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1 Introduction

Quantum field theory (QFT) on noncommutative (NC) spaces (see e.g. [1, 2]) is a useful
model to study some aspects of quantum gravity; near the Planck scale, the conventional
picture of spacetime as smooth geometries will be lost due to large quantum fluctuations
and there would emerge novel types of quantum geometries. Though it is still unclear
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how to formulate quantum geometries properly, the NC geometry is believed to be a good
toy model of it. NC geometries appear in string theory and matrix models, on which
QFT demonstrates peculiar properties similar to string theory. Especially, as known in
perturbative string theory, in QFT defined on an NC plane UV and IR divergences are
related (UV/IR mixing). This implies that there will be different kinds of correlation
among the degrees of freedom in QFT on NC spaces from those on the commutative ones.
Therefore, it is curious to observe such kind of correlation through other types of observables
than the conventional correlation functions. In this paper, we explore this question by the
use of entanglement entropy (EE) in the momentum space. EE is defined for a bipartition
of a given Hilbert space. Usually, we divide the Hilbert space in the position space and it
is a useful tool to inspect the property of a quantum system such as phase structures. It
is also possible to divide the Hilbert space in the momentum space. The EE associated
with this bipartition is then to measure the correlation between the degrees of freedom of
different momentum scales. In [3], EE in the momentum space for scalar field theory on
commutative flat spaces is investigated and the relation to the Wilsonian renormalization
procedure is discussed. It is argued that the EE exhibits universal scaling behavior in the
low and high energy regions according to the dimensionality and the type of interactions.
It is therefore interesting to study how this behavior changes when we consider QFT in an
NC space; this is a question we address in this paper.

As an NC space, we will consider the fuzzy sphere [4]; this is one of the simplest kinds of
NC spaces. The noncommutativity is introduced through a matrix regularization of a field
theory on it. Thus, as far as a massive theory is concerned, the QFT on the fuzzy sphere
is finite and has no UV/IR mixing. There still arises an important distinction between
QFT on the usual (commutative) and the fuzzy sphere; the contribution to a two-point
function from planar and non-planar Feynman diagrams are different in the fuzzy sphere
case and this difference remains after we take a continuum limit. This difference is called
a noncommutative anomaly and argued to be related to UV/IR mixing [5] in the planar
limit. In this theory, the Wilsonian renormalization procedure is formulated as a large-N
(or a matrix) renormalization group [6, 7]. The result there shows that integrating out the
degrees of freedom of high energy leads to a much complicated effective action involving
non-local operators. Thus, it is expected that by examining the EE of a QFT on the fuzzy
sphere in the momentum space, we can analyze clearly how the EE is modified by the
existence of noncommutativity in a well-defined manner without annoying divergences and
UV/IR mixing.

In this paper, we focus on the difference in the behavior of EE between on the NC
space (namely, the fuzzy sphere) and on the commutative counterpart (the continuous
usual sphere) with respect to an energy scale. Since, as mentioned above, the asymptotic
behavior is explained by a scaling of the coupling constant in the case of scalar field theory
on commutative flat spaces [3], if the EE on the fuzzy sphere shows different behavior
from the commutative counterpart, it implies a nontrivial change in the scaling due to
the noncommutativity. In the main part of the paper, we indeed find the modification
of the asymptotic behavior; it turns out that there are two specific regimes in which the
behavior is significantly different. One is fluctuating behavior for relatively low energy
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scales. The other is an asymptotic behavior for large energy scales. The latter is of
particular interest; this suggests that the scaling behavior of the coupling constant and
consequently the Wilsonian effective action are quite different in the NC space. We also
discuss mutual information between a low and a high energy region and observe scaling
behaviors for a large separation of these two regions. We find that NC and commutative
cases show different scaling behaviors when the effect of a cutoff becomes significant.

The organization of the paper is as follows. In section 2, we introduce scalar field
theory on the fuzzy sphere and provide the expression of EE in the momentum space at
the lowest order of a coupling constant (following the discussion by [3]). The behavior of EE
in the fuzzy sphere case and the usual commutative sphere case is analyzed numerically and
we observe that there appear some differences in different momentum scales. To examine
these differences more closely, we study the derivative of EE in section 3. It will be found
that there are two major differences. One appears near the peak of EE, for relatively small
momentum scales. The other is different asymptotic behavior in the large momentum scale
region. The large-scale behavior is analyzed analytically and confirms that the difference
originates from noncommutativity. In section 4, the mutual information between the very
low momentum degrees of freedom and the very high ones is studied. We find interesting
scaling behavior with respect to the separation of these two scales. Section 5 is about
conclusion and discussion. Several appendices summarize some details and useful formulas.
Appendix A introduces the matrix regularizations and summarizes relevant formulas of 3j
and 6j symbols used in the paper. It also discusses the relations of 3j and 6j symbols to
the conservation of (angular) momenta. Appendix B gathers some detailed calculations;
the details of the expression of the EE, and several asymptotic analyses.

2 Scalar field theory on a fuzzy sphere and entanglement entropy in the
momentum space

We consider scalar φn theory on a fuzzy sphere of radius R,

S = R2

N

∫ ∞
−∞

dt tr
[1

2 φ̇
2 + 1

2R2 [Li, φ]2 − µ2

2 φ
2 − λ

n
φn
]
, (2.1)

where φ(t) is an N ×N Hermitian matrix and Li is a generator of SU(2) in spin L = (N −
1)/2 representation, [Li, Lj ] = iεijkLk. This action is obtained as a matrix regularization
of scalar φn theory on a sphere. For more details, see appendix A. The matrix φ(t) is
expanded with respect to the basis matrices,

φ(t) =
2L∑
l=0

l∑
m=−l

φl m(t)Tlm , (2.2)

where φ∗lm = (−1)mφl−m (reality condition) and [Li, [Li, Tlm]] = l(l + 1)Tlm. In terms of
the creation and annihilation operators,

φlm =
√

1
2R2ωl

(
alm + (−1)ma†l−m

)
, (−l ≤ m ≤ l) , φl−m = (−1)mφ†lm , (2.3)
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with the canonical commutation relations

[alm, a†l′m′ ] = δll′δmm′ , [alm, al′m′ ] = [a†lm, a
†
l′m′ ] = 0 (−l ≤ m,m′ ≤ l) . (2.4)

The Hamiltonian is given by

H = H0 + λHint , (2.5)

H0 =
2L∑
l=0

l∑
m=−l

ωl

(
a†lmalm + 1

2

)
, (2.6)

Hint = R2

n

∑
l1,m1,··· ,ln,mn

φl1m1(t)φl2m2(t) · · ·φlnmn(t) · 1
N

tr
(
Tl1m1Tl2m2 · · ·Tlnmn

)
, (2.7)

where ωl =
√

l(l+1)
R2 + µ2. The Heisenberg operator is

φlm(t) = eiH0tφlme
−iH0t =

√
1

2R2ωl

(
alme

−iωlt + (−1)ma†l−me
iωlt
)
. (2.8)

It should be noted that in this formalism noncommutativity comes from the matrix prod-
ucts of Tlm; the operator alm is a usual commuting bosonic annihilation operator. In
particular, if we considered a scalar field theory on a usual commutative sphere of radius
R from the first place, we would have the same expression with the replacement

1
N

tr
(
Tl1m1Tl2m2 · · ·Tlnmn

)
→
∫
dΩ
4π Yl1m1Yl2m2 · · ·Ylnmn , 2L→∞ . (2.9)

2.1 Entanglement entropy in the momentum space

EE in the momentum space is evaluated based on conventional perturbation theory of
quantum mechanics in [3]. We will follow this prescription. The unperturbed (λ = 0)
energy eigenstates are given by a bosonic Fock space,

|(l1,m1), · · · , (ln,mn)〉 =
n∏
i=1

a†limi
|0〉 (0 ≤ l ≤ 2L, −l ≤ m ≤ l) . (2.10)

Note that at this order, noncommutativity is irrelevant and this state is treated as a usual
n-boson state. The energy (the eigenvalue of H0) of this state is El1,··· ,ln = ∑n

i=1

(
ωli + 1

2

)
.

Now, the Hilbert space is decomposed into those of low/high momentum modes, H =
H(x)
L ⊗H

(x)
H , where

H(x)
L =

{∏
a†limi

|0〉
∣∣0 ≤ li ≤ x, |mi| ≤ li

}
,

H(x)
H =

{∏
a†limi

|0〉
∣∣x+ 1 ≤ li ≤ 2L, |mi| ≤ li

}
, (2.11)

and x denotes the boundary of the low and high momentum modes. For simplicity, we
will drop this superscript (x) later on. The states are schematically expressed as |n,N〉 =
|n〉 ⊗ |N〉 where |n〉 ∈ HL and |N〉 ∈ HH respectively. By use of standard perturbation
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theory, when the perturbation λHint is considered, the ground state will be a superposition
of all energy eigenstates of H0 as

|Ω〉 = |0, 0〉+ λ
∑
n,N

′ |n,N〉〈n,N |Hint|0, 0〉
E0,0 − En,N

+O(λ2) , (2.12)

where E0,0 and En,N are the energy eigenvalues of |0, 0〉 and |n,N〉 respectively and the
prime for the summation symbol means that n = N = 0 is dropped, as usual. The EE
in question is defined through a reduced density matrix obtained by tracing out the high
momentum modes,

SEE = −trHL
ρL ln ρL , ρL = trHH

|Ω̃〉〈Ω̃| , (2.13)

where |Ω̃〉 = |Ω〉/‖|Ω〉‖ is the normalized ground state. This measures the entanglement
between the degrees of freedom of li > x and li ≤ x.

Balasubramanian et al. [3] pointed out that |Ω〉 can be written as

|Ω〉 = |0, 0〉+
∑
n 6=0

An|n, 0〉+
∑
N 6=0

BN |0, N〉+
∑

n,N 6=0
Cn,N |n,N〉+O(λ2)

=

|0〉+
∑
n 6=0

An|n〉

⊗
|0〉+

∑
N 6=0

BN |N〉

+
∑

n,N 6=0
Cn,N |n,N〉+O(λ2) , (2.14)

where An, BN , Cn,N are all O(λ) coefficients. Thus, to the leading order, if Cn,N = 0, |Ω〉
is a product state and then SEE = 0. This implies that only Cn,N part contributes to the
EE to the lowest order; actually, by use of a similarity transformation, ρL can be cast into
a form,

ρL →
(

1− |C|2 0
0 CC†

)
+O(λ3) , (2.15)

and the EE can be expressed as

SEE = −trHL
ρL ln ρL

= −λ2 ln(λ2)
∑

ai + λ2∑ ai(1− ln ai) +O(λ3) , (2.16)

where ai are the eigenvalues of CC†/λ2. From (2.12),

Cn,N = λ
〈n,N |Hint|0, 0〉
E0,0 − En,N

+O(λ2) , (2.17)

and the EE is evaluated as [3]

SEE(x) = −λ2 ln(λ2)
∑

n,N 6=0

|〈n,N |Hint|0, 0〉|2
(E0,0 − En,N )2 +O(λ2) . (2.18)

Note that only states with both low and high modes excited will contribute to SEE.
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2.2 φ3 theory

Let us consider φ3 theory (n = 3 in (2.1)). The interaction term reads

Hint = R2

3
∑

l1,m1,··· ,l3,m3

φl1m1φl2m2φl3m3 ·
1
N

tr
(
Tl1m1Tl2m2Tl3m3

)
. (2.19)

The nonvanishing matrix elements are

〈0|Hint|0〉 , 〈(l1,m1), (l2,m2), (l3,m3)|Hint|0〉 . (2.20)

The former does not contribute to SEE. The latter is1

〈(l1,m1), (l2,m2), (l3,m3)|Hint|0〉

= 1
2
√

2R
ei(ωl1+ωl2+ωl3 )t
√
ωl1ωl2ωl3

· 1
N

tr
(
Tl1 −m1Tl2 −m2Tl3 −m3 + Tl1 −m1Tl3 −m3Tl2 −m2

)
. (2.21)

In order to evaluate EE, we need the following piece,

F (l1,m1; l2,m2; l3,m3) = 8R2 ·
∣∣〈(l1,m1), (l2,m2), (l3,m3)|Hint|0〉

∣∣2
(El1,l2,l3 − E0,0,0)2

= N
(2l1 + 1)(2l2 + 1)(2l3 + 1)
ωl1ωl2ωl3(ωl1 + ωl2 + ωl3)2

(
1 + (−1)l1+l2+l3)2∣∣∣∣∣

{
l1 l2 l3
L L L

} ∣∣∣∣∣
2∣∣∣∣∣
(
l1 l2 l3
m1 m2 m3

) ∣∣∣∣∣
2

.

