 23] and classify [24, 25] those
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theories in geometric terms using F-Theory on non-compact singular Calabi-Yau varieties
(see also the review [29]). Intuitively, these geometries must be chosen not to contain any
length scales in order not to spoil conformality, and in particular need to be non-compact
so that gravity is decoupled. The tensionless strings that are a hallmark of 6D SCFTs can
be understood in this setting from branes wrapped on appropriate collapsed cycles. There
is a caveat to classifying 6D SCFTs using a purely geometrical setup in F-Theory, as there
can be phases with frozen singularities which give rise to theories that cannot be otherwise
obtained [26–28].

These SCFTs admit a wide range of global symmetries which typically can be obtained
from the underlying F-Theory geometry. Besides global symmetries acting on local operators,
there are also higher-form symmetries [30] that act on non-local operators such as the
surface defects in 6D SCFTs [31]. A quintessential example of such higher-form symmetries
arise in gauge theories with only adjoint matter, which have a discrete centre 1-form
symmetry that acts on Wilson line operators. The BPS strings present in 6D theories
likewise naturally couple to 2-form fields, which gives rise to ‘Wilson surfaces’ that can
transform under discrete 2-form symmetries. These lead to p-form symmetries with p ≤ 2
upon compactification [32–35]. Furthermore, p-form symmetries for different p can mix
under group multiplication, which gives rise to 2-groups [36–41].

String theory and its connection to geometry has equally prominently been used in
recent years to explore consistency conditions for theories of quantum gravity. The central
idea is that (compactifications of) string theory automatically engineer such theories, and
to contrast this with purely field theoretic constructions. This is called the swampland
program [42],1 and has been successfully used to find or conjecture new and often subtle
consistency conditions that need to be obeyed for field theories to have a UV completion
that includes quantum gravity. Theories that obey all such conditions are said to be in
the landscape, while the others are in the swampland. A classic example is the absence of
global symmetries [44, 45], a constraint that includes higher form global symmetries [46].
On the one hand, this can be argued for from the effective field theory point of view
using black holes, an argument that has recently been sharpened using the AdS/CFT
correspondence [46, 47]. On the other hand, it is a general feature of (perturbative) string
theory that global symmetries on the worldsheet become gauged in space-time [48].

The swampland program strives to identify the precise location of the boundary between
quantum field theories that can be consistently coupled to gravity and those that cannot.
To simplify this problem, one can instead study the boundary between the landscape and
the swampland for the case of conformal field theories. For theories that are engineered
geometrically, the RG flow has a geometric counterpart in degenerations of the geometry,
and the relationship between conformal theories and non-conformal ones is analogous to
how singularities provide seeds that produce non-trivial topology upon resolution. The
question about which SCFT sectors can coexist with gravity then becomes a question
about certain maximal degenerations in geometry. In this work we start addressing this
question for superconformal field theories in dimension six, where we can use the strategy to

1See [43] for an introduction, review and a more extensive list of references.
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study compactifications of F-Theory on compact elliptically fibered Calabi-Yau threefolds.
Such an approach has been previously taken in [49], which analysed how the unimodular
charge lattice required in 6D supergravity [50] is found by combining the non-unimodular
charge lattices arising from the singular geometry, and those of the SCFT sectors into the
unimodular lattice of the base geometry. However, it cannot be possible to couple every
single 6D SCFT to gravity. While there are infinitely many 6D SCFTs with charge lattices
of arbitrarily high ranks, there are only finitely many compact bases for elliptic Calabi-Yau
threefolds [51, 52]. Unfortunately the list of such bases is unknown, as the proof of finiteness
is not constructive. Similarly, [53] recently argued for the finiteness of massless modes in
6D (1, 0) supergravities from the field theory point of view.

Whereas the SCFT sectors in a specific model can have global symmetries, such
symmetries need to be gauged or broken when coupling to gravity. This can be easily
understood for ordinary (0-form) flavour symmetries, as any flavour brane supporting them
is necessarily compact in a model coupled to gravity. It is only when zooming in to any of the
non-compact, local patches that give rise to one of the SCFT sectors that such branes become
effectively non-compact, the gauge coupling effectively goes to zero and thus the gauge
symmetry appears to be global. The absence of 2-form global symmetries GS likewise follows
from the self-duality of the charge lattice of supergravity theories. The breaking of the 2-form
global symmetries GS can furthermore be understood from the defects that have a non-trivial
transformation behaviour becoming BPS strings of finite mass. It is not true, however, that
all of the defects present in SCFT sectors necessarily persist as finite mass objects when
coupling to supergravity, and thus some 2-form symmetries may remain unbroken.

As we shall see, this happens precisely when the charge lattice ΛS of the SCFT sectors
does not embed primitively into the charge lattice ΛB of the supergravity model. We find
that both for (2, 0) and (1, 0) theories, the subgroup G of GS which remains unbroken by
BPS strings is given by

G = tors(ΛB/ΛS) . (1.1)

In the absence of other effects that can break GS , it then follows that G must be gauged.
This claim can be further substantiated by using string dualities, in particular a form of
fibre-base duality. When going to five dimensions on S1, the 2-form symmetries in question
give rise to 1-form symmetries. For models that permit an appropriate second elliptic
fibration, we can then employ results on the gauging of 1-form symmetries in models with
torsional Mordell-Weil groups to argue for G as a gauged 2-form symmetry.

This paper is structured as follows: in section 2 we give a quick recap of (2, 0) and
(1, 0) 6D SCFTs and in particular their 2-form symmetries. This section mainly serves to
fix notation and to rederive that we can understand discrete 2-form symmetries in 6D as a
finite subgroup of U(1)r left unbroken by BPS strings.

In section 3 we examine how (2, 0) SCFTs are coupled to gravity by considering IIB
compactification on K3 surfaces. The geometric condition for which SCFT subsectors that
can be present can be simply phrased in terms of embeddings of the charge lattices of (2, 0)
SCFTs into the even unimodular lattice Λ5,21 of signature (5, 21). For a large class of such
models, it is possible to employ fibre-base duality to give an alternative derivation of the
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gauged subgroup G of GS . We also present a number of explicit examples where this is the
case and in which (1.1) can be worked out by various techniques.

In section 4 we then move to the broader class of (1, 0) theories and their F-Theory
realisation. The geometric condition for which SCFTs can be coupled to gravity is now that
the associated singularities can coexist in a compact elliptically fibered Calabi-Yau threefold
Xo with base Bo. Such theories can be constructed by blowing down curves spanning a
lattice ΛS in the base B of a smooth threefold X. Contrary to the case of (2, 0) theories, ΛB
is hence no longer unique, but depends on B. We investigate the fate of 2-form symmetries
by focussing on cases where both the base B of X and Bo of Xo are toric surfaces, and
furthermore Bo is such that no more curves can be collapsed. For such ‘extremal’ cases, we
find a simple condition that determines if part of the group of global 2-form symmetries
becomes gauged when coupling the SCFT sector to gravity. Again, our results can be given
an alternative derivation in cases where a dual description exists. Furthermore, we also
discuss the gauging of 2-form symmetries for Little String Theories as intermediate cases
between SCFTs and supergravity.

Finally, we give conclusions and point out some further connections and possible
approaches for future research in section 5. Technical details about lattices and some
background on how to construct elliptic Calabi-Yau threefolds over toric bases are discussed
in the appendices.

2 6D SCFTs and 2-form symmetries

6D SCFT are strongly coupled theories that contain tensionless strings among their degrees
of freedom. Scale invariance alone implies that these theories are decoupled from gravity.
In addition, these theories can only exist at strong coupling, as also the 6D gauge coupling
admits a mass scale and goes to infinity in the IR [22, 23]. Using IIB string theory
or F-Theory, 6D SCFTs are engineered by compactifications on (possibly) singular two
dimensional spaces of the form

BΓ = C2/Γ with Γ ∈ U(2) , (2.1)

where the non-compactness of BΓ ensures that gravity is decoupled, and hence eliminates
all scale dependence. The SCFT can be understood in terms of its tensor branch where a
field theory description is available. In geometric terms this amounts to a blow-up of the
base BΓ to a smooth geometry B. In general we are interested in theories with gauge or
flavor groups, which may be engineered by D7 branes that wrap, respectively, compact and
non-compact directions. F-Theory allows to systematically describe such features in terms
of an elliptic three-fold

T → X

↓ π
B

(2.2)

where D7 branes are encoded by the singularity structure of the fibre torus over complex
curves C in B. This construction engineers D7 flavor branes and keeps automatically track
of gauge algebra factors over curves C ⊂ B.
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The curves C may also be wrapped by D3 branes, thereby giving massive BPS strings
in the 6D spacetime. The tension of these strings is determined by the volume of the curve
C, which in turn is controlled by a Kähler parameter. Tuning the Kähler parameter, one
may shrink the curve to zero volume, thus rendering the strings to be tensionless. At this
point, the mass scale is removed from the theory, and an SCFT description emerges. A
defining property of the SCFT is the charges of the tensionless strings, which is determined
by the intersection matrix of the base curves C

Ci · Cj = Ωij . (2.3)

This intersection matrix is also important, as it appears in the 6d anomaly cancellation
terms, via the GSSW mechanism [54, 55]. There the tensor fields can shift and cancel one
loop anomalies and their coupling matrix with respect to the I8 anomaly 8-form polynomial
is specified via Ω.

More generally, the structure of Ω allows to distinguish the three types of theories that
can be engineered in this fashion:

1. SCFTs if Ω is negative definite; in this case all compact curves Ci may be shrunken
to a point BΓ [56, 57],

2. Little string theory (LSTs) [58] if Ω is negative semi definite such that the Ci can
be shrunk up to a curve of self-intersection 0 that sets the little string tension,

3. 6D Gravity if det(Ω) = 1 and self-dual, the base is compact and its volume sets the
6D Planck scale.

As we will see below, the SCFTs take a center stage in our discussion; they can be
glued to LSTs and also naturally sit inside a generic 6D gravity theories. The amount of
supersymmetry is the main qualifier for the complexity of 6D theories that we want to
consider here. In the following two subsections we will first review theories with maximal
and minimal SUSY in 6D.

2.1 (2, 0) theories

In the absence of gravity, theories with (2, 0) SUSY only admit tensor representations. To
preserve this amount of SUSY requires the base to be Calabi-Yau itself, hence Γ ∈ SU(2).
This type of singularities admit an ADE classification, reflected in the intersection structure
of the resolution curves C of self-intersection C2 = −2, which hence have trivial normal
bundles as required. The intersection form of the curves Ci coincides precisely with the
negative of the ADE Cartan matrix

Ω(2,0)SCFT = −GADE . (2.4)

Due to the large amount of SUSY there are no matter or vector multiplets. The tensor
multiplets contain self-dual 2-form fields, which in the F-Theory description arise from the
reduction of C4 along the curves Ci given above. These couple to massive BPS strings in
6D, that become massless when going to the singular point.
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LSTs are engineered in a similar fashion, but the geometry contains an additional curve
C0 with zero eigenvalue under the intersection form Ω. This curve can not be shrunk and
sources a non-dynamical tensor whose scalar component sets the little string scale in the IR.
From the point of the intersection form Ω, the curve C0 plays exactly the role of the unique
affine node to the ADE configuration. Hence the intersection form of LSTs are given by the
affine Cartan matrix Ω = −Ĝ.

2.2 (1, 0) theories

(1,0) theories have a very rich structure, as they allow for vector and hypermultiplets
representations and thus non-trivial gauge and flavor groups. From the IIB perspective
those vectors live on the worldvolume of spacetime filling D7 branes, which break half of
the SUSY and wrap curves inside of the complex two-dimensional compactification space
B2. Since the D7 branes backreact on the IIB axio-dilaton, this results in a non-constant
profile, which is best captured via the geometry of the elliptic threefold (2.2) of F-Theory.
The power of this geometric construction therefore allows a geometric classification of those
theories via F-Theory [24, 25] (see [29] for a review and more references). When resolved,
the base of a (1,0) SCFT is still built from trees of P1 of negative self intersection, as dictated
by shrinkability [56, 57]. However the overall structure is not confined to be of ADE type
anymore, nor are the curves C required to have a trivial normal bundle i.e. C2 = −2. This
affects the elliptic fibration to be non-trivial by enforcing an ADE singularity in the elliptic
fibre in case the self intersection C2 = −n is below n > 2. These single curve theories
constitute the simplest class, these rank one 6D SCFTs are called non-Higgsable cluster
(NHC) [59] and have the following minimal gauge group

n 1 2 3 4 5 6 7 8 12
g − − su3 so8 f4 e6 e7 e7 e8

. (2.5)

Among the above theories, only one admit matter representations (the 1
256 of e7 on the

−7 curve). Such matter representations transform under a global flavor symmetry, which
constitutes another piece of the defining 6d SCFT data, but is then trivial for most of the
above NHCs.

By enhancing the flavor symmetry further (Higgsable) SCFTs can be constructed from
NHCs which enhances the minimal gauge group. Such enhancements can be conveniently
be obtained by tuning certain polynomial deformations in the geometric Weierstrass model
that determines the elliptic fibration (2.2). As an example, the su3 over the -3 curve can
be enhanced to an g2 with a massless hypermultiplet in the 7 that transforms in the su2
flavor representation. Moreover, the minimal gauge symmetry over some curve can be
enhanced by adjoining another −n curve. E.g. the g2 enhancement over the −3 curve can
also be achieved by adding a −2 curve over which the aforementioned su2 flavor symmetry
is gauged, completed with the respective massless matter multiplets. Such a configuration
then naturally leads to higher rank multi-node NHCs.

