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1 Introduction to the conjecture and its different faces

The aim of this article is simple to state. By using the recently introduced entropic order
parameters for global symmetries [1–4], we seek to prove a recent conjecture described in
ref. [5] by Harlow and Ooguri, concerning the density of charged states in QFT. We also
relate this conjecture with the so-called equipartition of entropy, found in [6] in the abelian
case and more recently in [7, 8] in the non-abelian case, both in 1+1 CFT’s. By unraveling
the common origin of all these results, we will generalize them in several ways.

Let us start with the conjecture. It says

Conjecture 1 ([5]). In any quantum field theory with a finite-group global symmetry G,
on any compact spatial manifold at sufficiently high energy the density of states of a each
representation r has the following form

ρr(E) = d2
r

|G|
ρ(E) , (1.1)

where ρ(E) is the density of states at energy E.

We will comment on the issue of compactness and generalize to non-compact scenarios
at the end of the article. For the moment we stick with the original form of the conjecture.
Let us remark that this formula appeared earlier in the context of 2d CFT’s in ref. [9].

Looking at the previous formula one might naively think that something weird is
happening at high energies, where entropy does not seem to be equipartitioned through the
different degrees of freedom. The naive reason is that the dimension of a representation is
dr so a first guess would say that if entropy is to be equipartitioned, the prefactor should
be dr∑

r
dr
, instead of d2

r
|G| = d2

r∑
r
d2
r
. We will see that indeed entropy is equipartitioned, but

there is a fraction of d2
r
|G| degrees of freedom per representation of the group G.
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It will prove convenient to consider different faces of this conjecture. We first define
the twist τg to be the global unitary representation of the element g ∈ G. As shown in [5],
the previous conjecture is equivalent to the assertion that at sufficiently high energies the
twisted partition function approaches

Z(β, g) ≡ Tr(e−βH τg) −−−→
β→0

Z(β, e) δg,e , (1.2)

where e is the identity, H is the Hamiltonian and δg,g′ is the group Kronecker delta function.
Equivalently, this says that the expectation value of the twist at sufficiently high temper-
ature is δg,e. The reason is the following. We can write the twisted partition functions in
terms of the charged density of states as follows

Z(β, g) =
∑
r

1
dr

∫
dE ρr(E)χr(g) e−βE . (1.3)

If the second version of the conjecture is true we obtain∑
r

1
dr

∫
dE ρr(E)χr(g) e−βE = δg,e

∫
dE ρ(E) e−βE . (1.4)

Multiplying both sides of this relation by the character and using orthogonality of charac-
ters one arrives at the first version of the conjecture.

The third equivalent formulation of this conjecture concerns the structure of the ther-
mal density matrix. Since the Hamiltonian is invariant under the symmetry, the thermal
density matrix is invariant as well, and therefore it decomposes into blocks corresponding
to the different representations. We can see this by defining the projectors1

Pr = dr
|G|

∑
g

χ∗r(g) τg . (1.5)

They are naturally labeled by the set of inequivalent irreducible representations of the
group G. Using the orthogonality relation satisfied by the characters one can verify that
indeed

PrPr′ = δr,r′ Pr ,
∑
r

Pr = 1 . (1.6)

These relations imply that the thermal density matrix decomposes as

ρβ ≡
e−βH

Z(β, e) = ⊕r pr ρrβ , (1.7)

where the classical probabilities pr associated with each representations are just

pr = Tr (ρβ Pr) = dr
|G|

∑
g

χ∗r(g)Tr (ρβ τg) . (1.8)

Given this generic structure, the third equivalent version of the conjecture then says that
at high energies the thermal density matrix approaches

ρβ −−−→
β→0

⊕r
d2
r

G
ρrβ , (1.9)

1See [1, 3] for extensive use of these projectors in the context of generic QFT’s in any dimension.
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so that the thermal entropy reads

S(ρβ) ≡ −Tr (ρβ log ρβ) =
∑
r

d2
r

G
S(ρrβ) + S(p) , (1.10)

where S(p) is the classical Shannon entropy of pr = d2
r
G .

Finally, combining this with the first version, we can compute the universal behavior
of Renyi entropies of ρrβ at high temperatures, namely

Sn(ρrβ) ≡ 1
1− n logTr

(
ρrβ

)n
= 1

1− n log
[ ∫

dEρr(E) e−βnr
(
∫
dEρr(E) e−βr)n

]
−−−→
β→0

log d
2
r

G
+ Sn(ρβ) .

