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1 Introduction

There is a wealth of evidence that quantum gravity in anti-de Sitter (AdS) spacetime
is holographic, meaning that consistent theories of quantum gravity in AdS are dual
to conformal field theories (CFTs), which in a sense live on the conformal boundary of
AdS spacetime. This is the AdS/CFT correspondence [1]. Our understanding of these
holographic dualities largely comes from string theory examples of AdS/CFT, the best
studied example being the duality between maximally supersymmetric SU(N) gauge theory
in four dimensions and type IIB string theory on AdS5 × S5. In holographic dualities, we
may understand the radial direction of AdS and the fluctuations of the gravitational field
as emerging from the CFT. Indeed, the only known non-perturbative definition for AdS
quantum gravity is through a dual CFT when it exists.

Much less is known about quantum gravity in de Sitter (dS) space, conspicuously
relevant to our existence. While there is reason to believe that consistent theories of
quantum gravity are always holographic, even in de Sitter, we have much less evidence
for holographic duality in dS than in AdS. The basic problem is that there are very few
examples of stable dS quantum gravity to work with. The KKLT construction [2] (see [3]
for some recent comments) leads to metastable de Sitter vacua, for which it is not yet clear
how to formulate a holographic correspondence. There is a positive cosmological constant
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version of Vasiliev theory in four dimensions [4, 5], but that model is far from traditional
Einstein gravity. In the absence of tractable examples there are rather basic questions
about de Sitter quantum gravity that remain unanswered. For example, do we sum over
complex metrics, like the Hartle-Hawking geometry? Is there a preferred quantum state of
our universe, such as the no-boundary proposal?

Questions also abound for de Sitter holography. The question of what de Sitter
holography is even supposed to mean does not have an agreed upon answer, as evidenced
by distinct notions of dS holography in the literature, e.g. [6–9]. Perhaps the best-known
one is what is usually called the “dS/CFT correspondence” [7], whereby quantum gravity
in an inflating patch of de Sitter is dual to a non-unitary CFT on its future boundary. The
best understood example of dS/CFT is the duality [10] between Vasiliev theory in dS4 and
the singlet sector of an Sp(N) vector model. However, one expects there to be a nonzero
probability to nucleate a baby universe in dS gravity, and it is not clear how this can be
accommodated on the CFT side of the dS/CFT framework. Another approach is called the
“dS/dS correspondence” [9]. The original form of that conjecture is that de Sitter quantum
gravity in d+ 1 dimensions is dual to two cutoff CFTs in d dimensions, coupled together by
joint sources, in addition to d-dimensional gravity with positive cosmological constant. This
proposal has been significantly refined in the years since it was made [11, 12], with some
non-trivial tests [12]. Lastly, there is the viewpoint of Witten [8], which is that in de Sitter
holography we should consider processes between any initial state at past infinity and any
final state at future infinity, and that the output of this analysis is a Hilbert space of states.

In this article we study one of the simplest theories of de Sitter quantum gravity in
detail, namely Jackiw-Teitelboim or JT gravity [13, 14] with positive cosmological constant.
JT gravity has been the subject of enormous recent attention, beginning with [15–18],
almost entirely with negative cosmological constant and with applications for near-extremal
black holes or the Sachdev-Ye-Kitaev model [19, 20] in mind. Here we build off previous
work [21, 22] on the de Sitter version of the model (see also [23]) and are repurposing it to
reliably study quantum cosmology and de Sitter holography.

JT gravity, being a model in two spacetime dimensions, has no propagating gravitons.
However, it shares many features with higher-dimensional gravity, while being simple enough
for us to perform concrete (and sometimes non-perturbative) computations. The model has
boundary modes (an analogue of edge modes in the quantum Hall effect), moduli, and a
sum over topologies. JT gravity has two coupling constants: the first is the gravitational
coupling G, and the second a genus expansion parameter e−S0 . The weak coupling limit
is G, e−S0 � 1. The gravitational coupling suppresses fluctuations of boundary modes,
while fluctuations in topology are suppressed by powers of e−S0 . For our purposes, the
appealing feature of JT gravity is that we can evaluate its path integral non-perturbatively
as a function of G and recursively to any desired order in e−S0 , and the resulting genus
expansion is an analytic continuation of the recently computed genus expansion for JT
gravity in Euclidean AdS [24].

What about the holographic dual of JT gravity? As noted by [24], the genus expansion
of JT gravity in Euclidean AdS coincides with that of a particular double-scaled matrix
integral. By a similar analysis [22], we learn that the de Sitter genus expansion is also

– 2 –



J
H
E
P
1
2
(
2
0
2
1
)
0
8
9

computed by this matrix model, and so the holographic dual of de Sitter JT gravity is
a matrix integral. This duality is striking. The gravitational model is 1+1-dimensional,
while on the matrix side we have a classical integral, and so are in 0+0 dimensions. In
the present work, we analyze precisely how both time and space emerge from the matrix
model. Furthermore, since the dual is not a CFT, nor a CFT coupled to gravity, nor
a Hilbert space, this example of de Sitter holography does not appear to neatly fit into
historical expectations.

As we discuss, our results appear to be most closely aligned with Witten’s expec-
tations [8] for de Sitter holography. The de Sitter path integral may be understood as
a transition amplitude between states prepared by the boundary conditions in the far
past and far future. In this work we focus on the quantum mechanics encoded in these
amplitudes. Specifically, we show that (i) non-perturbatively in G and to all orders in the
genus expansion, the space of asymptotic states is a Hilbert space with a non-negative norm;
(ii) this norm is computed by a non-trivial path integral over large diffeomorphisms and
an integral over moduli; and (iii) there is an infinite-time evolution operator from the far
past to the far future, and this evolution operator is not unitary. However, (iv) to leading
order in the genus expansion and exactly as a function of G, the evolution operator acts as
a projector, annihilating some states and as the identity on the rest. In other words the
evolution operator acts unitarily on a subspace of states. We will comment on the physics
of this result in a moment. Finally, (v) unitarity is further broken at subleading order by
non-perturbative effects (perturbative in powers of e−S0) corresponding to processes which
change the topology of constant time slices. These include the creation and annihilation of
baby universes.

Let us discuss the leading order result. Each component of the boundary is endowed
with an edge mode, which can carry some momentum, and we can label states by this
momentum. Semiclassically, initial states with positive momentum evolve into a smooth de
Sitter space, while states with negative momentum contract and eventually “crunch” at
some finite time, after which the space inflates smoothly into the future. At leading order
in the genus expansion evolution simply acts as the identity on positive momentum states,
and annihilates negative momentum states.

At first glance the violation of unitarity is jarring, but with the last paragraph in mind,
the leading order violation has a clear probabilistic interpretation. We can set up initial
conditions that lead to a “crunch,” and these have zero probability to propagate to the
future, while other initial conditions evolve unitarily. We also stress that JT gravity is
not a manifestly unitary model, so we had no right to expect unitary evolution in the
first place. In fact, there is some evidence [24] that JT gravity is equivalent to a non-
unitary minimal string. From this point of view, the approximate emergent unitarity is an
interesting surprise.

We also study how this emergent Hilbert space and approximately unitary evolution
emerge from the dual matrix integral. Surprisingly, the mechanism in the matrix integral
which gives rise to both features is rather robust and universal, namely it follows from the
combination of the nearest-neighbor level repulsion of eigenvalues along with the double-
scaling limit. So there is a precise sense in which double-scaled matrix integrals lead to
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theories of two-dimensional de Sitter quantum gravity. We also understand the breakdown
of bulk unitarity in terms of the physics of the matrix model. In essence, the violations of
unitarity come from the low but nonzero likelihood of eigenvalues being measured outside
the matrix model cut. Along the way we show that the no-boundary state of the model is
non-normalizable, and present some evidence that the Hilbert space of asymptotic states is
infinite-dimensional.

The paper is organized as follows. In section 2 we review the de Sitter version of JT
gravity, parameterize the space of asymptotic states, and translate the results of [21, 22] into
a genus expansion for transition amplitudes between asymptotic states. Then in section 3
we obtain the inner product on the space of asymptotic states, which we find to be a
Fock space. The bulk quantum gravity hands us a preferred operator, the infinite-time
evolution operator from the asymptotic past to the asymptotic future, and the second is
the momentum stored in the boundary modes. We then assess the evolution operator, and
show that it acts unitarily on a subspace up to non-perturbative corrections. We continue
in section 4 where we show how all of these features arise from rather general considerations
in the dual matrix integral. We conclude with a discussion of our results for JT gravity and
matrix integrals in section 5, and comment on which aspects of our analysis we expect to
generalize to higher-dimensional de Sitter gravity.

2 Nearly dS2 gravity

2.1 Some review

Let us briefly review Jackiw-Teitelboim (JT) gravity with positive cosmological constant
(see [21, 22]). Its action is, up to a boundary term,

S = S0χ+ 1
16πG

∫
d2x
√
−g ϕ(R− 2) . (2.1)

The field content is a metric gµν and a dilaton ϕ. Here χ = 1
4π
∫
d2x
√
−g R+ 1

2π
∫ √

hK, the
parameter e−S0 � 1 controls the genus expansion, and we have normalized the cosmological
constant to unity. The model has “nearly” dS2 solutions, in which the spacetime is global
dS2 supplemented with a dilaton profile. There is a two-dimensional family of classical
trajectories,

ds2 = −dt2 + α2 cosh2 t dΨ2 , Ψ = θ + γf(t) ,
ϕ = a sinh t ,

(2.2)

where θ ∼ θ + 2π, γ ∼ γ + 2π, α ≥ 0, and a is a constant. Also, f(t) is any smooth
function obeying limt→±∞ f(t) = ±1

2 . The geometry has a minimal length geodesic at
time t = 0 around the circle of length 2πα, and γ indexes a “twist” of the future circle
relative to the past circle. The analogue of the static patch has a cosmological horizon with
Bekenstein-Hawking entropy 2S0 .

More generally, one integrates over configurations that respect nearly dS2 boundary
conditions, which characterize the boundary in terms of a signed renormalized length `. This

– 4 –



J
H
E
P
1
2
(
2
0
2
1
)
0
8
9

includes an integral over real values of the dilaton and, when the spacetime is a cylinder,
over real metrics. To define the appropriate boundary conditions, we introduce a cutoff
slice close to past and future infinity, with the slice approaching infinity as ε→ 0. We then
fix the induced metric and dilaton on the slice to be

dS2 ≈
(
β

2π

)2 dθ2

ε2 , ϕ ≈ ± 1
Jε

, (2.3)

where ± refers to whether one is approaching future or past infinity. In other words, the
asymptotic circle has a renormalized length β, and the dilaton goes to a constant J which
can be positive or negative. One of the results of [22] was that partition functions only
depend on β and J through the combination ` = βJ , which may be positive or negative.
Accordingly we no longer consider β and J , but only the signed length `.

We may also allow the boundary to have multiple circles, and near each we enforce
the boundary conditions (2.3), allowing different `’s for each boundary. The classical
solutions (2.2) all have the property that `future = `past.

