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1 Introduction

The electron Bremsstrahlung in a nuclear field is one of the most fundamental processes in
QED. Its investigation, both theoretical and experimental, has a long history going back to
refs. [1–3]. In these papers, the spectrum and the radiation energy weighted cross section
have been calculated in the leading Born approximation. The first two papers used the
high-energy approximation E � m, where E is the energy of the incoming electron and
m is the electron mass. Later on a lot of effort has been devoted to the exact account of
the Coulomb corrections and the screening at high energies, [4, 5]. The first correction in
m/E to the photon spectrum exact in the nucleus charge has been calculated in ref. [6].
This correction extended the applicability of the resulting formula for the spectrum to the
region of intermediate energies. However, it seems that, up to the present time, little was
known about the Coulomb corrections in the region E −m ∼ m. In particular, the leading
contribution to the charge asymmetry of the energy loss was never considered before in
this energy range, to the best of our knowledge.

The present paper fills this gap by calculating the first Coulomb correction to the
energy-weighted cross section. To this end, we apply contemporary multiloop methods
based on IBP reduction, differential equations and dimensional recurrence relations. Last
but not least, we use this calculation to demonstrate a new technique of obtaining the
dimensional recurrence relations for the boundary constants starting from dimensional re-
currence relations and differential equations for the original master integrals which depend
on parameter.

2 Energy loss

Energy loss in electron Bremsstrahlung on a nucleus is defined as

φ =
∫
ω

E
dσeZ→eγZ =

∫
ω

E
|M |2
2|p|

dΦ
2E , dΦ = 2πδ(E − E ′ − ω) dp′

2E ′(2π)3
dk

2ω(2π)3 , (2.1)
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Figure 1. Diagrams contributing to NLO cross section.

where (E ,p), (E ′,p′), and (ω,k) are the momenta of the incoming electron, scattered
electron and emitted photon, respectively, and |M |2 denotes the square of matrix element
averaged/summed over the polarizations of initial/final particles. The physical meaning
of φ is the average fraction of electron energy lost per collision. This quantity plays an
important role in the description of the particle propagation in the matter: when multiplied
by the density of the scattering centers, it gives the stopping power S(E) = −dE/dx, which
in turn defines the radiation length X0 =

∫ E
0 dE1/S(E1). It depends on the initial energy

E and the nucleus charge number Z. The energy loss of the positron is given by a formal
replacement Z → −Z. When Zα � 1 (here Z is the charge number of the nucleus), φ
can be expanded in Zα with the leading term ∝ α(Zα)2. Energy loss in the leading Born
approximation has been calculated long ago in Racah paper [3]:

φ̄LO = 12E2 + 4m2

3Ep ln E + p

m
− 8E + 6p

3Ep2 ln2 E + p

m
− 4

3 −
2
Ep

Li2
(
−2p(E + p)

m2

)
, (2.2)

where φ̄ def= φ/σ0 with σ0
def= α(Zα)2/m2.

In order to calculate the charge asymmetry in the leading approximation, one has to
account for the first correction with respect to the parameter Zα. Let M = ∑∞

k=1Mk,
where the term Mk ∝ (Zα)k corresponds to the contribution of diagrams with k Coulomb
exchanges between electron and nucleus. Then the first C-odd correction to φ is determined
by eq. (2.1) with the replacement |M |2 → 2Re[M∗2M1].

3 Methods

In order to apply multiloop methods, we use dimensional regularization and express the
phase-spaces integrals via loop integrals with cut propagators using the relation

dd−1p′

2E ′(2π)d−1 = ddp′

(2π)d 2πδ+(p′2 −m2) (3.1)
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Then the contribution of M∗2M1 is given by the sum of cut diagrams depicted in
figure 1. In the limit ε → 0 the quantity M2 is infrared divergent due to the long range
nature of the Coulomb interaction. However, this divergence is known to be absorbed into
a complex phase factor in the full amplitude. It means that M2 = 1

εaM1 + O(ε0) where
a is a purely imaginary number, so that Re[M∗2M1] has a finite limit when ε → 0. Then,
the integration over final particles phase space also has a finite limit when ε → 0 as the
infrared divergencies do not show up due to additional factor ω under the integral sign.

