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1 Introduction

The dark photon, a gauge boson of a new U(1) gauge symmetry, appears in the various
context of the extensions of the Standard Model (SM). In the simplest version, the dark
photon couples to the SM sector through the kinetic mixing with the gauge boson of the
U(1) in the SM [1]. Recently, the dark photon has attracted attention for cosmological
reasons. For instance, the new U(1) gauge symmetry can be the origin of the stability of
dark matter. It is also discussed that the dark matter self-interaction mediated by the
sub-GeV dark photon can solve the so-called small scale structure problems [2–7].1 The
dark photon also plays an essential role in transferring excessive entropy in the dark sector
to the visible sector in many dark matter models (see e.g. refs. [10, 11]). In the wake of the
attention, many new experiments are proposed to search for the sub-GeV dark photon (see
refs. [12, 13] for a summary).

1See also e.g. refs. [8, 9], for recent discussions on the constraints on the dark matter self-interaction cross
section using the Ultra-faint Dwarf Galaxies.
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A dark photon with a mass would associate with spontaneously broken U(1) gauge
symmetry.2 For several reasons, however, it is more desirable to associate the dark photon
with a non-Abelian gauge symmetry. First, the U(1) gauge theory has a Landau pole at
some high energy scale, and hence, it is not ultraviolet (UV) complete. The non-Abelian
extension renders the model asymptotically free at UV. The non-Abelian extension is also
attractive as it can naturally explain a tiny kinetic mixing parameter (see e.g., refs. [16, 17]).
The tiny kinetic mixing parameter is important for the sub-GeV dark photon to evade all
the astrophysical, cosmological, and experimental constraints [12, 13].3

In this paper, we discuss how the topological defects in the dark sector affect the SM
sector through the gauge kinetic mixing (see refs. [26–29] for earlier works).4 In particular,
we discuss the effects of the topological defects in a model where the U(1) gauge symmetry
associated with the dark photon is embedded in an SU(2) gauge symmetry. Hereafter,
we call them the U(1)D symmetry and the SU(2)D symmetry, respectively. The SU(2)D
symmetry is spontaneously broken down to the U(1)D symmetry by a vacuum expectation
value (VEV) of a scalar field in the adjoint representation of SU(2)D at a high energy scale.
The U(1)D symmetry is subsequently broken down to Z2 symmetry by another scalar field
of the adjoint representation of SU(2)D at a lower energy scale. Here, the Z2 symmetry
is the center of SU(2)D. The dark photon which corresponds to the U(1)D gauge boson
obtains a mass at the second symmetry breaking.

When the two scales of the symmetry breaking are hierarchically separated, we can
discuss the phase transitions separately. At the first symmetry breaking, there appear
the ’t Hooft-Polyakov magnetic monopoles whose topological charges are the elements of
the homotopy group, π2 (SU(2)D/U(1)D) = Z [32–34]. At the second symmetry breaking,
the cosmic strings are formed due to π1 (U(1)D) = Z [35, 36]. As a notable feature of
the successive breaking, SU(2)D → U(1)D → Z2, the dark magnetic flux of the monopole
formed at the first phase transition is confined into the dark cosmic strings at the second
phase transition. Such a composite topological defect is called the bead solution [37–40].
The network of the connected bead solutions is also called the necklace [41].5

As discussed in ref. [26], the dark ’t Hooft-Polyakov magnetic monopole does not induce
the magnetic field of the QED even in the presence of the kinetic mixing in the U(1)D
symmetric phase. As we will see, however, the dark bead solution leads to the hedgehog
shaped QED magnetic flux around the bead, which looks like a QED magnetic monopole.
At the same time, the Bianchi identity of QED is satisfied everywhere. We call such a
solution, a pseudo magnetic monopole. The solution we construct provides an ultraviolet
completion of the system of the coexisting dark monopoles and the dark strings discussed
in e.g., ref. [28]. We also perform a 3+1 dimensional numerical simulation to see how such
a topological defect is formed at the phase transition.

2For models with dynamical U(1) breaking, see refs. [14, 15].
3See also refs. [18–25] for cosmological and astrophysical constraints.
4In this paper, we assume CP-conserving kinetic mixing. The CP-violating mixing has been discussed in

refs. [30, 31].
5The appearance of the necklace in SO(10) or E6 broken into the SM gauge group is investigated in e.g.

ref. [42].
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The organization of the paper is as follows. In section 2, we discuss the effects of the
cosmic string and the monopole solutions in the dark sector to the SM sector through the
kinetic mixing. In section 3, we discuss how the dark bead/necklace solutions look in the
presence of the kinetic mixing. There, we show that the bead on the string leads to the
pseudo magnetic monopole solution of the QED. In section 4, we perform a numerical
simulation to see the formation of the pseudo magnetic monopole. The final section is
devoted to the conclusion.

2 Gauge kinetic mixing and strings/monopoles

In this section, we discuss how the SM sector is affected by the dark cosmic string and the
dark monopole through the kinetic mixing. In the following, we focus on the effects on the
QED gauge field, although the following discussion can be extended to the full SM. The QED
gauge field configuration in the presence of the bead solution is discussed in the next section.

2.1 Cosmic string

First, let us consider the dark photon model based on the U(1)D gauge theory coupling to
the QED photon,

L = −1
4FµνF

µν − 1
4F
′
µνF

′µν + ε

2FµνF
′µν +DµφD

µφ∗ − V (φ) . (2.1)

Here, Fµν and F ′µν represent the gauge field strengths of the U(1)QED and the U(1)D
gauge theories, respectively. The corresponding gauge fields are given by Aµ and A′µ. The
parameter ε is the kinetic mixing parameter.6 The gauge coupling constants of U(1)QED
and U(1)D are denoted by e and g, respectively. Throughout this paper, we assume that
the charge assignment of the U(1)QED and the U(1)D is exclusive in the basis defined in
eq. (2.1). That is, all the SM fields are neutral under U(1)D, while all the U(1)D charged
fields are neutral under U(1)QED.

To break the U(1)D, we introduce a complex scalar field φ with the U(1)D charge 1.
The covariant derivative of φ is given by

Dµφ = (∂µ − igA′µ)φ . (2.2)

The scalar potential of φ is given by

V = λ

4 (|φ2| − v2)2 , (2.3)

where λ > 0 is a coupling constant and v is a dimensionful parameter. At the vacuum, φ
obtains a VEV, 〈φ〉 = v, with which the U(1)D is spontaneously broken.

6The kinetic mixing parameter to U(1)Y of the SM, i.e., εY FYµνF ′µν/2, is related to ε by ε = εY cos θW
with θW being the weak mixing angle.
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2.1.1 String solution for ε = 0

Let us begin with the cosmic string in the absence of the kinetic mixing, i.e., ε = 0. In this
paper, we always take the temporal gauge when we discuss static gauge field configurations.
The static string solution along the z-axis is given by the form (see e.g., ref. [43]),

φ = vh(ρ)einϕ , (2.4)

A′i = −n
g

εijx
j

ρ2 f(ρ) , (i, j = 1, 2) , (2.5)

where the Cartesian coordinate, (x1, x2, x3) = (x, y, z), is related to the cylindrical coordinate
via ϕ = arctan(y/x) and ρ =

√
x2 + y2. The anti-symmetric tensor in the two-dimensional

space transverse to the z-axis, εij , is defined by ε12 = 1.7 The profile functions, h(ρ) and
f(ρ), satisfy the boundary conditions,

h(ρ)→ 0 , (ρ→ 0) , h(ρ)→ 1 , (ρ→∞) , (2.6)
f(ρ)→ 0 , (ρ→ 0) , f(ρ)→ 1 , (ρ→∞) . (2.7)

The profile functions can be determined numerically from the field equations of motion,
which approach to 1 for ρ� (gv)−1 exponentially. The winding number, n ∈ π1 (U(1)D), is
related to the dark magnetic flux inside the string core,∫

d2xB′z =
∮
ρ→∞

A′idx
i = 2πn

g
, (2.8)

where B′z = εijF
′
ij/2.

2.1.2 String solution for ε 6= 0

In the presence of the kinetic mixing, the field equations of the QED and the dark photon
are given by,

∂µF
µν − ε∂µF ′µν = eJνQED , (2.9)

∂µF̃
µν = 0 , (2.10)

∂µF
′µν − ε∂µFµν = gJνD , (2.11)

∂µF̃
′µν = 0 . (2.12)

Here, JµQED and JµD denote the charge currents coupling to the QED and the dark photons,
respectively. The second and the fourth equations are the Bianchi identities for F̃ (′)

µν =
εµνρσF

(′)ρσ/2.
To discuss the vacuum configuration, let us take JµQED = 0. Around the dark cosmic

string, the dark charged current is given by,

J iD = iφDiφ
† − iφ†Diφ = 2v2n

εijxj
ρ2 h2(f − 1) , (2.13)

7With dϕ = −dxiεijxj/ρ2, we may rewrite eq. (2.5) by A′idxi = n/g × f(ρ)dϕ.
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which is the circular current around the cosmic string. For JµQED = 0, we find that the QED
gauge field follows the dark photon configuration,

Fµν = εF ′µν , (2.14)

with which the dark photon field equation is reduced to

(1− ε2)∂µF ′µν = gJνD . (2.15)

The cosmic string solution satisfying eq. (2.15) is identical to eqs. (2.4) and (2.5) with
rescaled g and A′µ by,

gs = g√
1− ε2

, (2.16)

gA′µ = gsA
′
sµ . (2.17)

The resultant dark magnetic flux for the dark cosmic string with the winding number n is
given by, ∮

A′sµdx
µ = 2πn

gs
. (2.18)