(1.11)
As it should, for n = 1 this expression is consistent with the general form (1.10). We also
see that the corrections do not depend on n, suggesting certain maximally mixed density
matrix behavior behind, which we confirm below. For abelian groups, for which dr = 1,
the correction does not depend on r either, and the analog behavior for a U(1) group was
dubbed entropy equipartition in [6]. For non-abelian groups the correction depends on r,
as also found in [7, 8] for WZW models. As we commented above, and as we will see later in
detail, this r-dependence, ultimately dependent on the r-dependence of the original version
of the conjecture, should not be interpreted as invalidating the idea of entropy equipartition
and the hidden maximally mixed density matrix.

To turn this conjecture into a theorem, we will explain how yet another version of the
conjecture was proven recently in [1], namely the saturation of the entropic order parameter
at high temperatures in the Thermofield Double State (TFD). We will first explain why
such saturation is another version of the theorem. This uses the certainty relation, to be
reviewed below. We will then describe how such saturation is proved. This uses on one
hand known tools extracted from the DHR approach to global symmetries in QFT [10–13],
and further developments in that direction by Longo and Rehren [14, 15]. On the other
hand, we resort to the entropic order and disorder parameters, together with the certainty
relation satisfied by them [1–3].

The article is organized as follows. We will start by introducing the certainty relation in
the next section. In the third section, we introduce aspects of the DHR approach to global
symmetries. In section four we prove the conjecture. In section five we further comment
on entropy equipartition and describe that the origin of the conjecture can already be
found in the vacuum sector. We will end up with a discussion describing a heuristic but
transparent path to understand the generality of this result, and generlize the result to
QFT’s on non-compact spatial manifolds.

2 Certainties in quantum mechanics

There is a famous and important relation between quantum entropies associated with
commutant algebras. If A is an algebra and A′ is its commutant, the relation simply
says that

Sω(A) = Sω(A′) , (2.1)
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in a globally pure state ω. In this equation Sω(A) is the quantum entropy of the algebra
A in state ω, a quantity that is unambiguously defined, see [16].

In a series of recent papers [1–3], a conceptually similar formula has been discovered for
certain canonical non-commuting algebras A and Ã. These pairs of algebras were called
Complementary Observable Algebras (COA), due to their intimate relation to quantum
complementarity. We now follow the generic presentation of ref. [2].

Instead of quantum entropies, the relation will be between relative entropies. For a
finite-dimensional algebraM, relative entropy is defined by

SM (ω | φ) := TrM
(
ρω
(
log ρω − log ρφ

))
, (2.2)

where TrM is the canonical trace onM, and ρω, ρφ are the density matrices representing
the underlying states, see [17].

Now consider an inclusion of algebras N ⊂ M. In this scenario, there is typically a
zoo of projections ε : M → N , from the big algebra to the small algebra, see [2, 14] for
concrete constructions of such a zoo in different scenarios. These are called conditional
expectations and satisfy the bimodule property

ε (n1mn2) = n1ε (m)n2 , ∀m ∈M, ∀n1, n2 ∈ N . (2.3)

Interestingly, given a state ωN in N , and a conditional expectation ε, there is a canonical
lift of ωN to a state in M, namely the composition ωN ◦ ε. So for any state ω in the big
algebra we can naturally define the following entropic order parameter

SM (ω | ω ◦ ε) . (2.4)

IfM = N ∨A, that is, the algebra generated by N and A, then the previous quantity is a
refined measure of uncertainty of A that takes into account potential correlations between
N and A.

Given this structure, a canonical candidate for the COA, namely for Ã, arises by taking
commutants of the previous inclusion. This can be nicely characterized by a complemen-
tarity diagram

M ε−→ N
l ′ l ′ (2.5)

M′ ε′
←− N ′ .

In this diagram, going vertically takes the algebras to its commutants, while horizontally
in the arrow direction means we restrict to the target subalgebra. If ε kills the algebra
A ⊂ M, then the dual conditional expectation ε′ kills Ã ⊂ N ′. Notice that Ã does not
commute with A by construction. Also notice that associated with the dual inclusion we
can define a dual entropic disorder parameter

SN ′
(
ω|ω ◦ ε′

)
. (2.6)
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As an example of a complementarity diagram, take asM the abelian algebra X generated
by the position operator. Take also a conditional expectation that kills the full M = A =
X . Following the commutants we obtain

X ε−→ 1

l ′ l ′ (2.7)

X ε′
←− X ∨ P .

We conclude that the COA associated with X is the algebra generated by the momentum
operator P, as expected.