The flavor symmetries, or in the IIB context non-compact D7 flavor branes and their
intersections in a smooth point, naturally lead to superconformal matter theories [60],
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another building block of SCFTs. Such theories are generalisations of bifundamental matter
which however is not perturbatively realized. This is consistently encoded in the geometry
of the elliptic threefold X, as certain non-minimal singularities in the fibre that are avoided
upon blow-up(s) of the intersection point in B2. A typical example is the intersection of an
e8 and su1 brane that leads to a non-minimal singularity at their intersection point, which
can be avoided by inserting a single −1 curve at that point. In fact this is the first theory
shown in (2.5) which hence admits a generic e8 flavor algebra. Various Ĝ1× Ĝ2 collisions are
possible and have been studied e.g. in [60] which further enriches the N = (1, 0) structure.2

However, as we will review in the next sections, such theories do not give rise to 2-form
symmetries as they are no singularities of the base associated with them.

Similar as for the (2,0) theories, there is the straightforward generalisation of 6D
SCFTs to an little string theory by adding an additional rational curve such that there is
a zero-eigenvalue in Ω. Since the base is not necessarily of ADE type anymore, the little
string curve C0 is not directly identified as the affine extension anymore, which makes
the classification of LSTs in terms of 6D SCFTs much richer [28, 62] than their (2,0)
counterparts.

2.3 2-form symmetries in 6D SCFTs

In 6D, SCFTs and LSTs can have global 2-form symmetries [19, 30, 34, 63, 64], with the
2-form symmetry group being the same as the ‘defect group’ discussed in [31]. In contrast,
6D gravity theories do not admit global symmetries of any sort. These 2-form symmetries
can be found by working out the Smith normal form [34] of the inner form on ΛS = H2(B,Z).
In this section we show that the global 2-form symmetry of 6D SCFTs and LSTs can also
be written in terms of the discriminant group of ΛS . This discussion is accompanied by
appendix A, where we review basic definitions and properties of lattices and give further
comments on the equivalence of our presentation and that of ref. [34].

A higher form symmetry is a global symmetry G that acts on extended objects [30].
To construct it, recall that for a 0-form (ordinary) global symmetry in d-dimensions, the
conserved charge is

Q(Md−1) =
∫
Md−1

∗j , (2.6)

where j is the 1-form current. We can think of Md−1 as a hypersurface in space-time (i.e. a
space-like slice). For continuous symmetries, we can exponentiate Q to find the symmetry
operator, but we can think more generally of associating an operator Ug(Md−1) to Md−1.
With this more abstract perspective, the group structure is reflected by the multiplication
law [30]

Ug(Md−1)Ug′(Md−1) = Ug′′(Md−1) , (2.7)

where g′′ = g′g ∈ G. For ordinary Abelian (non-Abelian) symmetries, this multiplication is
commutative (non-commutative). Ug(Md−1) is topological in the sense that it only changes
when it crosses a local operator V (P ) located at P . To find the transformation of this

26D SCFTs with non-trivial 1-form symmetries have been studied e.g. in [10, 61].
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operator we can use an Sd−1 surrounding P and write

Ug(Sd−1)V (P ) = R(g)V (P ) , (2.8)

where R(g) is some representation of G.
We can repeat the same logic for higher-dimensional operators V (Cp) of dimension p.

Md−1 is replaced by Md−1−p and Sd−1 is replaced by a sphere Sd−1−p linking the operator
V (Cp). The multiplication law

Ug(Md−1−p)Ug′(Md−1−p) = Ug′′(Md−1−p) (2.9)

for codimension p+ 1 submanifolds Md−1−p is, however, necessarily commutative, and so
G must be Abelian for all higher form symmetries. In particular, for 2-forms in 6D, the
charged operators V (C2) are two-dimensional and may be linked by an S3 leading to

Ug(S3)V (C2) = R(g)V (C2) . (2.10)

Consider now a 6D SCFT realized in F-Theory on an elliptically fibered Calabi-Yau
threefold X that has a non-compact base B with ΛS = H2(B,Z). As mentioned in the
beginning of this section, D3 branes wrapping the compact, contractable curves associated
to ΛS give rise to tensionless strings in the 6D theory, which are charged under the 2-form
gauge fields Bi of the tensor multiplets. Consequently, ΛS has the interpretation of a charge
lattice, and the Bi are associated to a 2-form gauge group U(1)r, where r is the number of
tensor multiplets.

Let us denote a Z basis of ΛS by ηi, i.e. we can write any point η in ΛS as η =
∑
i aiηi

with ai ∈ Z. We have
ηi · ηj = Ωij , (2.11)

where the integer matrix Ωij specifies intersections of the associated curves, cf. above and
appendix A. We can use the ηi basis to describe lattice points on the dual lattice Λ∗S as
well: ω =

∑
i aiηi. As opposed to ΛS , this allows the ai to be integer or fractional, subject

to the constraint that for any ω ∈ Λ∗S , ω · η ∈ Z for all η ∈ ΛS .
Wrapping D3 branes on Ca × η, where Ca is a space-time cycle and η a (possibly

non-compact) cycle in Λ∗S gives rise to charged surface operators in the 6D SCFT, so that
Λ∗S also has an interpretation as a charge lattice. Whenever η is compact this produces a
BPS string, whereas we get a defect when η is non-compact.

Recall that in 6D, an electric p-form gauge symmetry has a dual (4− p)-form magnetic
symmetry. 2-form symmetries are thus self-dual. In the type IIB setting, this is matched
by the fact that D3 branes and the C4 gauge potential are self-dual under SL(2,Z2).

The 6D tensor multiplets that contain the 2-form gauge fields Bi are found, in the
type IIB description, by a Kaluza-Klein reduction of C4 on the non-compact base B. By
a slight abuse of notation, we let ηi denote 2-forms that are Poincaré dual to the above
mentioned cycles in B, and expand C4 =

∑
iBi ∧ ηi. The coupling of the B-fields to the

charged surface operators is then given by∫
D3
C4 =

∑
i,j

ai

∫
Ca

ΩijBj . (2.12)
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This identifies the charges
∑
aiΩij associated to Bj . Then, with Hj = dBj and Ĉa being

an S3 that links Ca, we have that

1
2π

∫
Ĉa
Hi =

∑
j

ajΩij . (2.13)

The operators Ug(M3) for a 6D theory propagating on M6 can then be written as

Ug(M3) = exp

i∑
j

cj

∫
M3

Hj

 , (2.14)

where cj is a U(1) parameter. These give the transformations of the Wilson surfaces3

V (Ca) = exp

i∑
i,j

aiΩij

∫
Ca
Bj

 . (2.15)

This means that we can write out (2.10) as

Ug(Ĉa)V (Ca) = exp
(
i
∑
i

ci

∫
Ĉa
Hi

)
V (Ca) = exp

2πi
∑
i,j

ciΩijaj

V (Ca) . (2.16)

Clearly, this equation shows that G is U(1)r, where r is the rank of the lattice Ωij .
Now the BPS strings, which come from elements

∑
i aiηi ∈ ΛS , where the ai are integers,

break this to the defect group [31, 34]. This means that the non-broken elements of the
defect group must act trivially in case all of the ai are integer. Thus, for any non-trivial
group parameter ci, we find

ciΩijaj ∈ Z ∀ aj ∈ Z . (2.17)

Let us define γ =
∑
i ciηi. The above can be rewritten as

γ · η ∈ Z , (2.18)

for all η =
∑
aiηi. If ai is integer, so η ∈ ΛS we must then have γ ∈ Λ∗S . If instead η ∈ Λ∗S

this still gives non-trivial elements of the group GS of 2-form symmetries. Finally, whenever
we not only have γ ∈ Λ∗S , but the stronger condition γ ∈ ΛS , the action on η ∈ Λ∗S is
trivial on all defects coming from D3 branes wrapped on elements of Λ∗S . Hence the 2-form
symmetry group must be

GS = Λ∗S/ΛS . (2.19)

Note that the action on defects, which come from Λ∗S , is still nontrivial, and their
charges are given by the discriminant form

γ · γ′ = γiΩijγj , (2.20)

for any pair γ, γ′ of elements in Λ∗S , which takes values in Q mod Z [65].
3This generalises the standard Wilson lines, and aiΩij can be seen as tracing over gauge indices. We

remark that, since aiΩijbj ∈ Z for all bj ∈ Z, these Wilson operators are invariant under large gauge
transformations of the fields Bi, i.e. under

∫
Ca
Bj →

∫
Ca
Bj + 2πbj .
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As we have seen above, the 2-form symmetry group is equivalent to the defect group
studied in [31, 34]. As argued in these references, GS measures the screening effects of the
dynamical strings in the 6D theory. The charges of defects thus constitute discrete data
that must be specified to fully determine the theory. Another way of stating the above is
that specifying the 2-form symmetry group relates, through (2.13), to distinct choices of the
quantised background flux Hj that take values in H3(M6,Z)⊗ Λ∗S/ΛS [31, 66]. Now, since
3-form fluxes are self-dual in 6D, choosing such a background flux is subtle and requires
a choice of duality frame. Only after such a frame is fixed, can one specify a partition
function for the 6D theory [66], see also [67–72].

3 Coupling (2, 0) SCFTs to gravity

In this section we will study how to couple 6D (2, 0) SCFTs to gravity. This can be
accomplished by studying compactifications of IIB string theory on K3 surfaces at specific
loci in the moduli space, see [73] for a review.

The scalar moduli space of type IIB on a K3 surface X is a Grassmanian, points of
which correspond to positive norm five-planes Σ5 in a vector space R5,21 of signature (5, 21),
modulo the group of U-dualities:

O(Λ5,21) \O(5, 21)/ (O(5)×O(21)) . (3.1)

We can think of R5,21 as containing H2(X,R) = R3,19, and the components of Σ5 along
this subspace as describing the integrals of the Kähler form JX , (real and imaginary
part of the) holomorphic 2-form Ω2,0

X , B-field B2, and RR 2-form C2 over cycles of X.
The group of U-dualities are the automorphisms of the unique even unimodular lattice
Λ5,21 ∼= (−E8)⊕2⊕U⊕5, and it contains the automorphisms of H2(X,Z) ∼= (−E8)⊕2⊕U⊕3,
integral shifts of B2 and C2, the type IIB S-duality group SL(2,Z), as well as the mirror
map as subgroups.

In the absence of superconformal sectors, there are furthermore 26 tensor fields, out
of which 21 are self-dual and 5 are anti self-dual. They originate from the KK reduction
of C4 along harmonic 2-forms on X (this gives 22 tensors) as well as B2 and C2 that give
two tensors in 6D each. This number is uniquely fixed in 6D (2, 0) supergravity, as such
a theory is only anomaly free when coupled to 21 self dual tensors, the remaining 5 anti
self-dual tensors are part of the (2, 0) gravity multiplet [74].

Recall from the general discussion in section 2 that tensors in 6D are sourced by
BPS strings, which can originate from D3-branes wrapped on curves in H2(X,Z), the
fundamental string and D1-branes in 6D, as well as the NS5-brane and D5-brane wrapped
on the whole K3 surface. As a consequence of U-duality, we can associate the lattice of
BPS strings with the whole lattice Λ5,21. In particular, for any such state η ∈ Λ5,21 we
can choose a U-duality frame or geometric interpretation4 where the state in questions is
described by a D3-brane wrapped on an irreducible holomorphic curve η. Choosing a set of

4I.e. a choice of embedding of H2(X,Z) into Λ5,21 together with a choice of which directions in Σ5

correspond to JX , Ω2,0
X , B2 and C2.
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orthonormal vectors Vi spanning Σ5, this shows that its tension T (η) (in appropriate units)
is given by

T 2(η) =
5∑
i=1

(η · Vi)2 . (3.2)

The lattice Λ5,21 contains various ADE root lattices Γi as sublattices, and whenever Σ5
is orthogonal to a root lattice Γi, the associated strings become tensionless. If there is a
geometric interpretation where Γi is contained in H2(X,Z) ↪→ Λ5,21, this implies that the
associated curves5 have collapsed to zero volume forming a singularity of the corresponding
ADE type, and the integrals of B2 and C2 over these curves vanish.

The lattices of tensionless strings just discussed are the hallmarks of 6D SCFTs. In the
6D (2, 0) supergravity theory, we may hence generate SCFT subsectors by making sure that
a root sublattice of Λ5,21 is perpendicular to the five-plane Σ5. As Σ5 must be generated by
positive norm vectors and the ADE root lattices are negative definite we can achieve that
for any embedding

ΛS :=
⊕
i

Γi ↪→ Λ5,21 , (3.3)

where Γi is any of the ADE root lattice, Σ5 is perpendicular to all of the Γi. Such points
are furthermore finite distance in moduli space.