(2.22)

There are a couple of remarks here; the phase factor (−1)l1+l2+l3 in (1 + (−1)l1+l2+l3)2

comes from the changing the ordering of Tl1 −m1Tl3 −m3Tl2 −m2 term and then considered
to be a non-planar contribution (see the comments below (B.4)). The 6j and 3j symbols
are from tr(TTT ) part and identified with the (angular) momentum conservation factor.2
Finally, F (l1,m1; l2,m2; l3,m3) is symmetric under (li,mi)↔ (lj ,mj).

The EE is defined as the summation of F (l1,m1; l2,m2; l3,m3) with suitable choices of
(li,mi); for example, l1, l2 ≤ x and l3 > x and so on. These summations are summarized
and mi summation part can be performed (see appendix B.2 for details), and the leading
order contribution of the EE is expressed as

SEE(x) = −λ
2 ln(λ2)
16R2

 x∑
l1=0

2L∑
l2,l3=x+1

+
x∑

l1,l2=0

2L∑
l3=x+1

 f(l1, l2, l3)

− λ2 ln(λ2)
16R2

x∑
l1=0

2L∑
l2=x+1

[
f̃(l1; l2) + f̃(l2; l1)

]
, (2.23)

1The phase factor (−1)
∑3

i=1
mi originating from (2.3) becomes one when the trace does not vanish.

2See appendix A.2 for more details.
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where

f(l1, l2, l3) = (2l1 + 1)(2l2 + 1)(2l3 + 1)
ωl1ωl2ωl3(ωl1 + ωl2 + ωl3)2

(
1 + (−1)l1+l2+l3)2 ·N · {l1 l2 l3

L L L

}2

, (2.24)

f̃(l1; l2) = f(l1, l2, l2)
l1∑

m1=−l1

l2∑
m2=−l2

(
l1 l2 l2
m1 m2 m2

)2

. (2.25)

Here, f is ∑m1,m2,m3 F . f(l1, l2, l3) is symmetric under the exchange of any two of li, but
f̃(l1; l2) is not symmetric under l1 ↔ l2. f̃ terms appear when two of (li,mi) coincide.

2.2.1 Comparison to the usual sphere case

We look at the case of the ordinary continuum sphere. As noted before, it amounts to
replacing tr(TTT ) with

∫
(Y Y Y ) and taking the cutoff L to be infinity. Then, we obtain

S
(sphere)
EE (x) = −λ

2 ln(λ2)
16R2

 x∑
l1=0

∞∑
l2,l3=x+1

+
x∑

l1,l2=0

∞∑
l3=x+1

 f (sphere)(l1, l2, l3)

− λ2 ln(λ2)
16R2

x∑
l1=0

∞∑
l2=x+1

[
f̃ (sphere)(l1; l2) + f̃ (sphere)(l2; l1)

]
, (2.26)

where the explicit form of f (sphere)(l1, l2, l3) is given in (B.13). As discussed in appendix B.1,
S

(sphere)
EE (x) can be obtained by taking the L → ∞ limit in SEE, (2.23). This means that

we can take the naive large-N (or L) limit to recover the continuum result for EE in the
momentum space. This is in contrast to the other quantities such as a two-point function
in which the naive large-N limit differs from the continuum result (the noncommutative
anomaly [5]).

2.3 Behavior of entanglement entropy

In this section, we investigate the behavior of the EE with respect to the parameter x which
separates the low and high momenta. Before proceeding, we make a comment on the other
parameters. R and µ appear in the final expression of the EE up to O(λ2 ln(λ2)) (2.23)
only through the overall factor 1/16R2 and ωli . Since ωl = 1

R

√
l(l + 1) + (Rµ)2, the EE

can be written as (with R,µ dependence shown explicitly)

SEE(x;R,µ) = R3SEE(x; 1, Rµ) . (2.27)

Therefore, as long as the x dependence of the EE is concerned, the EE depends on R

only through Rµ. Therefore, in the following analysis, we set R = 1 and evaluate the EE
numerically for various µ and the cutoff value L.

2.3.1 The ordinary sphere

We see the behavior of the EE of the usual (continuous) sphere, S(sphere)
EE (x), with respect

to x. The cutoff 2L for the angular momentum l is introduced by hand for the purpose
of numerical evaluation (the results are stable against the change of L for L ≥ 12 and

– 7 –



J
H
E
P
1
2
(
2
0
2
1
)
1
0
1

20 40 60 80 100

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

(a) µ = 15 and L = 50.
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L=5
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(c) µ = 10 and L = 5 (left), 10, · · · , 50 (right).

Figure 1. The EE of the usual sphere, S(sphere)
EE (x) (up to −λ2 ln λ2/16R2 factor). The horizontal

axis is x. R is set to be 1.

converges around the peak after L ≥ 45). Figure 1a shows the behavior of S(sphere)
EE (x)

with respect to x for µ = 15 and L = 50. This shows a consistent behavior as φ3 theory
on R2 in [3], SEE ∝ x2 for x � µ and SEE ∝ 1/x for x � µ. In [3], the low x behavior
is from the number of degrees of freedom and the high x behavior is understood through
a scaling of the coupling constant λ where with an n-point interaction in two spatial
dimensions SEE ∝ xn−4.

Figure 1b shows S(sphere)
EE (x) for µ = 10, 15, · · · , 45 with L = 50. The location of the

peaks moves according to the value of µ. On the other hand, figure 1c shows S(sphere)
EE (x) for

L = 5, 10, · · · , 50 with µ = 10. Around the peak, they tend to converge after, say, L = 45.
The small x behavior is consistent for various L and the large x behavior is consistent for
large enough L (say, L ≥ 40). Since S(sphere)

EE (x = 2L) = 0 if we impose a cutoff 2L by
hand, the tail will be longer as we take L larger.

2.3.2 The fuzzy sphere

We move on to the EE of φ3 theory on the fuzzy sphere. Figure 2a shows SEE(x) for
µ = 10, 15, · · · , 45 with L = 50. For smaller µ, especially µ = 10, we can see that there
appear a distortion near the peak. Figure 2b is the plots of SEE(x) for L = 5, 10, 15, · · · , 45
with µ = 10. Again, for larger L, say L = 45, 50, the graph is deformed near the peak. On
top of that, we can see that the tail behavior for x→ 2L is different from those of the usual
sphere; it seems to decrease faster than 1/x that a scaling argument suggests and, roughly
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Figure 2. The EE of the fuzzy sphere, SEE(x) (up to −λ2 ln λ2/16R2 factor). The horizontal axis
is x. R is set to be 1.

speaking, decreases linearly. Figure 2c and 2d are some typical examples for µ = 10 (c)
and µ = 15 (d) with L = 50.

These difference can be observed more clearly when we consider the derivative of EE.
This will be discussed in the next section.

2.3.3 The fuzzy sphere without a non-planar phase

In the expression of the EE of the fuzzy sphere (2.24), the factor 1 + (−1)l1+l2+l3 comes
from the different ordering of Tli−mi

in the trace. We can therefore identify the relative
phase difference (−1)l1+l2+l3 with the phase factor from a non-planar contribution. Namely,
when the value of l1 + l2 + l3 is odd, the planar and the non-planar contributions cancel
out while they are added if the value is even. In order to see the effect of nonplanarity, we
consider the EE without 1 + (−1)l1+l2+l3 factor in (2.24) (namely replacing the factor with
2).3 Let us call it S(NNP)

EE (x). Figure 3a and 3b are the plots of S(NNP)
EE (x). One can see

that the distortions near the peak disappears while the asymptotic behavior for x → 2L
remains the same as the fuzzy sphere case. This suggests that the distortion near the peak
is related to the non-planar phase factor and the asymptotic behavior is due to the matrix
regularization (the existence of 6j-symbol), or noncommutativity.

We will examine this point more closely in the next section.
3In the case of the usual sphere, f (sphere)(l1, l2, l3) = 0 if l1 + l2 + l3 is odd due to the property of

3j-symbol. Therefore, “inserting the non-planar phase factor” to the sphere EE has no effect.
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Figure 3. The EE of the fuzzy sphere without the non-planar phase factor, S(NNP)
EE (x) (up to

−λ2 ln λ2/16R2 factor). The horizontal axis is x. R is set to be 1.

3 Behavior of the derivative of the entanglement entropy

The difference between the EE of the fuzzy sphere and the usual sphere becomes clearer if
we look at the “derivative” of EE,4

∆SEE(x) ≡ SEE(x)− SEE(x− 1)

= −λ
2 ln(λ2)
16R2

 2L∑
l=x+1

2L∑
l′=x+1

−
x−1∑
l=0

x−1∑
l′=0

 f(x, l, l′)

+

 2L∑
l=x+1

−
x−1∑
l=0

[f(x, x, l) + f̃(x; l) + f̃(l;x)
] . (3.1)

Let us take a look at figure 4b, the case of the usual sphere, ∆S(sphere)
EE (x). One can

see that the behavior is the same for large enough L (L ≥ 40). Namely, it converges into
an L-independent curve. In the next subsection, this part is argued to be proportional
to −1/x2.

On the other hand, figure 4a shows the derivative of the EE of the fuzzy sphere,
∆SEE(x). It is easy to see that it shows fluctuations in a positive region; namely before the
peak location of SEE. (The peak location of SEE is given by ∆SEE(xpeak) = 0.) They also
exhibit different behavior for x→ 2L. They are falling down (toward a negative direction)
when x is really close to 2L. Furthermore, for large L, the derivative remains almost
constant before its final falling-off. This means that the large-x behavior of SEE(x) is more
or less linear. Since 1/x behavior of the usual sphere case is explained by the scaling of
the coupling constant, this result suggests that the noncommutativity alters the running
of the coupling constant.

Finally, we look at figure 4c of the derivative of the EE of the fuzzy sphere with the
phase factor from the non-planar contribution mentioned in (2.22) dropped. It is obvious

4Precisely speaking, ∆SEE is the difference with respect to x since x takes discrete values. There would
be no room for confusion and we use the term “derivative” throughout this paper.
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(a) The fuzzy sphere ∆SEE(x).
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(b) The usual sphere ∆S(sphere)
EE (x).
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L=50

(c) The fuzzy sphere without the non-planar
phase factor, ∆S(NNP)

EE (x).