Given these dual inclusions associated with non-commuting COA, the main theorem
of ref. [2] states that given a globally pure state in M∨N ′, and a choice of conditional
expectation ε, the dual conditional expectation ε′ can always be chosen to obtain the
entropic certainty principle

SM (ω|ω ◦ ε) + SN ′
(
ω|ω ◦ ε′

)
= log λ , (2.8)

where λ is the so-called Jones (or algebraic) index of the dual conditional expectations.
Intuitively, the index measures the relative size of N in M. Equivalently, it measures
the size of A. For subgroups, it is the usual index for the subgroup. But this notion
can be generalized to include all algebraic scenarios. The first notion of the index was
proposed by Jones in the context of inclusions of type II 1 subfactors [18]. It was later
noticed independently by Kosaki and Longo [14, 19], that the index was most naturally
associated with a conditional expectation, and both were able to extend the definition to
type III algebras. For conditional expectations associated with averages over finite groups
the index is the number of group elements G, see [14, 15, 20, 21] for considerations in
different scenarios.

An interesting feature of the certainty relation, that will be crucial for the proof of
the conjecture, is that given the positivity of relative entropy, whenever the entropic or-
der/disorder parameter saturates to the maximal value given by log λ, then we know that
the entropic disorder/order parameter will vanish, respectively.

The certainty relation was first found in QFT’s with global symmetries [1]. It was then
proven in generic inclusions of type I algebras in [2], and shortly after extended to type III
algebras [22]. The entropic order parameters were used to characterize global symmetries
in [1], an approach which we use below. They were later put in a broader context as
sensible order parameters for generalized symmetries in QFT in [3].

3 Global symmetries and Cuntz algebras in QFT

In this section we review the requiered tools from the DHR approach to global symmetries
and superselection sectors in QFT [10–13, 23], and some further developments in that
direction by Longo and Rehren [14, 15].

The DHR approach starts from the analysis of the observable algebra, which is the
algebra invariant under the symmetry transformations. The theory then develops from the

– 5 –
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analysis of the category of localized endomorphisms of such algebra. This is a somewhat
abstract approach, since in conventional uses and appearances of QFT’s with global sym-
metries, local charged operators and unitary representations of the symmetry group play
a prominent role. Nevertheless, even if the approach starts with the observable algebra,
at the end of the day it is able to rederive all the structure of local charged oeprators.
Indeed, the reconstruction theorem proved in ref. [23] reconstructs the whole structure of
charged operators and unitary symmetry representations from the categorical structure
of the localized endomorphisms. Not only the existence of charged operators was known
and derived in the DHR approach from more intrinsic entities, but also, as a byproduct,
a better understanding of charged operators was indeed achieved. This understanding is
what we seek to review here since it plays an important role below.

Usually, in conventional textbooks, a charged operator ψri of a global symmetry is a
local operator transforming under certain representation of the symmetry group, namely

τg ψ
r
i τ
−1
g =

dr∑
j=1

rij(g)ψrj , (3.1)

where r(g) is the matrix representing g in representation r. The DHR approach shows that
charged operators can be chosen to satisfy further convenient properties. In particular they
can be chosen to be isometries and to form closed Hilbert spaces. To be concrete they can
be chosen so that

(ψri )† ψrj = δij ,
dr∑
i=1

ψri (ψri )† = 1 , (3.2)

and then linear combinations of these charged operators can be seen to form a Hilbert
space with inner product defined by the previous orthogonality. These types of relations
later appeared in other different contexts, such as in the physics of anyons, see appendix E
in the well-known ref. [24] for example.

In the DHR approach these charged operators generate the endomorphisms of the
observable algebra. There is one irreducible sector (endomorphim) per representation of
the symmetry group. They read

ρr : O → ρr (O) ⊂ O , ρr(O) ≡
dr∑
i=1

ψri O (ψri )† . (3.3)

From this perspective, the charged operators are intertwiners from the identity represen-
tation to the charged superselection sector, in the usual sense of

ψri O = ρr(O)ψri . (3.4)

Once we have the intertwiners for the irreducible representations we can construct inter-
twiners for any reducible representation in the following way. Suppose we want to construct
intertwiners for the endomorphim

ρ ' ⊕rNr ρr , (3.5)

– 6 –
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where ρr appears Nr times. We just notice that in QFT, we can choose any partition of
the identity for a given number of isometries. In our context choose ωαr , where r runs over
representations and α = 1, · · · , Nr, such that

(ωαr )† ωα′
r′ = δrr′δαα′ ,

∑
rα

ωαr (ωαr )† = 1 . (3.6)

The reducible endomorphim is then defined as

ρ(O) =
∑
rα

ωαr ρr(O) (ωαr )† =
∑
rαi

ωαr ψ
r
i O (ψri )† (ωαr )† ≡

∑
rαi

V r
iαO (V r

iα)† . (3.7)

The intertwiners V r
iα from the identity to the reducible representation are then

V r
iα ≡ ωαr ψri , V r

iαO = ρ(O)V r
iα , (3.8)

and one can verify that also

(V r
iα)† V r′

i′α′ = δrr′δαα′δii′
∑
rαi

V r′
i′α′

(
V r′
i′α′

)†
= 1 . (3.9)

Below, the crucial dominating case will be that of the regular endomorphism associated
with the regular representation of the group. This is a reducible representation of dimension
G = ∑

r d
2
r for which Nr = dr.