The question of which (2, 0) SCFTs can be coupled to gravity (and how) can hence
be answered by classifying which lattices ΛS can be embedded into Λ5,21 (and how). This
can be achieved using the methods of [75]. While a complete classification is beyond the
scope of the present work, there are a few obvious consequences that can be immediately
deduced. For example, the sum of the ranks r of superconformal sectors that can be coupled
to gravity is at most 21, as this is the maximal rank of a root sublattice of Λ5,21 that can
be orthogonal to Σ5. Upon circle compactification, such extremal theories have a gauge
symmetry of rank 21, which precisely saturates the bound of [76]. As detailed below, the
embeddings (3.3) are not necessarily primitive, which complicates such a classification, but
also leads to interesting phenomena such as gauged 2-form symmetries.

3.1 Gauged 2-form symmetries

We are now going to take the following perspective. Assume that we have found an
embedding

ΛS =
⊕
i

Γi ↪→ Λ5,21 (3.4)

of a direct sum of ADE root lattices into Λ5,21 and choose Σ5 such that the associated BPS
states give rise to tensionless strings in 6D. Decoupling gravity, we then get a superconformal
sector that contains the associated (2, 0) SCFTs. As discussed in section 2.3, each of these
SCFTs has a global 2-form symmetry given by the finite Abelian group

GS := Λ∗S/ΛS =
⊕
i

Γ∗i /Γi , (3.5)

5For an irreducible curve of class C ∈ H2(X,Z) contained in a K3 surface, the self-intersection number is
related to the genus by C2 = 2g − 2. Roots hence correspond to P1s.
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and we can think of this group as a subgroup of U(1)r which is broken to the finite group
GS by the massless BPS strings. If we now reintroduce gravity, this introduces new BPS
strings associated with the elements of Λ5,21. These will in general transform under GS
and hence break it to a subgroup G. Due to the absence of global symmetries in theories
of quantum gravity, and in the absence of further extended objects that can facilitate a
breaking, this subgroup G of the group of 2-form symmetries of the SCFT subsectors must
hence be gauged.

Using the logic outlined above, we can now determine G. For any element γ ∈ G, it
must be that all of the BPS strings associated with Λ5,21 have a trivial transformation.
Elements of GS are in one-to-one correspondence with elements of Λ∗S/ΛS , which we now
think as embedded into Λ5,21 ⊗ Q. More concretely, the embedding of ΛS into Λ5,21 and
the fact that we can express Λ∗S using specific fractional linear combinations of elements
of ΛS shows how Λ∗S sits inside Λ5,21 ⊗ Q. We then group these into orbits under ΛS and
chose a representative.

We can express the condition that none of the BPS strings has a non-trivial transfor-
mation under γ as

η · γ ∈ Z ∀η ∈ Λ5,21 . (3.6)

Hence we need γ ∈ Λ∗5,21, which by the self-duality of Λ5,21 means that γ ∈ Λ5,21. Unbroken
elements of GS are hence contained in

G = (Λ5,21 ∩ Λ∗S) /ΛS . (3.7)

As ΛS is embedded in the integral lattice Λ5,21, it follows that any element of Λ5,21 has
integral inner form with any element in ΛS , so that

Λ5,21 ∩ Λ∗S = Λ5,21 ∩ (ΛS ⊗Q) . (3.8)

For a primitive embedding ΛS ↪→ Λ5,21, Λ5,21 ∩ (ΛS ⊗Q) = ΛS , so that G is trivial.
Let us hence assume that the embedding ΛS ↪→ Λ5,21 is not primitive, so that

tors (Λ5,21/ΛS) is non-trivial. We will give some examples of such cases in the sections below.
For a non-primitive embedding, the torsion subgroup of Λ5,21/ΛS is given by elements η in
Λ5,21 that are not in ΛS , and hence non-trivial in the quotient, but for which a multiple dη
is in ΛS for d ∈ Z and d > 1. This implies that η is in Λ5,21 ∩ (ΛS ⊗Q) and hence defines a
non-trivial element in G. Conversely, any element that is non-trivial in the quotient (3.7)
must be in the Q-span of ΛS without being in ΛS and hence corresponds to a torsional
element in the quotient of Λ5,21 by ΛS . What we have hence shown is that the subgroup G
of the global 2-form symmetry group G which cannot be broken by BPS strings is simply

G = tors (Λ5,21/ΛS) . (3.9)

Intuitively, the presence of this torsional group means that ΛS is embedded in a non-minimal
way in Λ5,21, i.e. ΛS 6= (ΛS ⊗Q) ∩ Λ5,21. This implies that the inner product of elements
of Λ5,21 with elements of ΛS , which results in charges of BPS strings under the 2-form
symmetries of the conformal sectors to be non-minimal as well.
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As is evident from (3.7), elements of G form a subset of elements of GS = Λ∗S/ΛS . This
in particular allows to determine which subgroup of GS becomes gauged upon coupling the
chosen collection of SCFTs to gravity. Note that for a specific choice of ΛS , G is not unique
but depends on the embedding ΛS ↪→ Λ5,21.

3.2 Elliptic fibrations and non-primitive embeddings

Having shown that the subgroup G ⊂ GS unbroken by BPS strings is non-trivial in cases
where ΛS is non-primitively embedded in Λ5,21, we now present a class of examples in
which this is indeed the case. To do so, we chose a particular U-duality frame in which
the K3 surface X has an elliptic fibration. Building on the extensive literature of elliptic
fibrations on K3 fibrations, we will show that G equals the group of torsional sections when
ΛS equals the lattice of fibre components not meeting the zero section. The observations
of this section hence provide a fascinating application of the classification work of elliptic
fibrations on K3 surfaces. The data specifying any of the elliptic fibrations found in the
tables in [77] directly translates to a possible set of (2, 0) SCFTs that can be coupled to
6D quantum gravity, and also directly tells us the gauged subgroup of the global 2-form
symmetries of the superconformal sectors. Some background material concerning results
used in this section and a guide to the original literature can be found in [78].

Let us denote the K3 surface in question together with a choice of complex structure
by X and let us assume that X has an elliptic fibration. Using the complex structure we
can define the Picard lattice

Pic(X) = H1,1(X) ∩H2(X,Z) . (3.10)

It is primitively embedded in Λ5,21 ∼= H2(X,Z)⊕ U⊕2 by construction. Together with the
transcendental lattice TX = Pic(X)⊥ ∈ H2(X,Z), we can write

H2(X,Z) ⊇ TX ⊕ Pic(X) . (3.11)

An elliptic fibration is now fixed by a primitive embedding of a copy of the hyperbolic
lattice U into H2(X,Z). One can think about U as containing the class of the fibre of the
elliptic fibration and the zero section. Given such an embedding it follows that Pic(X) can
be decomposed as

Pic(X) = U ⊕W , (3.12)

where W is called the frame lattice of the elliptic fibration. Denoting the fibre class by
F , it can also be defined by W = F⊥/F ⊂ Pic(X). The frame lattice contains all of the
components of reducible fibres not meeting the zero section. Such components are always
P1s, and they span a direct sum of root lattices of ADE type. This determines a sublattice

ΛS =
⊕

Γi ⊂W . (3.13)

The quotient
W/ΛS = MW (X) (3.14)
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is isomorphic to the Mordell-Weil group of the elliptic fibration. The Mordell-Weil group is
the group of sections of the elliptic fibration, which inherits its group structure from the
group law on the elliptic curve which is the fibre.6 The Mordell-Weil theorem says that
it is a finitely generated Abelian group, which is also clear in the present context by its
identification with W/ΛS . We can hence write

MW (X) = Zk ⊕i Zdi
, (3.15)

i.e. there is a free subgroup and a torsional subgroup.
For any elliptic K3 surface, we can go to a locus in the moduli space where all of the fibre

components not meeting the zero section, i.e. cycles in the lattice ΛS , are collapsed. Setting
also the periods of the B-field and the RR 2-form C2 to zero, we find (2, 0) superconformal
sectors of the associated ADE types. We can now compute

tors
(
H2(X,Z)/ΛS

)
= tors (W/ΛS) = tors (MW (X)) , (3.16)

where we have used that ΛS is contained in W , which is primitively embedded in H2(X,Z)
via Pic(X). Coupling a collection of (2, 0) SCFTs is hence expected to give a gauged 2-form
symmetry if we embed the conformal sectors in a K3 surface via singular fibres, and there is
non-trivial torsion in the Mordell-Weil group. Although from the perspective of geometry it
is a non-trivial fact that the torsional subgroup of the Mordell-Weil group is a subgroup of
GS = ⊕iΓ∗i /Γi, our analysis starting from (3.7) immediately implies this statement as well.

It is known that an elliptic K3 surface with a fixed torsional Mordell-Weil group G

only allows for fibres with compatible monodromies e.g. groups with sufficiently constrained
centers [79]. These various K3 geometries however do not admit any arbitrary combination
of possible Γi fibres for some fixed G Mordell-Weil group. E.g. for G = Z7 one finds exactly
three A6 but no less. This observations hints at the fact that there might be an 2-form
anomaly appearing in this setting.

It is now easy to construct examples of this type. We can even give an algebraic model
of K3 surfaces with all fibre components not meeting the zero section as a Weierstrass model

y2 = x3 + fx+ g (3.17)

over a base P1, and with f and g homogeneous polynomials of degrees 8 and 12. In terms
of the vanishing orders of f , g and ∆ = 4f3 − 27g2, the fibre types and lattices Γi are then
given in table 1. For example, for z an affine coordinate on the base one may choose

X : y2 = x(x2 − z3(z − 1)3(z − i)2) , (3.18)

which has two fibres of type III∗ corresponding to E7 and one of type I∗0 corresponding to
D4. Hence

GS = E∗7/E7 ⊕ E∗7/E7 ⊕D∗4/D4 = Z2 ⊕ Z2 ⊕ Z⊕2
2 . (3.19)

Furthermore, there is a torsional section σ̂ at y = x = 0. The linear relations on X imply
that 2σ̂ is equivalent to the complete intersection of X with the divisor x = 0, which

6The identity element of this group is given by the zero section.
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ord(f) ord(g) ord(∆) fibre type Γ Γ∗/Γ

≥ 0 ≥ 0 0 smooth none —
0 0 n In An−1 Zn
2 ≥ 3 n+ 6 I∗n Dn+4 Z2

2 or Z4

≥ 2 3 n+ 6 I∗n Dn+4 Z2
2 or Z4

≥ 1 1 2 II none —
≥ 4 5 10 II∗ E8 Z1

1 ≥ 2 3 III A1 Z2

3 ≥ 5 9 III∗ E7 Z2

≥ 2 2 4 IV A2 Z3

≥ 3 4 8 IV ∗ E6 Z3

Table 1. The classification of reducible fibres in terms of the vanishing degree of f , g and ∆ and
the associated ADE root lattices. The last column denotes the centres of those lattices, which for I∗n
depends on whether n is even or odd.

translates to the fact that σ̂� σ̂ = 1 in the group law of the elliptic curve. The Mordell-Weil
group hence has an element with two-torsion. As the rank of Pic(X) is 20 and hence
maximal, the free part of the MW group must be trivial as those would contribute to the
Picard group too. It follows that

G = Z2 ⊂ Z⊕4
2 = GS . (3.20)

We furthermore have that the discriminant groups of W and TX are

GW = GTX
= Z2 ⊕ Z2 , (3.21)

which uniquely determines that TX has the inner form

TX =
(

2 0
0 2

)
. (3.22)

Working the other way, one may construct examples by starting from a choice of TX
and then find the frame lattices and Mordell-Weil groups of possible elliptic fibrations
by the method of Kneser and Nishiyama [77]. A detailed review of this method can be
found in [80] and methods for finding explicit Weierstrass models from such constructions
(together with plenty of examples) can be found in [81].

3.3 2-form symmetries in (2, 0) theories and fibre-base duality

In this section we want to offer an alternative perspective on the results of the last section
by using a dual description via M-Theory. We can lift IIB string theory on a K3 surface
X to F-Theory by considering F-Theory on Y = T 2

A ×X in the limit where the volume of
T 2
A goes to zero. When T 2

A has finite volume, such a setup can be described by M-Theory
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5D, M-theory on T 2 ×X
N = 2 | G̃ : Γi/G×U(1)3

8D, F-Theory on X
N = 1 | G̃ : Γi/G

6D, Type IIB on X
N = (2, 0) | SCFT: Γi/G

T 3 reduction S1 reduction

Figure 1. Depiction of M-theory duality chain leading to the same 5D N = 2 supersymmetric
theories. The same theory is obtained from T 3 compactification of F-Theory an elliptic K3, X with
non-simply connected gauge group and a circle reduction of IIB on the same singular K3 with a
gauged 2-form symmetry.

compactifications on Y to five dimensions. From the perspective of type IIB, this is described
by compactification on X × S1, i.e. the 6D (2, 0) theories considered above are reduced on a
further S1.

As in the section above, we assume that X has an elliptic fibration which is such
that its Mordell-Weil group has a non-trivial torsional component. Collapsing all fibre
components not meeting the zero section, we can think of the resulting 6D (2, 0) theory as
being composed of SCFT sectors associated with singular fibres that are coupled to gravity.
As argued in the last section, we expect such 6D (2, 0) theories to have a gauged 2-form
symmetry G. Further compactifying this theory on a circle to a 5D N = 2 theory first
yields a gauge algebra g = Γi obtained due to the strings that become W-bosons when
wrapping the KK circle. Furthermore, the gauged 2-form symmetry in 6D reduces to a
gauged 1-form symmetry in 5D [34]. This implies that, modulo U(1)s, the 5D gauge group
is Ĝ = Γi/G. This duality chain is illustrated in figure 1.