On a genus g surface with m future boundaries and n past boundaries, χ evaluates
to −i times the topological Euler characteristic, χ = i(2g +m+ n− 2); the factor of −i
arises from a continuation to complex time. Integrating out the dilaton, one has a residual
integral over the moduli space of constant curvature metrics. This moduli space includes
a reparameterization mode on each boundary component as well as moduli. The action
of the reparameterization mode is a Schwarzian action [16–18, 25], and its path integral is
one-loop exact [25] in G. As a result, one may exactly evaluate the JT partition function
Zg,n,m on a genus g surface with n future boundaries and m past boundaries.

JT gravity is time-reversal symmetric, and time-reversal symmetry T will play a key
role in our work: parity and charge conjugation act trivially and so CPT acts as T. While
the metric (2.2) of global nearly dS2 space is symmetric under T, the dilaton profile is
antisymmetric. It is for this reason that we introduced the ± into the dilaton part of the
nearly dS2 boundary condition, so T maps a past circle with some ` to a future circle with
the same `.

The simplest JT partition function is that of the disk. Suppose we anchor the boundary
of the disk at future infinity with some `. The result for the disk partition function is [21, 22]

Z0,1,0(`) = eS0 e
πi

4G`
√

2π(−2i`)3/2 . (2.4)

There is also a time-reversed disk, anchored to a circle at past infinity, with Z0,0,1(`) =
Z0,1,0(`)∗. Similarly one may evaluate the annulus amplitude, which includes an integral
over the global dS2 solutions and their moduli. The result is [22]

Z0,1,1(`, `′) = i

2π

√
`
√
`′

`− `′ + iε
. (2.5)

Note that this result is T-symmetric, with Z0,1,1(`, `′) = Z0,1,1(`′, `)∗. Beyond the disk and
annulus, there is significant evidence [22] that Zg,n,m is an analytic continuation of the
partition function Zg,m+n of JT gravity in Euclidean AdS on a genus g surface with m+ n

boundaries, recently obtained in [24].
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2.2 What are we computing?

With this machinery in hand we can begin to study the observables of de Sitter JT gravity.
Before doing so, it is worthwhile to go back to the more familiar setting of quantum gravity
in Euclidean AdS. There, the observables are path integrals over fields in AdS, performed
with fixed boundary conditions at conformal infinity. These boundary conditions include
the behavior of the metric near infinity, which we usually fix to be “asymptotically AdS.”
By the AdS/CFT correspondence the bulk path integral is mapped to a CFT path integral,
and in fact the CFT gives us the only known non-perturbative definition for AdS quantum
gravity. The bulk has additional, emergent spatial dimensions relative to the dual CFT.

What about quantum gravity in de Sitter space? As noted by Witten [8], the observables
are path integrals over fields in dS with fixed boundary conditions at past and future infinity.1

These are the de Sitter analogues of the usual AdS boundary conditions, which include the
conformal class of the metric at infinity. However, here we encounter a departure from the
usual situation in Euclidean AdS, where we have a single boundary component and a single
dual CFT.2 In de Sitter the classical trajectory has multiple boundaries, one in the past
and one in the future, and in the quantum theory there does not seem to be an obstruction
to summing over geometries with an arbitrary number of boundary components.

The conformal boundary of de Sitter is spacelike, and so the de Sitter path integral with
these boundary conditions may be interpreted as a transition amplitude: the overlap 〈f |i〉
of an initial state |i〉, specified by the past boundary condition, with a similarly prepared
future state 〈f |. We refer to these states as “asymptotic.” We would like to interpret
this amplitude as a matrix element of the infinite evolution operator from past to future,
〈f | Û |i〉. However, it has not been clear how to separately form an inner product on the
vector space of asymptotic states. Without such an inner product, all one seems to have
are vector spaces of past and future asymptotic states, and a pairing between initial states
and final states induced by bulk time evolution. Witten observed that one may use bulk
CPT symmetry Θ to construct a Hermitian inner product using the evolution operator,
through (i, j) = 〈Θj| Û |i〉. So one may trade the evolution operator for a norm, but the
upshot is that one then gets a Hilbert space of asymptotic states.

One of the points of this paper is that one can do better, at least for JT gravity and
some generalizations thereof. The asymptotic states of nearly dS2 JT gravity are labeled
by the number of boundary circles, and by a signed length `i for each boundary. Time
reversal maps past states to future states. In the next section we describe a variant of the
de Sitter path integral which computes the inner product between two such states. So the
space of asymptotic states is in fact a Hilbert space, and time reversal gives us a canonical
isomorphism between the past and future Hilbert spaces. Moreover, the inner product

1These are not observables in the ordinary sense, since they are not accessible to a single bulk observer
due to the inflationary expansion of dS. However, they ought to be computable in a holographic dual.

2Of course, there is an old question of whether or not one should sum over Euclidean wormholes (i.e.,
geometries which connect multiple asymptotic regions) in Euclidean gravity. At least for JT gravity, the
integral over wormhole geometries is sensible and can be mapped to a holographically dual matrix integral [24].
The status of Euclidean wormholes for string theory on AdS is less clear, see e.g. [26, 27].
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is both non-degenerate and non-negative. With this inner product, we may study Û and
assess whether or not it is unitary.

Earlier we displayed the results for the disk and annulus partition functions of de Sitter
JT gravity. Here we discuss what these results mean in terms of matrix elements of the
evolution operator, which we will temporarily call Û0 . The disk has a single future circle
and no past asymptotic region. The geometry smoothly caps off in the bulk. The standard
interpretation is that the smooth cap prepares a state in the bulk Hilbert space at some
intermediate time, the no-boundary state, and the disk computes the leading contribution
to the Hartle-Hawking wavefunction of the universe in this state,

ΨHH(`) ' Z0,1,0(`) +O(e−S0) . (2.6)

The corrections come from higher genus geometries. This wavefunction is the overlap

ΨHH(`) = 〈`|HH〉 , (2.7)

where |HH〉 is the no-boundary state, evolved to the infinite future so that it becomes a
superposition of asymptotic states. At this stage |HH〉 is not normalized, and it is not clear
if |HH〉 is normalizable or not, since the 〈`|’s have not yet been orthonormalized. We will
see in the next section that |HH〉 is non-normalizable. Because the unnormalized state |HH〉
is well-approximated by the disk partition function, it is of order eS0 .

Now consider the simplest matrix element of Û0 , between a 1-boundary state |`′〉 in
the past and a 1-boundary state 〈`| in the future. It is

〈`| Û0 |`′〉 ' Z0,1,0(`)Z0,0,1(`′)+O(e0×S0) ' 〈`|HH〉 〈HH|`′〉+Z0,1,1(`, `′)+O(e−2S0) . (2.8)

The leading contribution, of O(e2S0), comes from a sum over geometries with the topology
of two disconnected disks, which we can think of as describing the likelihood for the past
universe to disappear and for the future universe to bubble. The second term is the annulus
amplitude, of O(e0×S0), and the third term comes from higher genus geometries.

Because the no-boundary state |HH〉 is non-normalizable, the evolution operator Û0
(defined through the sum over all geometries) therefore takes normalizable states to non-
normalizable states. In order to afford a putative probabilistic interpretation, we therefore
define the evolution operator Û by projecting out the no-boundary state,

Û ≡ Û0 − |HH〉 〈HH| . (2.9)

The matrix elements of Û between 1-boundary states are computed by the annulus amplitude
plus genus corrections,

〈`| Û |`′〉 ' Z0,1,1(`, `′) +O(e−2S0) , (2.10)

which come from higher genus spaces which connect the past circle to the future circle.
More generally, matrix elements of Û are computed by the sum over geometries which

connect past infinity to future infinity. This feature is crucial: it precludes the disk, although
it does not forbid disconnected spacetimes. For example, consider the transition between
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Figure 1. The transition amplitude 〈`1, `2| Û |`′
1, `

′
2〉 is a sum over geometries which connect two

circles at past infinity with two circles at future infinity. At leading order in the genus expansion,
the amplitude is a sum of two terms, analogous to Wick contractions, as given in eq. (2.11). The
dots indicate subleading terms in the genus expansion. Each boundary circle is “wiggly,” on account
of the Schwarzian reparameterization mode living on it.

the past state |`′1, `′2〉 and future state 〈`1, `2|. See figure 1. The overlap approximately
factorizes in the genus expansion as

〈`1, `2| Û |`′1, `′2〉 ' 〈`1| Û |`′1〉 〈`2| Û |`′2〉+〈`1| Û |`′2〉 〈`2| Û |`′1〉+O(e−2S0)
'Z0,1,1(`1, `′1)Z0,1,1(`2, `′2)+Z0,1,1(`1, `′2)Z0,1,1(`2, `′1)+O(e−2S0) ,

(2.11)

and each of the two terms shown is (approximately) the partition function on two dis-
connected annuli. Because we sum over geometries which connect past to future, we do
not include a third term at O(e0×S0), namely Z0,2,0(`1, `2)Z0,0,2(`1, `′2). This term would
correspond to a disconnected product of two annuli, one which glues the two future circles
while smoothly capping off in the interior, and another which does the same for the two
circles in the past.

We denote the most general matrix element of Û as

〈`1, . . . , `n| Û |`′1, . . . , `′m〉 ' Zn,m(`i, `′j) , (2.12)

where |`1, . . . `m〉 is the state prepared by m asymptotic circles with parameters `1, . . . `m ,
|`′1, . . . , `′n〉 is defined similarly, and Zn,m is the formal power series given to us by the sum
over geometries which connect n future circles to m past circles in the genus expansion.
For example, Z1,1(`, `′) =

∑∞
g=0 Zg,1,1(`, `′). We write '’s in these expressions because the

genus expansion is asymptotic.

3 Asymptotic Hilbert space and infinite evolution

In the last section we explained how the de Sitter JT path integral computes transition
amplitudes from states in the asymptotic past to states in the asymptotic future. These
states were characterized by the number of connected components of the future or past
boundary, and by a signed length `i for each component. Here, we sharpen our understanding
by studying the quantum mechanics underlying these amplitudes. In particular, we would
like to answer the following questions: what is the Hilbert space of asymptotic states? What
is the inner product on the space? What is the bulk interpretation of operators which act on
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this space? Is infinite-time evolution unitary? Is the no-boundary state normalizable? We
begin by re-examining the simplest amplitudes, from 1-boundary states to 1-boundary states,
and recast this into the language of single-particle quantum mechanics. Then we consider
the multiple-boundary case, and extend our analysis to a third-quantized framework.