In general, the algebra generated by a set of operators ψα, with α = 1, · · · , d, satisfying

(ψα)† ψα′ = δαα′ ,
dr∑
α

ψα (ψα)† = 1 , (3.10)

is called a Cuntz algebra. It is an infinite dimensional algebra quite difficult to grasp. For
our pourposes, and following [14] (see also [1]), the interesting thing is that these algebras
contain very simple subalgebras of dimension d2. Indeed, the algebra

(a) =
∑
ij

aijV
i
r (V j

r )† , (3.11)

closes with a matrix multiplication for the coefficients

(a)(b) = (a · b) . (3.12)

Hence it is a finite subalgebra of the Cuntz algebra of matrices of d× d. As we have shown
above, we have one such algebra for any representation of the global symmetry group, even
reducible ones. For the regular representation, it is an algebra of dimension G×G.

4 Universal density of charged states in QFT

Having introduced the certainty principle and the Cuntz algebra of the regular representa-
tion, we are ready to prove the conjecture. We follow the construction in section 3.9 of [1].
The thermofield double state of a duplicated QFT is defined as

|TFD〉 = Z(β, e)−1/2∑
i

e−βEi/2|ERi , ELi 〉 , (4.1)

– 7 –
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where L,R correspond to the Left/Right QFT. We will denote the left/right complete QFT
algebras as FL and FR. With complete we mean they include the invariant algebra and
the charged operators as well. We will concentrate in the second version of the conjecture,
namely the one concerning twisted partition functions (1.2). These twisted partition func-
tions can be written as expectation values of twist operators acting on the right (or left)
system in the thermofield double state

Z(β, g)
Z(β, e) = 〈TFD| τg |TFD〉 . (4.2)

In this context we can find entropic order and disorder parameters that sense aspects of
the global symmetry. Notice we can construct the following complementarity diagram

OL ∨ OR ∨ {I}
ε−→ OL ∨ OR

l ′ l ′ (4.3)

1 ε′
←− τ .

Let us describe the different pieces of this diagram. In the upper left part, OL,OR are the
neutral (invariant under the symmetry) QFT left and right algebras. I is the algebra of
non-local intertwiners with one charged operator on one side and the other on the other
side of the TFD. They are invariant under the common action of the symmetry group in
both CFT’s. We have one of these intertwiners per representation of the symmetry group,
and representatives can be defined as

Ir =
dr∑
i=1

ψrLi(ψrRi)† . (4.4)

Using the regular representation, ref. [3] shows that representatives of these intertwiners
can be chosen so that their fusion rules are the ones of the representations or characters of
the symmetry group. Also, for the reader that finds the algebra OL ∨OR ∨ {I} somewhat
arbitrary, we remark that such algebra is just the fixed point of the average over the
symmetry group acting in the same way in both CFT’s. In other words, if we call E to
such an average (a conditional expectation), then we have

E(FL ∨ FR) = OL ∨ OR ∨ {I} . (4.5)

Coming back to the complementarity diagram, the conditional expectation ε kills the in-
tertwiner algebra, and projects the upper left part to the upper right part.

The commutant of OL ∨OR is the center of OL ∨OR, namely the algebra of invariant
twits τc. The invariant twists are defined irrespectively from the left or right global twists
τg by averaging over conjugacy classes [1]. We have one invariant twist per conjugacy
class [c]

τc =
∑
g∈[c]

τg . (4.6)

The dual conditional expectation ε′ just kills all this algebra. Associated with this com-
plementarity diagram there is a certainty relation

SOL∨OR∨{I}(ω|ω ◦ ε) + Sτ (ω|ω ◦ ε′) = logG , (4.7)

– 8 –
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where the state ω is now the TFD state and G is the number of group elements of the
finite symmetry group. It is also the index λ for the conditional expectations E and E′,
see [1, 14, 15, 20]. To understand this we first notice that the index associated to an average
over a group is G, which can be applied to this case in two ways