As is apparent from the M-Theory realisation, we can also arrive at this 5D theory by
first considering the eight dimensional theory resulting from F-Theory on the K3 surface
X, and then further reducing on T 3 = T 2

A × S1 to five dimensions. In the 8D F-Theory
setting the non-Abelian gauge algebra factors are again in direct correspondence to the
fibre singularities and the global modding of the non-Abelian part of the gauge group is
again induced from the Mordell-Weil torsion as e.g. analyzed in detail for K3 in [82] and
more recently also in [79, 83–85]. This structure persists when reducing on T 3, so that we
again conclude that the 5D theory must have the same structure. From this perspective we
are actually forced to assume that the type IIB compactification on X considered initially
must entail a non-trivial global structure, to be consistent with the 5D supergravity theory.
Similar duality arguments can also be made for N = (1, 0) theories for which multiple
F-Theory lifts are possible upon circle compactification. We will do so in section 4.6 where
we will obtain a similar picture.

The above mentioned duality also allows us to touch upon more sophisticated questions
that go beyond the geometric existence of the gauged 2-form symmetries. These include
in particular a more in depth field theory analysis of anomaly cancellation. In particular
we use the 8D consistency of the center 1-form symmetry and its T 3 compactification as a
strong evidence that also the center 2-form symmetry to which we can lift the 5D theory to
be consistent. Gauged center 1-form symmetries in 8D supergravities have been studied
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from a field theory perspective recently in [84]. There a new anomaly, involving the discrete
1-form symmetry has been identified and shown that its absence restricts the embedding
into the respective gauge group factors. It is very satisfying that the very same condition
has been found by Miranda, Person and Shimada [86, 87] in the geometry of elliptic K3’s
with finite MW groups. This argument shows that the 6D center 2-form symmetries of IIB
on the K3’s are indeed consistent. In more in general though this also hints at a similar
6D center 2-form anomaly cancellation condition as in 8D to be at play which is left to be
worked out in future work.

3.4 Example: the mirror quartic

In the last sections we have discussed how elliptic K3 surfaces with a finite Mordell-
Weil group naturally lead to gauged 2-form symmetries. In this section, we use different
techniques to give another example where (3.7) produces a finite group G. However we
want to explicitly show two important points here: first, we want to show how one can
use the smooth geometry, i.e. the tensor branch of the SCFTs, to obtain the exact 2-form
gauging and in turn to deduce the restricted BPS string charges. Secondly, we show the
existence of another SCFT limit that can be taken in the same smooth geometry, that
also admits a gauged 2-form symmetry by choosing a different blow-down lattice ΛS . The
second limit is chosen such, that a singular elliptic fibration with finite MW group persists
unlike the first example. Therefore this example also serves as a reminder that finite MW
groups are just a subset of possibilities of how to engineer non-trivial 2-form gaugings.

As in the section before, we work in the geometric setting, i.e. we chose a specific
U-duality frame, a root lattice ΛS ⊂ H2(X,Z) and locus in moduli space where Σ5 is
perpendicular to ΛS . As before, this means that irreducible cycles in ΛS are collapsed
to zero volume and do not support non-zero B2 or C2. As ΛS sits purely in H2(X,Z),
and we can write Λ5,21 = U2 ⊕H2(X,Z), and furthermore the Picard lattice is primitively
embedded into H2(X,Z), we can simplify (3.9) to

G = tors(Pic(X)/ΛS) . (3.23)

The example we are considering is the mirror X∗ of the quartic K3 surface, X in P3.
For the quartic we have that

Pic(X) = (4) , TX = (−4)⊕ U2 ⊕ (−E8)2 , (3.24)

where TX = Pic(X)⊥ in H2(X,Z) = (−E8)⊕2 ⊕ U⊕3. For the mirror

Pic(X∗) = (−4)⊕ U ⊕ (−E8)2 , TX = (4)⊕ U . (3.25)

This family is realized as (a resolution of) the generic anticanonical hypersurface in P3/Z4×
Z4. The resolved ambient space is given via the fan spanned by the four homogeneous
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coordinates xi of P3 and the 18 resolution divisors

∆ =


x0 x1 x2 x3 f1,1 f1,2 f1,3 f2,1 f2,2 f2,3
−1 −1 −1 3 −1 −1 −1 −1 −1 −1
−1 −1 3 −1 −1 −1 −1 0 1 2
−1 3 −1 −1 0 1 2 −1 −1 −1

f3,1 f3,2 f3,3 f4,1 f4,2 f4,3 f5,1 f5,2 f5,3 f6,1 f6,2 f6,3
0 1 2 −1 −1 −1 0 1 2 0 1 2
−1 −1 −1 0 1 2 −1 −1 −1 2 1 0
−1 −1 −1 2 1 0 2 1 0 −1 −1 −1

 . (3.26)

The latter are grouped into six triples fi,j whose divisors resolve the respective i-th A3
singularity at the vanishing of

i = 1 . . . 6 for the pairs {x0x1, x0x2, x0x3, x1x2, x1x3, x2x3} . (3.27)

The rank of the Picard lattice spanned by toric divisors as given above is 19 dimensional,
which can be computed e.g. via the Batyrev formula and is consistent with the expectation
of mirror symmetry. A divisor basis is given as

Dx3 , Dx1 −Dx3 , Dx2 −Dx3 , Dfi,j
. (3.28)

As a final cross check, we compute the intersection form Ω in the above basis to confirm its
determinant to be four, as expected from mirror symmetry.

We can use this family of surfaces to engineer a 6D (2, 0) theory in which SCFT sectors
are coupled to gravity by choosing a lattice ΛS ⊂ Pic(X∗), and blowing down the associated
curves.

The Picard lattice Pic(X∗) admits a sublattice ΛS of curves that we want to blow down
parametrised by the resolution divisors Dfi,j

Pic(X∗) ⊃ ΛS = A⊕6
3 . (3.29)

Thus the associated 2-form symmetry is given as

GS =
(
A∗3
A3

)⊕6
= Z⊕6

4 . (3.30)

In the following we claim the full possible gauged 2-form symmetry of the model which we
obtain by collapsing the divisors Dfi,j

inside of ΛS to be

G = Z4 × Z4 ⊂ GS , (3.31)

and we also would like to compute their exact embedding into GS . We can do so in
terms of the smooth geometry, that is the tensor branch of the SCFT phase we want to
consider. Note that the above G action on the SCFT sector, is exactly the quotient action
of mirror symmetry on the P3 ambient coordinates. The generators that implement the
above embedding can be obtained by considering the two linear equivalence relations of
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divisors by using the dual lattice points m1 = (0,−1, 1) and m2 = (1,−1, 0) and formulate
the linear equivalence relations

4(Dx1−Dx2) = (Df1,1 +2Df1,2 +3Df1,3)−(Df2,1 +2Df2,2 +3Df2,3)+(2Df4,1−2Df4,3)
+(Df5,1 +2Df5,2 +3Df5,3)−(Df6,1 +2Df6,2 +3Df6,3) , (3.32)

4(Dx2−Dx3) =−(Df2,1+2Df2,2+3Df2,3)+(Df3,1+2Df3,2+3Df3,3)−(Df4,1+2Df4,2+3Df4,3)
+(Df5,1 +2Df5,2 +3Df5,3)−(2Df6,1−2Df6,3) . (3.33)

In the depiction above, we have grouped together the torsional relations with respect to
the Ai3-th singularities. Here the order four modding(s) are exactly related to the fact that
the prime divisors on the left hand side of (3.32) are multiplied by a factor four. This
parametrisation allows to read off the embedding of the Z4 quotient actions into that of the
collapsed cycles in GS . We also give the last linear equivalence relation among the divisors
relating the Dxi obtained from m3 = (1, 0, 0)

3Dx3−Dx0−Dx1−Dx2 =Df1,1 +Df1,2 +Df1,3 +Df2,1 +Df2,2 +Df2,3−Df3,2−2Df3,3

+Df4,1 +Df4,2 +Df4,3−Df5,2−2Df5,3−Df6,2−2Df6,3 , (3.34)

which together with m1 and m2 spans the whole dual M -lattice of divisor relations. As
m1,m2 andm3 span the whole M-lattice of the toric ambient space, these relations determine
the integer second cohomology of the ambient space. One can argue using mirror symmetry
that it is isomorphic to the integer second cohomology of the mirror quartic K3 surface.
Computing H2(X∗,Z))/ΛS then amounts to setting all divisors Dfi,j

to zero in the above
linear relations, which yields Z⊕ Z2

4.7

As discussed above from the first two relations (3.32) one can read off the exact
embedding of the Z4 gauging within the six A3 SCFT sectors. In order to do so, we consider
some BPS strings that wrap a curve C given by some linear combination

C =
∑
i

akCk , (3.35)

with Ck being the curves dual to the divisors above. The BPS strings that wrap the curves
C admit charges under the SCFT sectors given via C ·Dfi,j

= λi,j . However note that the
curve C must have integral intersection with

C · (Dx1 −Dx2) ∈ Z , (3.36)

which, due to (3.32) restricts the ak and in turn also the BPS string charges under the
ΛS SCFT sectors λi,j . E.g. a string charge only under the first A4 can not have a weight
λ1,1 = 1 as the only non-trivial charges but only λ1,1 = 4. In group theory terms this
tells us, that no fundamentals but four-times symmetrized representations that admits
the correct center charges are allowed. All other possible representations can be deduces
analogously.

7One notices that the 2-form group is exactly the mirror action on the P3 ambient space of X.
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x2

Figure 2. Depiction of the mirror quartic polytope. Edge points are given in red and a slice of a
2D sub-polytope, that induces an elliptic fibration structure is highlighted. The six A3 singularities
between the vertices are grouped with respect to the elliptic fibration. Two e7 tops are highlighted
in green and blue respectively and another su4 as yellow points.

The mirror quartic X∗, also admits another singular limit that gives rise to SCFTs with
gauged 2-form symmetries. These limits respect an elliptic fibration, which allows us to
connect this discussion to the general considerations made in section 3.2. Hence, in order to
admit a non-trivial 2-form gauging, we require a non-trivial MW group. This structure can
be seen by noting, that X∗ admits (six equivalent) sub-polytopes that are of F13 type (in the
nomenclature of [88]) that preserve a generic Z2 MW group. One choice of such an reflexive
(sub-)polytope is given by the triangle spanned by the x0, x1, f6,2 vertices, see figure 2. For
this fibration, x0 and x1 are two sections, related by a torsional relation. One finds that
this model admits a reducible I4 fibre at a non-toric locus resolved via f1,j . Furthermore
one observes that the choice of the 2D sub-polytope slices the 3D polytope (3.26) exactly in
the middle, leaving two E7 fibres as a top and bottom [89, 90]. The contributions of elliptic
fibre and base, as well as all reducible fibres sum up to 2 + 3 + 2 · 7 = 19, which is the
expected rank of the Picard lattice. The sublattice of those shrinkable fibres ΛS admits the
2-form structure

GS = SU(4)∗

SU(4) ⊕
E∗7
E7
⊕ E∗7
E7

= Z4 ⊕ Z⊕2
2 . (3.37)

Note that both GS and the gauged 2-form symmetry group G for this choice of ΛS (and its
embedding) are different from the choice made above, (3.30). For this choice of ΛS , the
gauged 2-form symmetry group G appears as the a Z2 MW torsion group of an elliptic
fibration. This can be double checked by noting that the above model can be described in
the most general Weierstrass model that exhibits a Z2 torsion point [82]

y2 = x(x2 + a2xz
2 + a4z

4) , (3.38)

via the tuning a2 = u2v2 , a4 = u3v3(u+ v)2 in the P1 base coordinates u, v.
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4 Coupling (1, 0) SCFTs to gravity

Having discussed (2, 0) theories via IIB on K3 and the gauged 2-form theories in such
theories, we now adopt the same strategy for N = (1, 0) theories using F-Theory on
elliptic Calabi-Yau threefolds. Compared to N = (2, 0) SCFTs, there are many more
possibilities to construct N = (1, 0) SCFTs, and to couple them to gravity. In particular,
these constructions include various ways to enhance gauge groups, which however does not
directly influence the structure of the 2-form (gauge-) symmetry that we want to focus on
in this work. Therefore, we will review the structure of the geometric construction of 6D
supergravity theories in F-Theory on certain bases B in the following, leaving out the rich
structure of tuning additional gauge groups.

4.1 F-theory on compact elliptic threefolds with SCFT sectors

The vast majority of supergravity theories with eight supercharges can be described via
F-Theory on an elliptic threefold X over a smooth compact Kähler two-fold base B. The
set of such bases B is in fact not fully classified8 and on top of this one might also tune the
Weierstrass model to obtain enhanced gauge group factors over various curves. Focusing on
the base, these contain in general curves of positive and negative self-intersection. In the type
IIB description, D3 branes wrapping such curves give rise to (massive) strings in 6D with
tension fixed by the volume of the curve. For −n curves, which may be shrunken to yield a
local geometry of the form C2/Γ, with Γ ∈ U(2), these strings can again become massless.
Consequently, 6D supergravities admit massless string modes that are characterised by the
6D SCFT data associated to those shrunken curves.