As a result, we find that the dark cosmic string induces the QED magnetic flux along
the cosmic string [44, 45] and the Wilson loop of QED around the string is given by,

WQED =
∮
eAµdx

µ = εe

∮
A′µdx

µ = gsεe

g

∮
A′sµdx

µ = 2πnεe
g

. (2.19)

The corresponding Aharonov-Bohm (AB) phase of a particle with the QED charge q is
given by qWQED. Thus, the dark local string becomes the AB string [44] through the kinetic
mixing.8

Note that the string solution satisfying eq. (2.14) can be obtained more easily in the
canonically normalized basis (Xµ, X

′
µ) defined by,

Aµ = Xµ + εA′µ , (2.20)

A′µ = 1√
1− ε2

X ′µ . (2.21)

In the canonically normalized basis, there is no kinetic mixing between Xµ and X ′µ, and
hence, the configuration of the shifted QED is trivial around the dark string solution of X ′µ,
i.e., Xµ = 0. The magnetic flux of the dark cosmic string is then given by,∮

X ′sµdx
µ = 2πn

gs
. (2.22)

In this shifted basis, the AB phases on the QED charged particles appear through the
direct coupling to the dark photon, X ′µ,

L = − εe√
1− ε2

X ′µJ
µ
QED . (2.23)

Thus, again, the AB phase of the QED charged particle with the charge q is given by,

qWQED = qεe√
1− ε2

∮
X ′µdx

µ = 2πnqεe
g

. (2.24)
8The irrational AB phase per 2π is due to the irrationalities of the kinetic mixing and the ratio e/g,

which is consistent with the compactness of U(1)D×U(1)QED.
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2.2 Monopole

Next, we discuss the effects of the kinetic mixing on the ’t Hooft-Polyakov-type monopole [32–
34]. Unlike in the previous subsection, we here assume that the U(1)D gauge symmetry
stems from SU(2)D gauge symmetry and remains unbroken.

2.2.1 Monopole for ε = 0

Let us first consider the SU(2)D gauge theory with a scalar field in the adjoint representation,
φa (a = 1, 2, 3). The relevant Lagrangian density is given by,

L = −1
4F
′a
µνF

′aµν + 1
2Dµφ

aDµφa − λ

4 (φaφa − v2)2 , (2.25)

F ′aµν = ∂µA
′a
ν − ∂νA′aµ + gεabcA′bµA

′c
ν , (2.26)

Dµφ
a = ∂µφ

a + gεabcA′bµφ
c . (2.27)

Here, A′aµ is the SU(2)D gauge field, F ′aµν its field strength, and g is the gauge coupling
constant of SU(2)D. We assume λ ∼ g in the following analysis. As in the previous
subsection, we also assume that there is no particles which are charged under both the
SU(2)D and the SM gauge group. At the vacuum, SU(2)D is spontaneously broken down to
U(1)D by the VEV of φa,

〈φa〉 = vδa3 , (2.28)

where the direction of the vector 〈φa〉 in the SU(2)D space can be chosen arbitrary. Once
we choose the vacuum in eq. (2.28), the gauge potential of the remaining U(1)D gauge
symmetry corresponds to A3

µ.
At the phase transition, SU(2)D → U(1)D, the dark monopole appears. The static

monopole solution is given by,

φa = vH(r)x
a

r
, (2.29)

A′ai = 1
g

εaijxj

r2 F (r) , (i, j = 1, 2, 3) , (2.30)

where r =
√
x2 + y2 + z2, and εaij is the anti-symmetric tensor in the three-dimensional

space with a convention ε123 = 1. The profile functions, H(r) and F (r) satisfy,

H(r)→ 0 , (r → 0) , H(r)→ 1 , (r →∞) , (2.31)
F (r)→ 0 , (r → 0) , F (r)→ 1 , (r →∞) . (2.32)

The profile functions can be determined numerically by solving the field equations of motion,
which converge exponentially to the asymptotic values at r � (gv)−1.

To see how the dark magnetic field emerges, it is convenient to define an effective U(1)D
field strength,

F ′µν ≡
1
v
φaF ′aµν , (2.33)
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(see e.g. ref. [46]). The only non-vanishing components of F ′µν are

F ′ij = −1
g

εijkxk

r3 (2F − F 2)H , (i, j = 1, 2, 3) . (2.34)

Hence, the dark magnetic charge of the monopole solution is given by,

Q′M = 1
2

∫
r→∞

dSijF ′ij = −4π
g
, (2.35)

where dSij is the surface element of the two dimensional sphere surrounding the monopole.
The monopole solution satisfies the Gauss law at the vacuum, that is,

∂µF ′µν = 0 . (2.36)

On the other hand, it satisfied the Bianchi identity,

∂µF̃ ′µν = 0 , (2.37)

only at r � (gv)−1.9 Therefore, the dark photon gauge field A′µ cannot be defined globally
around the monopole. The monopole solution in terms of the SU(2)D gauge field is, on the
other hand, defined globally.

For a later purpose, we introduce a local dark photon gauge field defined at r � (gv)−1.
Let us cover the region of r � (gv)−1 by two charts of the polar coordinate in the north
and the south hemispheres,

UN = {(r, θ, ϕ)|0 ≤ θ ≤ π/2 + ε} , US = {(r, θ, ϕ)|π/2− ε ≤ θ ≤ π} . (2.38)

Here, θ is the zenith angle and ε is a tiny positive parameter. These two charts overlap
at around the equator, θ = π/2. In the polar coordinate, the monopole configuration in
eqs. (2.29) and (2.30) at r � (gv)−1 are given by,

φa → v(sθcϕ, sθsϕ, cθ) , (2.39)
A′ar → 0 , (2.40)

A′aθ →
1
g

(sϕ,−cϕ, 0) , (2.41)

A′aϕ →
1
g

(sθcθcϕ, sθcθsϕ,−s2
θ) , (2.42)

where each component in the right-hand side corresponds to a = 1, 2, 3. We abbreviate cos
and sin by c and s, respectively. The gauge fields in the polar coordinates, A′ar,θ,ϕ, are read
off from A′ai dx

i = A′ar dr +A′aθ dθ +A′aϕ dϕ. This expression is valid in the both charts.
To see the relation with the monopole configuration with the trivial vacuum in eq. (2.28),

let us perform a SU(2)D gauge transformation in each chart given by,

gN =
(

cθ/2 e−iϕsθ/2
−eiϕsθ/2 cθ/2

)
, gS =

(
eiϕcθ/2 sθ/2
−sθ/2 e−iϕcθ/2

)
. (2.43)

9The Gauss law is satisfied since F ′ij = εijkxk/r
3 × (2F − F 2)H with the boundary conditions F (r) ∝ r2

and H(r) ∝ r for r → 0. The Bianchi identity is satisfied when F and H are constants.
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In each chart, φa and Aai are transformed to

φaτa → φaN,Sτ
a = gN,Sφ

aτag†N,S , (2.44)

A′ai τ
a → A′aN,S iτ

a = gN,SA
′a
i τ

ag†N,S −
i

g
(∂igN,S)g†N,S , (2.45)

where τa=1,2,3 denote the half of the Pauli matrices.
In the UN chart, the asymptotic behaviors are given by,

φa → φaN = vδa3 , (2.46)

A′a → A′aN = 1
g
δa3(cos θ − 1)dϕ , (2.47)

with A′aN r,θ vanishing. In the US chart, they are given by,

φa → φaS = vδa3 , (2.48)

A′a → A′aS = 1
g
δa3(cos θ + 1)dϕ , (2.49)

with A′aS r,θ vanishing. After the gauge transformation, the configurations φaN,S are along
the a = 3 direction as in eq. (2.28) in both charts. Accordingly, the dark photon gauge
potential corresponds to A′3N,S as in the case of the trivial vacuum. In the following, we call
this gauge choice in the two charts the combed gauge.

In the combed gauge, A′a is defined not globally but only locally by A3
N,S in each chart.

They are connected with each other at around the equator θ ∼ π/2 by

A′3S = A′3N + 2
g
dϕ . (2.50)

In other word, the two charts of the U(1) bundle are connected by the U(1) gauge transition
function from UN to US ,

tNS = e2iϕ , (2.51)

at around the equator. Since the minimal electric charge of U(1)D ⊂ SU(2)D is 1/2 in the
unit of g, this transition function corresponds to the magnetic monopole with a minimal
magnetic charge, QM = 4π/g, so that the Dirac quantization condition is satisfied.10 The
field strength of A′3S,N , on the other hand, coincides with

F ′3 → −1
g

sin θ dθ ∧ dϕ , (2.52)

at r � (gv)−1 in both the charts.

10The transition function at the equator, tNS = e2inϕ (n ∈ Z), corresponds to the magnetic charge
QM = 4πn/g.
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2.2.2 Monopole for ε 6= 0

In the non-Abelian extension of the dark sector, the kinetic mixing between U(1)D ⊂ SU(2)D
and U(1)QED originates from a higher dimensional term,

Lgauge = −1
4FµνF

µν − 1
4F
′a
µνF

′aµν + φa

2ΛF
′a
µνF

µν , (2.53)

where Λ is a high-energy cutoff scale at Λ � v. Here, we show only the kinetic and the
kinetic mixing terms of the gauge fields. Similarly to the case of the U(1)D model, we
assume that no fields are charged under both the SM and the SU(2)D gauge symmetries.