OL ∨ OR ∨ {I} ⊂ FL ∨ FR , λ = G , (4.8)

and
OL ⊂ FL , λ = G , (4.9)

and similarly for the right algebras. The reason the index for group averages is λ = ∑
r d

2
r

is because the group algebra is a direc sum of matrices of size d2
r . Using the multiplicative

behavior of the index [14] for tensor products, we see that

OL ∨ OR ⊂ FL ∨ FR , λ = G2 . (4.10)

Given (4.8), and the multiplicative behavior of the index under concatenation of conditional
expectations [14] one concludes that

OL ∨ OR ⊂ OL ∨ OR ∨ {I} , λ = G . (4.11)

Given the certainty relation (4.7), as mentioned above, in case the entropic order
parameter SOL∨OR∨{I}(ω|ω ◦ ε) saturates to its maximal value logG at high energies, the
certainty relation (4.7) will force the entropic disorder parameter Sτ (ω|ω ◦ ε′) to vanish.
For a relative entropy to vanish, the two states compared must be the same [16]. This
means that in such cases we have

ω(τg) = ω ◦ ε′(τg) → ω(τg) = δg,e → Z(β, g) = Z(β, e) δg,e . (4.12)

This shows that yet another version of the conjecture goes by asserting that the entropic
order parameter saturates to its maximum value. This saturation was proven in [1]. We
now describe that proof in detail.

As described in [25], thermal states and TFD can be defined through the KMS condi-
tion, namely the periodicity of correlation functions under shifts τ → τ+β of the imaginary
time axis. Also, given an operator on the left system VL, there is a mirror operator acting
on the same way on the right system

VL |TFD〉 = J VR J |TFD〉 , (4.13)

where J is an antiunitary operator.
To compute the entropic order parameter we use two steps. First, we use a key property

of relative entropy, see [16]. It says the following. Given an inclusion of algebras N ⊂M, a
conditional expectation E :M→N and two states ω and φ invariant under the conditional
expectation

ω = ω ◦ E , φ = φ ◦ E , (4.14)

then the relative satisfies
SN (ω|φ) = SM(ω ◦ E|φ ◦ E) . (4.15)

– 9 –
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In our scenario this means

SOL∨OR∨{I}(ω|ω ◦ ε) = SFL∨FR(ω ◦ E|ω ◦ ε ◦ E) , (4.16)

where E is the average over the global group, whose action was defined in (4.5). This
means we can uplift the computation to the complete algebra that includes the charged
operators and still get the same result. In the second step, to compute the r.h.s. of the
previous equation, we use the monotonicity of relative entropy. The game is to choose the
subalgebra V of FL ∨ FR that, allowing a precise computation, provides the best lower
bound

SFL∨FR(ω ◦ E|ω ◦ ε ◦ E) ≥ SV(ω ◦ E|ω ◦ ε ◦ E) . (4.17)

As for the subalgebra V, ref. [1] first chooses the subalgebras of the Cuntz algebras defined
previously. For any representation, reducible or irreducible, of dimension d we showed
above we have charge creating operators V i, with i = 1, · · · , d satisfying the usual Cuntz
algebra. These operators allow us to construct the algebra A as

a ∈ A , a =
∑
ij

aijV
i(V j)† , (4.18)

generated by the projectors Pij = V i(V j)†. A convenient subalgebra V appears when we
take the tensor product of the previous one in the left and right QFT’s

V ≡ AL ∨ AR . (4.19)

To find the relative entropy in the algebra V, we need to compute all its correlation functions
in the TFD state, namely

ρωTFD
jl,ik = 〈TFD|PRij PLkl |TFD〉 . (4.20)

To maximize such correlation functions we choose in particular PLij = JPRij J . If HL and
HR are the left and right Hamiltonians respectively, we can use the known relation

e−β(HR−HL)/2VR|TFD〉 = JV †RJ |TFD〉 , (4.21)

see the Tomita-Takesaki theory decribed in [25]. We arrive at

ρωTFD
jl,ik = Z−1 Tr(e−βHR/2 PRij e

−βHR/2 (PRkl )†) = Z−1 Tr(e−βHR PRij (−β/2)PRlk ) , (4.22)

where PRij (−β/2) ≡ eβHR/2 PRij e
−βHR/2 is the operator evolved in imaginary time. This

expression makes easy the analysis of high and low temperatures. At high temperatures
β → 0 and we have PRij (−β/2)→ PRij . This implies

ρωTFD
jl,ik ' Z

−1 Tr(e−βHR PRij PRlk ) = δjl Z
−1 Tr(e−βHR P 1

ik) . (4.23)