Consider a compact base B and the (geometrically realized) lattice of BPS strings
ΛB = H2(B,Z). Among these we choose a specific sublattice of curves

ΛS ⊂ ΛB , (4.1)

that can be shrunk simultaneously creating SCFT sectors with tensionless strings. Such a
choice corresponds to moving to a specific limit in the Kähler moduli space of the base B.
For a single irreducible and effective curve C, the condition that it can be collapsed is that
its self-intersection number is negative. However, as a curve is collapsed the self-intersection
numbers of linked curves increase, and may become non-negative. Hence it may be difficult
in general to determine possible choices of ΛS .

Each SCFT sector potentially has a 2-form global symmetry, which must be either
broken or gauged when coupling the theory to gravity, i.e. in situations with a compact
base. Now, just as for (2, 0) theories discussed in section 3.1, if ΛS ⊂ ΛB is primitively
embedded, the compactification admits tensionless BPS strings that break the full 2-form
symmetry GS . For non-primitively embedded ΛS ⊂ ΛB, however, part of GS remains
unbroken. Again, the unbroken elements of GS lie in

G = tors (ΛB/ΛS) , (4.2)
8Classification for toric and some non-toric bases can be found in [59, 91–93].
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v1

v2e′1

e′2

e′3

v3

e1 e2

Figure 3. A fan of a 2D toric base B. The fan has several 1D cones, each corresponding to a
curve in ΛB = H2(B,Z). The red and blue 1D cones, ending in vertices e′i and ei all have negative
self-intersection, and may be shrunk simultaneously to provide two SCFT sectors Γ1,Γ2.

as can be seen by repeating the derivation given in section 3.1. Barring further symmetry-
breaking objects (such as non-BPS strings), this subgroup remains as a gauged 2-form sym-
metry in the 6D supergravity. We will determine G for different example geometries below.

Given a smooth base B, i.e. a (1, 0) supergravity theory in 6D, one may study possible
blow-downs of base curves, find the associated lattices ΛS , and read off which SCFT data
this corresponds to. For a typical base B there are many choices of ΛS , each corresponding
to a different instance of a collections of SCFTs coupled to gravity. Conversely, we may ask
the more interesting and difficult question if a given collections of SCFTs can coexist with
gravity. This is equivalent to ask if certain combinations of curves carrying these SCFTs
can be consistently stitched together to provide a compact base manifold.

Restricting to toric base spaces offers a clear setting to address the questions raised
above. When B is a toric variety, the generators of the cone of curves in ΛB correspond
to 1D rays in the fan of B (see appendix B for the relevant properties of toric surfaces).
Blowing down a curve corresponds to deleting the associated ray while fusing the adjacent
two-dimensional cones. As all cones in a fan need to be strongly convex, this singles out
curves of negative self-intersections. What makes toric surfaces particular convenient is that
one can immediately spot collections of curves that can be blown down simultaneously: such
collections must be such that deleting all of the corresponding rays respects strong convexity
of the resulting fused two-dimensional cones. An example is shown in figure 3. Here, e1 may
be shrunken simultaneously with e2, but v1 may not; however, we may alternatively choose
to shrink both v1 and e1, which requires e2 to stay at finite size. This selection process
makes it a bit subtle to read off the possible endpoint configurations, and the corresponding
SCFT sectors, from the fan of B.9

The toric setup we are focusing on here allows us to reconstruct the elliptic fibration
via a minimal Tate-model directly from the base B using a simple algorithm that we discuss
in appendix B.

9Proceeding algorithmically one may systematically explore which end-point configurations are possible
for different toric bases, and we hope to present these results in a future publication.
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Γ1, {G1}
Γ3, {G3}

Γ2, {G2}

Figure 4. A fan of an extremal base Bo. The fan has three rays with generators vi. Each of the
two-dimensional cones is furthermore labelled by a lattice Γi of blown-down curves and non-minimal
gauge groups {Gi} over some curves.

4.2 Extremal toric base spaces, primaries and descendants

Blowing down curves in a toric surface will eventually result in a surface that allows no
more blow-downs. This happens when we can no longer delete any rays such that the
resulting adjoined cone is still strongly convex. We will call such toric surfaces extremal,
which come in two types. The first type is such that the fan is composed of three rays, and
the second type has four rays which are pairwise opposing. In all other cases, it follows that
there are still rays which can be deleted by keeping all cones strongly convex. An example
of an extremal base composed of three rays is given by deleting all of the rays labelled {ei}
and {e′i} from the fan shown in figure 3.

Any toric surface is birational to P2 or one of the Hirzebruch surfaces Fn [52], i.e. we
can always contract curves to reach those surfaces. Note that only P2 and F0 are extremal
in our sense, as all other Hirzebruch surfaces can be blown down to the weighted projective
space P11n. Although we may always blow down curves to reach these surfaces, we want
to retain the freedom to choose any collapsible set of curves as ΛS and are particularly
interested in singular bases encoding various SCFTs.

Let us hence consider blowing down a maximal set of curves ΛS of a smooth toric
surface B such that we reach a singular base Bo, the fan of which is composed of three
rays. We will mostly discuss this case, the other extremal type can be treated analogously.
We denote the ray generators by v1, v2, v3 and the associated homogeneous coordinates by
z1, z2, z3. As any one of the blown down curves came from a ray sitting inside of the three
cones spanned by (v1, v2), (v2, v3) and (v3, v1), the lattice ΛS can be written as the direct
sum of three lattices which we denote by Γi

ΛS = Γ1 ⊕ Γ2 ⊕ Γ3 . (4.3)

Each of these correspond to a SCFT (which may be trivial), so that we can portrait the
situation by sketching the base and assigning an SCFT to each of the cones, see figure 4.
The SCFT data is specified by the lattice of curves sitting in ΛS , i.e. its charge lattice,
together with possible enhancements {Gi} of the gauge groups over some of the curves.
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Such a surface Bo has three singularities C2/Zk at the loci z1 = z2 = 0, z2 = z3 = 0
and z1 = z3 = 0. Let us denote the triple of values k for a compact toric surface by
Ξ = [ξ1, ξ2, ξ3]. The 2-form global symmetry group of the SCFT sectors when decoupling
gravity is then simply [31]

GS = Λ∗S/ΛS =
⊕
i

Γ∗i /Γi =
⊕
i

Zξi
. (4.4)

Let us start by exploiting SL(2,Z) to put v1 = (1, 0), which is always possible as ray
generators must be primitive. We can then write

v1 = (1, 0) , v2 = (m,n) , v3 = (l, r). (4.5)

Before examining these surfaces in more detail, let us make some comments on the normal
form that can be achieved. By distributing v1, v2 and v3 in a counter-clockwise fashion,
we have that det (vivi+1) = |vi||vi+1| sin(θi), where θi is the angle between vi and vi+1 (we
identify v4 = v1). As the cones between (v1, v2), (v2, v3), (v3, v1) are strongly convex, the
angles between these vectors must be in the range 0, π, so that we find

det(v1v2) = n > 0 , det(v2v3) = mr − nl > 0 , det(v3v1) = −r > 0 , (4.6)

and we can identify
[ξ1, ξ2, ξ3] = [∆,−r, n] , (4.7)

where we have set ∆ = mr − nl. It is important to remark that ξi only fixes the orbifold
group, but not the action on the coordinates and in turn also not the action on the fibre. This
implies that different endpoints Bo might have the same Ξ. In section 4.5 we demonstrate
such an example for Ξ = [7, 7, 7].

It can happen that n and r are coprime, or that they have a common factor. If they
do have a common factor d, d must also divide ∆. If they don’t, it follows that neither of
them can share a factor with mn−nl as (m,n) are coprime and (l, r) are coprime. It hence
follows that for any prime d one of the following options must be true:

a) d divides only one of the ξi

b) d divides all three of the ξi

i.e. it can never be true that d only divides two out of the ξi.
We can use this result to describe all toric surfaces, that have a fan with |Σ(1)| = 3,

as primaries and their descendants by global quotients. Let us first describe the primary
surfaces, which are those for which n and r are coprime. They are fully described as
C3 − {0}/C∗ together with the weight system

z1 z2 z3
mr − nl −r n

. (4.8)

As n, r and mr − nl are all coprime this reproduces the quotient singularities C2/Zξi
by

gauge fixing any one of the coordinates to 1 and finding the residual finite group.
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Let us now describe the descendants for which n and r are not coprime. Let us
write n = dn′ and r = dr′ and assume that n′ and r′ are coprime. As any integer linear
combination of v2 and v3 has the form (n1, qn2) and v1 = (1, 0), these ray generators do
not span the whole N-lattice Z2, but only a sublattice N ′ with N/N ′ = Zd. By a classic
result on toric morphisms [94], this implies that the toric variety Bo can be written as

Bo = B̂o/Zd (4.9)

for a primary toric variety B̂o characterised by the numbers n′ and r′. Correspondingly, we
can describe Bo as the quotient

Bo = (C3 − {0})/(C∗ × Zd) . (4.10)

Note in particular that both B and B′ have the same weight system for the C∗ action.

A primary and a descendant: simple example. From the description (4.10), it is
not obvious that we will indeed get singularities of type Zn and Zr. Let us look at this in
some more detail for an example, and consider a base Bo with Ξ = [2, 4, 6]. By the above,
this can be written as the quotient

Bo = P123/Z2 . (4.11)

We can realise Bo from a fan with ray generators

v1 = (1, 0) , v2 = (−3, 2) , v3 = (3,−4) . (4.12)

Describing this space as a quotient, we need to mod out C3 − {0} by (the action of) the
kernel of the map

φ : (t1, t2, t3)→ (t1t−3
2 t33, t

2
2t

4
3) . (4.13)

Of course this contains the C∗ action with weights

z1 z2 z3
6 4 2

, (4.14)

but we can also immediately recognise the orbifold singularities

Z2 : (t1, t2, t3) = (ζ2, ζ2, 1)
Z4 : (t1, t2, t3) = (ζ4, 1, ζ4)
Z6 : (t1, t2, t3) = (1, ζ6, ζ6)

(4.15)

for ζk a k-th primitive root of unity. A Z2 subgroup of the Z4 action, and a Z3 subgroup of
the Z6 action are realized from the C∗ action. They correspond to the quotient singularities
present in P123.

Let’s describe the same situation as a Z2 quotient of P123. We have the weight system

z1 z2 z3
3 2 1

, (4.16)
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and the Z2 acts as
(z1, z2, z3)→ (−z1,−z2, z3) ,

∼λ=ζ2 (z1, z2, z3)→ (z1,−z2,−z3) ,
∼λ=ζ4 (z1, z2, z3)→ (ζ4z1, z2, ζ4z3) .

(4.17)

Note that the action as described in terms of ζ4 is just Z2 due to the action of C∗. The Z4
singularity is realized from a semi-direct product of two Z2’s.

4.3 The homology lattice of an extremal surface and its resolution

We can work out the intersection form between Weil divisors (the Chow ring) on Bo by
using the linear relations

D1 +mD2 + lD3 = 0 ,
nD2 + rD3 = 0 .

(4.18)

and the intersections
D1 ·D2 = 1/n = 1/ξ3 .

D2 ·D3 = 1/∆ = 1/ξ1 ,

D3 ·D1 = −1/r = 1/ξ2 .

(4.19)

Combining these expressions implies that

Di ·Di = ξ2
i

ξ1ξ2ξ3
. (4.20)

We can describe H2(Bo,Z) as the quotient of Z3 by the relations (4.18). Let us first
consider a primary base Bo, i.e. all of the ξi are coprime. The first relation in (4.18) allows
us to uniquely express D1 in terms of D2 and D3, so we only need to consider Z2 (spanned
by D2 and D3) modulo nD2 + rD3 = 0. As n and r are coprime, there exist p, q such that
nq − rp = 1 and the matrix

M =
(
n r

p q

)
(4.21)

is in SL(2,Z) and rotates the standard Z basis of Z2 to nD2 + rD3 and pD2 + qD3. In
other words, we can write any lattice point in Z2 uniquely as a linear combination of these
two vectors and Z2 modulo nD2 + rD3 = 0 is spanned by pD2 + qD3. One finds that

(pD2 + qD3)2 = 1
ξ1ξ2ξ3

. (4.22)

For descendant basis we cannot find p, q such that nq−rp = 1, but we can write n = dn′

and r = dr′ with n′ and r′ coprime. Now we can find p and q such that n′q − r′p = 1.
Hence we can write H2(Bo,Z) = Z ⊕ Zd, where the free part is generated by pD2 + qD3
and the torsion part is generated by n′D2 + r′D3. One finds that

(pD2 + qD3)2 = d2

ξ1ξ2ξ3
. (4.23)
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Note that these relations have precisely the right relationship that is expect from (4.9).
For a cycle dual to a class Ĥ which descends to a cycle dual to H on the quotient we have∫

B̂o

Ĥ2 = d

∫
Bo

H2 . (4.24)

Using our above notation we can write ξi = dξ̂i in this case, so that

1
ξ̂1ξ̂2ξ̂3

= d3

ξ1ξ2ξ3
= d

d2

ξ1ξ2ξ3
, (4.25)

which holds for the generators we discussed above.
We can use the above analysis to say some things about the homology lattice of a

resolution B of Bo. For B we have that

ΛB = H2(B,Z) (4.26)

is a unimodular lattice of signature (1, h1,1(B)− 1). Let us denote the divisors which are
blown down by Dµ and let the associated ray generators be νµ. The divisors Dµ span a
negative definite sublattice ΛS ⊂ ΛB of dimension h1,1 − 1.