At the trivial vacuum in eq. (2.28), the above higher dimensional operator provides the
kinetic mixing parameter,

ε = v

Λ , (2.54)

where A′3µ is identified with the dark photon, A′µ. For ε� 1, the effect of the kinetic mixing
to the scalar configuration is expected to be negligible. In this case, we may go to the shifted
basis (Xµ, X

′
µ) defined in eq. (2.20) to cancel the kinetic mixing term. In the presence of

the dark monopole, on the other hand, the kinetic mixing term is no more constant in the
three-dimensional space,

Lmixing = − v

2Λ
xa

r
H(r)F ′aµνFµν . (2.55)

Thus, the kinetic mixing term cannot be cancelled by shifting the QED gauge boson.11

Now let us look at the field equations of the QED gauge field around the dark monopole
solution;

∂µF
µν − ε∂µF ′µν = eJνQED , (2.56)

∂µF̃
µν = 0 . (2.57)

Here, we have used the definitions in eqs. (2.33) and (2.54). Then, by remembering the
Gauss law of F ′µν in eq. (2.36), we find that the QED field satisfies the equation of motion
without the dark gauge field. Thus, we conclude that no QED field is induced around the
dark monopole [26].

In summary,

• The dark cosmic string induces the QED gauge flux, Fµν = εF ′µν , in the basis defined
in eq. (2.1). The dark cosmic string induces the AB phases of the QED charged
particles through the kinetic mixing.

• The dark magnetic monopole does not induce the QED gauge flux, i.e. Fµν = 0, in
the basis defined in eq. (2.53). The QED charged particles do not interact with the
dark monopole.

11In the combed gauge in eqs. (2.46) and (2.48), the gauge kinetic term is a constant in the asymptotic
region, r � (gv)−1. In this case, we can define a shifted QED gauge boson in each chart and can cancel the
kinetic mixing term, though it is not possible to cancel the mixing term globally.
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3 Gauge kinetic mixing and beads

In the previous section, we discussed the effects of the gauge kinetic mixing around the string
solution and the monopole solution. In this section, we discuss the effects around the so-called
bead solution which appears at the successive spontaneous breaking, SU(2)D → U(1)D → Z2
(see ref. [40] for review). As we will review shortly, the magnetic monopole formed at the
first phase transition becomes a seed of the cosmic string at the second phase transition.
The dark magnetic flux of the monopole is confined in the cosmic string. The bead solution
is one of such configuration in which a string and an anti-string are attached to a monopole.

3.1 Bead solution for ε = 0

We first consider the bead solution in the absence of the kinetic mixing. To achieve the
successive symmetry breaking of SU(2)D, we introduce two adjoint representation scalar
fields, φa1 and φa2 (a = 1, 2, 3). The potential of these scalar fields is assumed to be

V = λ1
4 (φ1 · φ1 − v2

1) + λ2
4 (φ2 · φ2 − v2

2) + κ

2 (φ1 · φ2)2 , (3.1)

where φi · φj = φai φ
a
j . We omit terms such as (φ1 · φ1)(φ2 · φ2), for simplicity.12 The

coupling constants, λ1, λ2 and κ are taken to be positive. We assume v1 � v2, so that the
intermediate U(1)D symmetric phase is meaningful.

When φa1 takes the trivial vacuum configuration

〈φa1〉 = v1δ
a3 , (3.2)

SU(2)D is broken down to the U(1)D. The remaining U(1)D symmetry corresponds to the
SO(2) rotation around the a = 3 axis of SO(3)' SU(2)D vectors, φa1,2. Subsequently, φ2
obtains a non-vanishing VEV at a much lower energy scale to minimize the second term of
the potential. For κ > 0, the last term in eq. (3.1) lifts the a = 3 component of φ2. Thus,
for κ > 0, the VEV of φa2 is required to be orthogonal to 〈φa1〉, i.e., 〈φ1〉 · 〈φ2〉 = 0. As a
result, 〈φa2〉 takes a value in the (φ1

2, φ
2
2) plane, that is,

〈φa2〉 = v2δ
a1 , (3.3)

for example, which breaks U(1)D spontaneously. In this way, successive symmetry breaking,
SU(2)D → U(1)D → Z2, is achieved for v1 � v2. Here, the remaining Z2 symmetry is the
center of SU(2)D which leaves the VEVs of φ1,2 invariant.

Now, let us assume that the dark monopole is formed at the first phase transition,
SU(2)D → U(1)D. The asymptotic form of φa1 in the monopole solution is given by eq. (2.29),

φa1 → v1
xa

r
, (3.4)

12As for the terms such as (φ1 ·φ2), (φ1 ·φ1)(φ1 ·φ2) and (φ1 ·φ2)(φ2 ·φ2) may be suppressed by additional
Z2 symmetry under which φ1 is odd while φ2 is even. This additional symmetry remains unbroken by the
VEV of φ1 in eq. (3.2) in combination with the Z2 element in SU(2)D/U(1)D.
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at r � (gv1)−1. At the second stage of the phase transition, the configuration of φa2 prefers
a direction orthogonal to φa1 for κ > 0,

φ2 · φ1 → 0 , (3.5)

at r � (gv1)−1. Around the hedgehog solution in eq. (3.4), eq. (3.5) requires that φa2 is on
the tangent space of the sphere with a constant amplitude, |φ2| = v2. Such a configuration
of φ2 is, however, impossible due to the Poincaré-Hopf (hairy ball) theorem. Thus, |φ2|
cannot be a constant everywhere at r →∞.

To see what kind of φ2 configuration is formed, it is convenient to discuss in the combed
gauge introduced in the previous section. There, the monopole solution of φ1 behaves

〈φa1〉 → v1δ
a3 , (3.6)

at r � (gv1)−1 in each hemisphere. The U(1)D symmetry corresponds to the rotation
around the third axis of SU(2)D as in the case of the trivial vacuum. In the combed gauge,
it is useful to define a complex scalar,

φ̃ = 1√
2

(
φ1

2 − iφ2
2

)
, (3.7)

whose U(1)D charge is +1 (see the appendix A). The third component φ3
2 is fixed to φ3

2 = 0
due to the condition of φ1 · φ2 = 0.

First, let us suppose that φ̃ (i.e., φa2) takes a trivial vacuum configuration in the north
hemisphere at least for r � (gv2)−1,

φ̃N = v2√
2
. (3.8)

In this trivial configuration, the U(1)D gauge flux is expelled by the Meissner effect. Thus,
we may consider a trivial dark gauge field configuration,

A′3Ni = 0 , (3.9)

in the north hemisphere at r � (gv2)−1. In the south hemisphere, this configuration is
connected to

φ̃S = e2iϕφ̃N = e2iϕ v2√
2
, (3.10)

A′3Sidx
i = 2

g
dϕ , (3.11)

for r � (gv2)−1 due to the transition function in eq. (2.51) at the equator. Thus, we find
that the trivial configuration in the north hemisphere leads to a non-trivial winding of φS .
Accordingly, we find that the dark magnetic flux,∮

A′3Sidx
i = 4π

g
, (3.12)
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Figure 1. Left: a schematic picture of the string configuration attached to a monopole. The sphere
is shown as an eye-guide and is divided into the two hemispheres. The monopole is placed at the
center of the sphere. The attached cosmic string with n = 2 extends to z < 0 direction (green rod).
The arrow shows the direction of the circular current inside the string. Right: the magnetic flux of
U(1)D in the configuration. The magnetic flux is spherical for r � (gv2)−1 while it is confined into
the cosmic string. The size of the magnetic monopole (the blue point) is of ∼ (gv1)−1. Inside the
monopole, the magnetic flux of U(1)D is not well-defined.

is induced in the south hemisphere. The non-vanishing dark magnetic flux in the south
hemisphere is expected since the expelled magnetic flux of the monopole from the north
hemisphere has to go somewhere to satisfy the Bianchi identity in eq. (2.37) for r � (gv1)−1.

In the Higgs phase, the minimum energy solution which carries the magnetic flux is
given by the string solution. In fact, the asymptotic behavior of φS in eq. (3.10) coincides
with that of the cosmic string along the z-axis with n = 2 (see eq. (2.4)). Therefore, we
conclude that the magnetic flux in eq. (3.12) is confined in the cosmic string solution with
n = 2 in the south hemisphere. The singular asymptotic behavior of φS at θ = π in
eq. (3.10) is resolved by the profile function h(ρ) of the cosmic string (see eq. (2.4)). In
figure 1, we show a schematic picture of the magnetic monopole attached by a cosmic string
with n = 2. In the figure, the magnetic flux is spherical for r � (gv2)−1, while it is confined
into a cylindrical cosmic string along the z direction extended to the z < 0 region. Note
that this configuration is not static, and the monopole at the center is pulled by the string
tension towards the z < 0 direction.

Another interesting possibility is to suppose that φ takes a cosmic string configuration
with n = −1 in the north hemisphere (r � (gv2)−1). In this case, the asymptotic
configuration of φ̃ in the north hemisphere is given by

φ̃N = v2√
2
e−iϕh(ρ) , (3.13)

which is accompanied by

A′3Nidx
i → −1

g
dϕ . (3.14)
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Figure 2. Left: a schematic figure of the bead configuration. A string and an anti-string are
attached to the monopole placed at the center of the sphere. The arrows show the directions of the
circular currents inside the strings. Right: the magnetic flux of U(1)D in the configuration.

This configuration is connected to

φ̃S → e2ϕφ̃N = v2√
2
eiϕ , (3.15)

A′3Sidx
i → A′3Nidx

i + 2
g
dϕ = 1

g
dϕ , (3.16)

in the south hemisphere. The connected configuration is nothing but the cosmic string
solution with n = 1. Thus, totally, this configuration has a string and an anti-string
configurations attached to a magnetic monopole. The magnetic fluxes confined in the string
and the anti-string sum up to∮

A′3Nidx
i −

∮
A′3Sidx

i = −4π
g
, (3.17)

which coincides with the magnetic flux of the monopole in eq. (2.35).
The above configuration is called the bead solution [37]. In figure 2, we show a schematic

picture of the bead solution. As in the case of figure 1, the magnetic flux is expected to be
spherical for r � (gv2)−1, while it is confined into cylindrical cosmic strings along the z
direction. The bead solution is static unlike in the case of the monopole attached by one
string with n = 2, since the monopole is pulled by the same force by the two strings into
opposite directions. The network of the bead solution is also called the necklace.