Figure 4. The derivative of the EE of the usual sphere, the fuzzy sphere, and the fuzzy sphere
without the non-planar phase factor, up to −λ2 ln λ2/16R2. The horizontal axis is x. R is set to
be 1. µ = 15 and L = 5 (left), 10, 15, · · · , 50 (right).

that wiggles before the peaks of SEE(x) (the zeros of the derivative, which should not
be confused with the peaks of the ∆SEE(x) itself) disappear and it shows the consistent
behavior with the usual sphere case around there. On the other hand, the large-x behavior
remains the same as the fuzzy sphere case. This is again a clue that the wiggles near the
peak are from the effects of the non-planar phases while the large-x asymptotic behavior
depends on the existence of the noncommutativity characterized by the 6j symbols. In
figure 5, we show two typical examples of ∆SEE(x) for µ = 10 and µ = 15. We can see (i)
fluctuations of the derivative before the peak location, (ii) nearly flat behavior for large x
region, and (iii) falling-off behavior near x = 2L. (ii) and (iii) are analyzed in the following
subsection.

3.1 Asymptotic behavior

It is of particular interest that the large-x behavior of the EE of the fuzzy sphere is different
from that of the continuous sphere. Recall the scaling argument by [3]; in general, the
entropy scales as the degrees of freedom in the momentum space, and it increases as xd in
d spatial dimensions below a momentum scale x (volume law). Let λn be a dimensionless
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(a) µ = 10 and L = 50.
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(b) µ = 15 and L = 50.

Figure 5. Two typical examples of the derivative of the EE of the fuzzy sphere ∆SEE(x) (up to
−λ2 ln λ2/16R2). The horizontal axis is x. R = 1 and L = 50. µ = 10 and µ = 15 cases are shown.

coupling constant of φn term in d+ 1 dimensions. It scales as

λn ∝ x
n−2

2 d−n+2
2 . (3.2)

Since SEE is proportional to −λ2 log λ2, apart from log part,

SEE ∝ x2
(
x

n
2−3

)2
= xn−4 , (3.3)

in two dimensions (d = 2). Thus, in the case of the cubic interaction (n = 3), it will behave
as 1/x.

Let us examine the large-x behavior by using some asymptotic relations of 3j and 6j
symbols. In ∆SEE(x), for x . 2L, the summations with the negative sign in (3.1) are
dominant, and

∆SEE(x) x→2L' −
x−1∑
l=0

x−1∑
l′=0

f(x, l, l′)−
x−1∑
l=0

f(x, x, l) = −
x−1∑
l=0

x∑
l′=0

f(x, l, l′) , (3.4)

where, for simplicity, we have dropped the overall coefficient −λ
2 ln(λ2)
16R2 > 0. f̃ terms are

also neglected as their contributions are small. The large-x region is meant to be L � 1,
x = O(L) and Rµ� x. In the following consideration, we take R = 1 and µ� x.

First, we consider the usual sphere case in (B.13)

f (sphere)(x, l, l′) = 4(2x+ 1)(2l + 1)(2l′ + 1)
ωxωlωl′(ωx + ωl + ωl′)2

∣∣∣∣∣
(
x l l′

0 0 0

)∣∣∣∣∣
2

. (3.5)

If both l and l′ are O(1), f (sphere) = 0 due to the momentum conservation condition (A.28).
Thus, at least one of them is of O(x). Since f is symmetric with respect to l and l′, let l′
be O(x). Then, ωx, ωl′ = O(x). Thus,

f (sphere)(x, l, l′) ' 2l + 1
ωl

1
x2

∣∣∣∣∣
(
x l l′

0 0 0

)∣∣∣∣∣
2

. (3.6)
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The 3j-symbol is related to the Clebsch-Gordan coefficient (A.18),∣∣∣∣∣
(
x l l′

0 0 0

)∣∣∣∣∣
2

= 1
2l′ + 1

∣∣C l′0x0l0
∣∣2 . (3.7)

Since
∣∣Cx0

l0l′0
∣∣2 ≤ 1, this 3j-symbol squared is at most of O(1/x). In appendix B.3.1, we

see that
∣∣Cx0

l0l′0
∣∣2 = O(1) for l = O(1) and

∣∣Cx0
l0l′0

∣∣2 = O(1/x) for l = O(x). The number of
terms in the summations in (3.4) is approximately the order of the variables l, l′; O(x) for
the former and O(x2) for the latter. Thus, in the usual sphere case,

∆S(sphere)
EE (x) x→∞' − 1

x2 =⇒ S
(sphere)
EE (x) x→∞' 1

x
, (3.8)

which agrees with the numerical results and is consistent with the flat space results.
Next, we move on to the fuzzy sphere case in (2.24),

f(x, l, l′) = N
(2x+ 1)(2l + 1)(2l′ + 1)
ωxωlωl′(ωx + ωl + ωl′)2

(
1 + (−1)x+l+l′)2{x l l′

L L L

}2

. (3.9)

Again, if l, l′ = O(1), f = 0 due to the momentum conservation condition, and we take
l′ = O(x). Thus,

f(x, l, l′) x→2L' N
2l + 1
ωl

1
x2

{
x l l′

L L L

}2

' N

x2

{
x l l′

L L L

}2

, (3.10)

where we have dropped
(
1 + (−1)x+l+l′)2 factor; it is not an oscillating phase factor but

just eliminating x+ l+ l′ =odd terms (no cancellation takes place). It will not affect large-x
behavior in the limit. (2l + 1)/ωl = O(1) for any value of l.

The behavior of this 6j-symbol squared (with the summation of l) are studied in
appendix B.3.2. It turns out that the most of the contributions, from l = O(x) and from
l = O(1) and l′ < x, are proportional to (2L − x)ζ with ζ > 0. Therefore, in the x → 2L
limit, ∆SEE behaves like a constant. The only nontrivial contribution under the limit is
from l = O(1) and l′ = x part. In this part, ∑l f(x, l, x) finally increases when x is very
close 2L. This suggests that ∆SEE suddenly decreases at the very end of x → 2L limit.
This is actually the observed behavior; it stays constant in a large x region but finally falls
off near x = 2L. In figure 6, we show the derivative of the EE for the final 10 points near
x = 2L, x = 2L − 10, 2L − 9, · · · , 2L, in the case of µ = 10. The numerical results show
the behavior described in this subsection.

Thus, we can say that the different tail behaviors of the EE of the usual and the fuzzy
sphere are from the difference of this 3j and 6j symbols. Namely, the introduction of the
matrix regularization, or noncommutativity indeed alters the large-x behavior of the EE.

Before concluding this subsection, we point out that the tail behavior for small L is
not accordance with the prediction (3.8). Of course it is not a contradiction, because (3.8)
is justified for large x. However, we here notice that as far as L is small, the three results
in figure 1, 2, and 3 show a similar tail behavior which is different from the flat space
one. Hence we may regard it as reflection of the fact that the (fuzzy) sphere is curved. If
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Figure 6. The final 10 points of the derivative of the EE of the fuzzy sphere ∆SEE(x) for µ = 10
and L = 25, 30, · · · , 50 (up to −λ2 ln λ2/16R2). The horizontal axis is x. R = 1.
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(f) µ = 20.

Figure 7. The location of the peaks. The values of xpeak are shown as blue circles (the fuzzy
sphere), orange boxes (the usual sphere), and green diamonds (the fuzzy sphere without the non-
planar phase factor), for various values of µ. The vertical axis is xpeak and the horizontal axis is
L = 5, · · · , 50. R is set to 1.

L is small, the curvature affects the tail behavior of the EE, while for larger L, the tail
behavior probes short-distance behavior of the EE and, therefore, it is insensitive to the
curved space, but subject to existence of noncommutativity.

3.2 Location of the peak

In this subsection, we point out an interesting characteristic of EE. As seen from the graphs
of ∆SEE, there is one zero for each plot. Namely, each EE has only one peak. The location
of the peak, equivalently the zero of ∆SEE, may be taken as a characteristic quantity of EE.

Figure 7 shows the plots of xpeak with which ∆SEE(xpeak) = 0, for φ3 theory on the
fuzzy sphere (blue circles), the usual spheres (orange boxes), and the fuzzy sphere with
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the non-planar phase part dropped (green diamonds). (a)–(f) are for different values of
µ (R = 1 fixed). The location of the peak moves as the cutoff L changes. For smaller
values of µ (say, in the figures (a) and (b)), the peak locations of the usual sphere and the
fuzzy sphere without the non-planar phase almost agree and are separated from those of
the fuzzy sphere. As µ increases, orange boxes (the usual sphere) and green diamonds (the
fuzzy sphere without the phase) start to deviate and blue circles (the fuzzy sphere) come
to overlap with the green diamonds (figures (c), (d) and (e)). After µ ≥ 20 (figure (f)),
the results of the fuzzy sphere and the fuzzy sphere without the non-planar phase are the
same and different from the usual sphere results.

We now argue that these behaviors are consistent with what we observed in the deriva-
tive of EE at the end of the previous section. In short, we have observed that, for lower
x, the curve of the EE wiggles near the peak due to the existence of the non-planar phase
factor, while, for large-x region, the difference between 6j and 3j symbols changes the
behavior of the tail.

Let us start with a preliminary observation that the locations of peaks appear around
the same order as µ. This is clear in figure 7 (note that the scale of the vertical axes)
or in figure 1, 2, and 3. The location also depends on L and figure 7 suggests that it is
asymptotic to, say, around 1.2µ to 2µ for large enough L. This is a natural behavior as
µ is one of the characteristic scales of SEE.5 When µ is large, xpeak takes a large value
and then it is affected by the tail behavior. Therefore, the peak locations of the fuzzy
sphere, irrespective of the existence of the non-planar phase factor, agree but are different
from those of the usual sphere. This difference clearly originates from that between the
6j- and 3j-symbols. In fact, it is natural that their difference is important in a large x
region. It originates in the different types of the regularization, the matrix regularization
involving noncommutativity with 6j symbols, and the simple cutoff with 3j symbols. It
is also curious that the fuzzy sphere results with and without the non-planar phase seem
to coincide very well. This implies that the non-planar phase factor little affects the peak
location at a large value of x. At first sight, for large x, it seems that the non-planar phase
factor oscillates so rapidly that will make a difference between the fuzzy sphere results
with/without it. As argued earlier, xpeak/µ takes values around 1 (approximately between
0.5 and 2) and appears to be stable for all µ. This suggests that the absolute value of xpeak,
not this dimensionless ratio, is crucial for the relevance of the non-planar phase factor.

We move on to the small µ cases. xpeak takes small values and then the tail behavior,
namely the existence of the noncommutativity will be irrelevant. Instead, it is affected
by the existence of the non-planar phase factor. As µ increases, xpeak moves to the right
(larger value), and the effect of the phase factor becomes less important, and the fuzzy
sphere result tends to the other two results that do not have the non-planar phase factor.

5We make a bit more detailed comment; f(l1, l2, l3) and f (sphere)(l1, l2, l3) have a µ dependent common
part and distinct momentum conservation factors which are independent of µ (see (B.11) and (B.13)). Take
a look at (2l+ 1)/ωl(ωl + · · · )2 of the common part. As a function of l, it increases for l� µ and decreases
for l � µ, and then takes a maximum around the order of µ. Thus, µ dependent common part will take
the highest value around µ. The precise location also depends on the momentum conservation factors,
including the non-planar phase factor, that makes difference among three kinds of plots in figure 7.
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Thus, we again conclude that the non-planar phase factor affects the behavior of SEE(x)
for small x values. It is not clear yet why the non-planar phase factor has much effect
only for small values of x. As seen in figures 4 and 5, the behavior of the EE for small
x region is complicated as reflected by the wiggle. Therefore, we can say that, if µ is
small, noncommutativity is less important, while the non-planar phase factor would play
an important role in EE, but the convincing physical picture for these observation is still
missing and is left for future work.