3.1 One past boundary and one future boundary

Consider again the amplitude 〈`| Û |`′〉 to transition from a 1-boundary state with `′ in the
past to a 1-boundary state with ` in the future. Recall that ` is defined in terms of the
nearly dS2 boundary condition (2.3) as ` ≡ βJ , where β is the renormalized length of the
circle at infinity and J determines the asymptotic growth of the dilaton. The renormalized
length is non-negative, but the dilaton can be of either sign, and so ` can taken on any real
value: it is a renormalized, signed length of the boundary. At this stage in our analysis we
only have a vector space of asymptotic states |`〉P in the past and a vector space of dual
states F 〈`| in the future; the vector spaces are not yet Hilbert spaces, since we do not have
an inner product. We denote these spaces as

H1-bdy
P ' span{|`〉P }`∈R , H1-bdy,∗

F ' span{F 〈`|}`∈R . (3.1)

Before examining Û , we will first demonstrate that these spaces are in fact canonically
isomorphic Hilbert spaces. We do so by first using the JT path integral to obtain an inner
product on H1-bdy

P and H1-bdy
F , and then using bulk time-reversal to map past to future.

In ordinary quantum mechanics we may consider use the path integral to compute
matrix elements of the finite-time evolution operator, i.e. the propagator, via

〈xf | Û(tf , ti) |xi〉 =
∫

[dx(t)]x(tf )=xf
x(ti)=xi e

iS[x] . (3.2)

The initial and final states are implemented by boundary conditions on x(t). Since
limtf→ti Û(tf , ti) = 1, it follows that we may use the path integral to compute the in-
ner product 〈xf |xi〉 by simply taking the limit of the path integral as tf → ti. This
computation is effectively classical, and the path integral is dominated by the straight-line
trajectory, x(t) = xi + t−ti

tf−ti (xf − xi).
We would like to adapt this procedure to JT gravity. The catch is that in a theory of

gravity we cannot access the finite-time path integral. The standard path integral is the
one where the initial time is in the asymptotic past, ti → −∞, and the final time in the
asymptotic future, tf → +∞. However, this is not the only option: the gravitational path
integral is sensible as long as the initial and final times are asymptotic, and so we can just
as well send them both to the asymptotic past, or to the asymptotic future. We then define
P 〈`|`′〉P to be the path integral in the asymptotic past with tf , ti → −∞, and F 〈`|`′〉F to
be the corresponding integral in the future.

To leading order in the genus expansion we are integrating over annuli, patches of
dS2 spacetime that connect two circles in the asymptotic past. The circle with length
`′ prepares the initial state, and so on that circle we impose the “past” version of the
nearly dS2 boundary conditions (2.3), while on the other circle with length ` we impose
the “future” version of the nearly dS2 boundary conditions. The computation of this path
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Figure 2. The inner product 〈`|`′〉 is a sum over patches of spacetime in the asymptotic past. This
patch runs between a circle with renormalized signed length `′, on which we impose the past version
of the nearly dS2 boundary conditions (2.3), and another circle with ` on which we impose the
future version of the nearly dS2 boundary conditions.

integral is rather similar to that of the annulus partition function described in detail in [22].
See figure 2. Let us first present the result and then explain where the pieces come from.
We find

P 〈`|`′〉P '
∫ ∞
−∞

db2

4G

∫ 2π

0
dγ ZT (`, b2)ZT (`′, b2)∗ +O(e−2S0) , (3.3)

where
ZT (`, b2) =

∫ [df(θ)]
Û(1)

exp
(

i

4G`

∫ 2π

0
dθ

(
{f(θ), θ} − b2

2 f
′(θ)2

))
, (3.4)

is the path integral over the Schwarzian mode on the “future” circle, and its complex
conjugate ZT (`′, b2)∗ is the path integral over the Schwarzian mode on the “past” circle.
The parameters b2 and γ label the moduli of the annulus, with b2 related to α2 in eq. (2.2)
as b2 = −α2. The measure over b and γ is the Weil-Petersson measure which can also be
obtained from a gravitational computation [22, 24]. This is nearly the same integral that
computes the annulus partition function, which is given by the same integrand but over the
domain b2 ≥ 0. To understand why we integrate over all b2, consider again the metric on
global dS2, which in the asymptotic past reads

ds2 = −dt2 +
(
e−2t − b2 +O(e2t)

)
dθ2 .

So as t→ −∞, we get a smooth spacetime for any real value of b2, and we integrate over
all possible values.3 The Schwarzian path integral ZT is one-loop exact, with

ZT (`, b2) = 1√
−4πi`

e−
iπb2
4G` , (3.5)

3For the global dS2 partition function, the minimal length of the spatial circle is 2πα and so naively we
integrate over all α2 ≥ 0. However the one-loop determinant has wrong-sign modes for |α| > 1, and so we
define the Schwarzian path integral in that region by continuation from the domain of positive b2. In that
domain the future integral converges with an iε prescription for `, namely `→ `+ iε, and the past converges
with `′ → `′ − iε. It remains to perform the moduli space integral, but when it is done over positive α2,
the integral converges with the opposite iε prescription. So we must perform a second continuation, thus
obtaining the correct iε prescription. Alternatively, we can define the moduli space integral by instead
integrating over positive b2, which converges with the right iε prescription. Either way leads to the same
answer for the annulus partition function (2.5). We are performing a similar procedure in writing the inner
product (3.3) as an integral over b2.
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from which we find
P 〈`|`′〉P '

√
`
√
`′δ(`− `′) +O(e−2S0) . (3.6)

By renormalizing the states as |`〉P → |`〉P /
√
`, we obtain the delta function normalization

P 〈`|`′〉P ' δ(`− `
′) +O(e−2S0) . (3.7)

A similar computation holds for H1-bdy
F , with the same inner product, as guaranteed by

time-reversal symmetry. In fact, since time-reversal maps the past nearly dS2 boundary
condition with some ` to the future nearly dS2 boundary condition with the same `, we
see that combined with the inner product, time-reversal gives us a canonical isomorphism
|`〉P ←→ |`〉F and so we can simply drop the P and F subscripts in what follows.

What are the genus corrections to the inner product? Now we borrow a result from
previous work [21, 22]. In the JT path integral the dilaton enforces a constant curvature
constraint, R = 2. However, there are no smooth higher genus metrics with constant
positive curvature. So one has to define the JT path integral on a higher genus surface with
some prescription. One can analytically continue from the Euclidean AdS version of JT
gravity, as in [21], or exploit a topological gauge theory formulation of JT gravity, in which
one is integrating over smooth flat connections on a higher genus surface [22]. There is
significant evidence summarized in [22] that both points of view lead to the same partition
functions. Either way, there are higher genus contributions to the path integral, which
may be thought of as constrained complex-time instantons. These surfaces are composed
of asymptotic annuli glued to an intermediate higher genus surface in the “middle” of the
spacetime, infinitely far from the boundary. As a result, in computing 〈`|`′〉 where we are
integrating over surfaces near conformal infinity, the only surface which contributes is the
annulus. And so we have

〈`|`′〉 '
√
`
√
`′ δ(`− `′) + (non-perturbative in e−S0) . (3.8)

The potential non-perturbative corrections are best called “doubly non-perturbative,” since
the genus expansion is already a sum over non-perturbative contributions to the path integral.

In the remainder of this subsection we are interested in de Sitter physics within the
genus expansion, and so henceforth we work with the normalized 1-boundary states.

Now that we have the inner product, let us reexamine the Hartle-Hawking wavefunction
of the no-boundary state |HH〉 in terms of normalized 1-boundary states. From (2.4) it is

〈`|HH〉 ' Z0,1,0(`)√
`

+O(e−S0) = eS0 e
iπ

4G`
√

2π `2 (−2i)3/2 +O(e−S0) , (3.9)

where now the 1-boundary state 〈`| is normalized. The genus corrections have an absolute
value which is regular at small `, and so this divergence is not ameliorated by the genus
expansion. As a result, the Hartle-Hawking wavefunction, which expresses the no-boundary
state as a superposition of asymptotic states, is non-normalizable to all orders in the genus
expansion. It is for this reason that we define the infinite-time evolution operator Û as
in (2.9) by projecting out the no-boundary state.
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Figure 3. The basic observable of de Sitter JT gravity is the annulus partition function, Z0,1,1(`, `′),
the path integral over global nearly dS2 space and metric/dilaton configurations connected to it.
Properly normalized it gives the leading expression for the infinite-time evolution operator in (3.13).

Next we may consider the transition amplitude between normalized 1-boundary states.
It is

〈`| Û |`′〉 ' Z0,1,1(`, `′)√
`
√
`′

+O(e−2S0) = i

2π
1

`− `′ + iε
+O(e−2S0) . (3.10)

This amplitude is the basic observable of de Sitter JT gravity. See figure 3. We may regard
it as the “free” propagator of a universe. Indeed, recalling that the classical de Sitter
solution has ` = `′, we see that the divergence of this amplitude coincides with when the
universe goes on-shell.

This amplitude is emergent under a seemingly emergent “translation” symmetry `→
`+ c, `′ → `′ + c. So it is natural to define a “momentum” p conjugate to ` and to work in
momentum space. We define p to have opposite its usual sign. The momentum eigenstates

|p〉 = 1√
2π

∫ ∞
−∞

d` eip` |`〉 (3.11)

are orthonormal in the genus expansion, and in terms of them we have

〈p| Û |p′〉 ' Θ(p) δ(p− p′) +O(e−2S0) , (3.12)

where Θ(p) is the Heaviside step function. Clearly we may define canonically conjugate
Hermitian operators ˆ̀and p̂, i.e. [ˆ̀, p̂] = −i, on the space of 1-boundary states via ˆ̀|`〉 = ` |`〉
and p̂ |p〉 = p |p〉. We will return to the physical meaning of these operators shortly. In
terms of p̂ we see that infinite-time evolution operator Û acts on the space of 1-boundary
states as

Û ' Θ(p̂) +O(e−2S0) . (3.13)

So up to non-perturbative corrections, Û acts as the identity4 on negative momentum states
and annihilates positive momentum states. Said another way, to leading order in the genus

4Time-reversal symmetry guarantees that the infinite-time evolution operator Û is Hermitian. If there is
a subspace S on which Û acts unitarily, then on that subspace 1S = Û†SÛS = Û2

S , so that the eigenvalues of
ÛS are ±1.
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expansion, negative momentum initial states are “unstable”: they have zero likelihood of
evolving into a de Sitter universe and propagating to the future. This gives one of our main
results, that Û acts unitarily up to genus corrections on the subspace of positive momentum
states. Later in this section we will see that the genus corrections lead to distributional
terms in Û at p = 0, and so momentum eigenstates with p > 0 evolve unitarily to all orders
in the genus expansion.

Let us make a comment which we will return to in section 4. The annulus partition
function Z0,1,1 can be written as

Z0,1,1(`, `′) =
√
`
√
`′
(
i

2π PV 1
`− `′

+ 1
2 δ(`− `

′)
)
. (3.14)

Indeed, the inner product of 1-boundary states 〈`|`′〉 '
√
`
√
`′ δ(`− `′) equals the singular

discontinuity in Z0,1,1 as one takes the imaginary part of ` from negative to positive. This
is a consequence of the fact that the path integral which computes the overlap is essentially
the same one that computes Z0,1,1 , except the domain of integration is over all b2 instead
of b2 ≥ 0. So in hindsight we can infer the inner product from the divergence in Z0,1,1 .