So far, no analytic expression of the bead solution has been known. Instead, we
refer three-dimensional classical lattice simulations of the SU(2) gauge field theory with
two adjoint scalar fields. Those works have confirmed formation of the beads and the
necklaces [47] (See also ref. [48] for other numerical simulation of the necklaces). The
cosmological evolution of necklaces have also been explored in refs. [41, 47–49]. We also
show our results of the numerical simulation in the next section.

In the above discussion, we have used the locally defined gauge fields in the north and
the south hemispheres. It is informative to go to the gauge where the SU(2)D gauge fields
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are globally defined. In fact, the globally defined SU(2)D fields are obtained by undoing gN
transformation,

φa2τ
a = g†Nφ

a
2Nτ

agN , (3.18)

A′ai τ
a = g†NA

′a
Niτ

agN −
i

g
(∂ig†N )gN , (3.19)

in the north hemisphere and by undoing gS transformation,

φa2τ
a = g†Sφ

a
2Sτ

agS , (3.20)

A′ai τ
a = g†SA

′a
Siτ

agS −
i

g
(∂ig†S)gS , (3.21)

in the south hemisphere. These fields coincide at the equator, θ = π/2, and hence, they
are connected smoothly. Note that they become equal not only at the equator but also
for 0 ≤ θ ≤ π in the asymptotic region, r � (gv2)−1 and ρ � (gv2)−1. For example, the
asymptotic behaviors of the bead solution are given by,

φa1 → v1(sθcϕ, sθsϕ, cθ) , (3.22)
φa2 → v2(cθcϕ, cθsϕ,−sθ) , (3.23)
A′ar → 0 , (3.24)

A′aθ →
1
g

(sϕ,−cϕ, 0) , (3.25)

A′aϕ →
1
g

(0, 0,−1) . (3.26)

These asymptotic fields of course satisfies Dµφ1 → 0, Dµφ2 → 0, and φ1 · φ2 → 0 for
r � (gv2)−1 and ρ� (gv2)−1.

Before closing this subsection, let us comment on the topological property of the bead
and string solutions. For the successive symmetry breaking, SU(2)D → U(1)D → Z2, the
topological property of the vacuum configuration is classified by π1(SU(2)D/Z2) = Z2. The
topological defects associated with π1(SU(2)D/Z2) are cosmic strings with the winding
number

n = 0, 1 (mod 2) . (3.27)

Other cosmic strings with even and odd winding numbers are topologically equivalent to
the solution with n = 0 and n = 1, respectively. Thus, for example, there should be a
continuous path which connects the string (n = 1) and the anti-string (n = −1). The
bead solution is the realization of such a path in the three dimensional space, where the
cosmic string with n = 1 beneath the monopole is flipped to that of n = −1 above the
monopole. From this property, the bead solution is also an example of the junction of the
Zk-string [50, 51].

The configuration with a monopole attached by a cosmic string with the winding
number n = 2 is also important for the equivalence between the trivial vacuum and the
cosmic strings with even winding numbers. In fact, this configuration allows a long string
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with n = 2 to break up by creating a pair of a monopole and an anti-monopole by quantum
tunneling [52].

Note also that the topological charge, π2(SU(2)D/U(1)D), is effectively conserved for
the successive symmetry breaking, SU(2)D → U(1)D → Z2. That is, when the magnetic
monopole is formed at the first phase transition, the total magnetic flux measured at
the infinite sphere is not changed even if U(1)D is spontaneously broken. The effective
conservation of the topological charge, however, does not necessarily lead to the lowest energy
configuration (stable vacuum configuration) of a non-trivial element of π2(SU(2)D/U(1)D).
For example, let us consider the monopole with the winding number n = 2. If the monopole
is attached by two cosmic strings with the winding number n = ±2 in the opposite direction,
the pair creation of the monopole-anti-monopole on the attached cosmic string ends up
with the disappearance of the monopole solution with n = 2. If, on the other hand, the
monopole is attached by four cosmic strings with the winding number n = ±1, the pair
creation does not occur, and hence, the configuration is stable. Either of the above two
configurations will be realized, depending on the interaction between the cosmic strings,
i.e., repulsive or attractive. The interaction between the strings in turn depends on the
model parameters [53].

Finally, we comment on the case where U(1)D is broken not by φ2 but by a Higgs
field in the fundamental representation of SU(2)D, SU(2)D is completely broken leaving
no Z2 symmetry. In this case, the magnetic flux of the cosmic string with n = 1 is 4π/g.
Therefore, the cosmic string with the minimum winding number, n = 1, can be broken up
by creating a pair of the monopole-anti-monopole pair.

3.2 Bead solution for ε 6= 0

As we have seen in the previous section, the dark cosmic string induces the QED magnetic
flux inside the string through the kinetic mixing (see eq. (2.14)). On the other hand, the
dark monopole in the U(1)D symmetric phase does not induce the QED magnetic flux even
in the presence of the kinetic mixing. In this subsection, we discuss how the dark bead
solution affects the QED flux through the kinetic term.

Let us consider a bead solution along the z-axis with the monopole at the origin. At
z � (gv2)−1, the configuration is the anti-string given by eqs. (3.13) and (3.14). Thus, in
this region, the dark anti-string induces the QED magnetic flux,

FN = εF ′3N = − ε
g

df(ρ)
dρ

dρ ∧ dϕ , (3.28)

at z � (gv2)−1 (see eq. (2.14)). Similarly, the dark string induces the QED magnetic flux,

FS = εF ′3S = ε

g

df(ρ)
dρ

dρ ∧ dϕ , (3.29)

at z � −(gv2)−1. Therefore, we find that the QED magnetic flux along the string (in the
north hemisphere of the dark monopole) and the anti-string (in the south hemisphere) flows
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Figure 3. A schematic picture of the QED magnetic flux induced by the bead solution through the
kinetic mixing term (blue solid lines). The dark magnetic flux is shown by the green dashed lines.
In the QED magnetic flux follows the dark magnetic flux inside the strings. The QED magnetic
flux leaks out from around the dark magnetic monopole, i.e., |z| ∼ (gv2)−1, so that it satisfies the
Bianchi identity of the U(1) gauge theory.

into the region r < O
(
(gv2)−1), which amounts to13

∫
F
∣∣
|z|�(gv2)−1 = −ε

∮
A3
Nidx

i + ε

∮
A′3Sidx

i = 4πε
g
, (3.30)

Now, the question is where the QED flux flowing into the region of z ∼ (gv2)−1 goes.
The QED gauge field satisfies the Bianchi identity in the entire spacetime. Therefore, the
QED magnetic flux cannot have no sources nor sinks. Thus, the QED magnetic flux leaks
out into the bulk space from the region, z ∼ (gv2)−1. In figure 3, we show a schematic
picture to show how the QED magnetic flux leaks out into the bulk.

Since no analytic expression of the bead solution has been known, it is difficult to
solve the field equations of the QED gauge field around it analytically. However, we can
gain insight of the solution in the following way. As we have discussed above, the dark
(anti-)string induces the QED magnetic flux along the (anti-)string at |z| � (gv1)−1. Thus,
the QED magnetic flux of this system can be well approximated by the magnetic flux
made by two solenoids with opposite currents.14 In figure 4, we show the field lines of
the QED magnetic flux on the (x, z) plane made by two solenoids with opposite circular
currents. Here, the solenoids extend from z = ±(gv2)−1 to z → ±∞. The radius of them
is set to be (gv2)−1. The magnetic flux made by solenoids satisfy the Bianchi identity of
QED automatically, and hence, the approximated solution using two half infinite solenoids
captures the important property of the QED magnetic flux around the bead solution. In
the figure, we also show the strength of the QED magnetic flux by the color density. The

13The sign of the integration of the surface integration is flipped from the one in eq. (3.17) since we are
interested in the flux flowing into z ∼ (gv2)−1.

14In the appendix B, we give the magnetic fields made by a finite solenoide in ref. [54].
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Figure 4. The QED magnetic flux made by the QED fluxes confined in the dark cosmic strings.
We approximate the configuration by the magnetic field made by two half infinite solenoids, which
induces the spherical magnetic flux. The color density shows the absolute strength of the QED
magnetic field. The strength decreases from red to blue in arbitrary unit. The monopole-like flux
extends from the center of figure is induced not by the dark monopole but by the dark cosmic strings.

strength decreases from red to blue in arbitrary unit. The figure shows that the leaked
QED flux looks spherical viewed from r � (gv2)−1.