4 Mutual information

We are also interested in the entanglement between very high momentum modes and very
low momentum modes. The mutual information is a useful quantity to measure this type
of entanglement. We divide the Hilbert space into three regions, H = HL ⊕ HM ⊕ HH
where HM for a “middle” momentum region. The mutual information between L and H
is given in terms of EE as

I(L : H) = SEE(L) + SEE(H)− SEE(H ∪ L) , (4.1)

where SEE(L) is the EE between HL and HM∪H , and so on.
In our problems, we take

H(x)
L =

{∏
a†limi

|0〉
∣∣0 ≤ li ≤ x, |mi| ≤ li

}
,

H(x,d)
M =

{∏
a†limi

|0〉
∣∣x+ 1 ≤ li ≤ x+ 1 + d, |mi| ≤ li

}
,

H(x,d)
H =

{∏
a†limi

|0〉
∣∣x+ d+ 2 ≤ li ≤ Λ, |mi| ≤ li

}
.

Note that, in HH , we take the cutoff for l to be Λ. Λ = 2L for the fuzzy sphere (then,
d ≤ 2L−x−2) and Λ� 1 for the usual sphere. Here, d is the “size” of HM and represents
the separation of the high and low momentum regions.6 We are interested in how the
mutual information behaves with respect to this separation d in large-d regions. When
x = O(1), the large-d means d ' 2L (the fuzzy sphere) or d→∞ (the usual sphere).

From the definition above, one finds the mutual information between HL and HH
to be,

I(x, d; Λ) = −λ
2 ln λ2

8R2

 x∑
l1=0

Λ∑
l2,l3=x+d+2

+
x∑

l1,l2=0

Λ∑
l3=x+d+2

+
x∑

l1=0

x+d+1∑
l2=x+1

Λ∑
l3=x+d+2

 f(l1, l2, l3)

− λ2 ln λ2

8R2

x∑
l1=0

Λ∑
l2=x+d+2

[
f̃(l1; l2) + f̃(l2; l1)

]
. (4.2)

We use x, d and Λ as the labels for the mutual information.
When we discuss the entanglement between the lowest and the highest modes for a

large distance d between them, we can take two different types of large distance limits:
6The “size” means simply that of the range of li; it is different from dimHM since we do not take

degeneracy into account.
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(a)

(b)

Figure 8. Two large-d limits of the mutual information. In (a), x and the cutoff Λ are fixed and
d is taken to be large. In (b), x and the “size” of HH are fixed and the location of the cutoff 2L is
shifted.
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(a) Fuzzy sphere with x = 2, L = 30 and
1 ≤ d ≤ 56.

10 20 30 40 50
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0.004

(b) Usual sphere with x=2, 1≤d≤56, Λ=100.

Figure 9. The mutual information I(x, y; d) between H(x)
L and H(x,d)

H (without −λ2 lnλ2

8R2 ). The
horizontal axis is d. x = 2, R = 1 and µ = 10. The cutoff are 2L = 60 for the fuzzy sphere case (a)
and Λ = 100 for the usual sphere.

• x and the cutoff L,Λ are fixed and d changes (figure 8(a)): figure 9 shows the mutual
information as a function of d for the fuzzy sphere case (a) and the usual sphere case
(b). The parameters x and L are fixed to be x = 2 and L = 30. In the case of the
usual sphere, we take the cutoff Λ = 100 by hand. The separation d runs from 1
to 56 for both cases; in the fuzzy sphere case with d = 56, H(x,d)

H just consists of a
single mode l = 2L. Both of them show a similar falling-off behavior and it seems
that the fuzzy sphere case drops more rapidly even if both vertical axes in figure 9
are normalized properly.

To clarify the large-d behavior of I(x, d; Λ), we give the log-log plot in x = 5
case of the fuzzy sphere ((a), L = 100) and of the usual sphere ((b), Λ = 300 and
(c), Λ = 500) in figure 10. We will discuss the falling-off behavior when d is close
to the cutoff (d ' 2L or Λ) later, and first look at the region in which d is large
but still much smaller than the cutoff, 1 � d � 2L or Λ. In both cases, in the
region 4.5 . log d . 5, log of the mutual information looks linear with respect to
log d. To see this point more clearly, for example, we zoom up these part; (d) is for
100 ≤ d ≤ 150 of the usual sphere case and it is linear with the slope −2.00. This
linear behavior is more or less stable; the slope is −1.96 for 50 ≤ d ≤ 200, −2.08
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(a) Log-log plot for the fuzzy sphere with x = 5,
1 ≤ d ≤ 193. (L = 100).
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(b) Log-log plot for the usual sphere with x = 5,
1 ≤ d ≤ 293. (Λ = 300).
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(c) Log-log plot for the usual sphere with x = 5,
1 ≤ d ≤ 200 (Λ = 500).
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-8.4

-8.2

-8.0

-7.8

(d) 100 ≤ d ≤ 150 part of (c). The slope is
approximately −2.00151.

Figure 10. Log-log plot of the mutual information I(x, d; Λ) between H(x)
L and H(y)

H . x = 5 and
the cutoffs are 2L = 100 and Λ = 300 or 500. The vertical axis is log I(5, d; Λ) (without −λ2 lnλ2

8R2

factor) and the horizontal axis is log d. The figure (d) is the zoom-up of a part of the figure (c),
100 ≤ d ≤ 150. The other parameters are R = 1 and µ = 5.

for 130 ≤ d ≤ 169 and −2.19 for 160 ≤ d ≤ 190. For larger d, it deviates from the
mean value (approximately −2) and it would be due to the finite cutoff effect (now
Λ = 500). The slope stays around −2 with other parameter choices. This implies the
following scaling relation of the mutual information of the usual sphere,

I(sphere)(x, d; Λ) ' d−2 (1� d� Λ) . (4.3)

We confirm this relation by using the asymptotic properties 3j-symbols in appen-
dix B.3.3.

On the other hand, when we look at some parts not so close to the cutoff 2L,
it shows more or less linear behaviors, but the slope is changing; in (a) the slope is
−2.11 for 70 ≤ d ≤ 100 and −3.03 for 100 ≤ d ≤ 130. Thus, in the fuzzy sphere case,
we can certainly identify the region showing the behavior (4.3), but it is narrower and
unstable than that in the usual sphere case. (This is partly because it is numerically
difficult to take 2L to be very large, and the region with 1� d� 2L is then narrow.
See the discussion below.) Thus as far as (4.3) is concerned, noncommutativity is
less important, and its qualitative understanding is given in appendix B.3.3.
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(a) I(x, y;L) for x = y = 10, 20 ≤ L ≤ 100.
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(b) Log-log plot of I(x, y;L) for x = y = 10,
20 ≤ L ≤ 100. The slope is about −2.98155.

Figure 11. The mutual information for the fixed size of HH . We fix x and y = 2L − x − d − 2,
and change the cutoff size L (a) is I(x, y;L) for x = y = 10, 20 ≤ L ≤ 100. (The horizontal axis
is L.) (b) is the log-log plot for the same quantity. (The horizontal axis is logL.) The slope is
approximately −2.9816. The other parameters are R = 1 and µ = 10.

Now, we move on to a quick fall-off behavior for d → 2L or Λ. This can be,
in part, understood as the shrinking of the size of HH . We change not only just
the separation but the degrees of freedom involving the mutual information. On top
of that, in the case of the fuzzy sphere, 6j-symbols also vanishes as d → 2L, while
3j-symbols are independent of Λ. Therefore, the fuzzy sphere case shows more rapid
fall-off. Curiously, this fall-off is similar to that found in the EE in x→ 2L discussed
in appendix B.3.2. More detailed estimation is given in (B.29).

• The “size” of HH is fixed and L changes (figure 8(b)): in the case of the fuzzy sphere,
we can consider another limit; the size of H(x,d)

H is fixed (namely, y = 2L−x−d−2 is
fixed) and take the cutoff (or the matrix size) large, L→∞. This mutual information
is denoted as I(x, y;L) where y is the size of HH . Since d ' L for x = O(1), this is
yet another large-d limit. In figure 11, we plot the mutual information as a function
of L for x = y = 10 (and R = 1, µ = 10). It also falls off for large L. Figure (b) is the
log-log plot; it shows a linear behavior with the slope about −2.98. We have checked
that this linear behavior is common for other parameter choices. This suggests the
following scaling relation,

I(x, y;L) ' L−3 ' d−3 (d ∼ L� 1) . (4.4)

We can say that this mutual information measures the entanglement with respect to
the separation more directly. In the case of the usual sphere, we can calculate similar
quantities; we set the cutoff at 2L by hand and see L → ∞ behavior. It shows the
same scaling behavior, I(sphere)(x, y;L) ' L−3. Hence, we see that the fuzzy sphere
and the usual sphere case show the same large separation behavior.

In the setup illustrated in figure 8(b), the mutual information shows a good scaling
behavior (4.4) for both fuzzy sphere and usual sphere cases when d (or L) is large. Fig-
ure 8(a) case also exhibits the scaling behavior (4.3) when d is large but much smaller
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than the cutoff. The usual sphere has more stable scaling behavior than the fuzzy sphere
since it is numerically easy to take the cutoff to be large for the former. As d approaches
the cutoff, this scaling behavior changes. We exemplify this change by (B.31) of the usual
sphere case:

I(sphere)(x, d; Λ) '
Λ∑
l=d

l−3 . (4.5)

It is easy to see that for Λ � d, this is proportional to d−2 for large d, while if the upper
limit is d + O(1), i.e. d is close to the cutoff Λ, this tends to be d−3. If d is very close
to Λ, I(sphere)(x, d; Λ) ∝ d − Λ and shows a fall-off (see figure 10b). This is nothing but
the consequence of shrinking the size of HH . In the case of the fuzzy sphere, the above
expression is replaced by (B.29), but its qualitative behavior is still similar to (4.5). Only
when d is very close to the cutoff 2L, 6j-symbols provide extra (2L − d)a (a > 0) factors
and make the falling-off behavior steeper; this falling-off part shows difference between the
fuzzy sphere and the usual sphere cases and the difference is due to noncommutativity.

Before moving to the next subsection, let us summarize what we have observed and
make a comment on the relation to UV/IR mixing. We have compared the behavior of
the mutual information for the fuzzy sphere and the usual sphere under the distinct large
separation limits, (a) and (b) in figure 8. Basically, they do not exhibit much difference
except d ' Λ region in figure 8(a); both show a falling-off behavior since the size of HH is
shrunk. Only in the case of d ' Λ (the size of HH gets zero), noncommutativity induces a
faster falling-off behavior. We here recall that QFT on the fuzzy sphere is finite and free
from UV/IR mixing. The UV/IR mixing, referring to the different UV behavior between
planar and non-planar loop contributions, appears in a much milder form in QFT on the
fuzzy sphere, called a noncommutative anomaly [5]. The UV/IR mixing is manifested in
the flat space limit as a limit of the noncommutative anomaly. Our results imply that
mutual information is not sensitive enough to detect the noncommutative anomaly. It is,
however, apparent that the difference of the fall-off behavior near the cutoff reflects the
noncommutativity. In fact, it comes from the difference between the 3j- and 6j- symbols:
the latter becomes zero more quickly than the former due to the closure of the matrix
algebra. Notice that the similar difference has been also observed in the entanglement
entropy itself analyzed in the previous section. On the other hand, in QFTs on the flat
space, we indeed expect that the EE in the momentum space could serve as a probe of
the UV/IR mixing. For this purpose, it is necessary to consider a field theory in higher
dimensions with noncommutativity.