The linear relations for B are

D1 +mD2 + lD3 +
∑
µ

ν1
µDµ = 0 ,

nD2 + rD3 +
∑
µ

ν2
µDµ = 0 ,

(4.27)

where νµ = (ν1
µ, ν

2
µ).

Using the same reasoning as above, we immediately find that for primary Bo

ΛB/ΛS = Z , (4.28)

while for a descendant Bo = B̂o/Zd

ΛB/ΛS = Z⊕ Zd . (4.29)

This implies that the embedding of ΛS into ΛB is not primitive for descendants. Note
that it is completely irrelevant what the νµ are. Whatever they are, we know that the ∆µ

generate all of ΛB together with the Di and that the quotient is described by the sublattice
of Z3 implied by the linear relations when the ∆µ are set to zero.

The torsion subgroup of ΛB/ΛS is hence given by G = Zd, i.e. there is a 2-form
symmetry unbroken by BPS strings which equals the common factor of the ξi. This implies
that there cannot be a gauged 2-form symmetry for any primary base, while we expect such
a gauging to occur for descendant bases. As descendant bases are characterised by all ξi
sharing a common factor d, it follows that the gauged 2-form symmetry G is a diagonal
subgroup of the 2-form global symmetries of the SCFT sectors (4.4).
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4.4 Example: unique quotient P2/Z5

Here we present an explicit example of a non-crepant toric Z5 quotient of P2. This implies,
that this quotient will introduce non-trivial fibres in the elliptic fibration that we will discuss.
Moreover it turns out, that this quotient is unique up to an SL(2,Z2) basis transformation
of the toric lattice. This expectation is not a given though and will be contrasted with a
non-unique Z7 quotient in the next section.

The vertices that parametrise the toric fan of P2/Z5 is given as

v1 = (1, 0) , v2 = (1, 5) , v3 = (−2,−5) . (4.30)

One can easily check, that the above configuration is the unique toric quotient of that
type10 which supplements the C∗ action of P2 by the following orbifold

{x1, x2, x3} ∼ {ω5x1, ω
4
5x2, x3} , (4.31)

with ω5 being a fifth root of unity. There are three orbifold singularities at the pairwise
vanishing of the three associated coordinates xi. The explicit local orbifold action at each
of the local patches is given as

{x1ω5, ω
−1
5 x2} , {ω5x1, ω

2
5x3} , {ω5x2, ω

2
5x3} . (4.32)

Only the first patch gives rise to a crepant A4 type of singularity while the other two do
not, see appendix A for more details. Note that the Z5 quotient on the base can be uplifted
to an action on the elliptic threefold. I.e. we start with the generic Tate model over a
P2 base and go to a special locus in the complex structure moduli space, where the CY
hypersurface becomes an invariant section under the Z5 action as specified by eq. (4.31).
This construction is further explained in appendix B. E.g. the first Tate coefficients in (B.4)
must admit the following form

a1 =x3(x1x2b1,1 + x2
3b1,2) , (4.33)

with bi,j being some generic complex structure coefficients, to be compatible with the
Z5 action.

In the quotient geometry we can identify the resolution of the singular patches given
in (4.31) via equation (A.22). The resolutions are given via the linear chains

x1 (2) (2) (2) (2) x2
,

g2 su2
x1 (3)(2)x3

,
g2 su2

x2 (3)(2)x3
, (4.34)

where we have supplemented intersection curves with their respective elliptic fibre singulari-
ties. Note that all three patches admit locally a global Z5 2-form symmetry as expected.
The resolution of the base and fibre can be performed via toric geometry. It leads to a
smooth threefold with Hodge numbers (h1,1, h2,1) = (16, 58). Using the 1

2((7,2) + (1,2))
10These vertices can be obtained from eq. (4.5) with n = −r = 5 and m = −l − 1 = 1 . . . 3. Then there

exists an SL(2,Z2) transformation on the rays, that rotates the three solutions of the vertices into each other.
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hypermultiplets required by the non-Higgsable clusters one can show also gauge and super-
gravity anomalies to be canceled. Finally we want to consider the gauging of the diagonal
2-form symmetry in more detail. For this we consider the explicit resolution divisors of the
base, given via the following toric rays

f1,1 = (1, 1) , f1,2 = (1, 2) , f1,3 = (1, 3) , f1,4 = (1, 4) ,
f2,1 = (0,−1) , f2,2 = (−1,−3) , f3,1 = (0, 1) , f3,2 = (−1,−2) .

(4.35)

From those above we can derive the linear equivalence relation of the smooth base. The
two relations relevant for us are given as

D1 = 2D3−D2+Df2,2 +Df3,2−Df1,1−Df1,2−Df1,3−Df1,4 , (4.36)
5(D3−D2) = (Df1,1 +2Df1,2 +3Df1,3 +4Df1,4)−(Df2,1 +3Df2,2)+(Df3,1−2Df3,2) . (4.37)

The first relation tells us, that D1 can be expressed in terms of D2 and D3. The second
relation gives the Z5 torsional element upon shrinking the Dfi,j

divisors. From the last
relation we also deduce the precise gauging of the Z5 2-form symmetry and how it is
implemented in the three SCFT sectors. This can again be obtained by considering some
curve C in the base that is wrapped by a BPS string. Lets first focus on those curves
that wrap the A4 part only and consider intersections with C ·Df1,j

= λj with λj being
weights of representations of su5. The torsion restricts those weights only to be consistent
when they have a trivial Z5 center charge, such as the five times symmetrized fundamental
representation.11 When considering the two pairs of (3)(2) clusters we find the Z5 gauging
to act diagonal in the two factors with weights

C ·
(
Df2,1 , Df2,2 ;Df3,1 , Df3,2

)
= (a, b; a, b) , with a, b ∈ Z (4.38)

to be allowed. This is the direct generalisation of the types of weights considered before,
which however does not allow for a straightforward group theory interpretation. By using
the torsion relation in (4.36) however, all allowed BPS string charges can easily be deduced.

4.5 Example: non-unique quotients P2/Z7

As noted before, the quotient action of some P2/Zm quotient is not necessarily uniquely
fixed by m. For the order seven case there are two different configurations that we are
discussing here. These are given by the vertices

v1 = (1, 0) , v2 = (p, 7) , v3 = (−p− 1, 7) , (4.39)

for p = 1 and p = 2.12 Both models again admit three singular patches with SCFT sectors
that can be worked out just as before. For the p = 1 case, the resolution and their minimal
fibres are given as

x1 (2) (2) (2) (2) (2) (2) x2
,

f4 su3
x1 (5)(1)(3) x3

,
f4 su3

x2 (5)(1)(3) x3
. (4.40)

11In terms of Young tableaux, all possible representations under the A4 part are those that include zero
mod 5 boxes.

12The configurations p = 3, 4, 5 are related the other two, by some SL(2,Z) transformation.
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The full resolution of the threefold allows do compute the Hodge numbers, that are given
as (h1,1, h2,1) = (26, 44) which matches the Kähler moduli and neutral singlets required for
anomaly cancellation of the 6D supergravity.

Here we notice, that the elliptic fibration forced us to also resolve the intersection of the
(4) and (2) curve above, to avoid a (4, 6, 12) point at their intersection. The second torsion
type given via p = 2 can be similarly be worked out and admits the following minimal
resolutions

su2 g2
x1 (2)(2)(3) x2

,
su2 g2

x2 (2)(2)(3) x3
,

su2 g2
x3 (2)(2)(3) x1

. (4.41)

The full threefold can similarly be constructed as before and admits the Hodge numbers
(h1,1, h2,1) = (20, 38). This is again consistent with the above curve and fibre configurations
as well as all anomalies.

For both configurations it is straightforward to compute the torsion relation and
compute the explicit embedding into the GS = Z3

7 global 2-form symmetries just as in the
Z5 case.

4.6 Gauged 2-form symmetries as seen from fibre-base duality

In this section we want to show that it is again possible to view a gauged 2-form symmetry
in terms of a gauged 1-form symmetry when compactified on a circle. This argument
makes use of a fibre-base duality and is simply the extension of the argument we ran in
section 3.3 of (2,0) to (1,0) theories. A nice consequence of this is the fact, that the reduced
amount of SUSY allows for additional 6D and 5D vector and hypermultiplets that satisfy
the constrained representations, expected from the higher form symmetry.

Just as in the K3 case, this argument requires specific elliptic threefolds X. In particular
we require X to admit at least two elliptic fibrations.13 Figure 5 summarizes the two 6D
supergravity theories and their reductions to 5D.

We start by considering an example threefold X that admits the desired property, i.e.
having two elliptic fibrations. The compact threefold X is constructed as the anticanonical
hypersurface in the ambient space A = A×B that is the direct product of two Fano surfaces.
The two factors are given as

A = P2/Z3 , B = BL1P2
112 . (4.42)

The Calabi-Yau hypersurface X is then simply given by the divisor [P ] = c1(A) + c1(B)
which is effective since both ambient pieces are Fano. However for the same reason, both
ambient spaces admit an elliptic curve. These tori are hence promoted to an elliptic fibre
with base the other respective factor. Those fibrations of X we denote by the (A) and (B)
fibration with B and A their respective bases.

13Threefolds with multiple torus-fibrations and their F-Theory lifts have recently been considered e.g
in [95, 96].
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5D, M-theory on X
G : U(1)4 × SU(3)/Z3

6D F-Theory lift (A)
G : SU(3)/Z3 |T : 2 |H :

7 ·
[
(3,3,1)⊕ (3,1,3)⊕ (1,3,3)

]
⊕

(8,1,1)⊕ (1,8,1)⊕ (1,1,8)⊕ 32 · 10

6D F-Theory lift (B)
G : su2 × u1 |T : A3

2/Z3 |H :
3 · 23 ⊕ 15 · 21 ⊕ 30⊕

3 · 14 ⊕ 30 · 12 ⊕ 32 · 10

S1 reduction S1 reduction +su2 CB

Figure 5. Depiction of M-theory on X with U(1)4 × SU(3)/Z3 gauge group, that exhibits two
different 6D F-Theory lifts and their massless spectra. Lift (A) exhibits an SU(3)/Z3 non-simply
connected gauge group in 6D. The former center symmetry becomes a gauged 2-form symmetry of
the A3

2 SCFT sector in the second lift 6D lift (B).

Before discussing the two 6D F-Theory lifts, we consider the A = P2/Z3 space in more
detail.14 In the toric description we can write the ray generators vi of the orbifold as

v1 = (1, 0) , v2 = (1, 3) , v3 = (−2,−3) . (4.43)

We consider its resolution, which we denote by Â which also amounts for a resolution of
the full threefold X by adding the toric vertices

f1,1 = (1, 1) , f1,2 = (1, 2) ,
f2,1 = (0, 1) , f2,2 = (−1,−1) ,
f3,1 = (−1,−2) , f3,2 = (0,−1) .

(4.44)

These rays are associated to divisors Dfi,j
which we grouped into pairs that resolve the

three Z3 singularities each. These rays admit the linear equivalence relations

D1 +D2 − 2D3 +Df1,1 +Df1,2 −Df2,2 −Df3,1 = 0 ,
3(D3 −D2) = (Df1,1 + 2Df1,2) + (Df2,1 −Df2,2)− (2Df3,1 +Df3,2) .

(4.45)

The first relation allows to express D1 in terms of D2 and D3 and the second relation
implements that Z3 torsional relation upon shrinking the sublattice of divisors spanned by
the Dfi

. Hence for this piece of geometry, we admit the quotient cohomology

H2(Ã,Z)/ΛS = Z⊕ Z3 . (4.46)

We can think, e.g. of D2 as generating the free part, and D3 as generating the torsion. This
in particular means that all holomorphic curves in the A part of the threefold must have
constrained intersections with the divisors Dfi,j

. In M-theory those curves are wrapped
by M2 branes leading to massless and massive particles in 5D. For this we repeat the

14This geometry has been the main example of a 6D supergravity theory coupled to SCFTs in [49].
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usual argument as before: a curve C in X must have restricted charges under the collapsing
divisors Dfi,j

in order to fulfil the torsion relation. I.e. we have in general the weights

C ·Dfi,j
= λi,j , (4.47)

under the i-th A2 type of singularity. As one can easily read off, only those weights such
as λi,j = (3m, 0; 0, 0; 0, 0) or λ = (1, 0;−1, 0; 0, 0) are allowed where the ; splits up the i-th
A2 block. In terms of SU(3) representations, these are 3n symmetric representations or
bi-fundamental representations respectively that are allowed. Hence the Z3 factor acts
diagonally in the three A2 factors. This observation can also be made more concrete, when
considering the two 6D lifts in more detail.

We start by discussing the fibration (A) that is the 6D F-Theory lift of the fibre that is
embedded as the anticanonical hypersurface in A with B being its base. This fibration can
be viewed as a restricted cubic where the three A2 ambient singularities become I3 fibres.
This fibration admits a section D2 but also another torsional section at D3. In fact the
second relation in (4.45) maps to the fibral part of the torsion Shioda map [83, 97] of the
elliptic fibration. The global 6D gauge group is therefore of the form SU(3)3/Z3. A deeper
analysis of the spectrum is given in [88] which confirms the above M-theory expectation.
Here one finds that some of the M2 branes lift to massless hypermultiplets in 6D states
that arise from codimension two singularities of the elliptic fibre. More important, we do
not find massless fundamentals under any single SU(3) factor. The spectra of both 6D
F-Theory lifts are given in figure 5 which can be used to confirm cancellation of all 6D
supergravity and gauge anomalies.