The figure shows that the magnetic flux of QED made by the two solenoids diverges
spherically from the region r � (gv2)−1 viewed from a distance. The spherical flux is
reasonable as the in-flowing flux to the monopole region is confined in ρ ∼ (gv2)−1 and it
leaks from a tiny region in r ∼ (gv2)−1. As a result, we expect that the spherical QED
magnetic flux is induced by the dark bead solution through the kinetic mixing,

Bi = 1
2εijkFjk ∼

ε

g

xi

r3 , (3.31)

which looks like a magnetic monopole of QED from a distance.15 The QED charged particles
feel the Lorentz force around the dark magnetic monopole. We call this configuration of
QED gauge field, the pseudo monopole.16

Finally, let us consider the network of the bead solution, the necklace. When the dark
monopoles appear at the first phase transition, it is expected that the total dark magnetic
charge in the entire Universe should be vanishing. Thus, we expect that the same numbers
of the dark monopoles and the dark anti-monopoles are formed. At the second transition,
the (anti)-dark monopoles are trapped into the dark cosmic string which form a network,

15The corresponding magnetic field strength is |Bi| ' (ε/g) G× (76µm/r)2 for r � (gv2)−1.
16From a distance, the pseudo-monopole resembles the Nambu-monopole, which occurs with Z-strings [55–

57], although the total magnetic flux of the pseudo-monopole is vanishing.
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Figure 5. A schematic picture of the magnetic necklace. The dark magnetic flux is trapped inside
the necklace (the green line). In the presence of the kinetic mixing, the QED magnetic flux (the
black lines) leaks out from the positions of the (anti-)monopole.

i.e., the necklace. In the necklace, the dark magnetic flux is confined. In the presence of
the kinetic mixing, the QED magnetic flux leaks from the positions of (anti)-monopoles,
and hence, the dark necklace becomes the magnetic necklace of QED. In figure 5, we show
a schematic picture of the magnetic necklace.

4 Numerical simulation

To confirm the formation of the necklace and the QED magnetic field induced through the
kinetic mixing, we perform numerical simulations in a 3D expanding box. As discussed in
the previous section, we introduce two adjoint scalar fields, φ1 and φ2 of SU(2)D. The first
scalar field, φ1, develops the monopoles at the first phase transition at v1 and involves the
kinetic mixing between U(1)QED and SU(2)D gauge fields as discussed in section 2.2.2. The
second scalar field, φ2, then develops the cosmic strings at the second phase transition at
v2 � v1, which is expected to confine the U(1)D magnetic field into the cosmic strings. The
U(1)QED magnetic field is induced by the U(1)D magnetic field through the kinetic mixing.

The action is summarized as

L=−1
4FµνF

µν− 1
4F
′a
µνF

′aµν+ φa

2ΛF
′a
µνF

µν+Dµφ
a
1D

µφa1 +Dµφ
a
2D

µφa2−V (φ1,φ2), (4.1)

where the potential is given by eq. (3.1). The governing equations for the scalar fields and
the gauge fields are given by varying the action. We take the temporal gauge, Aa0 = 0, with
the non-Abelian generalization of Gauss law as a constraint.

We assume the radiation dominated Universe as a cosmic background and that the
scalar fields have thermal distributions at the initial time with the initial temperature

– 18 –



J
H
E
P
1
2
(
2
0
2
1
)
1
2
2

I II
grid size 384 256
time step 14400 25600

si 60 30
sf 2 0.2
af 30 150

v2/v1 0.3 0.3
λ10 1 1
λ20 1 1
κ0 2 2
ε 0.2 0.2
g 1/

√
2 1

Table 1. The model parameters for the numerical simulation.

T = v1,17 and impose the periodic boundary conditions spatially. We use the conformal
time η and set the initial condition at η = 0. Without loss of generality, we fix the initial
scale factor to be the unity, a(0) = 1.

We solve the field equations by the Leap-Frog scheme and the 2nd-order finite differences
for the spatial derivatives. The model parameters are tabulated in table 1. Following ref. [47],
we employ the Press-Ryden-Spergel algorithm [58] to maintain the width of strings and the
size of monopoles in the comoving box to gain a wide dynamic range of the simulation. In
this algorithm, the coupling constants, λi and g, scale as

λi(η) = λi0
a2 , g(η) = g0

a
, (4.2)

with λi0 and g0 being their initial values (g, λ1,2 in table 1, respectively). We turn on this
scaling at a(η) = 2.

In figure 6, we show the time slice at the end of simulation with the parameter set I in
table 1. The red and green surfaces are the isosurface of |φ1| = 0.5v1 and |φ2| = 0.06v1, re-
spectively. This shows that a string (green) connects to two monopoles (red) at its both ends,
or, in other words, two strings are connected by a monopole. This configuration confirms
the formation of the beads solution as well as their network, the necklace (see also ref. [47]).

At the early time of the simulation, when the energy density of the scalar fields become
smaller than O

(
λ1v

4
1
)
, the SU(2)D is broken to U(1)D, and then the monopoles are formed.

After a while when the scalar fields are well relaxed and their energy density becomes
17Our purpose of the present simulations is to demonstrate the development of the necklace and the

confinement of the magnetic fields. Thus, the background solution and the initial distribution of the scalar
fields are of little importance. However, we have to take care of the initial conditions, if we would like to
measure the physical properties of the necklace, e.g., the correlation length of the necklace, or to accelerate
the relaxation of the fields in the computational box as in ref. [47].
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Figure 6. Cosmic beads network, i.e., the necklace. The red and green surfaces are the isosurface
of |φ1| = 0.5v1 and |φ2| = 0.06v1, respectively. The figure shows that the magnetic monopoles (or
the beads) appearing as red points are connected by the cosmic strings.

smaller than O
(
λ2v

4
2
)
, the residual U(1)D is totally broken by |φ2| ' v2, and then the

cosmic strings are formed. We define s(η) = aL/(H−1) to characterize the box size where
L is the physical box size at the initial time and H is the Hubble parameter. We set the
initial and final values of s(η) to be si = 60 and sf = 2 in this simulation for the set I.
Note that the choice of sf = 2 ensures to suppress the unphysical effects arising from the
finiteness of the periodic box on the necklace.

Next, we discuss how the magnetic flux from the monopoles are confined in to the
strings. The network simulation shown before yields wriggling strings with a number
of kinks. Therefore, the magnetic field associated with them has a highly complicated
configuration. To avoid complexity, we perform a long-time simulation with a smaller box
where we set si = 30 and sf = 0.2. In figure 7, we show the snapshot of the necklace at
the simulation end with the parameter set II in table 1. Thanks to the choice of sf < 2,
the long strings in the box feel like they lie in a 3 dimensional-torus, instead of R3 space.
Therefore, the strings in figure 7 are fully stretched by their tension. Such a situation is not
realistic in the real Universe, since our Universe may not be 3D-torus. However, our present
purpose of this simulation is to confirm the confinement of the magnetic flux arising from
monopoles into the strings. To see this as clearly as possible, it is convenient for the strings
to be straight at the end of simulation. Note that we show the isosurface with |φ1| = v1/2
and |φ2| = v2/2 = 0.15v1 in figure 7, which is different from the choices for the network
simulation in figure 6. Accordingly, the size of the strings looks larger in comparison with
those of the monopoles, since v2/v1 = 0.3.

To quantify the gauge-invariant U(1)D magnetic field, we define the effective field
strength proposed by ref. [32],

F ′(eff)
µν = 1

|φ|
φa(∂µA′aν − ∂νA′aµ + gεabcA′bµA

′c
ν )− 1

g|φ|3
εabcφ

aDµφ
bD νφ

c . (4.3)
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Figure 7. The snapshot of the necklace in the dark sector at the simulation end, ηv1 = 79.0, with
the parameter set II in table 1. The red and green surfaces are the isosurface of |φ1| = v1/2 and
|φ2| = v2/2, respectively. The blue arrow represents the U(1)D magnetic field computed by eq. (4.3).
The drawing points for the blue arrows are chosen randomly, so if the drawing points are close to
the monopoles, the corresponding arrows are accidentally large. This figure shows the magnetic
fields around the strings are well aligned to them, while the configuration around the monopoles
becomes like a hedgehog shape.

Here, the gauge coupling constant, g, depends on time as given in eq. (4.2). This effective field
strength converges to eq. (4.2) for r →∞, while for, for example, A1,2

µ = 0, A3
µ 6= 0, φ1,2 = 0

and φ3 6= 0, we obtain F (eff)
µν = ∂µA

3
ν − ∂νA3

µ, which gives the usual field strength for U(1)
gauge field. Thus, it is natural to define the effective magnetic field as

B
′(eff)
i = 1

2εijkF
′(eff)
jk ,

where εijk is the antisymmetric tensor with i, j, k = 1, 2, 3.
In previous sections, we have used the effective field strength F ′µν defined in eq. (2.33)

instead of F ′(eff)
µν . As discussed around eq. (2.37), the Bianchi identity, ∂µF̃ ′µν = 0, is

satisfied only far from the monopole origin. On the other hand, for F ′(eff)
µν , the usual

Maxwell equations including the Bianchi identity, i.e. ∂µF ′(eff)µν = 0 and εµνρσ∂µF ′(eff)
ρσ = 0,

are obtained except where φa = 0. At r � (gv)−1, the second term in eq. (4.3) is close to
zero faster than the first term, which leads to F ′µν = F

′(eff)
µν (r � (gv)−1). Thus, we obtain

the same magnetic charge of a monopole for both the field strengths while F ′µν has been
used in eq. (2.35).

In figure 7, we show B
′(eff)
i as blue arrows. The drawing points for the blue arrows are

chosen randomly, so if the drawing points are close to the monopoles, the corresponding
arrows are accidentally large. The figure shows that the magnetic flux is aligned along the
string and confined in the string as expected.
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Figure 8. The stream line constructed by the magnetic field B
′(eff)
i (left) and B(QED)

i (right) at
ηv1 = 79.0. We focus on the magnetic flux arising from two lower monopoles on the two diagonal
cosmic strings in figure 7. The axis labels indicate the spatial coordinate normalised by the box size.
The stream lines start from a certain distance from the monopole points of the monopoles. The red
ones are the stream lines flowing out of the monopole region, while the blue ones are those for the
“negative” length parameter. (See the appendix C for details of the stream line.) The arrows with a
corresponding color indicate the direction of the flux. In the left panel, the blue lines show that the
magnetic flux are ending at the monopole points, while the red ones show that the magnetic flux
flows along the cosmic strings and reach the left monopoles. The right panel shows that the induced
B

(QED)
i flowing out of the monopole regions (red) follows the cosmic strings, while it actually goes

outside of the monopole region (blue).