4.1 Mutual information between individual modes

We can also consider the mutual information between two specific modes with l1 and l3;
namely we choose HL = {a†l1m1

|0〉||m1| ≤ l1} and HH = {a†l3m3
|0〉||m3| ≤ l3} where l1 < l3

is assumed. In this case, the complement space HH∪L consists of all the other modes. The
mutual information of the individual modes l1 and l3 (l1 < l3) is

Iindividual(l1, l3; Λ) = −λ
2 ln λ2

8R2

min(l1+l3,Λ)∑
l2=l3−l1

f(l1, l2, l3) + f̃(l1; l3) + f̃(l3; l1)

 . (4.6)
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(a) Iindividual(l1, l3;L) with l1 = 5 and L = 100.
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(b) Log-log plot of (a) with 160 ≤ l3 ≤ 200.
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(c) I(sphere)
individual(l1, l3; Λ) with l1 = 5 and Λ = 500.

6 ≤ l3 ≤ 200.
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(d) Log-log plot of (c) with 160 ≤ l3 ≤ 200. The
slope is −2.9495.

Figure 12. The mutual information between two individual modes l! and l3, Iindividual(l1, l3; Λ).
The horizontal axis is the larger momentum l3 (or log l3). l1 = 5, µ = 5, R = 1 and the cutoffs are
2L = 200 and Λ = 500.

It is easy to see that when l1 = 0, there is no difference between the fuzzy sphere and
the usual sphere cases,

Iindividual(0, l3; 2L) = I
(sphere)
individual(0, l3; Λ) , (4.7)

for any l3, L and Λ. The nontrivial case is then for l1 > 0.
Figure 12a and 12c are the plots of the mutual information between individual modes

l1 = 5 and l3 with µ = 5, R = 1. The cutoffs are chosen to be 2L = 200 for the fuzzy
sphere and Λ = 500 for the usual sphere. The horizontal axis is l3, up to l3 = 200. The
both cases show a similar dumping behavior. To see the tail behavior for large l3, we look
at (b) and (d); they are log-log plots for 160 ≤ l3 ≤ 200. In the case of the fuzzy sphere,
this means l3 → 2L. We can see that the fuzzy sphere case (b) shows a peculiar oscillating
behavior. On the other hand, the usual sphere case shows a power-law,

I
(sphere)
individual(l1, l3;∞) l3→∞−−−−→ l−3

3 . (4.8)

In appendix B.3.3, we confirm these behavior by using the asymptotic formulas of 3j and
6j symbols. In particular, the oscillating behavior of the fuzzy sphere case comes from the
Legendre polynomial for the l2 = l3 part.

In [3], the mutual information between two single modes for φ3 theory on Rd (d ≤ 4)
is evaluated. When the separation of two modes is |q|, the mutual information falls off as
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1/|q|4 for large |q|. Curiously, in the case of φ3 theory on S2, the mutual information falls
off more slowly than that on the flat two dimensional plane. Note that the quantity we have
calculated is a bit different from that of [3]; [3] calculated the mutual information between
the modes in infinitesimal volumes ddp and ddq while what we have evaluated is the one with
mi summed over. Namely, roughly speaking, the one with the zenith angle integrated. With
this taken into account, we would see that the large-d behavior of the mutual information
between the individual modes is consistent for commutative flat spaces and a sphere, while
it shows a peculiar behavior in the case of the fuzzy sphere when the higher mode comes
close to the cutoff 2L (figure 12b). This behavior originates from the asymptotic behavior
of 6j-symbol, and then is considered to be an effect of noncommutativity.

5 Conclusion and discussion

We have calculated EE in the momentum space of scalar field theory on a fuzzy sphere.
The fuzzy sphere is a simple example of an NC space and we examine how the behavior of
EE with respect to an energy scale changes from the case of the usual commutative space.

We observe the behavior of EE with respect to x which sets the boundary between
low and high momentum modes. It turns out that the behavior of the theory defined
on the fuzzy sphere (the fuzzy case) is distinct from that on the usual sphere (the usual
case); especially, the fuzzy case shows wiggles near the peak of EE and also two cases show
different scaling behaviors in the large x region. The fuzzy case involves a peculiar phase
factor, 1 + (−1)ltotal where ltotal is the sum of the three momenta, that originates from the
different contributions from planar (1) and non-planar ((−1)ltotal) ordering of the operators.
We can replace this phase factor with 2 in the fuzzy case by hand (namely, no distinction
is made) and call it the fuzzy case without the non-planar phase. It is curious that this
change eliminates the wiggles of EE near the peak, but the large-x behavior remains the
same as the fuzzy case. This suggests that the wiggles are related to this nonplanar phase
factor, while the large-x behavior is not; rather, the large-x behavior is more closely related
to the noncommutativity associated with the 6j symbol. In fact, it changes the momentum
conservation rule, in particular, significantly near the cutoff.

To see this point more clearly, we consider the derivative of EE in which the distinction
of the behavior appears more apparent. We observe that the wiggles in the fuzzy case take
place just before the peak of EE. It is also found that the large-x tail behavior is fairly
different between the fuzzy case (with or without the non-planar phase) and the usual case.
The large-x behavior in the usual case is consistent numerically with that in the case of
φ3 theory on the flat R2 and obeys a scaling argument. The large-x behavior can also be
analyzed analytically by using asymptotic formulas of 3j and 6j symbols. With 3j symbols
(the usual case), it reproduces 1/x tail of EE. On the other hand, with 6j symbols (the
fuzzy case), it turns out that many terms in the sum in (3.4) are proportional to 2L − x
(where 2L is the cutoff due to the matrix regularization) and only one term in (3.4) gives
a finite contribution as described in appendix B.3.2. The combination of these behaviors
indeed explains the results of numerical calculations. We also point out that the location
of the peak also exhibits interesting properties. We take the mass of the scalar field µ as
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an energy scale. Then, for small µ, almost the same peak locations are shared by the usual
case and the fuzzy case without the non-planar phase, but the fuzzy case provides different
peak locations. This suggests that the peak locations for smaller µ are also involved in
the non-planar phase factor. On the other hand, for larger µ, the peak locations coincide
in the fuzzy case with and without the non-planar phase factor and are different from
those in the usual case. It would then be relevant for the noncommutativity. Though the
physical meaning of peak locations of EE is still unclear, it may be the interesting quantity
to investigate the property of EE for theories on NC spaces.7

Another interesting observation is the behavior of mutual information. The mutual
information between very low and very high momentum regions is evaluated for the fuzzy
sphere and the usual sphere, in terms of the separation d between these two regions. In
general, both show a consistent behavior; mutual information obeys a scaling law when the
separation d is sufficiently small compared to the cutoff. In particular, when we consider
mutual information between single modes, the scaling behavior is also consistent with the
one on the flat R2. The difference appears when the separation is comparable to the cutoff
scale; then, the degrees of freedom in the high momentum region reduce to zero, and the
mutual information falls off. The falling-off behavior is different between the fuzzy and the
usual sphere because of noncommutativity.

We make some comments in order.

EE in the noncommutative position space. We comment on EE in the position
space of QFT on noncommutative spaces. EE in the position space is defined by dividing
the space into a region A and its complement; in QFT on noncommutative spaces, there
is a conceptual difficulty that a sharp boundary ∂A between A and its compliment is not
well-defined. One way to consider EE in the position space is to use AdS/CFT correspon-
dence [13–15]; a holographic dual of Super Yang-Mills theory on noncommutative spaces is
defined by introducing an NS-NS B-field to deform the AdS space near the boundary (UV
region). Based on the Ryu-Takayanagi formula [16], EE of the ground state is calculated
as the area of a minimum surface ending on the boundary ∂A which is treated as a classical
geometrical object. It is found that when the size of the region A is smaller than a non-
commutative scale, the minimum surface degenerates at the UV cutoff and then EE shows
a volume law. On the other hand, for larger sizes, the minimum surface develops into AdS
space and it obeys the standard area law. Namely, at a strong coupling, noncommutativity
affects the behavior of EE at short distances (high energies) but is not effective at long
distances (low energies). This is consistent with our results; at low momentum scales, EE
for the fuzzy sphere behaves similarly to that of the usual sphere (increasing as x2) while
it decreases more slowly at high momentum scales. We have not yet fully understood how
the deformed tail behavior is related to the volume law and leave it to future work. It
should also be curious to see if the “wiggles” at a middle scale is related to the transition
from the volume law to the area law. Similar volume law behavior for A of small sizes is
also observed in a different type of nonlocal theory [17].

7It would be nice if the peak location has something to do with a universal quantity like the central
charge and so on as in the case of the EE in the position space.
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EE in the position space for scalar field theory on the fuzzy sphere is studied in [18]
(free theory) and [8, 9] (interacting theory). The surface of the sphere is decomposed into
two regions, a part of the zenith angle up to θ and the rest. From the viewpoint of a matrix
model, as far as the decomposition of the Hilbert space is concerned, this is just a different
division of matrix degrees of freedom, but the physical interpretation is quite different. We
focus on interacting cases [8, 9]. (Note that they consider a quartic interaction in contrast
to our cubic interaction.) They found that the leading contribution of EE for free fields at
the zero temperature obeys the square of area law (EE is proportional to the square of the
boundary area), instead of the area law of the usual case. The finite temperature effect
in the interacting case is also found to be proportional to the volume; this agrees with
the behavior of ordinary local field theories. The characteristic behavior is discussed to be
based on nonlocality and noncommutativity from the matrix regularization. Therefore, it
is very interesting to investigate the relation between the EE in the momentum and in the
position space.

Renormalization. One of the motivations for the study of EE in the momentum space
is renormalization and the separation of the degrees of freedom of different scales. ([3] also
stresses this viewpoint.) The different large-x behavior is more relevant to this question.
As discussed in [3], the large-x behavior is expected from the counting of the dimension of
the coupling constant λ. The dimensionless coupling of a cubic interaction in two spatial
dimensions scales as x−3/2. Together with x2, scaling of the degrees of freedom, it gives
SEE ∝ x2(x−3/2)2 = x−1 since the EE is proportional to λ2 (neglecting the log part) to the
leading order. In the case of the fuzzy sphere, very roughly speaking, SEE shows a linear
behavior, SEE ∝ x. This implies that the dimensionless coupling scales as x−1. Namely,
the interaction is more effective in the high energy regime in the case of the fuzzy sphere.
This may be interpreted as ineffectiveness of the decoupling of the degrees of freedom of
different energy scales and the difficulty of renormalization for field theory on NC spaces.

For scalar field theory on a fuzzy sphere, one can study the Wilsonian renormalization
procedure as a large-N (or a matrix) renormalization procedure [6, 7]. There, it is found
that integrating out the degrees of freedom of the highest energy scale generates various
types of interactions, including some new interaction terms that do not have commutative
counterparts. The change of the effective dimension of the cubic coupling may be attributed
to the generation of such complicated operators. It will be interesting to investigate this
viewpoint.