We consider the following family of integrals

j (n1, . . . , n12) =
∫
dqdkdp′

iπ3d/2

∏
k∈{1,...,12}\C

(Dk + i0)−nk ×
∏
k∈C

δ(nk−1) (−Dk)
(nk − 1)! , (3.2)

where the set C = {2, 4, 7, 8} enumerates the cut denominators

D2 = k2, D4 = q · n, D7 = Q · n, D8 = p′2.

where Q = p − p′ − k and n = (1,0) is the time direction. These cut denominators
correspond to the on-shell condition for the emitted photon (2), the zero energy transfer to
the heavy nucleus (4, 7) and the on-shell condition for the final electron (8). The remaining
propagators are

D1 = (p− k) 2 −m2 , D3 = q2 , D5 = (p− k − q) 2 −m2 , D6 = (Q− q) 2 ,

D9 =
(
k + p′

) 2 −m2 , D10 = Q2 , D11 = (p− q) 2 −m2 , D12 = k · n .

All diagrams in figure 1 are expressed via integrals j(n1, . . . n12) for which nk∈C > 0,
n12 6 0 and at least one of n1, n5, n9, n11 is non-positive.

IBP reduction1 reveals 61 master integrals. We construct a differential system

∂Ej = Mj, (3.3)

where j = (j1, . . . j61)ᵀ is a column of LiteRed master integrals. Then we reduce this
system to ε-form [10, 11] using the Libra package [12]. In order to find the transformation

j = TJ (3.4)

to the canonical basis J = (J1, . . . , J61), we pass to the variable z ∈ (0, 1) related to E via

E = m
1 + z2

1− z2 , z =
√
E −m
E +m

. (3.5)

Then we have

∂zJ = εA(z)J = ε

[
A0
z

+ A1
z − 1 + A2

z + 1 + 2zA3
z2 + 1

]
J , (3.6)

where An are some constant matrices.
1IBP reduction was performed using the LiteRed2 package [7–9].
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Boundary conditions. We represent the solution as

J(z) = U(z)C , (3.7)

where U(z) is the evolution operator and C is a column of the boundary constants to be
fixed. We fix the asymptotics of the evolution operator to be U(z) ∼ zεA0 , where A0 is
defined in eq. (3.6). Then, around the point z = 0, the evolution operator U(z) can be
expanded in the generalized power series of the form

U(z) =
∞∑
n=0

{
Unz

n + Un+2εz
n+2ε + Un−2εz

n−2ε + Un−4εz
n−4ε + U

(1)
n−4εz

n−4ε log z

+ Un−6εz
n−6ε + Un−8εz

n−8ε
}
, (3.8)

where the leading terms (n = 0) are simply given by zεA0 and next terms can be found
from recurrence relation, as described in ref. [13]. From this expansion and eq. (3.4), it is
obvious that the boundary constants C can be determined by fixing a properly chosen set
of 61 asymptotic coefficients of master integrals. In order to determine which specific set
is suitable, we use the approach described in ref. [14]. Libra has all the necessary tools for
finding a column of asymptotic coefficients c required to fix the boundary conditions and
the ‘adapter’ matrix L which maps this column to the column of boundary constants, such
that C = Lc and

J(z) = U(z)Lc . (3.9)

For the description of these tools, we would refer the reader to ref. [12]. Using Libra, we
discover that it is sufficient to determine

• Coefficients in front of z6−8ε, z6−8ε, z4−8ε, z4−8ε, z4−8ε, z2−8ε for the master integrals
## 1, 3, 9, 16, 19, 28, respectively;

• 12 coefficients in front of zn−6ε (n ∈ Z);

• 43 coefficients in total in front of zn−4ε, zn−2ε, zn or zn+2ε (n ∈ Z).