Finally, we visualise how the effective magnetic field, B′(eff)
i , is confined in a string. For

this purpose, we compute the stream lines associated with the magnetic field. The stream
lines (with the length parameter ζ) start at certain distances from the monopole points. In
what follows, the red stream lines are those flowing out of the monopole region, while the
blue ones are those for the “inverse” length parameter. That is, we solve the equation of
the stream lines in eq. (C.1) from ζ = 0 to ζ = 0.075 (red lines) and to ζ = −0.075 (blue
lines). We also take the initial radius parameter α∗ = 3.3 (' v1/v2), which corresponds to
3.3 times the effective monopole size (see the appendix C for the details how to construct
the stream lines). In the following, we focus on the two diagonal cosmic strings in figure 7,
each of which has a pair of monopole and anti-monopole.

In the left panel of figure 8, the blue lines are localized around the two monopoles,
which show that the magnetic flux are starting from the monopoles. Note that, due to the
numerical error, the blue lines are overshot at the left-bottom monopole. The red stream
lines flow along the cosmic string, which show that the magnetic flux starting from the two
lower monopoles are confined in the cosmic strings. The figure also shows the convergence
of the stream lines to another monopole in the each string. Thus, the left panel confirms
the confinement of the magnetic flux in the bead solution.
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We also compute the stream lines of the QED magnetic field induced through the
kinetic mixing,

B
(QED)
i = 1

2εijkFjk,

where Fjk is the field strength of the U(1)QED gauge field. We focus on the magnetic
flux from the same lower monopoles discussed above, and solve the stream equation (C.1)
from ζ = 0 to ζ = 0.4 (red lines) and to ζ = −0.4 (blue lines). The figure shows that the
red stream lines flow along the string, similar to the B′(eff)

i sector. The blue stream lines,
however, are escaping from the strings at the monopoles. In other words, the QED magnetic
flux induced on the cosmic string flowing into the monopole region leaks out to the bulk
space. Thus, the simulation also confirms the expected feature of the QED magnetic flux
around the bead solution in figure 3.

5 Conclusion

In this paper, we discussed how the topological defects in the dark sector affect the SM
sector through the gauge kinetic mixing between the QED photon and the dark photon. In
particular, we considered the SU(2)D extension of the dark photon model with the breaking
pattern SU(2)D → U(1)D → Z2. In this model, the dark monopole is formed at the first
phase transition and the dark cosmic string is formed at the second phase transition. As an
interesting feature of the model, the dark monopole is trapped into the cosmic strings and
forms the bead solution.

We showed that the dark string induces a non-vanishing QED magnetic flux inside
the dark string through the kinetic mixing. The dark monopole, on the other hand, does
not induce the QED magnetic flux even in the presence of the kinetic mixing. Finally, we
found that the bead solution induces the QED magnetic flux which looks like the magnetic
monopole viewed from a distance, which we call the pseudo monopole. We also confirmed
the formation of the pseudo monopole by the 3+1 dimensional numerical simulation.

In this paper, we have focused on the theoretical aspects of the dark topological defects
in the presence of kinetic mixing. Detailed studies of phenomenological, astrophysical, and
cosmological implications will be given elsewhere. Here, we only comment on the energy
density of the necklace and the monopole in the Universe. The numerical simulation of the
cosmological evolution of the necklace for ε = 0 in ref. [47] suggests that the string solution
follows the scaling solution, i.e., ρstring ∼ TstrH

2 where Tstr is the string tension and H is the
Hubble parameter. The monopole-to-string energy density ratio, on the other hand, decreases
as the inverse of the scale factor (see also ref. [49]). Thus, the dark defects do not contribute
to the energy density of the Universe significantly, as long as the second phase transition
takes place before the dark monopole dominates over the energy density of the Universe.

As a crude estimate, the monopole would dominate the energy density of the Universe at
the temperature around Tdom ∼ (MPlr

2
c )−1, by approximating the annihilation cross-section

of the monopole by its geometrical size, rc ∼ (gv1)−1. Here MPl ' 2.4 × 1018 GeV is the
reduced Planck scale. Thus, as long as the temperature of the second phase transition,
O(v2) is much larger than the monopole domination temperature, (gv1)2/MPl, the energy
density of the dark defects are expected to be subdominant.
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A SU(2) convention

In the 2× 2 matrix representation of SU(2), we define the covariant derivative of the adjoint
representation is given by,

Dµφ = ∂µφ− ig[Aµ, φ] , (A.1)

where

φ = φaτa , Aµ = Aaµτ
a , (A.2)

with τa=1,2,3 being the half of the Pauli matrices. Under the gauge transformation,

φ→ φ′ = ĝφĝ† , (A.3)

Aµ → A′µ = ĝAµĝ
† − i

g
(∂µĝ)ĝ† , (A.4)

the covariant derivative transforms,

Dµφ→ ĝ(Dµφ)ĝ† . (A.5)

Let us also note that the U(1) gauge transformation corresponding to the a = 3 rotation
of SU(2). Under this U(1) transformation, the gauge field and the complex scalar transform,

A3
µ → A3

µ + 1
g
∂µα , (φ1 − iφ2)→ eiα(φ1 − iφ2) , (A.6)

which shows that (φ1 − iφ2) has the U(1) charge +1. We can also check that the covariant
derivative in eq. (A.1) is reduced to

Dµφ̃ = (∂µ − igAµ)φ̃ , (A.7)

where φ̃ = (φ1 − iφ2)/
√

2.

B The magnetic field of a finite solenoid

Let us consider a finite solenoid with a radius a along the z-axis with the surface current
density

Jϕ = jδ(ρ− a) , (B.1)
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in |z| < L/2. Here, we use the cylindrical coordinate (ρ, φ, z) and R is the radius of the
solenoid. The magnetic field around the finite solenoid is given by [54],18

Bρ = j

2π

√
a

ρ

[(
k2 − 2
k

K(k2) + 2
k
E(k2)

)]ξ+

ξ−

, (B.2)

Bz = j

4π
1
√
aρ

[
ξk

(
K(k2) + a− ρ

a+ ρ
Π(`2, k2)

)]ξ+

ξ−

, (B.3)

Bφ = 0 , (B.4)

where

ξ± = z ± L

2 , k2 = 4aρ
(a+ ρ)2 + ξ2 , `2 = 4aρ

(a+ ρ)2 . (B.5)

In the above expression, we have used the complete elliptic integral of the first kind K(m),
the complete elliptic integral E(m), and the complete elliptic integral of the third kind
Π(n,m), respectively.

C Stream line

To visualise how the magnetic flux spread around monopoles, we compute the stream line
xs(ζ), where ζ is the length parameter characterising the stream line, by solving

dxs
dζ

= B
(eff)
i (xs(ζ)), (C.1)

from a point, xs(0) = x0, close to the monopoles. Here, the bold characters denote the
spatial vector.

Let us determine a set of the starting points, x0. First we identify the volume, V ,
satisfying |φ1| < v1/2 centred at a monopole core, and consider a sphere, whose radius is
given as r∗ = α∗(3V/4π)1/3 with positive constant α∗, enclosing the monopole. Then we
distibute N∗ points equally spaced on the sphere. We solve eq. (C.1) from these points. In
the left panel of figure 9, we show the equally distributed points on a sphere enclosing a
monopole with N∗ = 200. Solving eq. (C.1) from ζ = 0 to ζ > 0, we obtain a red curve,
whose tangential vector is equal to B(x), and solving it to ζ < 0, we obtain a blue curve,
as shown in the right panel of figure 9.

Notice that the stream line, xs(ζ), constructed here is nothing but a line whose
tangential vector is equal to B(xs(ζ)) at every point on the line, and thus does not represent
the physical magnetic flux, Φ(x). By construction, the number of the stream line at the
initial sphere is fixed and the number along the line is not proportional the magnetic flux
density thereat, whereas the number of the physical magnetic flux passing across a closed
area is proportional to the magnetic flux density. However, the stream line can visualise
how the magnetic field arising from a monopole can be confined in a string.

18The expressions in eqs. (B.2) and (B.3) are obtained by integrating eqs. (6) and (8) of ref. [54].
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Figure 9. Left: equally distributed points on a sphere enclosing a monopole. Right: red curve is
the stream line for positive ζ and blue one is that for negative ζ.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.

References

[1] B. Holdom, Two U(1)’s and Epsilon Charge Shifts, Phys. Lett. B 166 (1986) 196 [INSPIRE].

[2] D.N. Spergel and P.J. Steinhardt, Observational evidence for selfinteracting cold dark matter,
Phys. Rev. Lett. 84 (2000) 3760 [astro-ph/9909386] [INSPIRE].

[3] M. Kaplinghat, S. Tulin and H.-B. Yu, Dark Matter Halos as Particle Colliders: Unified
Solution to Small-Scale Structure Puzzles from Dwarfs to Clusters, Phys. Rev. Lett. 116 (2016)
041302 [arXiv:1508.03339] [INSPIRE].

[4] A. Kamada, M. Kaplinghat, A.B. Pace and H.-B. Yu, How the Self-Interacting Dark Matter
Model Explains the Diverse Galactic Rotation Curves, Phys. Rev. Lett. 119 (2017) 111102
[arXiv:1611.02716] [INSPIRE].

[5] S. Tulin and H.-B. Yu, Dark Matter Self-interactions and Small Scale Structure, Phys. Rept.
730 (2018) 1 [arXiv:1705.02358] [INSPIRE].