Mutual information and UV/IR mixing. Mutual information between the low and
the high momentum modes, when the separation of them d is taken to be large, is found
to show a similar behavior in the fuzzy sphere and the usual sphere cases for the most
values of d; the difference appears only when d is large comparable to the cutoff scale. As
mentioned in Introduction, QFT on the fuzzy sphere does not show UV/IR mixing but has
a milder correlation known as the noncommutative anomaly [5]. As discussed in section 4,
it may be consistent that the mutual information for the fuzzy sphere and that for the
usual sphere behave similarly. On the other hand, for QFTs on different noncommutative
spaces, we indeed expect that the EE in the momentum space could play a role of a probe
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of the UV/IR mixing. For this purpose, it is necessary to consider a field theory in higher
dimensions with noncommutativity. We will report results in the near future [10].

When the separation d (in other words, an energy scale) is close to the cutoff scale,
the mutual information becomes zero. This is due to the finite degrees freedom of the
system; the degrees of freedom in the high momentum modes also tend to vanish. This
is a common feature for the fuzzy and the usual sphere cases. On the other hand, when
we consider the mutual information between two individual modes, the fuzzy sphere case
shows an intriguing oscillating behavior that does not appear in the usual sphere case. It
is also interesting to study how this is related to the noncommutative anomaly.

The volume law of EE in the momentum space. We here point out that in QFTs
with local interactions, defined even on noncommutative spaces, EE in the momentum
space would not show the area law. In fact, the area law of EE for the ground state
implies that interaction takes place locally in the space we are considering. If EE in the
momentum space shows the area law, there would be local interactions in the momentum
space, namely highly non-local interactions in the position space. Some spin systems with
non-local interactions show the volume law of EE in the position space, and it may lead to
an area law in the momentum space. However, the standard QFT is defined by a continuum
limit of a system with local interactions, and even in QFT on a noncommutative space, the
induced non-locality would not break the nature of local interaction too much. Therefore,
in the momentum space, the volume law of EE of QFT is expected to be ubiquitous. This
observation would be one of reasons why we would not expect phase transition between
area law and volume law for EE in the momentum space. From this point of view, it would
be intriguing to study EE in the momentum space of the QFT on the fuzzy sphere with the
antipodal interaction, which is the most non-local interaction on a sphere, considered in [7].

This would also be related to smooth decreasing behaviors of mutual information in
the momentum space. The mutual information I in the position space is known to show
a phase transition when the separation d between two regions gets large; I > 0 for small
d and it becomes zero when d is large. In the momentum space, the mutual information
is smoothly decreasing to zero, and noncommutativity will not affect this behavior much.
In the case of the fuzzy sphere, this smooth behavior may be partly due to the space of a
finite size, but is probably owing to the local φ3 interaction we have used.

Another application of EE in the momentum space would be to probe short distance
structure caused by the T T̄ -deformation [19, 20]. For example, if we compare EE in the
momentum space between QFT on fuzzy geometry and that with the T T̄ -deformation, it
would tell us to what extent short distance structure of T T̄ -deformed theory resembles that
on fuzzy geometry.
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A Matrix regularization and scalar field theory on a fuzzy sphere

We start with real scalar φn theory on S2 of radius R,

S =
∫
dt

∫
R2dΩ

4π

(
1
2
(
φ̇(t, θ, ϕ)

)2 + 1
2R2 (Liφ(t, θ, ϕ))2 − µ2

2 φ(t, θ, ϕ)2 − λ

n
φ(t, θ, ϕ)n

)
,

(A.1)

where the dot means the time derivative, Li = −iεijkxj∂k is the angular momentum op-
erator and xi (i = 1, 2, 3) is the standard flat coordinates of R3. The field φ is expanded
with respect to the spherical harmonics as

φ(t, θ, ϕ) =
∞∑
l=0

l∑
m=−l

φlm(t)Ylm(θ, ϕ) , (A.2)

and the reality condition implies φ∗lm = φl−m. The spherical harmonics can be represented
by use of symmetric traceless tensor c(lm)

i1···il as

Ylm(θ, ϕ) = R−l
∑
i1···il

c
(lm)
i1···ilx

i1 · · ·xil . (A.3)

A fuzzy sphere is introduced by considering the generators of a spin L = (N − 1)/2
representation of SU(2), Li. The coordinates will be identified with N × N matrices
x̂i = αLi; α is a parameter of length dimension and taken to satisfy R2 = α2(N2 − 1)/4
to retain the relation, ∑i(x̂i)2 = R2. Thus, x̂i can be identified with the coordinates of
the fuzzy sphere of radius R. Since [x̂i, x̂j ] = iαεijkx̂

k, they define NC coordinates. Note
that noncommutativity is controlled by α which depends on the choice of R and N . The
spherical harmonics is also replaced by N×N matrices Tlm which we call the fuzzy spherical
harmonics, defined by use of the same symmetric traceless tensor as in (A.3),

Tlm = R−l
∑
i1···il

c
(lm)
i1···il x̂

i1 · · · x̂il . (A.4)

The field φ(t, θ, ϕ) and the integration over S2 are now replaced by an N ×N matrix φ(t)
and the trace respectively,

φ(t, θ, ϕ) =
∞∑
l=0

l∑
m=−l

φlm(t)Ylm(θ, ϕ) → φ(t) =
2L∑
l=0

l∑
m=−l

φlm(t)Tlm , (A.5)

∫
dΩ
4π f

(
φ(t, θ, ϕ)

)
→ 1

N
trf
(
φ(t)

)
, (A.6)

where f is a function of φ. Note that the modes with l > 2L will drop under this mapping.
Finally, we identify the action of angular momentum operator as

Liφ(t, θ, ϕ) → [Li, φ(t)] , (A.7)

and we obtain the action of scalar field theory on the fuzzy sphere (2.1).
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A.1 Explicit form and useful formulas

To carry out the relevant calculation, we use the following explicit form of the fuzzy spher-
ical harmonics,

(Tlm)ss′ = 〈s|Tlm
∣∣s′〉 = (−1)L−s

(
L l L

−s m s′

)√
(2l + 1)N , (A.8)

where the middle factor in the parenthesis is the Wigner’s 3j symbol. The orthogonality
and the completeness relations are

1
N

trTlmT †l′m′ = δll′δmm′ , (A.9)

1
N

∑
lm

(Tlm)s1s2(T †lm)s3s4 = δs1s4δs2s3 , (A.10)

and hence Tlm spans a complete basis for N × N matrices. Note that T †lm = (−1)mTl−m
and ∑i[Li, [Li, Tlm]] = l(l + 1)Tlm. A product of two T s can be expanded with respect to
the basis matrices. This relation is the fusion formula,

Tl1m1Tl2m2 =
∑
l3 m3

Cl1m1 l2m2
l3m3Tl3m3 ,

Cl1m1 l2m2
l3m3 = N

1
2

3∏
i=1

(2li + 1)
1
2 (−1)2L+

∑3
i=1 li+m3

(
l1 l2 l3
m1 m2 −m3

){
l1 l2 l3
L L L

}
. (A.11)

Here, the curly bracket represents the Wigner’s 6j symbol. Together with the orthogonality
relation, we can evaluate tr(φn) as a summation of a product of 3j and 6j symbols by
repeatedly applying this formula.

The quadratic part of the Lagrangian reads

L0 = R2

N
tr
[1

2 φ̇
2 + 1

2R2 [Li, φ]2 − µ2

2 φ
2
]

= R2∑
l,m

(1
2 φ̇
∗
lmφ̇lm −

ω2
l

2 φ∗lmφlm

)
, (A.12)

and the standard procedure of canonical quantization leads to the Hamiltonian in terms of
the creation and annihilation operators as in (2.6).

In the course of the calculation, the following formulas are useful,

• asymptotic formula for L� 1

(−1)2L
{
a b c

L L L

}
' (−1)a+b+c

√
2L

(
a b c

0 0 0

)
. (A.13)

• The summation of a 3j symbol squared,

∑
m1,m2,m3

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
m1 m2 m3

)
= 1 . (A.14)
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• Special values of 3j and 6j symbols.
When J = j1 + j2 + j3 is even,(
j1 j2 j3
0 0 0

)
= (−1)J/2

√
(J − 2j1)!(J − 2j2)!(J − 2j3)!

(J + 1)!
(J/2)!(

J
2 − j1

)
!
(
J
2 − j2

)
!
(
J
2 − j3

)
!
,

(A.15)

and the right hand side is zero if J is odd.(
a b 0
ma mb 0

)
= δabδma+mb

(−1)a−ma

√
2a+ 1

. (A.16)

{
j1 j2 j3
0 j3 j2

}
= (−1)j1+j2+j3√

(2j2 + 1)(2j3 + 1)
. (A.17)

• 3j-symbol is related to the Clebsch-Gordan coefficients Cjmj1m1j2m2
=〈j1m1j2m2|j1j2jm〉:(

j1 j2 j3
m1 m2 m3

)
= (−1)j3+n3+2j1

√
2j3 + 1 Cj3m3

j1−m1j2−m2
. (A.18)

• Asymptotic expression for the Clebsch-Gordan coefficients:
– for a, c� b,

Cc0a0b0 ' b!
√

(b+ c− a)!(b+ a− c)!
∑
s

(−1)b+a−c−s2−b
s!(s+ c− a)!(b− s)!(b+ a− c− s)! .

(A.19)

s runs over all integer values for which the factorial arguments are non-negative.
– For a, b, c,� 1,

Cc0a0b0 ' (−1)
a+b−c

2

(
1 + (−1)a+b−c

2

)√
2c+ 1
2πS , (A.20)

S2 = 1
16

(
a+ b+ c+ 5

2

)(
−a+ b+ c+ 1

2

)(
a− b+ c+ 1

2

)(
a+ b− c+ 1

2

)
.

(A.21)

• Asymptotic expression for the 6j-symbols:
– for a, b, c, d, e, f � 1, known as the Wigner formula,{

a b c

d e f

}2

' Θ(V 2)
24πV , (A.22)

where Θ(x) is the step function. V is the volume of the tetrahedron whose edges
are ã = a+ 1/2, b̃ = b+ 1/2 and so on:

V 2 = 1
23(3!)2

∣∣∣∣∣∣∣∣∣∣∣∣

0 d̃2 ẽ2 f̃2 1
d̃2 0 c̃2 b̃2 1
ẽ2 c̃2 0 ã2 1
f̃2 b̃2 ã2 0 1
1 1 1 1 0

∣∣∣∣∣∣∣∣∣∣∣∣
. (A.23)
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The 6j symbols oscillate rapidly with respect to the variables in this region and
the formula is understood as an averaged value.

– The Edmonds’ formula, for a, b, c� f,m, n,{
a b c

b+m a+ n f

}
' (−1)a+b+c+f+m√

(2a+ 1)(2b+ 1)
dfmn(ϑ) ,

cosϑ = a(a+ 1) + b(b+ 1)− c(c+ 1)
2
√
a(a+ 1)b(b+ 1)

, (A.24)

where dfmn(ϑ) is the rotation matrix, DJ
MM ′(α, β, γ) = e−iMαdJMM ′(β)e−iM ′γ .

DJ
MM ′ is the Wigner D-function, 〈JM |D̃(α, β, γ)|J ′M ′〉 = δJJ ′D

J
MM ′ . Con-

cretely,

dJMM ′(β) = (−1)J−M ′
√

(J +M)!(J −M)!(J +M ′)!(J −M ′)!