Now we return to the geometric interpretation of the operators ˆ̀ and p̂. The observable
ˆ̀measures the signed length of the boundary, but what of p̂ ? To answer this question, it is
helpful to return to the JT path integral which computes the unnormalized overlap 〈`|`′〉 :

〈`|`′〉 '
∫ ∞
−∞

db2

4G

∫ 2π

0
dγ (3.15)

×
∫ [df1][df2]
Û(1)× Û(1)

e
i

4G`

∫ 2π
0 dθ

(
{f1(θ),θ}− b

2
2 f
′
1(θ)2

)
− i

4G`′
∫ 2π

0 dθ

(
{f2(θ),θ}− b

2
2 f
′
2(θ)2

)
.

Now, each Schwarzian action is invariant under θ → θ + δ, the rotational symmetry of
each asymptotic region. Translations along the past circle are generated by the momentum
stored in the past Schwarzian mode5

R′ = 1
4G`′2

(
{f2(θ), θ} − b2

2 f
′
2(θ)2

)
. (3.16)

There is a similar expression for the momentum R of the future Schwarzian mode. p̂ acts
to the right on the normalized overlap as i ∂∂`′ (recall that we define p̂ to satisfy minus
the canonical commutator, [ˆ̀, p̂] = −i) and therefore acts on the unnormalized overlap as
i
√
`′ ∂∂`′

1√
`′
. (It acts to the left as −i

√
` ∂∂`

1√
`
.) Acting on (3.15), we see that p̂ inserts a

factor of R′ − i
2`′ into the JT path integral. Evidently quantum effects imply that R′ is

not promoted to a Hermitian operator in the quantum theory, but the linear combination
R′ − i

2`′ is. We define the operator R̂ by this Hermitian combination so that p̂ = R̂. The
“momentum” canonically conjugate to ˆ̀ is in fact the momentum contained in the boundary
Schwarzian mode.

With this result in hand we can understand the fact that negative momentum states
have ∼ 0 survival probability. Classically, we obtain a de Sitter space by gluing two

5We are normalizing the generators of rotations as one usually does in the Schwarzian theory, where we
use ` to put the Schwarzian model on a circle with τ ∼ τ + |`|, with R generating the translation τ → τ + ε.
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asymptotic regions each characterized by the same α2 = −b2. These spaces are non-singular
when α2 > 0, for which the spacetime has the same of a hyperboloid and the minimal
length geodesic around the bottleneck has a length 2π|α|. However there are also singular
spaces when α2 < 0, for which the spacetime has the shape of two cones with cone angles
2π|α| glued together at the tips. These latter spaces are the JT analogue of crunching
cosmologies, although JT gravity does not allow spacetime to simply end at the crunch,
instead it inflates again to the future.

In the classical approximation the smooth geometries are characterized by equal positive
momenta ∼ α2 in the past and in the future, while the crunching geometries are characterized
by equal negative momenta in the past and future. So semiclassically we expect for Û to
act unitarily on positive momentum states, and to annihilate negative momentum states,
and indeed this is exactly what we find. What is surprising is that this is true beyond the
semiclassical approximation, non-perturbatively as a function of G.

Let us take stock of the structure we have found so far. We have Hilbert spaces
of canonically isomorphic 1-boundary asymptotic states H1-bdy

P and H1-bdy
F . The |`〉’s

give an orthonormal basis on these spaces. Each Hilbert space is also furnished with
canonically conjugate operators ˆ̀ and p̂, which act like the usual position and momentum
operators. ˆ̀ measures the signed length of the boundary, and p̂ generates asymptotic
rotations. Finally, Û acts unitarily on the subspace of positive momentum states up to
non-perturbative corrections.

3.2 Many boundaries and Fock space

Having discussed the 1 → 1 processes, we generalize our analysis to account for more
boundaries. In doing so, our quantum mechanics of single boundary states (analogous to
single particle states) above will generalize to a Fock space generated by operators which
create and destroy boundaries. The appearance of a Fock space suggests that we have a
second quantized description, although it is in fact third quantized since creation operators
create baby universes. However, in JT gravity the baby universes do not have additional
fields living within them (i.e., gauge fields or matter fields), and so this third-quantized
description is rather simple.

We have already constructed the isomorphic Hilbert spaces of asymptotic single-
boundary states H1-bdy

P ' H1-bdy
F ' H1-bdy. The Hilbert spaces of asymptotic 2-boundary

states are

H2-bdy ' span{|`1, `2〉}`1, `2∈R , (3.17)

where |`1, `2〉 = |`2, `1〉, i.e. asymptotic boundaries are identical bosons. Similarly,

Hm-bdy ' span{|`1, `2, . . . , `m〉}`1,`2,...,`m∈R , (3.18)

and these states are invariant under any permutation of the `i’s. Then in the genus
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expansion6 the full Hilbert space of asymptotic states is the Fock space

H '
∞⊕
m=1
Hm-bdy . (3.19)

The same logic that went into the calculation of the inner product of 1-boundary states
implies that, within the genus expansion, m-boundary states are orthogonal to n-boundary
states unless m = n, and when m = n we have up to doubly non-perturbative effects

〈`1, `1, . . . , `m|`′1, `′2, . . . , `′m〉 '
√
`1 · · ·

√
`m δ(`1 − `′1) · · · δ(`m − `′m) + (permutations) .

(3.20)
In this subsection we work in the genus expansion, and so normalize these states via
|`1, . . . , `m〉 → |`1,...,`m〉√

`1...
√
`m

. This Fock space is isomorphic to that of a non-relativistic one-
dimensional boson.

It will be convenient to introduce creation and annihilation operators. We define a
formal state |Ω〉 satisfying 〈Ω|Ω〉 = 1 and 〈Ω|`1, . . . `m〉 = 0. We assign Û |Ω〉 = |Ω〉, so that
this state decouples from all physical states. Then define universe creation and annihilation
operators a†` and a` with

[a`, a†`′ ] = δ(`− `′) , [a`, a`′ ] = [a†`, a
†
`′ ] = 0 . (3.21)

Then

|`1, `2, . . . , `m〉 =
a†`1a

†
`2
· · · a†`m |Ω〉√

〈Ω| a`m · · · a`2a`1a
†
`1
a†`2 · · · a

†
`m
|Ω〉

, (3.22)

and
Hm-bdy ' span{a†`1a

†
`2
· · · a†`m |Ω〉}`1,`2,...,`m∈R . (3.23)

We upgrade ˆ̀ from an operator that acts on 1-boundary states to an operator on the Fock
space by defining

ˆ̀=
∫ ∞
−∞

d` ` a†`a` . (3.24)

The |`1, . . . , `m〉’s are eigenstates of ˆ̀with

ˆ̀|`1, `2, . . . , `m〉 = (`1 + `2 + · · ·+ `m) |`1, `2, . . . , `m〉 . (3.25)

We similarly upgrade p̂, defining the operator which creates a boundary with momentum
p as

ã†p = 1√
2π

∫ ∞
−∞

d` eip` a†` (3.26)

from which the standard commutation relations follow from (3.21),

[ãp, ã†p′ ] = δ(p− p′) , [ãp, ãp′ ] = [ã†p, ã
†
p′ ] = 0 , (3.27)

6With this qualification we are leaving open the possibility that the exact Hilbert space differs from the
one we find in the genus expansion.
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so

|p1, p2, . . . , pm〉 =
ã†p1 ã

†
p2 · · · ã

†
pm |Ω〉√

〈Ω| ãpm · · · ãp2 ãp1 ã
†
p1 ã
†
p2 · · · ã

†
pm |Ω〉

. (3.28)

Then
p̂ =

∫ ∞
−∞

dp p ã†pãp , (3.29)

and
p̂ |p1, p2, . . . , pm〉 = (p1 + p2 + · · ·+ pm) |p1, p2, . . . , pm〉 . (3.30)

With these upgraded definitions of ˆ̀ and p̂, we find the commutation relation

[ˆ̀, p̂] = −i N̂ , (3.31)

where N̂ =
∫∞
−∞ d` a

†
`a` =

∫∞
−∞ dp ã

†
pãp is the number operator counting the number of

boundaries.
The geometric interpretation is that ˆ̀measures the total signed length of the bound-

ary, while p̂ generates symmetrized asymptotic rotations, consistent with the boundaries’
bosonic statistics.

Having understood the natural operators acting on H we consider the transition
amplitudes between normalized multi-boundary states,

〈`1, `2, . . . , `n| Û |`′1, `′2, . . . , `′m〉 '
Zn,m(`i, `′j)

√
`1 · · ·

√
`n
√
`′1 · · ·

√
`′m

. (3.32)

Recall that Zn,m is the formal sum over surfaces which connect the m past circles to
the n future circles. These amplitudes approximately factorize in the genus expansion.
The leading behavior when m 6= n is suppressed by |n − m| powers of e−S0 , but when
n = m, the amplitude is O(1). That leading order result comes from “Wick contractions”
in which one sums over every possible pairing between past and future boundaries, and
each pairing is weighted by the “free propagator” of a single universe (3.12). See figure 1.
In momentum space

〈p1, p2, . . . , pn| Û |p′1, p′2, . . . , p′n〉
' Θ(p1) · · ·Θ(pn)δ(p1 − p′1) · · · δ(pn − p′n) + (contractions) +O(e−2S0) .

More succinctly, Û acts unitarily (as the identity) on the Fock space of states where
each momentum is positive, and annihilates the remaining states up to non-perturbative
corrections.

3.3 Non-perturbative corrections

We now undertake the computation of the genus corrections to (3.2). Using our
previous work [22], the genus g correction to the normalized transition amplitudes
〈`1, . . . , `n| Û |`′1, . . . , `′m〉 takes the form

∫ ∞
0

n∏
i=1

db2
i

`i

m∏
j=1

db′2j
`′j

Pg,n,m(b2
i , b
′2
j ) exp

− iπ4G

n∑
i=1

b2
i

`i
+ iπ

4G

m∑
j=1

b′2j
`′j

 , (3.33)
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where Pg,n,m is a polynomial which depends on the number of boundaries n and m, and the
genus g. The result obtained by integrating eq. (3.33) is itself a polynomial in the `i and
`′j . So the corresponding momentum-space amplitudes are distributions supported at zero
momentum. It follows that, on any superposition of states |p1, . . . , pn〉 with all pi outside
of an open set containing zero, Û acts as Θ(pi) to all orders in the genus expansion.