Let us explain how we obtain the dimensional recurrence relations for the column of
boundary constants. We construct dimensional recurrence relation for the LiteRed master
integrals

j(z, ε− 1) = R(z, ε)j(z, ε) , (3.10)

where R(z, ε) is some rational matrix. Now from eqs. (3.9) and (3.4) we get

j = T̃c , T̃ = T U(z)L, (3.11)

and treat T̃ as a transformation matrix connecting j and the column of coefficients c. Then
the dimensional recurrence relation for c is given by

c(ε− 1) = V (ε)c(ε) , (3.12)
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where
V (ε) = T̃−1(z, ε− 1)R(z, ε)T̃ (z, ε) . (3.13)

Note that the left-hand side of eq. (3.13) does not depend on z, so the right-hand side should
not depend on z also. It is essential that Libra has tools for expanding both T̃−1 (ε− 1) and
T̃ (ε) in generalized power series in z. Thus, expanding the right-hand side of eq. (3.13) up
to sufficiently high order, we find the exact matrix V entering the dimensional recurrence
relation (3.12). Note that the required depth of the expansion of U in z appears to be as
high as 11 since the powers zn−8ε related to the nonzero coefficients in c column change
essentially upon the shift ε → ε − 1. Note that the matrix V acquires a block-diagonal
form with each block corresponding to a specific k in zn−kε constants. To summarize the
above consideration, we have constructed the exact dimensional recurrence (3.12) for the
asymptotic coefficients c starting from the dimensional recurrence for the master integrals
j and the generalized power series expansion of the evolution operator U(z), which, in turn,
is constructed starting from the differential system (3.6). This approach is quite general
and can be used in more involved calculations.

Now we note that the phase space integration is subject to severe restrictions due to
δ-functions. As we shall see in a moment, this greatly reduces the number of non-zero
coefficients from the above list. We have the following power counting:

p′ ∼ p ∼ z, ω ∼ E −m ∼ z2

Thus, we have

dp′dk ∼ zd−1
(
z2
)d−1

= z9−6ε,

i.e. only powers zn−kε with n ∈ Z, k > 6 survive in the threshold asymptotics. Moreover,
the terms ∝ zn−6ε come from the region |q| ∼ z0 and thorough inspection of the functions
Dk shows that the contribution of this region vanishes. Therefore, we only have to evaluate
the six constants

c6
1, c6

3, c4
9, c4

16, c4
19, c2

28, (3.14)

where cnk denotes the coefficient in front of zn−8ε in the threshold asymptotics of k-th
master integral. The first five constants can be calculated exactly in ε using parametric
representation in terms of either product of Γ-functions or hypergeometric functions. How-
ever, as the sixth constant, c2

28, requires a special treatment anyway, we prefer to use the
DRA method [15] for all constants in eq. (3.14).

The DRA method requires, in addition to the dimensional recurrence relations (3.12),
integral representations from which one can determine analytical properties of c as func-
tions of ε. We use the standard expansion by regions method to obtain the integral repre-
sentations for each nonzero constant. For the most complicated constant c2

28 we obtain a
three-fold integral representation. Using SummerTime [16] and the PSLQ algorithm [17], we
obtain the expansions of all six constants from eq. (3.14) in terms of alternating multiple
zeta values.
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4 Results

We organize the series expansion in Zα for the energy-loss in the following form

φ = σ0φ̄ = σ0
[
φ̄LO + (Zα)φ̄NLO +O (Zα)2

]
. (4.1)

Here φ̄LO is given by eq. (2.2) and our new result for the NLO correction reads2

φ̄NLO = π(1− z2)
(1 + z2)

(
(40− 7z2 + 3z4)

12z − 84− 19z2 + 71z4 + 59z6 − 3z8

24z2(1− z2) A1 (4.2)

+ (3 + z2)(1 + 3z2)(1 + 10z2 + z4)
24z3(1− z2) (2 log 2 + S1) + (1− z4)(1 + 10z2 + z4)

16z4 A1,−1

+ (27− 8z2)
6 A2 −

(1− z2)
z

A2
1 −

(1− z4)(3− 26z2 + 3z4)
32z4 A1S1

− (1− z4)(1− 4z2 + z4)
4z4 A1 log 2 + 2A2S1 + (1− 14z2 + z4)

4z2 (A2,−1 + 3A2,1)

+ (1− 6z2 + z4)
2z2 (A2 log 2 +A3) +(1− z2)5

64z5 A1 (4A1 log 2 +A1S1 − 2A1,−1)
)

where Aa = Ha(z)−Ha(−z), Sa = Ha(z) +Ha(−z), z =
√
E−m√
E+m and Ha(z) = Ha1,...,an(z)

denotes a harmonic polylogarithm (HPL) [18]. All HPLs have the transcendental weight
3, at most, and can be expressed in terms of classical polylogarithms Li2 and Li3 with
complicated argument, see appendix A.