×
∑
k

(−1)k
(
cos β2

)M+M ′+2k (
sin β

2

)2J−M−M ′−2k

k!(J −M − k)!(J −M ′ − k)!(M +M ′ + k)! . (A.25)

k runs over all integer values for which the factorial arguments are non-negative.

One finds these formulas in [11] and [12], for example.

A.2 3j and 6j symbols as momentum conservation factors

Quantum field on R2 is expanded in terms of Fourier modes: φ(t,x) =
∫
d2k φk(t)eik·x. In

an n-point vertex, the momentum conservation factor appears through the integration of
the expansion basis functions as∫

d2x eik1·xeik2·x · · · eikn·x = (2π)2δ(2)(k1 + k2 + · · ·+ kn) . (A.26)

Similarly, quantum field on S2 is expanded as φ(t; θ, ϕ) = ∑
l,m φlm(t)Ylm(θ, ϕ). For three

point vertex, the integration of three spherical harmonics over the sphere leads to
∫
dΩ
4π Yl1m1(Ω)Yl2m2(Ω)Yl3m3(Ω) =

√
(2l1 + 1)(2l2 + 1)(2l3 + 1)

(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
,

(A.27)

which is known as Gaunt’s integral. These 3j-symbols vanish unless the following conditions
are satisfied:

|li − lj | ≤ lk ≤ li + lj (i, j, k = 1, 2, 3) , m1 +m2 +m3 = 0 . (A.28)

This is nothing but the addition rule of angular momenta. Thus, together with the normal-
ization factors, these 3j symbols correspond to the momentum conservation delta function
in the flat space.
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On the fuzzy sphere, we replace the expansion basis with (2L+ 1)× (2L+ 1) matrices
Tlm as φ(t) = ∑2L

l=0
∑l
m=−l φlm(t)Tlm. The integral of the basis functions are now replaced

by the trace:

1
N

trN
(
Tl1m1Tl2m2Tl3m3

)
= N1/2

( 3∏
i=1

(2li + 1)1/2
)

(−1)2L+
∑3

i=1 li

(
l1 l2 l3
m1 m2 m3

){
l1 l2 l3
L L L

}
.

(A.29)

The 3j-symbol serves the same condition (A.28). On the other hand, the 6j-symbol puts
the restriction that any of li is no larger than 2L. Thus, this expression is non-zero only if

|li − lj | ≤ lk ≤ min(li + lj , 2L) (i, j, k = 1, 2, 3) , m1 +m2 +m3 = 0 . (A.30)

This is actually the angular momentum conservation condition for the fuzzy sphere.

Large-N limit. Let us consider the large-N (or equivalently large-L) limit. Here, we
consider a simple continuum limit in which N → ∞ with R fixed. Then, α introduced
below (A.3) goes to zero in the limit and the noncommutativity will be lost. We take a
look at a factor in (A.29); by using the asymptotic formula of 6j-symbol (A.13),

(−1)l1+l2+l3
√
N(−1)2L

{
l1 l2 l3
L L L

}
N→∞−−−−→

(
l1 l2 l3
0 0 0

)
+O(N−1) , (A.31)

where we have used N = 2L− 1. Comparing this with (A.27), one can see that, under the
large-N limit, these two momentum conservation factors agree:

1
N

tr
(
Tl1 m1Tl2 m2Tl3 m3

) N→∞−−−−→
∫
dΩ
4π Yl1m1(Ω)Yl2m2(Ω)Yl3m3(Ω) +O(N−1) . (A.32)

This result is actually anticipated as the matrix regularization Tlm is constructed so that
it will reproduce the algebraic relation of Ylm in the large-N limit.

B Miscellaneous calculations

B.1 Matrix elements

The relevant matrix elements in φ3 theory is

〈(l1,m1), (l2,m2), (l3,m3)|Hint|0〉 (B.1)

where

Hint = R2

3
∑

l1,m1,··· ,l3,m3

φl1m1(t)φl2m2(t)φl3m3(t) · 1
N

tr
(
Tl1m1Tl2m2Tl3m3

)
. (B.2)

By using (2.8), it is straightforward to obtain

〈(l1,m1), (l2,m2), (l3,m3)|Hint|0〉

= 1
2
√

2R
ei(ωl1+ωl2+ωl3 )t
√
ωl1ωl2ωl3

· 1
N

tr
(
Tl1 −m1Tl2 −m2Tl3 −m3 + Tl1 −m1Tl3 −m3Tl2 −m2

)
. (B.3)
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Note that alm obeys the standard commutation relations (2.4); the noncommutativity is
from the contracted basis matrices Tlm.

In order to evaluate EE, we need the following piece: by using (A.29),

F (l1,m1; l2,m2; l3,m3) = 8R2 ·
∣∣〈(l1,m1), (l2,m2), (l3,m3)|Hint|0〉

∣∣2
(El1,l2,l3 − E0,0,0)2

= 1
ωl1ωl2ωl3(ωl1 + ωl2 + ωl3)2

×
∣∣∣∣∣√N√(2l1 + 1)(2l2 + 1)(2l3 + 1)(−1)2L+l1+l2+l3

×
[(

l1 l2 l3
−m1 −m2 −m3

)
+
(

l1 l2 l3
−m1 −m3 −m2

)]{
l1 l2 l3
L L L

} ∣∣∣∣∣
2

= (2l1 + 1)(2l2 + 1)(2l3 + 1)
ωl1ωl2ωl3(ωl1 + ωl2 + ωl3)2 ·

(
1 + (−1)l1+l2+l3

)2
·N
∣∣∣∣∣
{
l1 l2 l3
L L L

} ∣∣∣∣∣
2∣∣∣∣∣
(
l1 l2 l3
m1 m2 m3

) ∣∣∣∣∣
2

.

(B.4)

In the final equality, we exchange the columns of 3j and 6j symbols and the factor
(−1)l1+l2+l3 is from the 3j symbol; namely this is due to the different ordering of Tlimi

and
then identified with a non-planar contraction of the fields. (The signs of mi are flipped
too, but both 3j-symbols give the same factor and it does not affect the relative phase.)

The usual sphere. If we consider the usual S2 (instead of the fuzzy sphere), the inter-
action Hamiltonian is

H
(sphere)
int =R2

3
∑

l1,m1,··· ,l3,m3

φl1m1(t)φl2m2(t)φl3m3(t)
∫
dΩ
4π Yl1m1(θ, ϕ)Yl2m2(θ, ϕ)Yl3m3(θ, ϕ) .

(B.5)

The operator part is the same as in the case of the fuzzy sphere; therefore, we just replace
the trace of T s with the integral of the spherical harmonics and obtain

F (sphere)(l1,m1; l2,m2; l3,m3) = 8R2 ·
∣∣〈(l1,m1), (l2,m2), (l3,m3)|H(sphere)

int |0〉
∣∣2

(El1,l2,l3 − E0,0,0)2

= (2l1 + 1)(2l2 + 1)(2l3 + 1)
ωl1ωl2ωl3(ωl1 + ωl2 + ωl3)2 · 4 ·

∣∣∣∣∣
(
l1 l2 l3
0 0 0

) ∣∣∣∣∣
2∣∣∣∣∣
(
l1 l2 l3
m1 m2 m3

) ∣∣∣∣∣
2

. (B.6)

Large-N limit. Let us look at the large-N limit of these factors. Since the trace of
Tli−mi

becomes the integral of the spherical harmonics, as shown in (A.32), the matrix
elements also agree in the large-N limit:

〈(l1,m1), (l2,m2), (l3,m3)|Hint|0〉 N→∞−−−−→ 〈(l1,m1), (l2,m2), (l3,m3)|H(sphere)
int |0〉+O(N−1) ,

(B.7)
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where we have used (A.13). Therefore, the entanglement entropies for the fuzzy sphere
and the usual sphere also agree under the large-N limit.

We make a comment on the phase factor for non-planar contraction (−1)l1+l2+l3 ; the
planar and the non-planar parts come from the different ordering of (li,mi) and in the
large-N limit, {

l1 l2 l3
L L L

}
∼
(
l1 l2 l3
0 0 0

)
,

{
l1 l3 l2
L L L

}
∼
(
l1 l3 l2
0 0 0

)
, (B.8)

and the second one, non-planar part, indeed gives the phase factor (−1)l1+l2+l3 if we
exchange l2 and l3. However, as seen in the explicit form in (A.15), this 3j-symbol is
non-vanishing only when (−1)l1+l2+l3 = 1. In this way, the difference between the planar
and non-planar contributions disappears in the large-N limit.

B.2 Entanglement entropy

The EE consists of the contribution from l1 ≤ x, l2, l3 > x and l1, l2 ≤ x, l3 > x. Explicitly,
the summation over (li,mi) is written as

SEE =− λ2 lnλ2

8R2

[
x∑

l1=0

l1∑
m1=−l1

2L−1∑
l2=x+1

l2∑
m2=−l2

2L∑
l3=l2+1

l3∑
m3=−l3

+
x∑

l1=0

l1∑
m1=−l1

2L∑
l2,l3=x+1

δl2,l3

l2−1∑
m2=−l2

l2∑
m3=m2+1

+
x∑

l1=0

l1∑
m1=−l1

2L∑
l2,l3=x+1

δl2,l3

l2∑
m2,m3=−l2

δm2,m3

]
F (l1,m1; l2,m2; l3,m3)

− λ2 lnλ2

8R2

[
x−1∑
l1=0

l1∑
m1=−l1

x∑
l2=1

l2∑
m2=−l2

2L∑
l3=x+1

l3∑
m3=−l3

+
x∑

l1,l2=0

δl1,l2

l1∑
m1=−l1

l2−1∑
m2=m1+1

2L∑
l3=x+1

l3∑
m3=−l3

+
x∑

l1,l2=0

δl1,l2

l1∑
m1,m2=−l1

δm1,m2

2L∑
l3=x+1

l3∑
m3=−l3

]
F (l1,m1; l2,m2; l3,m3) , (B.9)

where li = lj or mi = mj parts are explicitly separated. The summation can be ar-
ranged into

SEE(x) = −λ
2 ln(λ2)
16R2

 x∑
l1=0

2L∑
l2,l3=x+1

+
x∑

l1,l2=0

2L∑
l3=x+1

 f(l1, l2, l3)

− λ2 ln(λ2)
16R2

x∑
l1=0

2L∑
l2=x+1

[
f̃(l1; l2) + f̃(l2; l1)

]
, (B.10)

where from (B.4)

f(l1, l2, l3) =
∑

m1,m2,m3

F (l1,m1; l2,m2; l3,m3)

= (2l1 + 1)(2l2 + 1)(2l3 + 1)
ωl1ωl2ωl3(ωl1 +ωl2 +ωl3)2

(
1 + (−1)l1+l2+l3

)2
N

{
l1 l2 l3

L L L

}2

, (B.11)

f̃(l1; l2) =
l1∑

m1=−l1

l2∑
m2=−l2

F (l1,m1; l2,m2; l2,m2) = f(l1, l2, l2)
l1∑

m1=−l1

l2∑
m2=−l2

(
l1 l2 l2

m1 m2 m2

)2

,

(B.12)
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and (A.14) is used for the mi summation in f(l1, l2, l3). f(l1, l2, l3) is symmetric under the
interchange of any two of li, but f̃(l1; l2) is not symmetric under l1 ↔ l2. f̃ terms appear
when two of (li,mi) coincide.