The genus corrections nevertheless lead to interesting effects. The O(e−S0) contribution
to Û comes from genus 0 surfaces with three boundaries, either two past and one future or
one past and two future. For the latter, we find a normalized transition amplitude

〈`1, `2| Û |`′〉 '
(√

π

2G

)3
e−S0
√
−i

∫ ∞
0

db2
1

`1

db2
2

`2

db′2

`′
exp

(
− iπ4G

(
b2

1
`1

+ b2
2
`2
− b′2

`′

))
+O(e−3S0) ,

(3.34)
which leads to the momentum-space amplitude

〈p1, p2| Û |p′〉 ' 23/2√−i e−S0δ(p1)δ(p2)δ(p′) +O(e−3S0) . (3.35)

This implies
Û ' Θ(p̂i) + 2e−S0

(√
−i ã† 2

0 ã0 + h.c.
)

+O(e−2S0) , (3.36)

where Θ(p̂i) |p1, . . . pn〉 = Θ(p1) · · ·Θ(pn) |p1, . . . , pn〉.
The next correction of O(e−2S0) comes from (i) genus-1 surfaces with two boundaries,

and (ii) genus-0 surfaces with four boundaries. These imply corrections to momentum-space
amplitudes supported at p = 0, although these corrections involve derivatives of delta
functions.

Consider a general state |Ψ〉 characterized by n-universe wavefunctions ψn(p1, . . . , pn)
with

|Ψ〉 =
∞∑
n=1

1
n!

∫ n∏
i=1

dpi ψn(p1, . . . , pn) |p1, . . . , pn〉 , (3.37)

normalized as
1 = 〈Ψ|Ψ〉 =

∞∑
n=1

∫ n∏
i=1

dpi |ψn(p1, . . . , pn)|2 . (3.38)

We take the wavefunctions ψn to be symmetric in all arguments. One measure of the violation
of unitarity is the deviation of 〈Ψ| Û†Û |Ψ〉 =

∥∥ Û |Ψ〉∥∥2
L2 from unity, which measures how

the norm of |Ψ〉 evolves from the infinite past to the infinite future. Using (3.36) we find

〈Ψ| Û†Û |Ψ〉 '
∞∑
n=1

∫ ∞
0

n∏
j=1

dpj |ψn(p1, . . . , pn)|2 + 23/2e−S0n(n+ 1) (3.39)

×
∫ ∞

0

n−1∏
j=1

dpj
(√
−i ψ∗n+1(0, 0, p1, . . . , pn−1)ψn(0, p1, . . . , pn−1) + h.c.

)
+O(e−2S0)

 .

For wavefunctions supported over momenta p ≥ p0 > 0 for some fixed p0 one has
〈Ψ| Û†Û |Ψ〉 = 1, while wavefunctions that are supported in a neighborhood of zero already
have 〈Ψ| Û†Û |Ψ〉 =

∥∥ Û |Ψ〉∥∥2
L2 < 1 on account of the support at negative momentum. The

O(e−S0) correction is sign-indefinite.
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In between these two cases are wavefunctions which are zero for negative momentum,
but whose derivatives are nonzero at p = 0. For such states the leading approximation to
the matrix element is 〈Ψ| Û†Û |Ψ〉 ' 1 +O(e−2S0), with the O(e−S0) term vanishing, and
the corrections are sensitive to the derivatives of the ψn at p = 0. However, we expect
that such states lie outside the regime of validity of the genus expansion. As we explain in
subsection 4.2, the leading doubly non-perturbative correction is a rapidly oscillatory term
∼ eieS0 which effectively smears wavefunctions over a momentum scale e−S0 . So we expect
that our predictions from the genus expansion are only reliable when they give the same
result as for a smeared wavefunction.

Taken together, we see that within the regime of validity of our computations we have
〈Ψ| Û†Û |Ψ〉 =

∥∥ Û |Ψ〉∥∥2
L2 ≤ 1, suggesting that we can think of de Sitter JT gravity as being

an open quantum system. It would be interesting to study the fate of those “borderline”
states from the last paragraph, by properly accounting for rapidly oscillating corrections.
Below, when we study the matrix integral dual of de Sitter JT gravity, we will find evidence
that these corrections are associated with tunneling between states with positive momenta
and states with negative momenta.

3.4 A few comments on horizon entropy

We conclude this section with some comments on the horizon entropy of nearly dS2 space.
The classical approximation to the horizon entropy of nearly dS2 JT gravity is Scosmo ≈ 2S0 .
The horizon entropy is often taken as motivation for the claim that the Hilbert space of
de Sitter quantum gravity is finite-dimensional, with dim(H) ∼ eScosmo ∼ e2S0 . Above, we
saw that the Hilbert space of asymptotic states was infinite dimensional: we may have
an arbitrarily large number of boundaries, each labeled by an independent `. These two
comments are not necessarily in conflict with each other. After all, the Hilbert space of
asymptotic states described above is only defined in the genus expansion, with e−S0 � 1
playing the role of the small expansion parameter. This is consistent with a Hilbert space
dimension of order ∼ e2S0 , which would be non-perturbative in the genus expansion. Further,
to the extent that the horizon entropy is counting states, it is not clear if it is computing
asymptotic or bulk states. While there is an expectation that the entropy is counting
bulk states, distinguishable over a de Sitter time, presently we only know how to count
asymptotic states. Clearly, to assess whether the Hilbert space of asymptotic states is finite-
or infinite-dimensional, we require a non-perturbative formulation of de Sitter JT gravity.
Fortunately, we have such a formulation in the dual matrix integral, and we discuss this
question further in section 4.

Given the simplicity of JT gravity it would be interesting to compute the horizon entropy
beyond the semiclassical approximation. Perhaps one can make sense of the entanglement
entropy in JT for half of space, along the lines of the analysis [28]. We leave this question
for future work.

4 Matrix model interpretation

In the last section we showed how to extract the Hilbert space of asymptotic states and transi-
tion amplitudes from the de Sitter JT path integral. There is significant evidence [21, 22, 24]

– 18 –



J
H
E
P
1
2
(
2
0
2
1
)
0
8
9

that de Sitter JT gravity is dual to a matrix integral. In this section we show how the
Hilbert space and approximately unitary evolution emerge from the matrix side of the
duality. Furthermore, this emergence is robust in a large class of matrix models, arising
from universal features of nearest-neighbor eigenvalue repulsion in a certain large matrix
limit. The random matrix description of de Sitter JT gravity is particularly striking, since
a 1+1 dimensional quantum theory is arising from a 0+0 dimensional classical integral.

4.1 Matrix models and the holographic dictionary

We first review the connection between JT gravity and matrix integrals, as well as matrix
integrals more broadly. Letting H be a d× d Hermitian matrix and f(H) be a multi-trace
function thereof, we can consider a large-d matrix model whose expectation values are
computed by

〈f(H)〉MM = 1
Z

∫
dH e−d tr(V (H,d))f(H) (4.1)

where V (H, d) is a power series H and Z =
∫
dH e−d tr(V (H)) is the matrix partition

function. We denote matrix averages with 〈·〉MM to distinguish the average from the
quantum mechanical average for JT gravity in the last section. The measure dH , potential
tr(V (H, d)), and observable f(H) are invariant under H → UHU † for any U ∈ Û(d), which
may be used to write the matrix average as an integral over eigenvalues.

Let {λ1, . . . , λd} be the eigenvalues of a matrix H. We denote the leading normalized
density of states in the large-d limit as

ρ0(E) = lim
d→∞

〈
1
d

d∑
j=1

δ(E − λj)
〉

MM

, (4.2)

which obeys
∫
dE ρ0(E) = 1. The function ρ0(E) is defined on the real line, and for most

sensible potentials its support is the union of a finite number of disjoint intervals. If the
support of ρ0(E) is a single interval [a, b], then we say the matrix integral is 1-cut. Beyond
leading order, there is a genus expansion in the parameter 1/d for the exact density of
states ρ(E) and likewise for other matrix averages.

As an example, consider

V (H) = 8H2

c2 , (4.3)

which has a single cut
[
− c

2 ,
c
2
]
with a leading density of states

ρ0(E) = 8
πc2

√
E2 − c2

4 . (4.4)

We are interested in the “double-scaled” limit. Rather than first giving a precise definition,
let us explain how to obtain it for the quadratic model. First, let us shift the potential
V (H) → 8

c2
(
H − c

2
)2, so that the density of states becomes ρ0(E) → 8

πc2

√
E(c− E) and

the cut is shifted to [0, c]. Next define the total density of states ρtot
0 (E) = d ρ0, which

satisfies
∫
dE ρtot

0 (E) = d. Now take the double-scaling limit, in which we send both d and
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c to infinity while keeping the ratio d
c3/2 ≡ eS0 � 1 fixed. This limit results in a finite total

density of states,

ρtot
0 (E) = 8 eS0

π

√
E , (4.5)

so there is a single cut [0,∞) with a finite but large density of states. In the double-scaled
model there is still a genus expansion for the exact density of states and for matrix averages,
where now the genus expansion parameter is e−S0 .

For a more general model the double-scaling limit is achieved by a similar series of
steps. We take a one-cut model, shift the potential so that the cut lies on [0, c], and then
simultaneously take d and c to infinity with d� c. The precise limit depends on the details
of the potential, but it should be taken in such a way that the limit of the total density of
states is large and finite, with ρtot

0 (E) proportional to a parameter eS0 � 1. The resulting
double-scaled model has a perturbative expansion in e−S0 .

Ordinary large d matrix integrals enjoy remarkable properties. For us, the most
important of them is the 1/d expansion of matrix averages is determined by ρ0(E) through
a procedure known as topological recursion [29]. See [24] for a practical introduction
and [30] for a review. This procedure commutes with the double scaling limit in understood
examples, with the 1/d expansion being replaced by an e−S0 expansion.

It has recently been established [24] that JT gravity in Euclidean AdS2 is equivalent
to a double-scaled matrix integral to all orders in the genus expansion. Building upon
that result, significant evidence was presented in [21, 22] that de Sitter JT gravity is also
equivalent to a double-scaled matrix integral, again to all orders in the genus expansion.
The basic dictionary has two parts. First, the matrix integral is specified by the leading
order density of states

ρtot
0 (E) =

√
G

2π3/2 e
S0 sinh

√πE

G

 , (4.6)

where G is the JT gravitational coupling and e−S0 its genus expansion parameter. The e−S0

expansion of matrix observables is then determined by this density of states via topological
recursion. Second, a future boundary with signed length ` corresponds to an insertion of
the operator

tr
(
ei`H

)
=
∫ ∞

0
dE ρ(E) ei`E , (4.7)

where ρ(E) = ρtot(E) +O(e−S0) is the exact density of states, along with an iε prescription
whereby ` has small positive imaginary part. A past boundary with signed length `

corresponds to the complex conjugate insertion tr
(
e−i`H

)
, where ` has small negative

imaginary part. Then the holographic dictionary between gravity and matrix observables is
as follows. Recall that Zg,n,m(`i, `′j) is the JT partition function on a genus g surface with n
future boundaries of signed lengths `i and m past boundaries of signed lengths `′j . Stripping
off its eS0-dependence produces the expansion coefficients Ψg,n,m(`i, `′j), which equal

Ψg,n,m(`i, `′j) =
〈

n∏
i=1

tr
(
ei`iH

) m∏
j=1

tr
(
e−i`

′
jH
)〉

MM, conn, g

. (4.8)
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D
tr(eiH`1) tr(eiH`2) tr(e�iH`01)

E
MM, conn, g
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Figure 4. An entry in the dictionary between the matrix integral and de Sitter JT gravity. The JT
partition function on a genus g surface with two future boundaries and one past boundary is equal
to the indicated three-point function of the matrix ensemble. See (4.8).