We now discuss the (B) fibration which admits A = P2/Z3 as its base. We wont focus
much on the fibral part, i.e. the su2 × u1 gauge symmetry and its matter as it is not of
much relevance in the following. An important side remark though is, that the su2 divisor
is a genus-one curve in the base in the class c1(A) which hence, does not intersect the three
A2 factors.15 Such a non-trivial intersection could have led to a non-trivial gauging of the
SCFT sectors which is not present here.

The main point of this models is, that there are three A2 SCFT sectors in the base
that admit an overall diagonal gauging enforced via the torsional Z3 action implemented
by (4.45). Analogously to the (A) fibration, it acts diagonally in the global GS = Z3

3 2-form
symmetry group of the threeA2 sectors. This conclusion is enforced when compactifying to
5D and going to the su2 × u1 Coulomb branch in order to match both theories. Wrapping
the massless BPS strings on the circle then results in an SU(3)3/Z3 gauge symmetry in 5D,
matching it to the circle compactification of the (B) theory.

Similar as for the (2,0) fibre-base duality, we expect to have a consistent chain of
theories and their dimensional reductions. I.e. from the consistent 6D SU(3)3/Z3 gauge
theory we expect a consistent 5D circle reduced theory with the same gauge group and in
turn a well behaved 6D uplift to theory (B) with a gauged 2-form symmetry. However, it
would be very interesting to analyze those 2-form symmetries in 6D and 5D from the field
theory perspective as e.g. done in [98, 99].

15Similarly the u1 divisor does not intersect any of the singular loci either.
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4.7 Little strings with gauged 2-form symmetries

Finally, we want to show that we can engineer also gauged 2-form symmetries within LSTs
i.e. non-gravitational theories in the same spirit as before. Similar as for the gravitational
theories we simply need is a compact (sub-)lattice ΛB into which the shrinkable curves ΛS
are non-minimally embedded. As a starting point we consider an elliptic fibration with a
simple rank one LST base Bl = P1 × C. In analogy to the compact theories we expect the
LSTs from bases B̂l = Bl/Zm to admit a gauged Zm 2-form symmetry.

The argument goes similar as in the compact examples. For this we describe the
non-compact base by toric geometry via the fan generated by the three vertices

v1 = (1, 0) , v2 = (−1, 0) , v3 = (p,m) , (4.48)

with p,m being co-prime.16 In the above toric diagram, there are two singular patches with
in general two non-crepant Zm singularities. Those are resolved as usual, by adding the
vertices vµ = (aµ, bµ) to split the two singular cones. This leads to the two following linear
equivalence relations,

D1 −D2 + pD3 +
∑
µ

aµDµ = 0 , (4.49)

mD3 +
∑

bµDµ = 0 , (4.50)

with Dµ being the divisors that can be collapsed back to the singular geometry. From the
above relation one first finds D1 to be linear equivalent to the generator D2 and D3 to
be pure torsion when collapsing the Dµ. The cohomology of the smooth base modulo the
resolution divisors yields

H2((B̂l)res,Z)/〈Dµ〉 = Z⊕ Zm . (4.51)

Hence the gauged 2-form symmetry is again just the torsion part in the above quotient
cohomology and hence G = Zm. The simplest class of example for such little strings can be
engineered by taking m = 2 . . . 12 and p = 1. The minimal resolution is the given via the
following linear chain

(m)(1) (2) . . . (2)︸ ︷︷ ︸
×(m−1)

, (4.52)

that is a non-Higgsable cluster glued to an Am−1 theory via an E-string. By computing the
Smith normal form of the above type of theories, it is straightforward to show triviality
of the global 2-form symmetry [34]. Note that the above little string configurations really
just include the minimal resolutions of the base. Enhancing the geometry to an elliptic
fibration, we might also need to blow-up at some generic points in order to avoid (4, 6, 12)
points in the Weierstrass model. In particular for m = 9 . . . 11 this requires to attach 3 . . . 1
E-string curve(s) to the (m) curve. Those additional resolutions however, do not obstruct
our argument when the are collapsed to the quotient base.

16Note that this geometry can be seen as the decompactification of a supergravity theory with the same
gauged 2-form symmetry of type F0/Zm by simply adding the ray v4 = (−p,−m) to the configuration.

– 33 –



J
H
E
P
1
2
(
2
0
2
1
)
1
3
2

5 Discussion and outlook

In this work we have studied how to couple 6D (2, 0) and (1, 0) SCFTs to gravity. In both
cases, the question of which SCFTs can coexist with quantum gravity can be addressed by
identifying an appropriate sublattice ΛS of the charge lattice ΛB of the theory. The lattice
ΛS is the identified with the lattice of BPS strings of the SCFT sector.

For (2, 0) theories, ΛB is uniquely given by the even unimodular lattice Λ5,21, and ΛS
is a direct sum of ADE root lattices. Any such ΛS that allows an embedding into Λ5,21
then corresponds to an instance of coupling the associated SCFTs to gravity. This allows
for a full classification by lattice theoretic techniques.

For (1, 0) theories, the situation is more complicated in several ways. First of all, ΛB is
now identified with H2(B,Z) for B the base of an elliptically fibered Calabi-Yau threefold,
for which are many different choices and no complete classification exists. Also, the lattice
ΛS is now not only composed of ADE root lattices but can have other summands appearing
in the classification of [24, 25]. Finally, just specifying ΛS as a sublattice of ΛB is in general
not sufficient, as one needs to make sure that it is generated by effective and irreducible
curves that can be simultaneously collapsed. We addressed these issues by restricting our
study of (1, 0) theories to the case of toric bases. For each such base, it is straightforward
to identify which lattices of effective curves ΛS can be collapsed. In particular, we focused
on the endpoints of such blow-downs for which no further curves can be collapsed.

The central result of this work was to examine the fate of the 2-form global symmetries
GS of the SCFT sectors. We showed that the subgroup G of these 2-form symmetries
that remains unbroken by BPS strings is non-zero precisely when ΛS is non-primitively
embedded into ΛB, in which case G = tors(ΛB/ΛS).

That G becomes a gauged 2-form symmetry in this case can also be argued by duality
for many examples. The crucial idea is to go to five dimensions where the gauged 2-form
symmetry implies a gauged 1-form symmetry. For appropriate choices of ΛS and for cases
where the geometry in question has a second elliptic fibration, we then recovered the gauged
1-form symmetry from well-known results about torsional Mordell-Weil groups [82, 83].

Given the simplicity of the derivation of our result, it seems natural to conjecture
that it can be generalised to similar situations. Whenever charge lattices of subsectors
with p-form symmetries are non-primitively embedded into the charge lattice of the full
supergravity theory, there should be an unbroken subgroup that becomes gauged. A simple
such case is Narain compactification of the heterotic string. It is a classic result that Narain
compactification [100, 101] gives enhanced gauge symmetries whenever there are roots
in the even self-dual lattice Λd,16+d that are perpendicular to the d-plane Σd in Rd,16+d

that fixes the location in moduli space. The lattice ΛS generated by such roots is then a
direct sum of lattices of ADE type, and determine the algebra of the gauge enhancement.
However, the embedding of ΛS into Λd,16+d does not need to be primitive, i.e. the orthogonal
complement of Σd in Λd,16+d can have generators that are not roots. In such cases we hence
expect a gauged 1-form symmetry, i.e. the resulting gauge group of such models is the
quotient of a product of simply connected ADE Lie groups by a subgroup of the center
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that is isomorphic to tors(Λd,16+d/ΛS).17 Building on a recent general discussion of how to
classify such embeddings [75], the global structure of gauge groups (i.e. the gauged 1-form
symmetries) in Narain compactification were indeed found to follow this logic in [109, 110].
In the case d = 5, this also follows from our discussion in section 3 upon reduction on S1.

Having worked out the geometric origin of such gaugings, there are several directions to
extend this work. In particular it would be interesting to consider the field theory consistency
conditions of those symmetries, analogous to 1-form symmetries [84, 85] for (1, 0) and (2, 0)
theories. Indeed, when discussing such symmetries we have always obtained multiple SCFT
sectors upon which the gauging acts diagonally, similar as in 1-form symmetries in 8D [84].
Another hint for such a mechanism at play, as discussed in section 3.3, is the fact that both
such theories reduce to the same 5D theories upon circle reductions and hence have to fulfil
related anomaly cancellation conditions.

Closely related to anomaly cancellation is the question of what the maximal orders of
the gauged 2-form symmetries might be, and how many independent factors can be present.
In the case of (1, 0) such a classification required to know all F-Theory bases, which is not
known except for toric and some non-toric cases [91–93]. For the toric case, this question
can be answered using the methods presented in this work, which we will report on in
the near future. For (2, 0) theories on the other hand, this classification can be obtained
by studying embeddings of direct sums of root lattices into the Λ5,21 using the algorithm
outlined in [75]. The classification of which combinations of (2, 0) theories can be coupled
to gravity and which gauged 2-form symmetries result from this also allows to classify 4D
N = 4 supergravity theories with non-simply connected gauge groups and their possible
theta angles, extending work of [76].

Another interesting direction is to analyze the imprint of gauged 1-form and 2-form
symmetries on enumerative invariants of the geometry. E.g. in the dual M-theory matter
states are obtained from M2 branes18 that wrap curves in the geometry, counted by
Gopakumar-Vafa (GV) [106, 107] invariants. Since these states are restricted by the higher-
form symmetry, so must be the GV invariants of the elliptic threefolds. Furthermore, it
has been shown for gauged 1-form symmetries on a circle [108] that the theory inherits
a symmetry under certain fractional large gauge transformation. We expect a similar
symmetry to hold among the 5D vectors that are obtained from the 6D tensor multiplets.
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A Lattices

In this appendix we collect a few properties of lattices and lattice embeddings that are used
throughout the text. For a more detailed review we recommend [65].

Lattices and discriminant forms. We will use the term lattice Λ to refer to a finitely
generated free Abelian group together with an integral bilinear form ·, i.e. for all l, l′ ∈ Λ,
l · l′ ∈ Z. Here, the word free means that nl 6= 0 for every l 6= 0 and all n ∈ Z with n 6= 0.
This implies that as an Abelian group (i.e. forgetting the bilinear form) Λ ∼= Zr. Choosing
a Z-basis {li} of Λ we can write the bilinear form as li · lj = Ωij . If the rank of the matrix
Ω is r, the difference between positive and negative eigenvalues of Ω is called the signature
of Λ. A lattice is called even if l · l ∈ 2Z for all l ∈ Λ and odd otherwise.

By tensoring with the rationals ΛQ := Λ⊗Q becomes a vector space, and the bilinear
form between lattice elements naturally extends to ΛQ The dual lattice Λ∗ is the subset of
ΛQ that has an integral product with all elements of Λ:

Λ∗ = {` ∈ ΛQ|` · l ∈ Z ∀l ∈ Λ} . (A.1)

We can use the basis {li} to express elements of Λ∗ as well, but then the coefficients will in
general not be integer, but rational numbers. As l · l′ ∈ Z for all l, l′ ∈ Λ, it follows that
Λ ⊆ Λ∗. When Λ∗ = Λ the lattice Λ is called self-dual or unimodular. This implies that
det(Ω) = ±1. Such matrices are called unimodular as well. A simple example of an even
unimodular lattice is given by the hyperbolic lattice U with inner form

U =
(

0 1
1 0

)
. (A.2)

This is the unique (up to isomorphism) even unimodular lattice of signature (1, 1).
As Λ ⊆ Λ∗ we can consider the quotient

GΛ := Λ∗/Λ , (A.3)

which is called the discriminant group of Λ. As Λ∗ is contained in ΛQ, we can extend
the bilinear form to Λ∗ (where it ceases to be integral in general) and hence to GΛ. For
γ, γ′ ∈ GΛ we have that

qΛ(γ, γ′) = γ · γ′ mod Z , (A.4)

which is called the discriminant form of Λ.

ADE root lattices. As an important class of examples, consider the ADE root lattices
{An, Dn, E6, E7, E8}. We shall use the conventions natural in geometry, where they are
negative-definite. As each of these is generated by simple roots, which square to −2, these
are all even lattices. The dual lattices are the weight lattices and the discriminant groups
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and forms are
Γ GΓ qΓ

An Zn+1 −n/(n+ 1)

D2n Z2 × Z2

 −n/2 −(n− 1)/2
−(n− 1)/2 −n/2


D2n+1 Z4 −(2n+ 1)/4
E6 Z3 −4/3
E7 Z2 −3/2
E8 − −

(A.5)

Embeddings and orthogonal complement. For a sublattice Λ ⊂M the embedding
of Λ is called primitive if the quotient M/Λ is free, i.e. is again a lattice. This implies that
for every ` ∈ M such that ` /∈ Λ, it cannot happen that there is an n ∈ Z, n 6= 0, such
that n` ∈ Λ, as this would imply that ` 6= 0, but n` = 0 in the quotient. Primitivity of an
embedding is equivalent to M ∩ Λ⊗Q = Λ. For non-primitive embeddings, the quotient
M/Λ contains finite groups, which are called the torsional subgroup tors(M/Λ).