In the case of the usual sphere, we just replace f and f̃ with

f (sphere)(l1, l2, l3) =
∑

m1,m2,m3

F (sphere)(l1,m1; l2,m2; l3,m3)

= (2l1 + 1)(2l2 + 1)(2l3 + 1)
ωl1ωl2ωl3(ωl1 + ωl2 + ωl3)2 · 4 ·

(
l1 l2 l3
0 0 0

)2

, (B.13)

f̃ (sphere)(l1, l2, l3) = f (sphere)(l1, l2, l2)
l1∑

m1=−l1

l2∑
m2=−l2

(
l1 l2 l2
m1 m2 m2

)2

. (B.14)

Recall that the 3j-symbol in (B.13) is zero unless l1 + l2 + l3 is even.

B.3 Asymptotic behavior

B.3.1 The evaluation of |Cl′0
x0l0|2

Here, we investigate the large x dependence of |C l′0x0l0|2 in which x � 1 and x − l′ ≥ 0 is
of O(1).

• When l = O(1), we use the asymptotic formula (A.19),

C l
′0
x0l0 ' l!

√
(l + α)!(l − α)!

l∑
s=α

(−1)l+α−s2−l
s!(s− α)!(l − s)!(l + α− s)! (B.15)

where α = x− l′ is O(1) quantity and 0 ≤ α ≤ l so that C l′0x0l0 6= 0. In the summation,
there are O(1) number of terms that are all of O(1). Thus, this part behaves as O(1).

• When l = O(x)� 1, we use (A.21) to get

C l
′0
x0l0 '(−1)

x+l−l′
2

(
1 + (−1)x+l−l′

2

)√
2l′ + 1
2πS , (B.16)

and S = O(x2). Therefore, in this case, |C l′0x0l0|2 ' 1/x for large x.

B.3.2 The evaluation of a 6j-symbol squared

Here, we look into the large x behavior of{
x l l′

L L L

}2

, (B.17)

where x = O(L), l′ = O(x), and L� 1.

• When l = O(x), we apply the Wigner formula (A.22),{
x l l′

L L L

}2

' 1
24πL̃

12

√
(a2

+ − l̃2)(l̃2 − a2
−)

, (B.18)
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where

a2
± =

(
1− l̃′2

2L̃2

)
x̃2 + l̃′2 ± x̃l̃′

2L̃2

√
(4L̃2 − l̃′2)(4L̃2 − x̃2) , (B.19)

and L̃ = L+ 1/2, l̃ = l+ 1/2 and so on. Since all the variables are large, we will drop
the tilde (namely +1/2) from now on. Due to the step function constraint, V 2 > 0,
we restrict ourselves for a2

− ≤ l2 ≤ a2
+. Now we take a± = λ±x, l′ = λ′x, and l = λx

where λ±, λ′, λ = O(1). For the purpose of studying the dependence on large x, we
can consider the summation of this 6j-symbol squared, and the summation can be
replaced by an integral as

a+∑
l=a−

x∑
l′=0

{
x l l′

L L L

}2

' 1
L

∫ 1

0
dλ′

∫ λ+

λ−
dλ

1√
(λ2

+ − λ2)(λ2 − λ2
−)

. (B.20)

where we have dropped an unimportant (positive) numerical coefficient. The integral
can be written as an elliptic integral. For a small ε =

√
(2L− x)/L, this integral

behaves as

1
L

∫ 1

0
dλ′

∫ λ+

λ−
dλ

1√
(λ2

+ − λ2)(λ2 − λ2
−)

= 1
L

2
√
λ′

(1− λ′2)1/4 ε
1/2(1 +O(ε1/2)

)
. (B.21)

Thus, the contribution from this part is as small as (2L−x)1/4 in the limit of x→ 2L.
Let us make a comment on the validity of the Wigner formula. As asserted

in (A.22), this formula is understood as an average of oscillating values. In the
expression of ∆SEE in (3.1) with (2.24), there also exists a positive oscillating factor
(1 + (−1)x+l+l′)2. If these two oscillations are somehow coherent, there would appear
different behavior from the analysis here, but the numerical calculation supports
that the analysis here is valid, and the EE of the fuzzy sphere with and without
(1 + (−1)x+l+l′)2 factor give consistent results.

• When l = O(1), we use Edmonds’ formula (A.24) with (A.25),{
x l x− n
L L L

}
=
{
x L L

L x− n l

}
' (−1)x+2L+l√

(2x+ 1)(2L+ 1)
dl0,−n(ϑ) , (B.22)

dl0,−n(ϑ) = (−1)l+nl!
√

(l + n)!(l − n)!
l∑

k=n
(−1)k

(
cos ϑ2

)−n+2k (
sin ϑ

2

)2l+n−2k

k!(l − k)!(l + n− k)!(k − n)! ,

(B.23)

where we take l′ = x − n with n = O(1). For L, x � 1, cosϑ ' x/2L from (A.24)
and then(

cos ϑ2

)−n+2k
=
(

1− y

4L

)k−n
2
,

(
sin ϑ2

)2l+n−2k
=
(
y

4L

)l−k+ n
2
, (B.24)

where y = 2L− x. For y → 0, the dominant term in the summation of the rotation
matrix is given by k = l term. Furthermore, it is obvious that dl0,−n(ϑ)→ 0 for y → 0
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Figure 13. The plot of 1
(2x+1)(2L+1)

∑20
l=0
[
Pl
(
x

2L
)]2 with L = 200 for x = 380, 381, · · · , 400.

if n > 0. Thus, in the sum on l′ in ∆SEE given in (3.4) with (3.10), the dominant
contribution for the x → 2L limit is from n = 0 (namely l′ = x) part. (The other
parts all vanish as (2L − x)a with a > 0.) In this case, the 6j-symbol is written in
terms of the Legendre polynomials (Racah formula),{

x l x

L L L

}
=
{
x L L

L x l

}
' (−1)x+2L+l√

(2x+ 1)(2L+ 1)
Pl(cosϑ) . (B.25)

Therefore, the contribution to ∆SEE is given by

∑
l=O(1)

[
Pl
(
x

2L
)]2

2x+ 1 . (B.26)

Under x → 2L, it seems to decrease like 1/x; actually, it is not. Since
[
Pl
(
x

2L
)]2

(l > 0) takes relatively small values unless x ' 2L, the summation suddenly increases
when x→ 2L, as shown in figure 13. Thus, this part is responsible for the asymptotic
tail behavior under x→ 2L.

B.3.3 Large-d behavior of the mutual information

In order to look at the asymptotic behavior of the mutual information (4.2), we again drop
f̃ terms and consider the dependence of large d. We start with the mutual information
with x = 0, I(0, d; Λ), for large d. Then, in (4.2), l1 is restricted to be zero. Because of
the momentum conservation condition, f(0, l2, l3) = 0 unless l2 = l3 and by using (A.16)
and (A.17), we find

f(0, l, l) = f (sphere)(0, l, l) = 4(2l + 1)
ω0ω2

l (2ωl + ω0)2 . (B.27)

Since l2 = l3, only the first summation in (4.2) contributes and

I(0, d; Λ) =− λ2 ln λ2

8R2

Λ∑
l=x+d+2

[
f(0, l, l) + f̃(0; l)

]
, (B.28)

where the cutoff Λ is Λ = 2L for the fuzzy sphere and Λ � 1 for the usual sphere. Thus,
when x = 0, the difference comes only from the range of the summation.
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In order to look at nontrivial cases, we consider x = O(1) > 0. Then, 0 ≤ l1 ≤ x is
also O(1) quantity. The large-d behavior means that l3 ≥ x+d+2 is large, l3 = O(Λ)� 1.
Due to the momentum conservation condition, l2 must be of the same order as l3. Again,
f̃ part gives a subleading contribution and is neglected in the following analysis.

• The fuzzy sphere case: when l2, l3 � l1, we approximate the 6j-symbol by Edmonds’
formula (A.24). The analysis is parallel to those in appendix B.3.2 by replacement
x→ l3, x− n→ l2, l → l1; most terms vanish as a power of 2L− l3 as l3 → 2L. The
dominant contribution comes from the terms with l2 = l3, and Racah formula gives

I(x, d; 2L) '− λ2 ln λ2

8R2

x∑
l1=0

2L∑
l3=x+d+2

1
l33

[
Pl1

(
l3
2L

)]2
' 1
d3

∑
l1

[
Pl1

(
d

2L

)]2
, (B.29)

where we have used (3.10). A peculiar quick falling-off behavior for d → 2L is due
to the fact that most part of 6j symbols vanishes as l3 → 2L; note that the resultant
term is analogous to the tail part of SEE discussed in the previous subsection. It
should also be noted that in (B.29), we assume that d is as large as 2L since we
discuss the l3 → 2L limit. If we take 1 � d � 2L, the prefactor in the right hand
side becomes 1/d2 instead of 1/d3. Thus, for 1� d� 2L, we expect the same scaling
relation as the usual sphere case in (4.3).

When the size of HH , y = 2L−x−d−2, is fixed, one can see that the coefficient
1/d3 governs the asymptotic behavior for large values of d. It then gives d−3 scaling
behavior.

• The usual sphere case: since (A.18) leads to(
l1 l2 l3
0 0 0

)2

= 1
2l2 + 1

(
C l20
l30l10

)2
, (B.30)

and from the analysis from appendix B.3.1,
(
C l20
l30l10

)2 = O(1) for l2, l3 � l1. There-
fore, the large-d behavior of the mutual information in (4.2) with (3.5) is

I(sphere)(x, d; Λ) '− λ2 ln λ2

8R2

x∑
l1=0

Λ∑
l2,l3=x+d+2

1
(l2 + l3)2

1
l2
'

Λ∑
l=d

l−3 d→∞−−−→ d−2 ,

(B.31)

where we have used that l2 = l3 + O(1) and l2 ≥ O(d) � 1. When Λ � d, it scales
as d−2.

As commented in the main part, we take the cutoff Λ to be Λ = x+ d+ 2 +O(1)
(as in the case of the fuzzy sphere), the power-law becomes d−3.

The mutual information between individual modes. We also consider the mutual
information between the individual modes, l1 and l3 (l1 < l3). If l1 = 0, as seen in (B.27),
f(0, l, l) = f (sphere)(0, l, l) is only nonzero part. The summation of l2 in Iindividual(l1, l3; Λ)
given in (4.6) is restricted to be l2 = l3, and the cutoff is irrelevant. Thus, we see that the
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mutual information between l1 = 0 and l3 > 0 takes the same value in both cases of the
fuzzy sphere and the usual sphere.

As a nontrivial case, we take l1 > 0. We are interested in the asymptotic behavior,
l3 → Λ. When l1 = O(1), f(l1, l2, l3) is nonzero only when l2 is the same order of l3. We
thus repeat the same analysis;

• the fuzzy sphere case: using Edmonds’ formula and Racah formula, the dominant
contribution for l3 → 2L is

Iindividual(l1, l3; 2L) ' 1
l33

[
Pl1

(
l3
2L

)]2
. (B.32)

The main difference from (B.29) is that there is no l1 summation; thus, we can see
the oscillating behavior due to the Legendre polynomial in the asymptotic behavior
of the mutual information mentioned below (4.7).

• The usual sphere case: the analysis is parallel to eq. (B.31). In the present case,

I
(sphere)
individual(l1, l3; 2L) '

l1+l3∑
l2=l3−l1

1
(l2 + l3)2

1
l2
' 1
l33
, (B.33)

since there are 2l1 = O(1) terms in the summation.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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