Asymptotics. The non-relativistic and high-energy asymptotics of eq. (4.2) can be com-
pared with the corresponding results known from the literature. In particular, the non-
relativistic limit of the Bremsstrahlung spectrum is known since Sommerfeld’s paper [19].
This formula is exact in the parameters Zα/v, Zα/v′, where v and v′ are the velocities
of the initial and final electron. In contrast, our perturbative result is valid for any v, v′,
but implies that Zα is the smallest parameter, i.e., that Zα/v � 1. Therefore, we should
expand the Sommerfeld spectrum in Zα/v and Zα/v′, multiply it by ω/E , and integrate
over ω from zero to mv2/2. For the contribution ∝ (Zα)3 we obtain

φ̄NLO
E→m∼ 16π

3v (2 log 2− 1) (4.3)

which precisely reproduces the asymptotics of our result.
The high-energy limit of our result has the form

φ̄NLO
E�m∼ π

24
(
19π2 + 84(2− ζ3)− 60π2 log 2

)
+ π3

2 log E
m
. (4.4)

In ref. [6] the spectrum of the high-energy Bremsstrahlung has been calculated exactly
in Zα. The formula for the spectrum obtained in this ref. implies that the final elec-
tron remains ultra-relativistic. Meanwhile, it is easy to establish that the region E ′ ∼ m

2One can find results for the φ̄NLO in computer-readable form in the supplementary material.

– 6 –



J
H
E
P
1
2
(
2
0
2
1
)
0
5
4

contribute to the non-logarithmic constant in eq. (4.4). Thus, we can only compare the
coefficient in front of the logarithm, boxed in eq. (4.4), which perfectly agrees. Note that
the end of the spectrum has been considered in ref. [20], mostly motivated by applications
to heavy atoms, Zα ∼ 1. The result of this paper has the form of slowly convergent sum
of nested integrals which is difficult to calculate with sufficient precision in our present
restrictions Zα� 1.

Although our present consideration does not allow us to obtain photon spectrum, we
can use the calculated master integrals to obtain results for the cross section integrated
with the weight ωk for k = 1, 2, . . ..3 In particular, we can compare the high- and low-
energy asymptotics these quantities with the corresponding results obtained by integration
of the high- and low-energy spectra. It is convenient to consider the following quantity

K(n)(Z, E) = σ0
[
K

(n)
LO + (Zα)K(n)

NLO + . . .
] def=

T∫
0

(1− ω/T )n ω
E
dσeZ→eγZ(Z, E), (4.5)

where T = E −m is the kinetic energy of the incoming electron. From ref. [6], by direct
integration of the spectrum we obtain for n > 0

K
(n)
NLO = π3(3 + 2n)(4 + 9n+ 3n2)

4n(1 + n)(2 + n)(3 + n)
m

E
+O

( 1
E2

)
. (4.6)

Note that the contribution of the high-frequency end of the spectrum is negligible for
positive n. Expanding our results for K(n)

Zα in the limit E → ∞ we find exact agreement
with eq. (4.6) for n = 1, . . . , 16. This comparison is a strong check on the validity of the
procedure, calculated master integrals and performed IBP reduction.

Similarly, we can compare the low-energy asymptotics of K(n) with the corresponding
results obtained by a straightforward integration of the Sommerfeld formula expansion,

K
(n)
NLO = 8π

3v

[ (4n+ 3)S1(n)
(n+ 1)(2n+ 1) −

2S1(2n+ 1)
n+ 1 + 4 log 2

2n+ 1

]
+O (v) , (4.7)

where S1(n) = ∑n
j=1

1
j . Again, we find perfect agreement for n = 0, . . . , 16.