For any embedding, we may consider the orthogonal complement

Λ⊥ = {` ∈M |` · l = 0 ∀ l ∈ Λ} . (A.6)

The orthogonal complement is automatically primitively embedded in M .
In case both Λ and Λ⊥ are primitively embedded into an even unimodular lattice M , it

follows that
q(Λ) = −q(Λ⊥) , (A.7)

so that in particular GΛ ∼= GΛ⊥ .
Note that even if Λ is primitively embedded in some (not necessarily unimodular)

lattice M , the relation
M ⊇ Λ⊕ Λ⊥ (A.8)

does not necessarily become an equality. The exception is the case when Λ is a unimodular
lattice, in which case the above becomes an equality.

Poincaré duality and unimodularity. In this section we review the well-known fact
that Poincaré duality for a complex surface S implies that the inner form between 2-forms is
a unimodular lattice. The proof is essentially the same as the one showing that self-duality
implies unimodularity.

The integral cohomology H2(S,Z) is general not a free Abelian group, as it can contain
torsion. Let us denote the free part by H2

f (S,Z) := H2(S,Z)/ tors
(
H2(S,Z))

)
. Poincaré

duality can then be stated as the map

H2
f (S,Z)→ Hom(H2

f (S,Z),Z) (A.9)

being an isomorphism. Let us choose a Z-basis {li} of H2
f (S,Z). We can then write any ele-

ment of H2
f (S,Z) as γ=

∑
k aklk for ak ∈Z. We can choose a basis `j of Hom(H2

f (S,Z),Z) by

vj : γ → aj . (A.10)
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Poincaré duality now implies that we can identify these with a basis {`j} of H2
f (S,Z) which

must satisfy
li · `j = δij . (A.11)

As li is a Z-basis of H2
f (S,Z) we can write

`j =
∑
i

Bjili (A.12)

for integers Bji.
We can now work out that Ωij = li · lj is a matrix of determinant ±1. Consider

δij = li · `j = li ·
∑
k

Bjklk =
∑
k

ΩikBjk . (A.13)

As the matrix on the left hand side has determinant 1, and Ω and B are matrices with
integer entries, they must both have determinant ±1. Hence the inner form Ωij is a
unimodular matrix.

Smith normal form and discriminant group. For any matrix Ω with integer entries,
one may construct its Smith normal form [111, 112]. The Smith normal form of an integer
matrix M is the unique diagonal integer matrix D = diag(αi) = NΩS for invertible integer
matrices N and S, with increasing numbers αi such that αi | αi+1. The matrices N and S are
a composition of elementary row and column operations, and as such have determinants ±1.

We first show that the Smith normal form of a matrix Ω is trivial if and only if Ω is
unimodular. As we have shown the existence of a matrix B with integer entries such that

id = ΩB , (A.14)

for this case, and id has all of the properties of the Smith normal form, it follows that
the Smith normal form of a unimodular matrix is the identity matrix id. The converse of
this also holds. Let id = NAS for integer matrices N,S and A. Taking determinants of
both sides, we need all three matrices N,S,A to have determinant ±1, so that they are
all unimodular. Alternatively, one may use that N and S are unimodular to see that the
Smith normal form of a unimodular matrix is id.

Let us now consider the case of lattices that are not self-dual. Using the structure
theorem of finite Abelian groups, we can write

Λ∗/Λ =
⊕

Zpni
i

=
⊕
j

Zki
. (A.15)

Here, the pi are primes (a prime can appear more than once) and the ni are integers. The
alternative presentation on the r.h.s. uses integers αi such that ki | ki+1. Furthermore, these
numbers are unique. Let us use vectors l with arbitrary integer components li to describe
Λ. The dual lattice Λ∗ is then composed of all ` such that

Ω` ∈ Zr . (A.16)
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As the Smith normal form of a lattice Λ with bilinear form Ω is NΩS with N and S

elementary row and column operations, we may equivalently describe Λ∗ as the set of
vectors ` such that

diag(αi)` ∈ Z . (A.17)

Hence, Λ∗ is generated by `i = α−1
i . As Λ is generated by li = 1, this implies that

Λ∗/Λ =
⊕
j

Zαi , (A.18)

and we see that the Smith normal form contains equivalent information to the discriminant
group.

Toric singularities and continued fractions. For toric surfaces, the types of quotient
singularities are C2/Zp. We can describe the different actions of Zp on C2 by working
out which fans give rise to such singularities. In toric geometry, C2/Zp is described by a
two-dimensional fan that has two rays and one two-dimensional cone. Denoting the ray
generators by v1 and v2, we can use SL(2,Z) to set v1 = (1, 0). Then, v2 must have the form
v2 = (q, p) with q and p coprime. The group action is then given by the kernel of the map

(t1, t2)→ (t1tq2, t
p
2) , (A.19)

which means we can write t2 = ζp for a primitive p-th root of unity ζp and t1 = ζ−qp . The
action on C2 with coordinates z1, z2 is hence

(z1, z2)→ (ζ−qp z1, ζpz2) = (ζp−qp z1, ζpz2) . (A.20)

It is known that such singularities have a resolution by a chain of rational curves with
self-intersection numbers −ni satisfying [113]

p

p− q
= n1 −

1
n2 − 1

n3− 1
···

. (A.21)

E.g. for q = 1 with recover the case with crepant resolution for which there are p− 1 curves
with ni = 2 appearing in the resolution. Using 1

2− n
n+1

= n+1
n+2 then shows the above formula.

We can use the above formula to deduce the form for some non-crepant singularities
that appear frequently in this work. The class we want to consider is a chain that consists
of n+ 1 curves with a (m) curve attached to n× (2) curves. For such cases, we want to
find the Zp action and the value q in eq. (A.20). Setting n1 = m and plugging in the result
for the n curves one obtains.

p

p− q
= m− n

n+ 1 = n(m− 1) +m

n+ 1 with
{
p = n(m− 1) +m

q = n(m− 2) +m− 1
. (A.22)

This allows to deduce the form of the resolution curves from the values of q mod p. Note
that we have fixed q to be positive and the m curve to start at the z1 coordinate in the
resolution. If q 6= 1 we can conjugate ξ by some power to send q → −q which can be undone
by interchanging z1 and z2 which therefore simply reverses the order of the resolution chain.
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This allows to deduce the explicit resolution chains that are presented in section 4.4 and 4.5.
For p = 5 we find for q = 3 just a (3)(2) curve and for q = 2 ∼ −3 the same chain with
reversed order. For p = 7 there is q = 5, which is a (4)(2) chain and for q = 4 this must be
a (3)(2)(2). This exhausts all possible values of q for p = 7.

B Compact toric surfaces and elliptic Calabi-Yau threefolds

In this appendix we review some facts about compact smooth toric varieties and how to
construct Calabi-Yau threefolds that are elliptically fibered over them. In particular, we
will show how this can be done explicitly using reflexive polytopes for all of the 61,539 cases
appearing in the classification of [91].

Toric varieties can be described in terms of a fan ΣB , and for compact toric surfaces the
fan is in turn uniquely determined by giving the ray generators vi ∈ Z2. We can label these
ray generators such that i = 1 . . . k increases when going in a counter-clockwise direction.
Compactness then implies that the cones of maximal dimensions are spanned by (vi, vi+1),
where we have set vk+1 = v1. Smoothness now implies that the intersections between any
of the associated toric divisors Di are

Di ·Di+1 = 1 . (B.1)

The only other non-zero inner products are the self-intersections Di ·Di = ni. These are
determined by the linear relations∑

i

〈m, vi〉Di = 0 ∀m ∈ Z2 , (B.2)

in particular choosing mi such that 〈mi, vi〉 = −1 implies

ni = (〈mi, vi+1〉+ 〈mi, vi−1〉) . (B.3)

Conversely, the ray generators can be uniquely reconstructed from the self intersection
numbers of toric divisors (up to SL(2,Z)), see [114–116] for details.

For a given surface B, we may consider the hypersurface

X0 : y2 + yxwa1(z) + yw3a3(z) = x3 + x2w2a2(z) + xw4a4(z) + w6a6(z) , (B.4)

in a P2
123 bundle over B, and for ai(z) a holomorphic section of −K⊗iB . This space is a

Calabi-Yau variety which carries an elliptic fibration with base B. Under certain conditions
on the self-intersection numbers of the curves in B, this defines a sensible compactification
of F-Theory to 6D [59, 91]. For toric bases, all 61,539 surfaces satisfying these conditions
have been classified in [91].

In the following, we will explain how such a resolution can be explicitly found using
pairs of reflexive polytopes. For a pair of a polytopes ∆∗,∆ with vertices in Z4 satisfying

〈∆,∆∗〉 ≥ −1 , (B.5)

there exists a smooth family of Calabi-Yau hypersurfaces X∆∗,∆ in a toric variety obtained
from (a refinement) of the face fan of ∆∗ (which is equivalent to the normal fan of ∆) [117],
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see also [118, 119] for more background on this construction. ∆ is then the Newton polytope
of the Calabi-Yau hypersurface and the topological data of X∆∗,∆ can be computed from
combinatorial formulas.

The ambient space for the (generally singular) Calabi-Yau X0 can be constructed as
follows. There is a unique fan in four dimensions with ray generators

vi = (2, 3, vi) , vx = (−1, 0, 0, 0) , vy = (0,−1, 0, 0) , vw = (2, 3, 0, 0) , (B.6)

and cones of maximal dimension (σx, σy, σi, σi+1), (σx, σw, σi, σi+1), (σw, σy, σi, σi+1). A
anticanonical hypersurface in this toric variety is the given by (B.4). We can construct a
crepant resolution by performing appropriate blow-ups at the singular loci of the above
hypersurface.

Due to the simplicity of the toric setup, such resolutions always have a description in
terms of reflexive polytopes. In the present case, the convex hull of the ray generators (B.6)
defines a polytope ∆∗0, which however fails to be reflexive in general. The reason for this is
that the polytope ∆0 defined by saturation of the inequality (B.5) fails to have vertices at
lattice points in Z4. The geometric reason for this is that a generic hypersurface constructed
from a pair of reflexive polytopes must be smooth by results of [117], but the Calabi-Yau
hypersurface (B.4) is singular.

The integral points contained in ∆0, however, precisely correspond to the set of
monomials in (B.4). It is a non-trivial fact19 that the polytope

∆ := convex hull of
{
v|v ∈ ∆0 ∩ Z4

}
(B.7)

is reflexive for all cases in the list of [91]. The dual ∆∗ of ∆ is hence also reflexive and the
pair defines a family of elliptic Calabi-Yau hypersurfaces X∆∗,∆. As ∆ ⊆ ∆0, it follows that
∆∗ ⊇ ∆∗0. As lattice points on ∆∗ correspond to divisors of X∆∗,∆, this implies that the
family X∆∗,∆ is a crepant resolution of X0. Furthermore, none of the divisors introduced
in the resolution process is an exceptional divisors of a blow-up purely in the base. This
means we can combine the blow-down to ι : X → X0 with the projection π0 of the elliptic
fibration on X0 to find the projection π = π0 ◦ ι of the elliptic fibration on X∆∗,∆. We can
hence describe a family of smooth elliptically fibered Calabi-Yau threefolds by means of
a pair of reflexive polytopes for any compact toric base that leads to a sensible F-Theory
compactification to 6D.

The toric description also helps us to discuss the relation between the elliptic threefold
X over B and the one over B̂ = B/Zm where B is one of the primaries discussed in
section 4.2. First note, that the vertices of the base B̂ sit in a lattice of finite index n in
N ∼ Z2. This allows us to rewrite the vertices vi of B̂ via the matrix

Mm ∈ GL(2,Z) with |det(Mm)| = m, (B.8)

that acts as

Mm · vi = v̂i . (B.9)
19APB would like to thank Washington Taylor and Yi-Nan Wang for a collaboration in which this

statement was established by scanning through all cases.
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This point of view is useful as it readily extends to the toric three-fold. E.g. the above toric
action can be extended on the toric fan (B.6) from which the singular threefold is obtained.
This action is simply given as

M ′m =
(

12×2 0
0 Mm

)
with Det(M̂) = m, (B.10)

which acts on the fan of (B.6) via multiplication. Hence the action of Mm extends to a
toric action on the ambient space of the toric Calabi-Yau. Now we can also use the Batyrev
construction and the algorithm outlined before, to check that this action also extends on
the CY hypersurface at special loci in complex structure. To do so, note that action of M̂m

actions on the polytope of the singular space as

M̂m ·∆∗0 = ∆̂∗0 . (B.11)

Then, via the Batyrev construction, there exists a dual polytope ∆̂0 that can be obtained
from ∆̂∗0 which again consists of the monomials in the CY hypersurface. Since the matrix
Mm corresponds to a lattice refinement of ∆∗0 it reduces those points contained in ∆0.
Hence one may view the quotient action as a complex structure deformation made in X
that eliminates all non-quotient invariant monomials. One notices further that the action
of M̂m is trivial on the elliptic fiber direction20 and acts purely in the base. Hence, the
Tate coefficients ai in eq. (B.4) must be invariant sections under the quotient actions, which
requires the aforementioned complex structure deformation. This is a generalisation to the
quotient action of [49] extended to bases that are not Fano, as well as quotients that lead
to −n > −2 curves.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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