Invariance of the Gibbs ensemble under the symmetry groups says

Z−1 Tr(e−βHRP 1
ik) = Z−1 Tr(e−βHRE(P 1

ik)) = 1
d
δik , (4.24)
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so that
ρωTFD
jl,ik = d−1 δikδjl . (4.25)

This state is invariant under conjugation with any unitary transformation operator of
the form

D ⊗D∗ . (4.26)

This is a pure state
S(ω) = 0 , (4.27)

and ωTFD is maximally entangled between the L and R sides in charge space at sufficiently
high temperatures. The second state, namely the state composed with the conditional
expectation, can be computed in similar lines, see section 3.2 in ref. [1]. For a generic
representation of dimension d, in which the irrep r appears Nr times, as in (3.5), so that
d = ∑

r Nr, dr, and defining the relative probability of a given representation to be

qr ≡
Nr dr
d

,
∑
r

qr = 1 , (4.28)

the end result of the computation of ref. [1] is that the relative entropy is given by

SV(ω ◦ E|ω ◦ ε ◦ E) = −
∑
r

qr log qr +
∑
r

qr log d2
r . (4.29)

To obtain the best lower bound in (4.17) we have to maximize the previous result over
the choice of representation. This is easily done. Such quantity is maximized whenever
we have a direct sum of any number of regular representations for which qr = d2

r
G and the

bound becomes
SVregular(ω ◦ E|ω ◦ ε ◦ E) = logG . (4.30)

This is not only the best bound over the choice of subalgebras V, but it is indeed tight
since the entropic order parameter is bounded by above by the same amount. Combining
all the different pieces

logG ≥ SOL∨OR∨{I}(ω|ω ◦ ε) = SFL∨FR(ω ◦E|ω ◦ ε ◦E) ≥ SVregular(ω ◦E|ω ◦ ε ◦E) = logG
(4.31)

we conclude that
SOL∨OR∨{I}(ω|ω ◦ ε) = logG , (4.32)

ending the proof of the conjecture in all its versions, which we now state as a theorem

Theorem. In any quantum field theory with a finite-group global symmetry G, on any
compact spatial manifold at sufficiently high energy the following statements are equivalent
and true

• The density of states of a certain representation r has the following form

ρr(E) = d2
r

|G|
ρ(E) , (4.33)

where ρ(E) is the density of states at energy E.
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• The twisted partition functions are given by

Z(β, g) = Z(β, e) δg,e . (4.34)

• The thermal state has the following decomposition

ρβ −−−→
β→0

⊕r
d2
r

G
ρrβ . (4.35)

• The thermal entropy has the following decomposition

S(ρβ) =
∑
r

d2
r

G
S(ρrβ) + S(pr) , (4.36)

where
S(ρrβ) = S(ρβ) + log d

2
r

G
, pr = d2

r

G
. (4.37)

• The entropic order parameter in the TFD saturates to its maximum value

SOL∨OR∨{I}(ω|ω ◦ ε) = logG . (4.38)

• The entropic disorder parameter in the TFD vanishes

Sτ (ω|ω ◦ ε′) = 0 . (4.39)

To finish this section, notice the behaviour at low temperatures is kind of the opposite.
The density matrix Z−1 e−βHR tends to the projector into the vacuum state and

e−βHR/2V ie−βHR/2 → 0 , (4.40)

so that
e−βHR/2V i(V j)†e−βHR/2 → 1

|G|
δije

−βHR . (4.41)

The correlation function (4.20) then factorizes which means

ρωTFD
jl,ik = 1

|G|2
δijδkl . (4.42)

This is the identity matrix in the subalgebra (a), and it is of course invariant under inde-
pendent left and right averages over the symmetry group. We conclude that at sufficiently
low temperatures the state on the intertwiners is unperturbed by the conditional expecta-
tion and the associated relative entropy vanishes. The disorder parameter then saturates
to its maximum value, as expected since in the vacuum we have 〈τg〉 = 1, or equivalently

Z(β, g) −−−→
β→∞

Z(β, e) . (4.43)

Therefore, as T goes from zero to infinity, the entropic order goes from zero to log |G| while
the entropic disorder goes from logG to zero. There is a priori no critical temperature
for the transition, and indeed it can be smooth. The entropy increases whenever the tem-
perature crosses a threshold in which particles of a given representation become thermally
excited.
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5 Equipartition of entropy in QFT, EE, and the vacuum sector

One face of the above theorem concerns the sector structure of the thermal entropy in
QFT’s with global symmetries, namely the fourth bullet point in the previous theorem.
This is a generalization of the equipartition of entropy, found for vacuum EE for CFT’s with
U(1) symmetry in 1+1 dimension in [6] and in [7, 8] for WZW models. The saturation of
the entropic order parameter generalizes those results to QFT’s in any dimension at finite
temperature and for any finite group. Still, the results of [6–8] were originally framed for
vacuum entanglement entropy, while the previous theorem has been framed as associated
with thermal entropy of charged sectors. In this section we review the connection between
thermal and vacuum sectors, following again ref. [1].