Numerical results and plots. For the sake of comparison of our results with those
available in the literature, we present in figure 2 the electron-positron asymmetry in energy
loss defined as

ηφ = φ(+Z, E)
φ(−Z, E) (4.8)

as a function of energy. Together with our perturbative results we plot those obtained
using the Sommerfeld spectrum [19] and Elwert-Haug interpolation [21].

In order to obtain Sommerfeld and Elwert-Haug cross sections it was crucial to have
fast high-precision numerical evaluation of the Gauss hypergeometric function with complex
parameters. In our work we use the implementation provided by the multiprecision floating

3We get the first six moments (n = 0, . . . , 5) by simply making the IBP reduction of the cross section
weighted with ωn = Dn

12. For higher moments the complexity of the IBP reduction gradually increases and
we apply instead an approach described in section 4.
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Figure 2. Comparison of the electron to positron energy loss ratio ηφ for different Z values. Here
(P) is a perturbative NLO result from the current paper and (S) is a non-relativistic exact to all
orders in Zα/v result by Sommerfeld [19], (EH) is a result of Elwert-Haug [21].

point library Arb [22]. For the Elwert-Haug cross section we perform in addition the four-
dimensional integration of the EH cross section with Cuba library [23]. Of course, since our
result is expressed via classical polylogarithms, its numerical evaluation is straightforward.

The deviation of Sommerfeld’s result from our result at small enough T even for small
Z is not surprising. As we already mentioned our formula does not take into account the
corrections of relative order (Zα/v)n for n > 2, thus, when 2T . (Zα)2, Sommerfeld result
is reliable, while ours gradually looses its validity as expected.

The deviation of Elwert-Haug result from ours even for small Z at high enough energies
can be explained as follows. The original goal of ref. [21] was not to correctly describe
the asymmetry, but rather to interpolate between two asymptotics known at that time:
the Sommerfeld’s result and the Bether-Heitler high-energy asymptotics. The latter is
symmetric with respect to the change Z → −Z, so the Elwert-Haug asymmetry falls off
faster than Sommerfeld’s. It is interesting to note that our result for the asymmetry goes
above the Sommerfeld’s.

In ref. [6] the first correction to the Bethe-Maximon spectrum has been calculated.
This correction is antisymmetric in Z, and thus defines the charge asymmetry in the
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Figure 3. Energy weighted asymmetry, (P) - perturbative NLO result, (S) - Sommerfeld [19], (U)
- corrections from [6].

Bremsstrahlung spectrum. However, as explained above, when it concerns energy loss,
the spectrum of ref. [6] can be used to obtain it only with logarithmic accuracy, and the
extraction of the additive constant from the results of ref. [20] appears to be not practically
possible. Due to these reasons, instead of ηφ we use a related asymmetry,

ηK = K(1)(+Z, E)
K(1)(−Z, E)

(4.9)

where K(n) is defined in eq. (4.5). This is asymmetry in the cross section integrated with
the weight ωE ′ (to be compared with weight ω for φ). In figure 3 we provide a comparison
of the asymmetry between positron and electron energy-weighted energy-loss functions
K(1) with results for non-relativistic evaluation by Sommerfeld and ultra-relativistic limit
predictions from [6]. Our result agrees with the latter at small Z and fails, as expected,
when Z becomes large.

Fitting spectrum from fixed moments. As we already mentioned, our approach is
suitable for the calculation of the moments, i.e., integrals of the cross section weighted with
ωn, or, equivalently, K(n) defined in eq. (4.5).
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Although the computational complexity of the IBP reduction gradually grows with n,
we have managed to obtain K(n)

NLO for n = 0, . . . , 5 rather easily with direct application of
IBP reduction tables. In order to obtain yet more moments, we have used the approach
based on the derivation of the system of difference equations in variable n. To construct
this system, we use the fact that the integrals of the family (3.2) which appear in the
different moments are the same except the last index n12 since D12 = (k · n) = ω. Since

1
1− t(k · n) =

∞∑
i=0

(k · n)iti, (4.10)

we can obtain the generating function for the moments by replacing D12 with 1− t(k · n).
Constructing the system of differential equations for integrals with t-dependent propaga-
tors (4.10) with appropriate ansatz in the form of the series J = ∑

cit
i we obtain recurrence

relations for the coefficients ci which is nothing but the corresponding moments of original
integrals (3.2). On this way, we have calculated moments up to n = 16. This has provided
a number of checks for low- and high-energy asymptotics as explained previously.