The right-hand-side is the average in the double-scaled matrix model with leading density
of states (4.6). The subscript “conn” indicates that we are looking at the connected part of
this matrix correlation function, and g that it is the genus g term in its genus expansion.
See figure 4 for an example. As another example, consider the disk partition function with
a single future circle, Z0,1,0 = eS0 Ψ0,1,0, given in (2.4). It gave the genus-0 approximation
to the unnormalized Hartle-Hawking wavefunction. According to this dictionary and using
the leading order density of states (4.6), the disk partition function is eS0 times

〈
tr
(
ei`H

)〉
MM, conn, 0

=
∫ ∞

0
dE

√
G

8π3/2 sinh

√πE

G

 ei`E = 1√
2π(−2i`)3/2 e

πi
4G` , (4.9)

which matches our result from JT gravity (2.4).
In our previous work [22], we largely focused our attention on the genus expansion

coefficients Ψg,n,m. In this article we have used these coefficients to uncover the transition
amplitudes of de Sitter JT gravity, as well as the quantum mechanics underlying them.
Below we will formulate a more refined dictionary relating these transition amplitudes and
other features of the quantum mechanics of the de Sitter JT gravity to the matrix integral
side of the duality.

4.2 Amplitudes from matrix integrals

Mirroring our discussion in section 3, we begin with the matrix model description of the
1→ 1 processes, and then discuss the multi-boundary processes.

4.2.1 Single-boundary transitions

Consider the unnormalized transition amplitude in JT gravity between a past circle with
signed length `′ and a future circle with signed length `, 〈`| Û |`′〉. It is a sum over surfaces
with one past and one future boundary, and so

〈`| Û |`′〉 ' Z1,1(`, `′) =
∞∑
g=0

e−2gS0 Ψ0,1,1(`, `′) . (4.10)
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We write a ' because the genus expansion is asymptotic. From our review, this matrix
element has the same genus expansion as an average in the dual matrix model,

〈`| Û |`′〉 '
〈
tr
(
ei`H

)
tr
(
e−i`

′H
)〉

MM, conn
. (4.11)

Beyond the genus expansion, we define the amplitude by this matrix average, since the
latter is non-perturbatively well-defined (although this is subtle for the JT matrix model;
see [24]). Note that the 1 → 1 amplitude is simply the spectral form factor of the dual
matrix ensemble.

In section 3 we showed how to compute the inner product of 1-boundary states using the
JT path integral, with the result 〈`|`′〉 '

√
`
√
`′ δ(`− `′) up to non-perturbative corrections

in e−S0 . The dual matrix model does not have a Hilbert space, and so it is not necessarily
obvious how to establish a dictionary between this inner product and an observable in the
matrix model. Our approach is to reverse-engineer the translation protocol. We note that
the genus expansion of this amplitude in JT gravity has the form

Z1,1(`, `′) = i

2π

√
`
√
`′

`− `′ + iε
+ (regular in `, `′) . (4.12)

The expansion coefficients have square root branch cuts7 but the genus-0 term shown above
is the unique one with a singularity. That pole implies a singular discontinuity as we dial
the imaginary part of ` from a negative sign (which is unphysical) to a positive sign. That
discontinuity is precisely the inner product we obtained from the JT path integral,

discZ1,1(`, `′) =
√
`
√
`′ δ(`− `′) . (4.13)

Since Z1,1 coincides with the spectral form factor to all orders in the genus expansion, the
spectral form factor has the same singular discontinuity. We therefore define the dictionary
for the inner product and the matrix model to be

〈`|`′〉 = disc
〈
tr
(
ei`H

)
tr
(
e−i`

′H
)〉

MM, conn
. (4.14)

Neglecting non-perturbative effects in e−S0 , the transition amplitude between normalized
states 〈`| and |`′〉 is

〈`| Û |`′〉 ' Z1,1(`, `)√
`
√
`′
'
〈
tr
(
ei`H√
`

)
tr
(
e−i`

′H

√
`′

)〉
MM, conn

. (4.15)

Now recall that on the Hilbert space of 1-boundary states we had the signed length operator
ˆ̀ and the momentum p̂ (with the convention [ˆ̀, p̂] = −i). Inserting ˆ̀ to the right of Û
simply produces a factor of `′ in the matrix average, while inserting it to the left inserts a

7We take the branch cuts to be along the rays arg(`) = −π/2 and arg(`′) = π/2. This choice may seem
arbitrary, but it is what follows from the analytic continuation of Z1,1 from JT gravity in Euclidean AdS2,
or from the two-point function of tr

(
e−βH

)
in the matrix integral. In either case, ` and `′ are effectively

the analytic continuations of an inverse temperature β → −i`, β′ → i`′, where the branch cuts are originally
along the ray β, β′ < 0.
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factor of `. The momentum operator is more interesting. Inserting it to the right of Û , it
acts on the normalized amplitude as i ∂∂`′ , so that

〈`| Û p̂ |`′〉 '
〈
tr
(
ei`H√
`

)
tr
((

H − i

2`′
)
e−i`

′H

√
`′

)〉
MM, conn

. (4.16)

So, up to an additive constant, the momentum operator p̂ corresponds to additional
insertions of the matrix H of the dual matrix integral. Similarly, an insertion of p̂ to the
left of Û acts on the amplitude as −i ∂∂` . This modifies the “future” insertion in the matrix
integral to be tr

((
H + i

2`

)
ei`H√
`

)
.

The evolution operator was most naturally expressed in the momentum basis, with

〈p| Û |p′〉 =
∫
R+iε

d`√
2π

∫
R−iε

d`′√
2π

e−ip`+ip
′`′ 〈`| Û |`′〉 ' Θ(p)δ(p− p′) +O(e−2S0) .

Using (4.7), we map this to the matrix average

〈p| Û |p′〉 '
〈
tr
(√

2
−i(H − p)

)
tr
(√

2
i(H − p′)

)〉
MM, conn

. (4.17)

In other words, within the genus expansion, a future boundary with momentum p inserts
what we term a half-resolvent into the matrix average

W 1
2
(p) = tr

(√
2

−i(H − p)

)
=
√

2
∫ ∞

0

dE ρ(E)√
−i(E − p)

, (4.18)

and a past boundary with momentum p its complex conjugate.
Our result for the amplitude 〈p| Û |p′〉 ' Θ(p)δ(p− p′) +O(e−2S0) is equivalent to the

statement in the matrix model that the genus-0 approximation to the two-point function of
half-resolvents is 〈

W 1
2
(p)W ∗1

2
(p′)

〉
MM, conn, 0

= Θ(p)δ(p− p′) . (4.19)

We will have more to say about this in subsection 4.3.
In JT gravity we understood the physics behind 〈p| Û |p′〉 ∼ Θ(p)δ(p− p′) being sup-

ported over positive p. Namely, semiclassically, smooth de Sitter geometries are characterized
by positive past and future momenta, while negative momentum initial states end in a
crunch. But in the dual matrix model the domain p > 0 also has a clear interpretation: we
have p̂ ∼ H, and the subspace p > 0 just corresponds to the semi-infinite cut E > 0 of the
matrix model.

We also saw in subsection 3.3 that the genus corrections to the amplitude lead to
distributional corrections to 〈p| Û |p′〉 supported at p, p′ = 0. One expects that these
corrections build up a doubly non-perturbative effect near zero momentum. There is
a natural guess for this effect on the matrix integral side. Namely, the leading doubly
non-perturbative corrections near the end of the cut. These come in one of two types.
While to all orders in the genus expansion eigenvalues are found with certainty within
the cut E ∈ [0,∞), there is a non-perturbatively small likelihood ∼ e−e

S0 for them to
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be found along the negative real axis. This will lead to a small ∼ e−e
S0 value for the

transition amplitude between positive and negative momenta, which is zero to all orders
in the genus expansion. So these non-perturbative corrections will lead to tunneling from
positive momentum to negative momentum in de Sitter. This can be regarded as a (doubly)
non-perturbative instability. Within the cut, there are also rapidly oscillatory contributions
∼ eieS0 to correlation functions of the density of states, which will in turn contribute rapid
oscillations to the two-point function of half-resolvents near zero momentum.

4.2.2 Multi-boundary transitions

Now consider transition amplitudes between unnormalized states with at least one boundary,

〈`1, . . . , `n| Û |`′1, . . . , `′m〉 ' Zn,m(`i, `′i) . (4.20)

These amplitudes involve a sum over geometries which connect m past circles of signed
lengths `′j to n future circles of signed lengths `i, in which we project out the no-boundary
state. When there is more than one universe in the future and in the past, the amplitude
depends on disconnected geometries. See the text near figure 1 and eq. (2.11) for a discussion
of the 2 → 2 process. We would like to find the matrix average whose genus expansion
coincides with this sum.

To find it we consider the generating functional of connected correlation functions of
future and past boundary operators. It is

W (ζ+, ζ−) ≡ ln
〈

exp
(∫

R+iε
d` ζ+(`) tr

(
ei`H

))
exp

(∫
R−iε

d`′ ζ−(`′) tr
(
e−i`

′H
))〉

MM
.

(4.21)
A variational derivative with respect to ζ+(`) inserts a future boundary of signed length
`, while a variational derivative with respect to ζ−(`′) inserts a past boundary of signed
length `′. For example,

〈
tr
(
ei`H

)
tr
(
e−i`

′H
)〉

MM,conn
= δ2W

δζ+(`)δζ−(`′)

∣∣∣∣∣
ζ±=0

. (4.22)

The generating functional of correlation functions, including the disconnected parts, is
Z ≡ eW . We want to subtract the terms from this which correspond to bulk geometries
in which the past is not connected to the future, for example, a disk anchored on a future
circle. To do this we construct the generating functional of connected correlation functions
with only future or only past boundaries,

W±(ζ±) ≡ ln
〈

exp
(∫

R±iε
d` ζ±(`) tr

(
e±i`H

))〉
MM

, (4.23)

i.e. W+(ζ+) = W (ζ+, 0) and W−(ζ−) = W (0, ζ−). Then the generating functional with only
future or past boundaries is Z±(ζ±) ≡ eW±(ζ±). With a bit of thought, one realizes that
subtracting off the geometries in which the past is disconnected from the future amounts to
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considering the ratio

ZdS(ζ+, ζ−) ≡ Z(ζ+, ζ−)
Z+(ζ+)Z−(ζ−)

=

〈
exp

(∫
R+iε d` ζ+(`)tr

(
ei`H

))
exp

(∫
R−iε d`

′ ζ−(`′)tr
(
e−i`

′H
))〉

MM〈
exp

(∫
R+iε d` ζ+(`)tr (ei`H)

)〉
MM

〈
exp

(∫
R−iε d`

′ ζ−(`′)tr (e−i`′H)
)〉

MM

.