[6] X. Chu, C. Garcia-Cely and H. Murayama, Velocity Dependence from Resonant Self-Interacting
Dark Matter, Phys. Rev. Lett. 122 (2019) 071103 [arXiv:1810.04709] [INSPIRE].

[7] X. Chu, C. Garcia-Cely and H. Murayama, A Practical and Consistent Parametrization of
Dark Matter Self-Interactions, JCAP 06 (2020) 043 [arXiv:1908.06067] [INSPIRE].

[8] K. Hayashi, M. Ibe, S. Kobayashi, Y. Nakayama and S. Shirai, Probing dark matter
self-interaction with ultrafaint dwarf galaxies, Phys. Rev. D 103 (2021) 023017
[arXiv:2008.02529] [INSPIRE].

[9] T. Ebisu, T. Ishiyama and K. Hayashi, Constraining Self-Interacting Dark Matter with Dwarf
Spheroidal Galaxies and High-resolution Cosmological N -body Simulations, arXiv:2107.05967
[INSPIRE].

[10] M. Blennow, E. Fernandez-Martinez, O. Mena, J. Redondo and P. Serra, Asymmetric Dark
Matter and Dark Radiation, JCAP 07 (2012) 022 [arXiv:1203.5803] [INSPIRE].

[11] M. Ibe, A. Kamada, S. Kobayashi and W. Nakano, Composite Asymmetric Dark Matter with a
Dark Photon Portal, JHEP 11 (2018) 203 [arXiv:1805.06876] [INSPIRE].

– 26 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0370-2693(86)91377-8
https://inspirehep.net/search?p=find+J%20%22Phys.Lett.%2CB166%2C196%22
https://doi.org/10.1103/PhysRevLett.84.3760
https://arxiv.org/abs/astro-ph/9909386
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F9909386
https://doi.org/10.1103/PhysRevLett.116.041302
https://doi.org/10.1103/PhysRevLett.116.041302
https://arxiv.org/abs/1508.03339
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1508.03339
https://doi.org/10.1103/PhysRevLett.119.111102
https://arxiv.org/abs/1611.02716
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.02716
https://doi.org/10.1016/j.physrep.2017.11.004
https://doi.org/10.1016/j.physrep.2017.11.004
https://arxiv.org/abs/1705.02358
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.02358
https://doi.org/10.1103/PhysRevLett.122.071103
https://arxiv.org/abs/1810.04709
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.04709
https://doi.org/10.1088/1475-7516/2020/06/043
https://arxiv.org/abs/1908.06067
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.06067
https://doi.org/10.1103/PhysRevD.103.023017
https://arxiv.org/abs/2008.02529
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.02529
https://arxiv.org/abs/2107.05967
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2107.05967
https://doi.org/10.1088/1475-7516/2012/07/022
https://arxiv.org/abs/1203.5803
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1203.5803
https://doi.org/10.1007/JHEP11(2018)203
https://arxiv.org/abs/1805.06876
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.06876


J
H
E
P
1
2
(
2
0
2
1
)
1
2
2

[12] M. Raggi and V. Kozhuharov, Results and perspectives in dark photon physics, Riv. Nuovo
Cim. 38 (2015) 449 [INSPIRE].

[13] M. Bauer, P. Foldenauer and J. Jaeckel, Hunting All the Hidden Photons, JHEP 07 (2018) 094
[arXiv:1803.05466] [INSPIRE].

[14] R.T. Co, K. Harigaya and Y. Nomura, Chiral Dark Sector, Phys. Rev. Lett. 118 (2017) 101801
[arXiv:1610.03848] [INSPIRE].

[15] M. Ibe, S. Kobayashi and K. Watanabe, Chiral Composite Asymmetric Dark Matter,
arXiv:2105.07642 [INSPIRE].

[16] M. Ibe, A. Kamada, S. Kobayashi, T. Kuwahara and W. Nakano, Ultraviolet Completion of a
Composite Asymmetric Dark Matter Model with a Dark Photon Portal, JHEP 03 (2019) 173
[arXiv:1811.10232] [INSPIRE].

[17] M. Ibe, A. Kamada, S. Kobayashi, T. Kuwahara and W. Nakano, Baryon-Dark Matter
Coincidence in Mirrored Unification, Phys. Rev. D 100 (2019) 075022 [arXiv:1907.03404]
[INSPIRE].

[18] J. Redondo and M. Postma, Massive hidden photons as lukewarm dark matter, JCAP 02
(2009) 005 [arXiv:0811.0326] [INSPIRE].

[19] A. Fradette, M. Pospelov, J. Pradler and A. Ritz, Cosmological Constraints on Very Dark
Photons, Phys. Rev. D 90 (2014) 035022 [arXiv:1407.0993] [INSPIRE].

[20] A. Kamada and H.-B. Yu, Coherent Propagation of PeV Neutrinos and the Dip in the
Neutrino Spectrum at IceCube, Phys. Rev. D 92 (2015) 113004 [arXiv:1504.00711] [INSPIRE].

[21] A. Kamada, K. Kaneta, K. Yanagi and H.-B. Yu, Self-interacting dark matter and muon g − 2
in a gauged U(1)Lµ−Lτ

model, JHEP 06 (2018) 117 [arXiv:1805.00651] [INSPIRE].

[22] J.H. Chang, R. Essig and S.D. McDermott, Revisiting Supernova 1987A Constraints on Dark
Photons, JHEP 01 (2017) 107 [arXiv:1611.03864] [INSPIRE].

[23] M. Escudero, D. Hooper, G. Krnjaic and M. Pierre, Cosmology with A Very Light Lµ − Lτ
Gauge Boson, JHEP 03 (2019) 071 [arXiv:1901.02010] [INSPIRE].

[24] M. Ibe, S. Kobayashi, Y. Nakayama and S. Shirai, Cosmological constraint on dark photon
from Neff , JHEP 04 (2020) 009 [arXiv:1912.12152] [INSPIRE].

[25] M. Escudero Abenza, Precision early universe thermodynamics made simple: Neff and
neutrino decoupling in the Standard Model and beyond, JCAP 05 (2020) 048
[arXiv:2001.04466] [INSPIRE].

[26] F. Brummer and J. Jaeckel, Minicharges and Magnetic Monopoles, Phys. Lett. B 675 (2009)
360 [arXiv:0902.3615] [INSPIRE].

[27] A.J. Long, J.M. Hyde and T. Vachaspati, Cosmic Strings in Hidden Sectors: 1. Radiation of
Standard Model Particles, JCAP 09 (2014) 030 [arXiv:1405.7679] [INSPIRE].

[28] A. Hook and J. Huang, Bounding millimagnetically charged particles with magnetars, Phys.
Rev. D 96 (2017) 055010 [arXiv:1705.01107] [INSPIRE].

[29] Ł. Nakonieczny, A. Nakonieczna and M. Rogatko, Dark matter cosmic string in the
gravitational field of a black hole, JCAP 03 (2018) 024 [arXiv:1707.02802] [INSPIRE].

[30] J. Terning and C.B. Verhaaren, Dark Monopoles and SL(2,Z) Duality, JHEP 12 (2018) 123
[arXiv:1808.09459] [INSPIRE].

– 27 –

https://doi.org/10.1393/ncr/i2015-10117-9
https://doi.org/10.1393/ncr/i2015-10117-9
https://inspirehep.net/search?p=find+J%20%22Riv.Nuovo%20Cim.%2C38%2C449%22
https://doi.org/10.1007/JHEP07(2018)094
https://arxiv.org/abs/1803.05466
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1803.05466
https://doi.org/10.1103/PhysRevLett.118.101801
https://arxiv.org/abs/1610.03848
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1610.03848
https://arxiv.org/abs/2105.07642
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2105.07642
https://doi.org/10.1007/JHEP03(2019)173
https://arxiv.org/abs/1811.10232
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1811.10232
https://doi.org/10.1103/PhysRevD.100.075022
https://arxiv.org/abs/1907.03404
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1907.03404
https://doi.org/10.1088/1475-7516/2009/02/005
https://doi.org/10.1088/1475-7516/2009/02/005
https://arxiv.org/abs/0811.0326
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0811.0326
https://doi.org/10.1103/PhysRevD.90.035022
https://arxiv.org/abs/1407.0993
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1407.0993
https://doi.org/10.1103/PhysRevD.92.113004
https://arxiv.org/abs/1504.00711
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1504.00711
https://doi.org/10.1007/JHEP06(2018)117
https://arxiv.org/abs/1805.00651
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.00651
https://doi.org/10.1007/JHEP01(2017)107
https://arxiv.org/abs/1611.03864
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.03864
https://doi.org/10.1007/JHEP03(2019)071
https://arxiv.org/abs/1901.02010
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.02010
https://doi.org/10.1007/JHEP04(2020)009
https://arxiv.org/abs/1912.12152
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.12152
https://doi.org/10.1088/1475-7516/2020/05/048
https://arxiv.org/abs/2001.04466
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2001.04466
https://doi.org/10.1016/j.physletb.2009.04.041
https://doi.org/10.1016/j.physletb.2009.04.041
https://arxiv.org/abs/0902.3615
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0902.3615
https://doi.org/10.1088/1475-7516/2014/09/030
https://arxiv.org/abs/1405.7679
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1405.7679
https://doi.org/10.1103/PhysRevD.96.055010
https://doi.org/10.1103/PhysRevD.96.055010
https://arxiv.org/abs/1705.01107
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.01107
https://doi.org/10.1088/1475-7516/2018/03/024
https://arxiv.org/abs/1707.02802
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1707.02802
https://doi.org/10.1007/JHEP12(2018)123
https://arxiv.org/abs/1808.09459
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.09459


J
H
E
P
1
2
(
2
0
2
1
)
1
2
2

[31] J. Terning and C.B. Verhaaren, Detecting Dark Matter with Aharonov-Bohm, JHEP 12 (2019)
152 [arXiv:1906.00014] [INSPIRE].