In the DHR approach to global symmetries, together with the reconstruction theorem,
see [10–15, 23], all the properties of the charged sector of the theory can be derived (or
reconstructed) from the vacuum sector alone. The intuitive reason is that, locally, any
charged excitation can be considered neutral in practice. The reason is that we cannot
verify whether it is a charged operator or just one leg of a neutral intertwiner operator, as
in (4.4), where the second charged operator is localized far away. Therefore, at least on
heuristic grounds, if we are seeking to understand the statistics of local charged operators
in a certain state, we might equivalently seek to understand the statistics of intertwiner
operators in the same state. The DHR approach and the reconstruction theorems make
this loose intuition into a precise construction and theorem.

The previous observation means that the origin of the physics associated with the
previous theorem should appear already in the vacuum sector alone. This was put on firm
ground in ref. [1] in the context of EE in the vacuum of QFT’s with global symmetries.
Without going into details, we just mention that several parts of the previous theorem,
namely the saturation of the entropic order parameter to the maximum topological value
logG, the vanishing of the entropic disorder parameter, and the universal value of twisted
partition functions (interpreted in the vacuum sector as expectation values of localized
twists operators), were seen to occur when computing entanglement entropy in the vacuum
and when taking the regularizing distance to zero. This is one of the main results in ref. [1],
see also [22] for a more rigorous derivation within the context of type III algebras. They
constitute yet different equivalent versions of the previous theorem, which is now seen as
being controlled by properties of the vacuum alone.

For example, the universal probabilities d2
r/G, associated with each irreducible local

sector in the vacuum, can be found in eq. (3.72) in ref. [1] and the paragraph that follows
that equation. We conclude that EE is equipartitioned in the same way in the vacuum
(when the regularizing distance goes to zero) as the thermal entropy is in the thermal
ensemble (when the temperature goes to infinity).

Moreover, apart from the previous proof, concerning Cuntz algebras and the regular
representation, in the context of vacuum EE, there is a different, more straightforward,
path to understanding such universality. When considering the symmetry contribution
to the vacuum EE, the appropriate twisted partition functions now become expectation
values of local twist operators. These local twist operators are defined to act as the global
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twists inside the appropriate region but then are rapidly smeared to act as the identity
outside the region. This smearing has a natural non-zero width ε, which is a physical
regularizing distance for the contribution to entanglement entropy, see [1] for many specific
examples. In this scenario, the universality we have been describing above simply follows
from the fact that the expectation value of any bounded operator in QFT goes to zero as its
smearing becomes sharp. In the case of the localized twists, this occurs when the width of
the smearing region vanishes. This limit is then associated with a high-temperature limit
in the TFD. In this limit we again have 〈τg〉 = δg,e, and the probability distribution d2

r/G

follows universally, as mentioned above.
Interestingly, cases with sharp twists and continuous Lie groups can also be considered,

see [1]. In these Lie group scenarios, the equipartition of entropy cannot happen exactly
because there is an infinite number of group of elements and therefore an infinite number
of representations. But it is important to remark that we can verify that all non-trivial
representations are populated, or equivalently, the expectation values of projectors associ-
ated with any irreducible representation of the global symmetry group are non-zero. This
just follows from the fact that the localized twist tends to the continuous group delta func-
tion for continuous groups, see [1]. This is consistent with the general grounds described
in [3, 4]. In particular, it is just a particular instance of the key statement that in QFT
generalized symmetries come in pairs with precisely the same size.

6 Discussion

The objective of this article was to turn the conjecture 1 into a theorem 4, and also
describe all its different facets that had appeared previously in the literature, such as
entropy equipartition and entropic order parameters. In the way, we have seen how the
results of ref. [1] generalize many important aspects to finite and continuous groups and
any dimension.

The proof we have provided is somewhat involved. It mixes aspects of recent devel-
opments of information theory in QFT with not so widely known topics in the context of
QFT’s with global symmetries, namely the existence of Cuntz algebras for any representa-
tion of the symmetry group. One expects that a simpler argument should exist, perhaps
heuristic to some extent but more aligned with the real origin of the phenomenon. In this
final discussion section, we want to present what we believe is such an argument.