(4.24)

We term ZdS the de Sitter generating functional.
We conclude that the genus expansion of the unnormalized amplitude

〈`1, . . . , `n| Û |`′1, . . . `′m〉 is given by n derivatives of ZdS with respect to ζ+ and m derivatives
with respect to ζ−, and then setting ζ± to vanish. So as in our treatment of the 1 → 1
amplitudes, we define the unnormalized amplitudes by these quantities in the matrix model.

As a simple check, consider the 1→ 1 process from the last subsection. According to
this definition, we have

〈`| Û |`′〉 = δ2ZdS
δζ+(`)δζ−(`′) =

〈
tr
(
ei`H

)
tr
(
e−i`

′H
)〉

MM
−
〈
tr
(
ei`H

)〉
MM

〈
tr
(
e−i`

′H
)〉

MM

=
〈
tr
(
ei`H

)
tr
(
e−i`

′H
)〉

MM, conn
,

(4.25)

which indeed reproduces our prescription in (4.14). For amplitudes with more than 1
boundary our prescription does not simply reduce to the connected correlator.

Now we turn our attention to the inner product on multi-boundary states. Following
our dictionary for the inner product on the 1-boundary states, we identify the inner product
on multi-boundary states from the singular discontinuity in the amplitude as we dial the
imaginary parts of the `i from negative and small to positive and small. To all orders in
the genus expansion the singularities in the amplitudes 〈`i| Û |`′j〉 only come from the 1→ 1
process, which on the matrix model side is the singularity in the leading order spectral form
factor. As a result there is only a singular discontinuity when n = m with the same result
as we found in eq. (3.20). By design this dictionary gives the same inner product we found
from gravity.

So within the genus expansion we have a Fock space of states emerging from the matrix
model. The bosonic nature of the boundaries follows from the dictionary and the fact that
m past boundaries correspond to the insertion of

∏m
j=1 tr

(
e−i`

′
jH
)
and n future boundaries

to the insertion of
∏n
i=1 tr

(
eii`H

)
. So the matrix average will be completely symmetric

under permutations of the `′j and of the `i.
It would be of course extremely interesting to uncover the effect of doubly non-

perturbative corrections on the amplitudes as well as on the inner product.
As with our discussion of the 1→ 1 amplitudes, we can obtain a dictionary between the

momentum space amplitudes and the matrix model by renormalizing our states by factors
of 1/

√
` and then Fourier transforming from ` to p. The momentum space amplitudes are

again related to correlation functions of half-resolvents in the matrix model, with a future
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boundary of momentum p corresponding to the half-resolvent W 1
2
(p) and a past boundary

to its complex conjugate W ∗1
2
(p).

4.3 Beyond the JT matrix integral

Above we have seen how the Hilbert space of asymptotic states and the infinite-time
evolution operator Û emerge from the JT matrix integral. In this subsection we show that
this emergence is a robust consequence of eigenvalue repulsion and the double scaling limit,
as well as provide evidence that the non-perturbative Hilbert space has infinite dimension.

The main object in our gravitational analysis was the annulus partition function
Z0,1,1(`, `′) in (2.5), which gave the leading approximation to the transition amplitude
〈`| Û |`′〉 between unnormalized 1-universe states. From this amplitude we obtained the
propagator of a single universe as well as the inner product on 1-universe states. The
dictionary between gravitational observables and matrix integrals equates this unnormalized
amplitude with the spectral form factor (4.15) of the matrix model.

Now, it is a general feature of large-d matrix integrals that observables like the density
of states depend sensitively on the potential of the model. However, the connected double
resolvent, which depends on the two-point function of eigenvalue densities, is a universal
function of the cuts. Ultimately this universal form owes its existence to the repulsion of
nearby eigenvalues. For a matrix model with a single symmetric cut [− c

2 ,
c
2 ] the connected

double resolvent is

〈
tr
( 1
E1−H

)
tr
( 1
E2−H

)〉
MM,conn

' 1
2(E1−E2)2

 E1E2− c2

4√
E2

1− c2

4

√
E2

2− c2

4

−1

+O(d−2) ,

(4.26)
which for a double-scaled model with a cut [0,∞) becomes〈

tr
( 1
E1 −H

)
tr
( 1
E2 −H

)〉
MM, conn

' 1
4
√
−E1
√
−E2(

√
−E1 +

√
−E2)2 +O(e−2S0) .

(4.27)
This universal form determines the leading approximation to the spectral form factor
through a double inverse Laplace transform in E1 and E2. In other words, the universality
of the double resolvent implies the universality of the spectral form factor.

We conclude that the most basic features of de Sitter JT gravity, namely its Hilbert
space and the leading order evolution operator, are a consequence of the most basic features
of the dual matrix integral, namely the repulsion of nearby eigenvalues along with the
double scaling limit.

With this result in hand we might wonder whether this duality is but one instance of a
more general relation between matrix integrals and models of 1+1 de Sitter quantum gravity.
Above we considered Hermitian matrix integrals, which belong to the Gaussian Unitary
Ensemble (GUE) symmetry class. In particular, our matrix integrals have Û(d)-invariant
measures. Beyond JT gravity, another example of a double-scaled GUE class matrix integral
is the limit of the Hermitian quadratic matrix model with density of states (4.5). This
model is already known to be dual to topological gravity (see [31, 32] and a more recent
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discussion [33]). Perhaps the de Sitter dictionary we presented for the JT matrix integral
setting has an analogue in topological gravity.

Besides the GUE class of random matrices there are nine other symmetry classes in the
Altland-Zirnbauer classification [34]. In each case, double-scaled matrix integrals satisfy

〈
tr
(
ei`H

)
tr
(
e−i`

′H
)〉

MM′, conn
' CMM′

i

2π

√
`
√
`′

`− `′ + iε
+O(e−2S0) , (4.28)

where MM′ denotes the matrix integral of choice, and CMM′ is a positive constant depending
on the symmetry class (e.g. CMM′ = 1 for the GUE). These universal results reflect
appropriate modifications of eigenvalue repulsion to accommodate for symmetry. As such,
we have the discontinuity

disc
〈
tr
(
ei`H

)
tr
(
e−i`

′H
)〉

MM′, conn
'
√
CMM′ `

√
CMM′ `

′ δ(`− `′) . (4.29)

It is tempting to suggest that there exist models of nearly-dS2 gravity with other symmetry
classes, with asymptotic states having the inner product suggested by (4.29), and accordingly
leading-order unitarity on positive-momentum states due to (4.28).

Recently, Stanford and Witten have studied generalizations of JT gravity in Euclidean
AdS [35] corresponding to the various symmetry classes in the Altland-Zirnbauer clas-
sification. For each generalization there is a dual matrix integral in the corresponding
symmetry class. It is likely that these dualities have Lorentzian de Sitter counterparts, and
the universality of the two-point function (4.28) suggests that in each case a Hilbert space
and Û emerge from the matrix integral by the same mechanism as we find above.

More generally, we can consider double-scaled matrix integrals such that the correspond-
ing random matrix H decomposes into a direct sum H =

⊕
iHi (i.e., it is block diagonal),

where each Hi may even belong to a distinct symmetry class. Then (4.28) and (4.28) would
hold within each subspace. We expect that this structure is realized, for example, for de
Sitter JT gravity coupled to a topological gauge theory (see [36] for recent work on the
Euclidean AdS version of this theory). In that case the Hilbert space of asymptotic states is
labeled by a number of boundaries, along with an ` and a representation of the gauge group
for each boundary. Indeed, the Hilbert space decomposes into a direct sum of superselection
sectors, and we expect that the annulus amplitude is given by (4.28) within each sector.

We would also like to understand the importance of the double-scaling limit. On the
matrix model side we may do this by considering a generalization of the JT matrix model
with a cut [0, c] in which we take c � 1 and whose density of states goes over to the
form (4.6) in the c→∞ limit. For example, we may consider a density of states

ρ0(E) ∝ sinh
(√

πE

G

(
1− E

c

))
. (4.30)

Now in gravity it is not at all clear if there is any sense in which we can consider
large but finite c. But in the matrix model we may consider the basic observable〈
tr
(
ei`H

)
tr
(
e−i`

′H
)〉

MM, conn
, whose leading order behavior is a universal function of
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the cut and may be reconstructed from (4.26). In the c� 1 limit it is given by

〈
tr
(
ei`H

)
tr
(
e−i`

′H
)〉

MM, conn
' i

2π

√
`
√
`′

`− `′ + iε
− 1
c

1
8π
√
`
√
`′

+O(c−2, d−2) . (4.31)

In the 1/c expansion there is a singular discontinuity as one dials the imaginary part of `
from negative to positive, given by the same result

√
`
√
`′δ(`− `′) we found above. However

this result is misleading: for finite d, the left-hand-side is an integral over finite-dimensional
matrices and so is finite for all `, `′, in which case the pole above is only approximate. To get
some insight into the physics at finite d, we have numerically calculated the left-hand-side
for a matrix model with quadratic potential. We tuned the parameters of the potential so
that as d→∞ limit the model has a cut along [0, c], and then numerically studied the model
with large d� c� 1. For |`− `′| � 1/c the left-hand-side of (4.31) is well-approximated
by the first term on the right-hand-side, but for |` − `′| of order 1/c the pole is resolved
into a large but finite function of height O(c). In other words, at least in the quadratic
ensemble, the pole and so also the singular discontinuity are resolved by finite c.8

Let us suppose that this is true for finite c versions of the JT matrix model like (4.30).
In our dictionary, the inner product of asymptotic states in gravity came from the singular
discontinuity. But if at large but finite c this discontinuity is only approximate, then we see
that a Hilbert space only emerges from the matrix model in the double-scaled limit.

We conclude this section with some comments on the horizon entropy of de Sitter
JT gravity and the double scaled limit. As we commented in subsection 3.4, there is
a semiclassical entropy of the cosmological horizon Scosmo ≈ 2S0. The finite de Sitter
entropy is often cited as a hint that the Hilbert space of de Sitter quantum gravity is
finite-dimensional, with a dimension given by eScosmo . Here in JT gravity we have a dual
formulation in which we can attempt to assess this claim. As a measure for the dimension of
the Hilbert space, let us endeavor to compute the trace of the infinite-time evolution operator
Û , counting the number of asymptotic states that can evolve from the past to future.9 Since
we are interested in counting the number of states in a single universe, let us consider the
contribution to the trace of Û from 1-universe states. In the genus expansion we saw that on
one-universe states of fixed momentum Û acts as Θ(p̂) +O(e−2S0). The naïve trace is then∫∞
−∞ dp 〈p| Û |p〉 ' δ(0)

∫∞
0 dp which has both an “infrared” divergence δ(0) arising from

the in and out momenta being close together, and an “ultraviolet” divergence coming from
an integral over the infinite cut. Eigenvalue repulsion leads to a rapidly oscillating phase
∼ eieS0 on top of this leading order result, effectively smearing the in and out momenta over
a scale e−S0 . This regulates the infrared divergence, sending δ(0) → eS0 . However there
is still the divergent integral over the cut. If we now back off of the double-scaling limit
and take the length of the cut c to be large but finite, then we find an approximate but

8Correspondingly our numerical results are consistent with the existence of a pole in the double-scaled
limit, non-perturbatively in e−S0 .