[32] G. ’t Hooft, Magnetic Monopoles in Unified Gauge Theories, Nucl. Phys. B 79 (1974) 276
[INSPIRE].

[33] A.M. Polyakov, Particle Spectrum in Quantum Field Theory, JETP Lett. 20 (1974) 194
[INSPIRE].

[34] H. Georgi and S.L. Glashow, Unified weak and electromagnetic interactions without neutral
currents, Phys. Rev. Lett. 28 (1972) 1494 [INSPIRE].

[35] A.A. Abrikosov, On the Magnetic properties of superconductors of the second group, Sov. Phys.
JETP 5 (1957) 1174 [INSPIRE].

[36] H.B. Nielsen and P. Olesen, Vortex Line Models for Dual Strings, Nucl. Phys. B 61 (1973) 45
[INSPIRE].

[37] M. Hindmarsh and T.W.B. Kibble, Beads on strings, Phys. Rev. Lett. 55 (1985) 2398
[INSPIRE].

[38] A.E. Everett and M. Aryal, Comment on ‘monopoles on strings’, Phys. Rev. Lett. 57 (1986)
646 [INSPIRE].

[39] M. Aryal and A.E. Everett, Properties of Z2 Strings, Phys. Rev. D 35 (1987) 3105 [INSPIRE].

[40] T.W.B. Kibble and T. Vachaspati, Monopoles on strings, J. Phys. G 42 (2015) 094002
[arXiv:1506.02022] [INSPIRE].

[41] V. Berezinsky and A. Vilenkin, Cosmic necklaces and ultrahigh-energy cosmic rays, Phys. Rev.
Lett. 79 (1997) 5202 [astro-ph/9704257] [INSPIRE].

[42] G. Lazarides and Q. Shafi, Monopoles, Strings, and Necklaces in SO(10) and E6, JHEP 10
(2019) 193 [arXiv:1904.06880] [INSPIRE].

[43] A. Vilenkin and E.P.S. Shellard, Cosmic Strings and Other Topological Defects, Cambridge
University Press (2000).

[44] M.G. Alford and F. Wilczek, Aharonov-Bohm Interaction of Cosmic Strings with Matter, Phys.
Rev. Lett. 62 (1989) 1071 [INSPIRE].

[45] T. Vachaspati, Dark Strings, Phys. Rev. D 80 (2009) 063502 [arXiv:0902.1764] [INSPIRE].

[46] M. Shifman, Advanced topics in quantum field theory, Cambridge University Press, Cambridge,
U.K. (2012) [DOI].

[47] M. Hindmarsh, K. Rummukainen and D.J. Weir, Numerical simulations of necklaces in SU(2)
gauge-Higgs field theory, Phys. Rev. D 95 (2017) 063520 [arXiv:1611.08456] [INSPIRE].

[48] X. Siemens, X. Martin and K.D. Olum, Dynamics of cosmic necklaces, Nucl. Phys. B 595
(2001) 402 [astro-ph/0005411] [INSPIRE].

[49] J.J. Blanco-Pillado and K.D. Olum, Monopole annihilation in cosmic necklaces, JCAP 05
(2010) 014 [arXiv:0707.3460] [INSPIRE].

[50] D. Tong, Monopoles in the Higgs phase, Phys. Rev. D 69 (2004) 065003 [hep-th/0307302]
[INSPIRE].

[51] M. Shifman and A. Yung, NonAbelian string junctions as confined monopoles, Phys. Rev. D
70 (2004) 045004 [hep-th/0403149] [INSPIRE].

– 28 –

https://doi.org/10.1007/JHEP12(2019)152
https://doi.org/10.1007/JHEP12(2019)152
https://arxiv.org/abs/1906.00014
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.00014
https://doi.org/10.1016/0550-3213(74)90486-6
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB79%2C276%22
https://inspirehep.net/search?p=find+J%20%22JETP%20Lett.%2C20%2C194%22
https://doi.org/10.1103/PhysRevLett.28.1494
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C28%2C1494%22
https://inspirehep.net/search?p=find+J%20%22Sov.Phys.JETP%2C5%2C1174%22
https://doi.org/10.1016/0550-3213(73)90350-7
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB61%2C45%22
https://doi.org/10.1103/PhysRevLett.55.2398
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C55%2C2398%22
https://doi.org/10.1103/PhysRevLett.57.646
https://doi.org/10.1103/PhysRevLett.57.646
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C57%2C646%22
https://doi.org/10.1103/PhysRevD.35.3105
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.%2CD35%2C3105%22
https://doi.org/10.1088/0954-3899/42/9/094002
https://arxiv.org/abs/1506.02022
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1506.02022
https://doi.org/10.1103/PhysRevLett.79.5202
https://doi.org/10.1103/PhysRevLett.79.5202
https://arxiv.org/abs/astro-ph/9704257
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F9704257
https://doi.org/10.1007/JHEP10(2019)193
https://doi.org/10.1007/JHEP10(2019)193
https://arxiv.org/abs/1904.06880
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.06880
https://doi.org/10.1103/PhysRevLett.62.1071
https://doi.org/10.1103/PhysRevLett.62.1071
https://inspirehep.net/search?p=find+J%20%22Phys.Rev.Lett.%2C62%2C1071%22
https://doi.org/10.1103/PhysRevD.80.063502
https://arxiv.org/abs/0902.1764
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0902.1764
https://doi.org/10.1017/CBO9781139013352
https://doi.org/10.1103/PhysRevD.95.063520
https://arxiv.org/abs/1611.08456
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1611.08456
https://doi.org/10.1016/S0550-3213(00)00672-6
https://doi.org/10.1016/S0550-3213(00)00672-6
https://arxiv.org/abs/astro-ph/0005411
https://inspirehep.net/search?p=find+EPRINT%2Bastro-ph%2F0005411
https://doi.org/10.1088/1475-7516/2010/05/014
https://doi.org/10.1088/1475-7516/2010/05/014
https://arxiv.org/abs/0707.3460
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0707.3460
https://doi.org/10.1103/PhysRevD.69.065003
https://arxiv.org/abs/hep-th/0307302
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0307302
https://doi.org/10.1103/PhysRevD.70.045004
https://doi.org/10.1103/PhysRevD.70.045004
https://arxiv.org/abs/hep-th/0403149
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0403149


J
H
E
P
1
2
(
2
0
2
1
)
1
2
2

[52] J. Preskill and A. Vilenkin, Decay of metastable topological defects, Phys. Rev. D 47 (1993)
2324 [hep-ph/9209210] [INSPIRE].

[53] L.M.A. Bettencourt and R.J. Rivers, Interactions between U(1) cosmic strings: An Analytical
study, Phys. Rev. D 51 (1995) 1842 [hep-ph/9405222] [INSPIRE].

[54] E.E. Callaghan and S.H. Maslen, The magnetic field of a finite solenoid, NASA-TN-D-465
(1960) [https://ntrs.nasa.gov/api/citations/19980227402/downloads/19980227402.pdf].

[55] M. Eto, Y. Hamada, M. Kurachi and M. Nitta, Topological Nambu monopole in two Higgs
doublet models, Phys. Lett. B 802 (2020) 135220 [arXiv:1904.09269] [INSPIRE].

[56] M. Eto, Y. Hamada, M. Kurachi and M. Nitta, Dynamics of Nambu monopole in two Higgs
doublet models. Cosmological Monopole Collider, JHEP 07 (2020) 004 [arXiv:2003.08772]
[INSPIRE].

[57] M. Eto, Y. Hamada and M. Nitta, Topological structure of a Nambu monopole in
two-Higgs-doublet models: Fiber bundle, Dirac’s quantization, and a dyon, Phys. Rev. D 102
(2020) 105018 [arXiv:2007.15587] [INSPIRE].

[58] W.H. Press, B.S. Ryden and D.N. Spergel, Dynamical Evolution of Domain Walls in an
Expanding Universe, Astrophys. J. 347 (1989) 590 [INSPIRE].

– 29 –

https://doi.org/10.1103/PhysRevD.47.2324
https://doi.org/10.1103/PhysRevD.47.2324
https://arxiv.org/abs/hep-ph/9209210
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9209210
https://doi.org/10.1103/PhysRevD.51.1842
https://arxiv.org/abs/hep-ph/9405222
https://inspirehep.net/search?p=find+EPRINT%2Bhep-ph%2F9405222
https://ntrs.nasa.gov/api/citations/19980227402/downloads/19980227402.pdf
https://doi.org/10.1016/j.physletb.2020.135220
https://arxiv.org/abs/1904.09269
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1904.09269
https://doi.org/10.1007/JHEP07(2020)004
https://arxiv.org/abs/2003.08772
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.08772
https://doi.org/10.1103/PhysRevD.102.105018
https://doi.org/10.1103/PhysRevD.102.105018
https://arxiv.org/abs/2007.15587
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.15587
https://doi.org/10.1086/168151
https://inspirehep.net/search?p=find+J%20%22Astrophys.J.%2C347%2C590%22

	Introduction
	Gauge kinetic mixing and strings/monopoles
	Cosmic string
	String solution for epsilon = 0
	String solution for epsilon!= 0

	Monopole
	Monopole for epsilon = 0
	Monopole for epsilon!= 0


	Gauge kinetic mixing and beads
	Bead solution for epsilon = 0
	Bead solution for epsilon!= 0

	Numerical simulation
	Conclusion
	SU(2) convention
	The magnetic field of a finite solenoid
	Stream line