This argument is composed of two steps. The first step is something familiar. For
any system, when increasing its temperature, we expect to asymptote to a maximally
mixed density matrix, in which entropy or heat is equidistributed between all degrees of
freedom. In the present case, if all representations begin to be populated at a certain
critical temperature, we expect that this universal regime will be reached for temperatures
much greater than the critical temperature.

The problem with this first step of the argument was described in similar terms in [5]
and in [7]. In the first reference, it was noticed that somehow the density of states is not
partitioned as one could have expected for a maximally mixed density matrix. If we take
into account that the dimension of each irreducible representation is dr, one might expect
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a prefactor of the form dr/
∑
r dr, instead of the correct prefactor d2

r/G. In the second
reference, it was noticed that this strange dependence between entropy and dimensions of
irreducible representations was going beyond the entropy equipartition found previously
for abelian systems.

The second step of the argument solves those concerns. The key point is to notice that
entropy is not equipartitioned between irreducible representations, it is equipartitioned be-
tween degrees of freedom. Whether those two types of equipartition are the same needs to
be clarified, and indeed we argue now they are not. When we think in entropy equiparti-
tion between degrees of freedom, we immediately notice we have to take into account how
reducible representations are populated as well, since, in QFT, the infinite local algebra
will produce them ubiquitously. The same will happen in a many-body quantum lattice
system, in the thermodynamic limit. So the question is what is the dominant representa-
tion (the most populated one) when we are allowed to consider large products of charged
operators. The answer to this question was described in ref. [1],2 where it was noticed that
the regular representation is the only stable limit of the fusion of many representations,3 a
sort of fixpoint or central limit in the fusion. Relatedly, if we have a regular representation
in a maximally mixed state, any tensor product with another state and another represen-
tation, with arbitrary probabilities for the irreducible representations, will give us again
the fractional probabilities d2

r
|G| for the global state.

We conclude that both the universal density of states and the entropy decomposition
found above, are just the natural outcome of the conventional entropy equipartition at
high temperatures. The reason is that it is the regular representation the one dominating
the ensemble of representations in the algebra of a many-body system with a finite global
symmetry group.

From this new understanding, an interesting generalization of the previous theorem to
QFT’s on non-compact spatial manifolds follows. Let us describe this. For non-compact
manifolds, the density of states is infinite, since it will naturally include a volume factor
in its exponent. But we might expect the ratio between the total density of states and the
charged density of states to show some universality as well. Indeed, say we start with a
compact manifold with natural size R. The generalization is then

ρr(E)
ρ(E) −−−→β

R
→0

d2
r

G
. (6.1)

In other words, if we take the non-compact limit, we do not need to heat to arbitrarily
high temperatures. Any finite temperature will do the job within the infinite size limit.
The reason is that, for any non-vanishing temperature, a Gibbs distribution has some
non-vanishing probability of having the regular representation. If we have a big space
this regular representation will appear again in many places. This is of course a heuristic

2A similar argument recently appeared in [5].
3In the TFD, as we proved above, we can then select charged operators in the regular representation

together with the anticharges at the other side of the thermofield double to form neutral operators which
are in a maximally entangled state at high temperature. Tracing out one of the QFT’s leaves that regular
algebra in a maximally mixed state.
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argument. To make it precise we notice that in the non-compact scenario, the previous
equation can be better completed as

ρr(E)
ρ(E) −−−→β

R
→0

d2
r

G
= Tr (ρβ Pr) , (6.2)

where Pr are the projectors into the irreducible representations defined in the introduction.
We can then consider the TFD state again. As in the previous theorem, if we prove the
entropic disorder parameter vanishes then we are done. Equivalently, we can prove the
entropic order parameter saturates to its maximum value logG. In a TFD in which we do
not make the temperature go to infinity, the previous argument does not hold, because the
correlations will be smaller between the two sides. But if we have a large space, we can use
the results of ref. [3], section 3.3. Basically, instead of one regular representation smeared
over a certain region in both left and right QFT’s, we can put many of those representations
located far away from each other. This can be done when the spatial manifold grows in
size. Then, for any non-vanishing correlation between the two sides of the TFD, and if we
are allowed to locate a sufficient number of smeared operators well separate between each
other, ref. [3] shows that the entropic order parameter saturates to its maximum value
again. An illuminating example of this is the computation of entanglement entropy in
ball-shaped regions performed in [1]. For CFT’s this can be mapped to a thermal state
at fixed temperature in hyperbolic space. Still, even at fixed (and indeed relatively low)
temperature, since the volume of the hyperbolic space is infinite, one obtains by direct
computation that the entropic order parameter satures to its maximum value.
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