9We remind the reader that in JT gravity Û is Hermitian on account of time-reversal symmetry. Moreover,
to leading order in the genus expansion, the eigenvalues of Û are either 0 or 1. Physically this is the
statement that in the momentum basis initial states have either zero or unit probability of evolving to the
infinite future.
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crucially finite “trace” goes as ∼ c eS0 . If c ∼ eS0 , then log(c eS0) ≈ 2S0, which agrees with
the semiclassical entropy. Of course, this finding is just numerology — the c ∼ eS0 scaling
was chosen to arrive at the pleasing answer 2S0.

A key point is that by backing off the double-scaling limit, we no longer have a Hilbert
space of asymptotic states, at least according to our dictionary. Accordingly there is
no “dimension of the Hilbert space” to speak of, although ostensibly the finite quantity
≈ log(c eS0) in the previous paragraph is some proxy for entropy. On the other hand, in
the double-scaling limit there is an exact Hilbert space of asymptotic states. We conclude
that the subspace of asymptotic states which evolve to the future is infinite-dimensional.

Perhaps this should not be surprising. In JT gravity we can prepare stable de Sitter
geometries, in which we can evolve for an infinite time and distinguish between final states
with arbitrarily close `’s. This leads to an infinite-dimensional space of asymptotic states.
However if we are limited to perform measurements over a long but finite time ∼ eS0 , then
we can only reliably measure the ` of the final state to a precision e−S0 . This effectively
leads to an ultraviolet cutoff of ∼ eS0 on the largest momenta we can resolve. The number
of distinguishable asymptotic states would then be of order e2S0 , whose logarithm 2S0
matches the semiclassical entropy. It would be interesting to make this precise, or in any
case to establish a dictionary between the horizon entropy and a matrix model observable.

5 Discussion

In this work we have studied quantum mechanical features of de Sitter JT gravity and their
avatars in its dual matrix model. JT gravity is sufficiently simple that we can compute
transition amplitudes exactly as a function of the gravitational coupling G as well as the
sum over topologies to any desired order in the genus expansion. We consider transitions
between asymptotic states, and so sum over geometries which connect past to future infinity.
The computational simplicity of JT gravity has allowed us to uncover the Hilbert space of
asymptotic states and evolution operator from the path integral. Our main results are:

1. The asymptotic states of the model, labeled by the number of boundary components
and a renormalized signed length ` for each boundary, comprise a Hilbert space. This
Hilbert space is isomorphic to the Fock space of one-dimensional non-relativistic
bosons. The inner product is computed by a path integral over patches of de Sitter
in the infinite past or infinite future. The inner product is non-negative and non-
degenerate. Unlike in ordinary quantum field theory this path integral is non-trivial,
and we find a result which is not corrected in the genus expansion.

2. This Hilbert space is equipped with three basic operators: ˆ̀ is akin to position, and
measures the signed length of the boundary; its canonical conjugate p̂, the momentum
in the boundary Schwarzian modes; the commutator of ˆ̀ and p̂ is (−i times) the
number operator, counting the number of universes at conformal infinity.

3. The Hartle-Hawking wavefunction of the no-boundary state of the model is non-
normalizable, and for this reason we project it out under infinite-time evolution as in
eq. (2.9).
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4. The infinite-time path integral computes unnormalized matrix elements of the infinite-
time evolution operator Û . To leading order in the genus expansion Û is a projector,
acting as the identity on positive momentum states and annihilating negative momen-
tum states. Semiclassically, negative momentum initial states evolve into crunching
cosmologies, which have vanishing probability to survive into the asymptotic future.
So Û acts approximately unitarily on a subspace of asymptotic states. The genus
corrections to Û , coming from processes which change the topology of the constant
time slice, are distributional terms supported at zero momentum, and these lead to
further violations of unitarity.

5. The Hilbert space of asymptotic states along with an approximately unitary Û both
emerge from a double-scaled matrix integral. We track both to the connected two-
point function of resolvents, which is a universal function for a double-scaled matrix
integral in the Gaussian Unitary Ensemble symmetry class, independent of the details
of the matrix potential. Similar statements apply for the other symmetry classes. The
double scaling limit is essential in our dictionary between the matrix integral averages
and the inner product of asymptotic states in the gravity dual. In this sense there is
an emergent Hilbert space and unitarity inside of every double-scaled matrix integral.

6. In our dictionary the emergent Hilbert space is not coming from the eigenvalue
distribution of the matrix model. Rather it comes from a certain singular discontinuity
in correlation functions of resolvents. However, we do map the fact that Û acts as
Θ(p̂) on 1-boundary states, i.e. is 1 for p > 0 and 0 for p < 0, to the statement that
the dual matrix model has a semi-infinite cut stretching from zero to infinity. Further,
the genus corrections to Û hint at the existence of an effect which is non-perturbative
in the genus expansion, namely tunneling from positive to negative momentum states,
corresponding to the non-perturbatively small but nonzero likelihood of finding an
eigenvalue outside the cut of a matrix model. This is a form of instability for de Sitter
space in JT gravity.

7. With the de Sitter entropy in mind, we endeavored to count the effective dimension
of the Hilbert space of asymptotic states. We did so by looking at the subspace of
asymptotic states which evolve into a smooth de Sitter geometry. Using the matrix
model description we found hints that the effective dimension of 1-boundary states
diverges logarithmically for one-cut matrix integrals as the length of the cut is taken
to infinity, and so is infinite for JT gravity. However this does not rule out a statistical
mechanical interpretation for the horizon entropy, since we are counting asymptotic
states rather than bulk states.

We stress that in this duality, unlike in ordinary examples of AdS/CFT, not only
are the spatial and temporal dimensions of the gravity dual emergent, but so is the very
quantum mechanical description in terms of a Hilbert space and operators acting on it. This
is different from a pervasive philosophy in the AdS/CFT community, which can be stated
as follows. In AdS/CFT, string theory on AdS emerges from a quantum non-gravitational
dual CFT. Hence the slogan, “gravity is emergent from quantum mechanics.” In the context
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of considering quantum information aspects of this correspondence, the slogan becomes “it
from qubit.”

However, we see in our matrix models that a non-quantum description of de Sitter
JT gravity is more fundamental, namely the underlying random matrix ensemble. The
quantum mechanics in question arises from universal aspects of random matrices in the
double scaling limit. Perhaps the original slogan of John Wheeler [37], “it from bit”, is
more appropriate here. It is not as of yet clear if this lesson will generalize, but it provides
a tantalizing hint of a description of reality which, at least in de Sitter, may be more
fundamental than quantum mechanics.

There are several ways in which our approach in this manuscript is a new take on
de Sitter holography. We have a first-principles computation of the inner product on
asymptotic states which allows us to compute properly normalized transition amplitudes.
These come from a sum over geometries which interpolate between past and future infinity.
So there is an asymptotic past, and we allow for any number of universes in the past and in
the future. As a result, the Hartle-Hawking wavefunction does not play a privileged role in
the quantum mechanics of JT gravity,10 and in fact as a quantum state we find it to be
non-normalizable.

While some of the results of this paper are specific to JT gravity and its variations,
we expect many of the lessons learned to generalize more broadly. For example, in de
Sitter it is natural to sum over geometries with any number of past and future asymptotic
regions. The path integral over such geometries calculates a transition amplitude between
asymptotic states labeled by any number of universes. Indeed, we stress the importance
of studying quantum gravity on global de Sitter space, which played a central role in our
analysis. However, it is not clear if we should include similar geometries with multiple
asymptotic regions for string theory in Euclidean AdS. At a more technical level, one of our
main results was a first-principles computation of the inner product on asymptotic states,
which involved a path integral over large gauge transformations and an integral over moduli.
We expect there to be a similar although more challenging computation for de Sitter gravity
in three dimensions, building upon previous results for the path integral of Euclidean AdS3
gravity [38] and for dS3 [22], and perhaps even for higher-dimensional de Sitter gravity.

Let us conclude with a list of future directions suggested by our work.
It would be particularly interesting to study the quantum mechanics of JT gravity

coupled to matter fields as in [39, 40], as well as of gravity (possibly coupled to matter)
in three dimensions. In all of these cases there are no propagating gravitons, but the
gravitational path integral remains non-trivial on account of the integrals over large gauge
transformations and moduli. It is also tempting to speculate whether the methods of
our paper would help in understanding flat space holography in two and three spacetime
dimensions. While there are various attempts [41–48] to make sense of flat space gravity by
taking a large radius of AdS gravity, the flat-space S-matrix is as an observable perhaps
closer to transition amplitudes in de Sitter than to correlation functions of Lorentzian CFT.

10However, it is worth noting that the Hartle-Hawking wavefunction encodes the leading order density
of states of the dual matrix integral, and so the entire genus expansion via topological recursion. So that
wavefunction indeed plays an important role, although only behind the scenes.

– 31 –



J
H
E
P
1
2
(
2
0
2
1
)
0
8
9

There is some early evidence [49] that pure Euclidean AdS3 gravity is dual to an
ensemble (perhaps of two-dimensional CFTs), although it is not yet clear what this ensemble
is. To the extent that dS3 gravity is an analytic continuation of Euclidean AdS3 gravity [22],
it would be interesting to understand whether there is an analogue of level repulsion in that
ensemble, and if as in the present manuscript it leads to approximate unitarity in de Sitter.

Besides de Sitter JT gravity the best tested example of de Sitter holography is a duality
between Vasiliev gravity in an inflating patch of dS4 and the singlet sector of an Sp(N)
vector model of anticommuting scalars [10]. Is there a duality between Vasiliev theory in
global dS4 and some doubled version of the Sp(N) model? If such a doubled version exists,
can it be used to compute transition amplitudes and scattering in dS4? Can one compute
the norm on asymptotic states of Vasiliev gravity from the bulk, and if so, what is the
relation with the Hilbert space proposal of [50]?

Finally, we cannot help but wonder if the problem of finding global de Sitter transition
amplitudes is amenable to the techniques of the conformal bootstrap program. Consider
pure gravity on global dS3. In that case there are two copies of Virasoro asymptotic
symmetry, one for each boundary, with the diagonal combination spontaneously broken by
the geometry. The approximate central charge is large and imaginary. By the analogue
of the usual AdS/CFT dictionary one has independently conserved stress tensors on each
boundary, as well as the constraints from asymptotic symmetry. Can the spectrum of
operators in such a theory be bootstrapped in the large c limit? What about the scattering
of two particles in de Sitter, which can be recast as a four-point function with two insertions
on the past boundary and two in the future?

There appear to be many new fruitful directions to explore in de Sitter holography,
building upon recent progress in simple models of quantum gravity and CFT. Time will tell.
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