Besides, having a considerable number of moments at hand, it is tempting to try to
recover the NLO photon spectrum for arbitrary energies. It is convenient to make a fit for
the following quantity

Σ(z, τ) = (Zασ0)−1p
ω

E
dσNLO
dτ

, (4.11)

where τ =
√
T ′/T =

√
E ′−m
E−m . The convenience of this quantity is that it has finite low-

and high- energy limits, known thanks to refs. [19] and [6], respectively. They read

Σ(0, τ) = 16π
3 (1− τ) log

(1 + τ

1− τ

)
, (4.12)

Σ(1, τ) = π3

2τ
(
τ2 + 1

) (
2τ4 − τ2 + 2

)
. (4.13)

We tried several fitting bases and found that {1, τ, . . . , τ 7} gives the most stable results.4
In other words, we write Σ(z, τ) = ∑7

m=0Cm(z)τm and fit coefficients to reproduce the
integrals K(n)

NLO with n = 0, . . . , 7. Given that pK(n)
NLO(z) =

∫ 1
0 dτΣ(z, τ)τ2n, we can write

the coefficients as

Cm(z) = 2z
1− z2

7∑
n=0

(
T−1

)
mn

K
(n)
NLO, (4.14)

where T = {Tnm} = {(2n+m+ 1)−1}.
The resulting spectra are shown in figure 4.

5 Conclusion

To summarize, we have calculated the first Coulomb correction to the energy loss of electron
due to Bremsstrahlung in the field of a nucleus for arbitrary electron energy. This correction
leads to the asymmetry in the energy loss of an electron and a positron. We have compared

4Inclusion of yet higher moments into the fit seems to introduce some artifacts in the spectrum.
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Figure 4. Function Σ(z, τ) for several values of z =
√
E−m√
E+m and its comparison with low energy

(dash-dotted curve) and high energy (dashed curve) asymptotics.

the high- and the low-energy asymptotics with available asymptotics and found a perfect
agreement. We have calculated also a number of moments of the cross section, as defined in
eq. (4.5). The low- and high-energy asymptotics of these moments perfectly agrees with the
known results which provides a stringent test of the consistency of our approach. Besides,
we have used the calculated moments to approximately recover the photon spectrum, which
might be interesting from the point of view of some applications. It would be interesting to
compare our fit with direct calculation of the spectrum once/if the latter will be available
at some point.

From the perspective of developing new methods, we have demonstrated how to obtain
the dimensional recurrence relations for the boundary constants starting from the equations
for original master integrals and used this technique to apply the DRA method [15] to the
calculation of the constants.
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A A and S functions via classical polylogarithms

S1 = − log(1− z)− log(1 + z) (A.1)
A1 = − log(1− z) + log(1 + z) , (A.2)
A2 = Li2(z)− Li2(−z) , (A.3)
A3 = Li3(z)− Li3(−z) , (A.4)

A1,−1 = (log(1 + z)− log(1− z)) log 2 + Li2
(1− z

2

)
− Li2

(1 + z

2

)
, (A.5)

A2,1 = 1
6
(
log3(1 + z)− log3(1− z)

)
− Li2(z) log(1− z) + Li2(−z) log(1 + z)

+ Li3(z)− Li3(−z)− Li3
(

z

1 + z

)
+ Li3

( −z
1− z

)
, (A.6)

A2,−1 =
(
π2

12 −
log2 2

2

)
(log(1 + z)− log(1− z))

+
(
log2(1 + z)− log2(1− z)

) log 2
2 + Li2(z) log(1 + z)− Li2(−z) log(1− z)

+ Li3
(1− z

2

)
− Li3

(1 + z

2

)
− Li3

( −2z
1− z

)
+ Li3

( 2z
1 + z

)
− Li3(z) + Li3(−z)− Li3

(
z

1 + z

)
+ Li3

( −z
1− z

)
. (A.7)
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